
Structured parallel programming for Monte Carlo Tree Search
Mirsoleimani, S.A.

Citation
Mirsoleimani, S. A. (2020, June 17). Structured parallel programming for Monte Carlo Tree
Search. SIKS Dissertation Series. Retrieved from https://hdl.handle.net/1887/119358

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/119358

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/119358

Cover Page

The handle http://hdl.handle.net/1887/119358 holds various files of this Leiden University
dissertation.

Author: Mirsoleimani, S.A.
Title: Structured parallel programming for Monte Carlo tree search
Issue Date: 2020-06-17

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/119358
https://openaccess.leidenuniv.nl/handle/1887/1�

Structured Parallel Programming
FOR

Monte Carlo Tree Search

S. Ali Mirsoleimani

Structured Parallel Programming
FOR

Monte Carlo Tree Search

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties

te verdedigen op woensdag 17 juni 2020
klokke 11.15 uur

door

Sayyed Ali Mirsoleimani
geboren te Abadeh, Iran

in 1986

Promotoren:
Prof. dr. H. J. van den Herik
Prof. dr. A. Plaat
Copromotor:
Dr. J. A. M. Vermaseren Nikhef

Promotiecommissie:
Prof. dr. P. J. G. Mulders Vrije Universiteit Amsterdam
Prof. dr. F. J. Verbeek
Prof. dr. H. A. G. Wijshoff
Dr. F. Khunjush Shiraz University, Shiraz, Iran
Dr. W. A. Kosters
Dr. ir. A. L. Varbanescu Universiteit van Amsterdam

HEPGAME, ERC Advanced Grant No. 320651
The research reported in this thesis has been additionally funded by Nikhef,
the Nationaal instituut voor subatomaire fysica.

In the first year, the research reported in this thesis has been performed at
Tilburg center for Cognition and Communication (TiCC) at
Tilburg University, the Netherlands.

The research reported in this thesis has been completed at
Leiden Centre of Data Science (LCDS) hosted by
Leiden Institute of Advanced Computer Science (LIACS) at the Faculty of Science,
Universiteit Leiden, the Netherlands.

SIKS Dissertation Series No. 2020-08
The research reported in this thesis has been carried out under
the auspices of SIKS, the Dutch Research School for Information and
Knowledge Systems.

Copyright c© 2020 by S.A. Mirsoleimani

An electronic version of this dissertation is available at
http://openaccess.leidenuniv.nl/.

http://openaccess.leidenuniv.nl/

I would like to dedicate this thesis to my wife Elahe and to my parents,
for all of their love and support.

In loving memory of my grandfathers,
Bahram and Abolghasem

Preface

The thesis is part of a bigger project, the HEPGAME (High Energy Physics Game). The
project started in 2011 when Jos Vermaseren developed the first ideas on improving
FORM at Nikhef, Amsterdam. In 2012 he submitted an ERC advanced research grant
together with Tilburg University. It was accepted on 12/12/2012. Half a year later in
July 2013, the program started. The main objective for HEPGAME was the utilization
of AI solutions, particularly by using MCTS for simplification of HEP calculations.
One of the issues is solving mathematical expressions of interest with millions of
terms. Up to 2011, these calculations were executed with the FORM program, which
is software for symbolic manipulation. These calculations are computationally inten-
sive and take a large amount of time. Hence, the FORM program was parallelized
to solve large equations in a reasonable amount of time. Therefore, any new algo-
rithm, for instance, the ones based on MCTS, should also be parallelized. Here our
research comes in. It is dedicated to parallelization of MCTS on multi-core and many-
core processors. The research was ambitious and challenging. Therefore, we divided
the research area into three main parts: (1) the evaluation of current methods for
parallelization of MCTS, (2) addressing the shortcomings in these methods, and (3)
providing new ways of parallelization for MCTS. In the first part, we investigated the
current methods and evaluated them in terms of performance and scalability on both
multi-core and manycore processors. In the second part, we examined how we can
solve the actual shortcomings in the existing parallelization methods for MCTS. The
third part was dedicated to finding new ideas, methods, and ways beyond the existing
ones to parallelize MCTS.

Sayyed Ali Mirsoleimani, Leiden, July 2019

Contents

Preface vii

Contents ix

List of Definitions xv

List of Figures xvii

List of Tables xxi

List of Listings xxiii

List of Abbreviations xxv

1 Introduction 1
1.1 HEPGAME . 2
1.2 Monte Carlo Tree Search . 2
1.3 Parallelism and Parallelization . 3

1.3.1 Thread-level Parallelization . 4
1.3.2 Task-level Parallelization . 4

1.4 General Obstacles for Parallelization of MCTS 5
1.4.1 Irregular Parallelism Causes Load Balancing Overhead 6
1.4.2 Shared Data Structure Causes Synchronization Overhead 6
1.4.3 Ignoring Data Dependencies Causes Search Overhead 7
1.4.4 Complex Interactions Leading to Deployment Overhead 8

x

1.5 Performance and Scalability Studies . 8
1.6 Scope and Research Goals . 9
1.7 Problem Statement and Research Questions 10
1.8 Research Methodology . 12
1.9 Structure of the thesis . 12
1.10 Contributions . 13

2 Background 15
2.1 Upper Confidence Bound (UCB) . 16
2.2 Upper Confidence Bounds for Trees (UCT) 16

2.2.1 UCT Formula . 17
2.2.2 UCT Algorithm . 17

2.3 Parallelization Methods for MCTS . 17
2.3.1 Parallel Methods with a Shared Data Structure 17
2.3.2 Parallel Methods with More than one Data Structure 18

2.4 Case Studies . 19
2.4.1 Case 1: The Game of Hex . 19
2.4.2 Case 2: Horner Schemes . 20

2.5 Performance Metrics . 20
2.5.1 Playout Speedup . 21
2.5.2 Playing Strength . 21

2.6 Our ParallelUCT Package . 22
2.6.1 Framework of multiple benchmark problems 22
2.6.2 Framework of multiple parallelization methods 23
2.6.3 Framework of multiple programming models 23

3 Thread-level Parallelization for MCTS 25
3.1 Micro-benchmark Code Performance 27

3.1.1 Xeon Phi Micro-architecture . 27
3.1.2 Experimental Setup . 28
3.1.3 Experimental Design . 30
3.1.4 Experimental Results . 30
3.1.5 Section Conclusion . 33

3.2 FUEGO Performance and Scalability 33
3.2.1 Experimental Setup . 34
3.2.2 Experimental Design . 34
3.2.3 Experimental Results . 35
3.2.4 Section Conclusion . 39
3.2.5 Answer to RQ1a for FUEGO . 39

3.3 ParallelUCT Performance and Scalability 40

xi

3.3.1 Experimental Setup . 40
3.3.2 Experimental Design . 41
3.3.3 Experimental Results . 41
3.3.4 Section Conclusions . 46
3.3.5 Answer to RQ1a for ParallelUCT 47

3.4 Related Work . 48
3.5 Answer to RQ1 . 48

4 Task-level Parallelization for MCTS 51
4.1 Irregular Parallelism Challenge . 52
4.2 Achieving Task-level Parallelization . 52

4.2.1 Decomposition of Iterations into Tasks 53
4.2.2 Ignoring Data Dependencies among Iterations 53

4.3 Threading Libraries . 53
4.3.1 Cilk Plus . 54
4.3.2 Threading Building Blocks . 54

4.4 Grain Size Controlled Parallel MCTS 54
4.5 Implementation Considerations . 56

4.5.1 Shared Search Tree Using Locks 56
4.5.2 Random Number Generator . 57

4.6 Performance and Scalability Study . 57
4.7 Experimental Setup . 58
4.8 Experimental Design . 58
4.9 Experimental Results . 59
4.10 Discussion and Analysis . 60
4.11 Related Work . 64
4.12 Answer to RQ2 . 64

5 A Lock-free Algorithm for Parallel MCTS 67
5.1 Shared Data Structure Challenge . 68

5.1.1 Parallelization with a Single Shared Tree 69
5.1.2 The Race Conditions . 69
5.1.3 Protecting Shared Data Structure 70

5.2 Related Work . 71
5.2.1 Lock-based Methods . 71
5.2.2 Lock-free Methods . 72

5.3 A New Lock-free Tree Data Structure and Algorithm 73
5.4 Implementation Considerations . 77
5.5 Experimental Setup . 77

5.5.1 The Game of Hex . 78

xii

5.5.2 Performance Metrics . 78

5.5.3 Hardware . 78

5.6 Experimental Design . 78

5.7 Experimental Results . 79

5.7.1 Scalability and Cp parameters 79

5.7.2 GSCPM vs. Root Parallelization 82

5.8 Answer to RQ3 . 83

6 Pipeline Pattern for Parallel MCTS 85

6.1 Data Dependencies Challenges . 86

6.1.1 Loop Independent Data Dependency 86

6.1.2 Loop Carried Data Dependency 87

6.1.3 Why a Pipeline Pattern? . 87

6.2 Design of 3PMCTS . 88

6.2.1 A Pipeline Pattern for MCTS . 88

6.2.2 Pipeline Construction . 91

6.3 Implementation Considerations . 92

6.4 Experimental Setup . 92

6.4.1 Horner Scheme . 92

6.4.2 Performance Metrics . 93

6.4.3 Hardware . 93

6.5 Experimental Design . 93

6.6 Experimental Results . 94

6.6.1 Performance and Scalability of 3PMCTS 94

6.6.2 Flexibility of Task Decomposition in 3PMCTS 96

6.7 Answer to RQ4 . 97

7 Ensemble UCT Needs High Exploitation 99

7.1 Ensemble UCT . 100

7.2 Related Work . 101

7.3 Experimental Setup . 102

7.3.1 The Game of Hex . 102

7.3.2 Hardware . 102

7.4 Experimental Design . 103

7.5 Experimental Results . 103

7.6 Answer to the First Part of RQ5 . 106

xiii

8 An Analysis of Virtual Loss in Parallel MCTS 109
8.1 Virtual Loss . 110
8.2 Related Work . 112
8.3 Experimental Setup . 112
8.4 Experimental Design . 112
8.5 Experimental Results . 113
8.6 Answer to the Second Part of RQ5 . 115
8.7 A Complete answer to RQ5 . 115

9 Conclusions and Future Research 117
9.1 Answers to the RQs . 117

9.1.1 Answer to RQ1 . 117
9.1.2 Answer to RQ2 . 118
9.1.3 Answer to RQ3 . 118
9.1.4 Answer to RQ4 . 119
9.1.5 Answer to RQ5 . 119

9.2 Answer to the PS . 120
9.3 Limitations . 120

9.3.1 Maximizing Hardware Usage 120
9.3.2 Using More Case Studies . 121

9.4 Future Research . 121

Bibliography 123

Appendices 131

A Micro-benchmark Programs 133

B Statistical Analysis of Self-play Experiments 135

C Implementation of GSCPM 137
C.1 TBB . 137
C.2 Cilk Plus . 137
C.3 TPFIFO . 138

D Implementation of 3PMCTS 139
D.1 Definition of Token Data Type (TDT) 139
D.2 TBB Implementation Using TDD . 141

Summary 143

xiv

Samenvatting 145

Acknowledgment 147

Curriculum Vitae 149

Publications 151

SIKS Dissertation Series 153

List of Definitions

1.1 Parallelization . 3
1.2 Thread . 4
1.3 Multi-core Processor . 4
1.4 Task . 4
1.5 Many-core Processor . 5
1.6 Parallel Pattern . 5
1.7 Irregular Parallelism . 6
1.8 Load Balancing . 6
1.9 Shared Data Structure . 7
1.10 Synchronization . 7
1.11 Loop Carried Data Dependency . 7
1.12 Loop Independent Data Dependency 7
1.13 Search Overhead . 7
1.14 Complex Interactions . 8
1.15 Deployment Overhead . 8
1.16 Performance Study . 8
1.17 Playout Speedup . 8
1.18 Playing Strength . 8
1.19 Scalability Study . 9
1.20 Memory Bandwidth . 9
1.21 Uniform Memory Access . 10
1.22 Many Integrated Core . 10
1.23 Non Uniform Memory Access . 10

xvi List of Definitions

2.1 Exploitation . 16
2.2 Exploration . 16
2.3 Tree Parallelization . 18
2.4 Root Parallelization . 19
2.5 Strong Scalability . 21

3.1 Thread Affinity Policy . 28
3.2 Double-Precision Floating-Point Format 29
3.3 Integer Format . 30

4.1 Iteration Pattern . 53
4.2 Fork-join Pattern . 53
4.3 Iteration-level Task . 55
4.4 Iteration-level Parallelism . 55
4.5 Fork-join Parallelism . 55

5.1 Race Condition . 69
5.2 Lock-based . 70
5.3 Lock-free . 71

6.1 Operation-Level Task . 86
6.2 Operation-Level Parallelism . 86
6.3 Sequence Pattern . 87
6.4 Iteration Pattern . 87
6.5 Pipeline Pattern . 88

8.1 Virtual Loss . 110

List of Figures

1.1 An example of the search tree. 3

1.2 The main loop of MCTS. 3

1.3 One iteration of MCTS. 4

2.1 A sample board for the game of Hex 19

3.1 Intel Xeon Phi Architecture. 29

3.2 Performance and scalability of double-precision operations for different
numbers of iterations. 31

3.3 Memory bandwidth of double-precision operations on the Xeon Phi for
increasing numbers of threads. Each interval contains 27 points. 32

3.4 Performance and scalability of integer operations of the Xeon Phi for
different numbers of threads. 33

3.5 Performance and scalability of FUEGO in terms of PPS when it makes
the second move. Average of 100 games for each data point. The board
size is 9× 9. 35

3.6 Scalability of FUEGO in terms of PW with N threads against FUEGO

with N/2 threads. The board size is 9× 9. 38

3.7 Performance and scalability of ParallelUCT in terms of PPS for both
Tree and Root Parallelization. 43

3.8 Scalability of ParallelUCT in terms of PW for Tree Parallelization. . . . 44

3.9 Scalability of ParallelUCT in terms of PW for Root Parallelization. . . . 46

xviii List of Figures

4.1 The scalability profile produced by Cilkview for the GSCPM algorithm.
The number of tasks is shown. Higher is more fine-grained. 57

4.2 Speedup for task-level parallelization utilizing five methods for parallel
implementation from four threading libraries. Higher is better. Left:
coarse-grained parallelism. Right: fine-grained parallelism. 61

4.3 Comparing Cilkview analysis with TPFIFO speedup on the Xeon Phi.
The dots show the number of tasks used for TPFIFO. The lines show
the number of tasks used for Cilkview. 63

5.1 (5.1a) The initial search tree. The internal and non-terminal leaf nodes
are circles. The terminal leaf nodes are squares. The curly arrows rep-
resent threads. (5.1b) Thread 1 and 2 are expanding node v6. (5.1c)
Thread 1 and 2 are updating node v3. (5.1d) Thread 1 is selecting node
v3 while thread 2 is updating this node. 69

5.2 Tree parallelization with coarse-grained lock. 72

5.3 Tree parallelization with fine-grained lock. 72

5.4 The scalability of Tree Parallelization for different parallel program-
ming libraries when Cp = 1. (5.4a) Coarse-grained lock. (5.4b) Lock-
free. 80

5.5 The scalability of Tree Parallelization for different parallel program-
ming libraries when Cp = 1 on the Xeon Phi. (5.5a) Coarse-grained
lock. (5.5b) Lock-free. 80

5.6 (5.6a) The scalability of the algorithm for different Cp values. (5.6b)
Changes in the depth of tree when the number of tasks are increasing. 81

5.7 The playing results for lock-free Tree Parallelization versus Root Paral-
lelization. The first value for Cp is used for Tree Parallelization and the
second value is used for Root Parallelization. 82

6.1 (6.1a) Flowchart of a pipeline with sequential stages for MCTS. (6.1b)
Flowchart of a pipeline with parallel stages for MCTS. 88

6.2 Scheduling diagram of a pipeline with sequential stages for MCTS. The
computations for stages are equal. 89

6.3 Scheduling diagram of a pipeline with sequential stages for MCTS. The
computations for stages are not equal. 89

6.4 Scheduling diagram of a pipeline with parallel stages for MCTS. Using
parallel stages create load balancing. 90

6.5 The 3PMCTS algorithm with a pipeline that has three parallel stages
(i.e., EXPAND, RANDOMSIMULATION, and EVALUATION). 91

List of Figures xix

6.6 Playout-speedup as function of the number of tasks (tokens). Each data
point is an average of 21 runs for a search budget of 8192 playouts. The
constant Cp is 0.5. Here a higher value is better. 94

6.7 Number of operations as function of the number of tasks (tokens). Each
data point is an average of 21 runs for a search budget of 8192 play-
outs. Here a lower value is better. 95

6.8 Percentage of win as function of the number of tasks (tokens). Each
data point is the outcome of 100 rounds of playing between the two
opponent players. Each player has a search budget of 220 = 1, 048, 576

playouts in each round. Here a higher value is better. 97

7.1 The number of visits for root’s children in Ensemble UCT and plain
UCT. Each child represents an available move on the empty Hex board
with size 11 × 11. Both Ensemble UCT and plain UCT have 80,000
playouts and Cp = 0. In Ensemble UCT, the size of the ensemble is 8. . 104

7.2 The percentage of wins for ensemble UCT is reported. The value of Cp

for plain UCT is always 1.0 when playing against Ensemble UCT. To
the left few large UCT trees, to the right many small UCT trees. 105

8.1 Search overhead (SO) for Horner (average of 20 instances for each
data point). Tree parallelization is the green line which is indicated by
circles, and Tree Parallelization with virtual loss is the blue line which
is indicated by triangles. Note that the higher SO of Tree Parallelization
with virtual loss means lower performance. 113

8.2 Efficiency (Eff) for Horner (average of 20 instances for each data
point). Tree parallelization is the green line which is indicated by cir-
cles and Tree Parallelization with virtual loss is the blue line which is
indicated by triangles. Note that Tree Parallelization with virtual loss
has a lower efficiency meaning lower performance. 114

List of Tables

3.1 Thread affinity policies . 29
3.2 Performance of FUEGO on the Xeon CPU. Each column shows data for

N threads. The board size is 9× 9. 36
3.3 Performance of FUEGO on the Xeon Phi. Each column shows data for

N threads. The board size is 9× 9. 37

4.1 The conceptual effect of grain size. 56
4.2 Sequential baseline for GSCPM algorithm. Time in seconds. 59

5.1 Sequential execution time in seconds. 81

6.1 Sequential time in seconds when Cp = 0.5. 94
6.2 Definition of layouts for 3PMCTS. 96
6.3 Details of experiment to show the flexibility of 3PMCTS. 96

7.1 Different possible configurations for Ensemble UCT. Ensemble size is n. 101
7.2 The performance of Ensemble UCT vs. plain UCT based on win rate. . 103

List of Listings

A.1 Micro-benchmark code for measuring performance of Xeon Phi. 133
A.2 Micro-benchmark code for measuring memory bandwidth of Xeon Phi. 134
C.1 Task parallelism for GSCPM using TBB (task group). 137
C.2 Task parallelism for GSCPM using Cilk Plus (cilk spawn). 138
C.3 Task parallelism for GSCPM using Cilk Plus (cilk for). 138
C.4 Task parallelism for GSCPM, based on TPFIFO. 138
D.1 An implementation of the 3PMCTS algorithm in TBB. 141

List of Abbreviations

3PMCTS Pipeline Pattern for Parallel MCTS.

FIFO First In, First Out.
FMA Fused Multiply Add.

GFLOPS Giga Floating Point Operations per Second.
GIPS Giga Integers per Second.
GSCPM Grain Size Controlled Parallel MCTS.

HEP High Energy Physics.
HEPGAME High Energy Physics Game.

ILD Iteration-Level Dependency.
ILP Iteration-Level Parallelism.
ILT Iteration-Level Task.
ISA Instruction Set Architecture.

MC Memory Controller.
MCTS Monte Carlo Tree Search.
MIC Many Integrated Core.

NUMA Non Uniform Memory Access.

xxvi List of Abbreviations

OLD Operation-Level Dependency.
OLP Operation-Level Parallelism.
OLT Operation-Level Task.

PPS Playouts per Second.
PS Problem Statement.
PW Percentage of Wins.

RNG Random Number Generation.
RQ Research Question.

SMT Simultaneous Multithreading.

TBB Threading Building Blocks.
TD Tag Directories.
TPFIFO Thread Pool with FIFO scheduling.

UCB Upper Confidence Bound.
UCT Upper Confidence Bounds for Trees.
UMA Uniform Memory Access.

VPUs Vector Processing Units.

1
Introduction

In the last decade, there has been much interest in the Monte Carlo Tree Search
(MCTS) algorithm. It started by the publication “Bandit Based Monte-Carlo Plan-
ning”, when Kocsis and Szepesvári proposed a new, adaptive, randomized optimiza-
tion algorithm [KS06]. In the same year, it was followed by Rémi Coulom in present-
ing “Efficient selectivity and backup operators in Monte-Carlo tree search” in Turin
[Cou06]. After that, the time has arrived to collect the ideas in a framework for
MCTS by Chaslot et al. [CWvdH+08b]. In fields as diverse as Artificial Intelligence,
Combinatorial Optimization, and High Energy Physics (HEP), research has estab-
lished that MCTS can find approximate answers without domain-dependent heuristics
[KS06, KPVvdH13, Ver13]. The strength of the MCTS algorithm is that it provides an-
swers for any given computational budget [GBC16]. The amount of error can typically
be reduced by expanding the computational budget for more running time. Much ef-
fort has been put into the development of parallel algorithms for MCTS to reduce the
running time. The efforts have as their target a broad spectrum of parallel systems,
ranging from small shared-memory multi-core machines to large distributed-memory
clusters. The emergence of the Xeon Phi co-processor with over 61 simple cores has
extended this spectrum with shared-memory many-core processors. In this thesis, we
will study the parallel MCTS algorithms for multi-core and many-core processors.

This chapter is structured as follows. Section 1.1 introduces the HEPGAME project.
Section 1.2 explains briefly the MCTS algorithm. Section 1.3 discusses parallelism
and parallelization. Section 1.4 explains the general obstacles to the parallelization
of MCTS. Section 1.5 discusses performance and scalability. The scope and research
goals are mentioned in Section 1.6. The problem statement and five research ques-
tions are given in Section 1.7. Section 1.8 discusses the research methodology. Section
1.9 gives the structure of the thesis. Section 1.10 provides a list of contributions.

2 1.1. HEPGAME

1.1 HEPGAME

The work in the thesis is part of High Energy Physics Game (HEPGAME) project
[Ver13]. The HEPGAME project intends to use techniques from game playing for solv-
ing large equations in particle physics (High Energy Physics (HEP)) calculations. One
of these techniques is MCTS. Before the beginning of the project, it was clear that
without parallelization any algorithm based on MCTS cannot be useful. The main
prerequisite for the parallelization was that the algorithm should be executed in a
reasonable time when trying to simplify large equations. Therefore, our focus in this
research was on finding new methods to parallelize the MCTS algorithm. The multi-
threaded version of the FORM program (i.e., TFORM) [TV10] can use our findings.
FORM is open source software used for solving large High Energy Physics (HEP) equa-
tions. FORM has an optimization module which receives the main conclusions of our
research.

1.2 Monte Carlo Tree Search

The MCTS algorithm iteratively repeats four steps to construct a search tree un-
til a predefined computational budget (i.e., time or iteration constraint) is reached
[Cou06, CWvdH+08b]. Figure 1.2 shows the main loop of the MCTS algorithm and
Figure 1.1 shows an example of the search tree. At the beginning the search tree
has only a root node. Each node in the search tree is a state of the domain, and di-
rected edges to child nodes represent actions leading to the following states. Figure
1.3 illustrates one iteration of the MCTS algorithm on a search tree that already has
nine nodes. Circles represent the non-terminal and internal nodes. Squares show the
terminal nodes. The four steps are:

1. SELECT: A path of nodes inside the search tree is selected from the root node
until a non-terminal leaf with unvisited children is reached (v6). Each of the
nodes inside the path is selected based on a predefined selection policy. This
policy controls the balance between exploitation and exploration of searching
inside the domain [KS06] (see Figure 1.3a).

2. EXPAND: One of the children (v9) of the selected non-terminal leaf (v6) is gen-
erated randomly and added to the tree and also the selected path (see Figure
1.3b).

3. PLAYOUT: From the given state of the newly added node, a sequence of ran-
domly simulated actions is performed until a terminal state in the domain is

Chapter 1. Introduction 3

v0

v1

v4 v5

v8

v2 v3

v6 v7

Figure 1.1: An example of the search tree.

Select

Expand

Playout

Backup

Search tree

Stop

Is search
budget

finished?

no

yes

Figure 1.2: The main loop of MCTS.

reached, i.e., RANDOMSIMULATION. The terminal state is evaluated using a util-
ity function to produce a reward value ∆, i.e., EVALUATION (see Figure 1.3c).

4. BACKUP: In the selected path, each node’s visit count n is incremented by 1
and its reward value w updated according to ∆ [BPW+12]. These values are
required by the selection policy (see Figure 1.3d).

As soon as the computational budget is exhausted, the best child of the root node is
returned (e.g., the one with the highest number of visits).

1.3 Parallelism and Parallelization

In this thesis, we aim at parallelism, and we use parallelization as the act towards
parallelism. Doing more than one thing at the same time introduces parallelism. A
programmer has to find opportunities for parallelization in an algorithm and use par-
allel programming methods to write a parallel program. A parallel program uses the
parallel processing power of processors for faster execution.

Definition 1.1 (Parallelization) Parallelization is the act of transforming code to en-
able simultaneous activities. The parallelization of a program allows execution of (at
least parts of) the program in parallel.

Below we describe two types of parallelism: thread-level parallelization in Subsec-
tion 1.3.1 and task-level parallelization in Subsection 1.3.2.

4 1.3. Parallelism and Parallelization

v0

v1

v4 v5

v8

v2 v3

v6 v7

(a) SELECT

v0

v1

v4 v5

v8

v2 v3

v6

v9

v7

(b) EXPAND

v0

v1

v4 v5

v8

v2 v3

v6

v9

∆

v7

(c) PLAYOUT

v0

v1

v4 v5

v8

v2 v3

v6

v9

v7

∆

∆

∆

(d) BACKUP

Figure 1.3: One iteration of MCTS.

1.3.1 Thread-level Parallelization

The first choice for doing parallel programming is to use software threads, such as
POSIX threads, usually referred to as pthreads. It enables a program to control mul-
tiple different flows of work that overlap in time. Each flow of work is seen as a
thread; creation and control over threads are achieved by making calls to the API
(e.g., pThreads). Here we remark that the use of software threads in parallel pro-
gramming is considered as equivalent to writing in assembly language [JR13]. A
multi-core processor consists of multiple cores that execute at least one independent
software thread per core through duplication of hardware. A multithreaded or hy-
perthreaded processor core will multiplex a single core to execute multiple software
threads through interleaving of software threads via hardware mechanisms. A com-
putation that employs multiple software threads in parallel is called thread parallel
[MRR12]. This type of parallelization is what we call thread-level parallelization.

Definition 1.2 (Thread) A thread is any software unit of parallel work with an inde-
pendent flow of control.

Definition 1.3 (Multi-core Processor) A multi-core processor is a single chip that con-
tains multiple core processing units, more commonly known as cores.

1.3.2 Task-level Parallelization

To use task-level parallelization, a programmer should program in tasks, not threads
[Lee06]. Threads are a mechanism for executing tasks in parallel, and tasks are units
of work that merely provide the opportunity for parallel execution; tasks are not
themselves a mechanism of parallel execution [MRR12]. For a proper definition, see
below.

Definition 1.4 (Task) A task is a logical unit of potential parallelism with a separate
flow of control.

Chapter 1. Introduction 5

Tasks are executed by scheduling them onto software threads, which in turn the
operating system schedules onto hardware threads. Scheduling of software threads
onto hardware threads is usually preemptive (i.e., it can happen at any time). In
contrast, scheduling of tasks onto software threads is typically non-preemptive (i.e., a
thread switches tasks only at predictable switch points). Non-preemptive scheduling
enables significantly lower overhead and stronger reasoning about space and time
requirements than preemptive scheduling [JR13]. A computation that employs tasks
over threads is called task parallel. This type of parallelization is what we call task-
level parallelization. It is the preferred method of parallelism, especially for many-core
processors.

Definition 1.5 (Many-core Processor) A many-core processor is a specialized multi-
core processor designed for a high degree of parallel processing, containing a large num-
ber of simpler, independent processor cores.

In the task-level parallelization, the programmer should expose parallelism and
share the opportunities for parallelization as tasks, but the work to map tasks to
threads should not be encoded into an application. Hence, do not mix the concept
of exposing tasks with the effort to allocate tasks to threads. The later causes inflex-
ibility in scaling on different and future hardware. Hence, we are creating tasks and
give the job of mapping tasks onto hardware to a parallel programming library, such
as Threading Building Blocks (TBB) [Rei07] and Cilk Plus [Suk15].

The task-level parallelization is also tightly coupled with parallel patterns. A pat-
tern is a recurring combination of data and task management, separate from any
particular algorithm [MRR12]. The parallel patterns are not necessarily tied to any
particular hardware architecture or programming language or system. Parallel pat-
terns are essential for efficient computations of tasks.

Definition 1.6 (Parallel Pattern) A parallel pattern is a recurring combination of task
distribution and data access that solves a specific problem in parallel algorithm design
[MRR12].

Parallel patterns are often composed with, or generalized from, a set of serial pat-
terns. The serial patterns are the foundation of structured programming. The pattern-
based approach to parallel programming can be considered an extension of the idea
of structured programming [MRR12].

1.4 General Obstacles for Parallelization of MCTS

Since its inception, MCTS was the subject of parallelization, and several paralleliza-
tion methods have been developed for it [CWvdH08a, CJ08, EM10, SKW10, SHM+16].

6 1.4. General Obstacles for Parallelization of MCTS

This trend comes from the fact that MCTS usually needs a large number of iterations
to converge, and every iteration can be executed in parallel. Therefore, MCTS has suf-
ficient potential for parallelization in theory, and it even seems to be straightforward.
However, a closer look reveals that there are four obstacles to achieve parallelism:
(1) irregular parallelism, (2) shared data structure, (3) data dependencies, and (4)
complex interactions among obstacles. If we are not able to overcome these obsta-
cles, the consequence will be four types of overhead, respectively: (1) load balancing
overhead, (2) synchronization overhead, (3) search overhead, and (4) deployment
overhead. In the following, we will explain these obstacles and what type of over-
head they cause. Each of the subsections below introduces the necessary techniques
for dealing with these obstacles.

1.4.1 Irregular Parallelism Causes Load Balancing Overhead

The first obstacle is irregular parallelism. Parallel algorithms with irregular paral-
lelism suffer from a lack of load balancing over processing cores. MCTS constructs
asymmetric search trees because the selection policy in MCTS allows the algorithm
to favor more promising nodes (exploitation), leading to a tree with unbalanced
branches over time [BPW+12]. Parallel execution of the algorithm with such a search
tree results in irregular parallelism because one thread traverses a shorter branch
while the other one works on a longer one. Chapter 4 provides more details and tries
to handle this obstacle.

Definition 1.7 (Irregular Parallelism) In irregular parallelism, the units of possible
parallel work in this type of parallelism are dissimilar in a way that creates unpredictable
dependencies.

Definition 1.8 (Load Balancing) Load balancing is a method used to allocate work-
loads uniformly across multiple computing resources, such as computing cores, to im-
prove the distribution of workloads.

1.4.2 Shared Data Structure Causes Synchronization Overhead

The second obstacle for parallelizing MCTS is a shared search tree. A parallel al-
gorithm with a shared data structure suffers from synchronization overhead when it
utilizes locks for data protection. Locks are notoriously bad for parallel performance
because other threads have to wait until the lock is released. Moreover, locks are often
a bottleneck when many threads try to acquire the same lock. The MCTS algorithm
uses a tree data structure for storing the states of the domain and guiding the search
process. The basic premise of a search tree in MCTS is relatively simple: (A) nodes are

Chapter 1. Introduction 7

added to the tree in the order in which they were expanded. (B) nodes are updated in
the tree along with the order in which they were selected. In parallel MCTS, parallel
threads are manipulating a shared search tree concurrently, and locks are required
for data protection. It seems that we should have synchronization without using locks
to avoid synchronization overhead. In Chapter 5, we show how we deal with this
obstacle.

Definition 1.9 (Shared Data Structure) A shared data structure, also known as a
concurrent data structure, is a particular way of storing and organizing data that can be
accessed by multiple threads simultaneously on a shared-memory machine.

Definition 1.10 (Synchronization) Synchronization is the coordination of tasks or
threads to obtain the desired runtime order [Wil12].

1.4.3 Ignoring Data Dependencies Causes Search Overhead

The third obstacle that should be addressed is the data dependencies. We find two
types of data dependencies in MCTS: (1) the data dependency that exists among it-
erations and (2) the data dependency that exists among operations. The first type of
data dependency exists because each of the iterations in the main loop of the algo-
rithm requires the updated data which should be provided by its previous iterations.
This type of data dependency is also known as loop carried data dependencies. Ignoring
this type of data dependency causes search overhead. The second type of data depen-
dency exists because each of the four operations inside each iteration of the algorithm
depends on the data that is provided by the previous operation. Ignoring this type of
data dependency is not possible for obvious reasons. Chapter 6 provides more details
and our solution for overcoming this obstacle.

Definition 1.11 (Loop Carried Data Dependency) A loop carried data dependency
exists when a statement in one iteration of a loop depends in some way on a statement
in a different iteration of the same loop.

Definition 1.12 (Loop Independent Data Dependency) A loop independent data de-
pendency exists when a statement in one iteration of a loop depends only on a statement
in the same iteration of the loop.

Definition 1.13 (Search Overhead) Search overhead exists in the MCTS algorithm
when the number of nodes searched by a parallel algorithm is more than that of the
serial algorithm.

8 1.5. Performance and Scalability Studies

1.4.4 Complex Interactions Leading to Deployment Overhead

The fourth obstacle is the complexity of addressing the three above mentioned ob-
stacles together. Trying to address all of them at once is difficult, due to the interac-
tions among them. The overhead caused by complex interactions is called deployment
overhead. The level of complexity forced the researchers to make compromises when
solving some of these obstacles to have a parallel implementation of MCTS. In this
research, we aim to mitigate the deployment overhead through structured parallel
programming.

Definition 1.14 (Complex Interactions) Complex interactions refer to the relation-
ships among the general obstacles for parallelization of MCTS.

Definition 1.15 (Deployment Overhead) Deployment overhead is the amount of time
spent to deploy an algorithm in a hardware environment.

1.5 Performance and Scalability Studies

MCTS works by selectively building a tree, expanding only branches it deems worth-
while to explore [Cou06, AHH10, vdHPKV13]. The algorithm can converge to an op-
timal solution using a large number of playouts. It means that the algorithm requires
more computation and memory to converge as the number of playouts increases. It
leads to two distinct goals. The first and ultimate goal of parallelization is improving
the performance of the parallelized application. The performance could be measured
differently depending on the context in which it is used. In the context of MCTS, we
measure performance by two different terms: (A) in terms of runtime (i.e., playout
speedup), and (B) in terms of search quality (i.e., playing strength).

Definition 1.16 (Performance Study) A performance study for the parallel MCTS al-
gorithm on shared-memory systems examines where the performance of the paralleliza-
tion of MCTS is guided by a certain number of cores and a certain amount of memory
for one specific performance metric such as the number of Playouts per Second (PPS) or
the Percentage of Wins (PW).

Definition 1.17 (Playout Speedup) Playout speedup is the improvement in the speed
of execution.

Definition 1.18 (Playing Strength) Playing strength is the achieved performance com-
pared to a standard rating.

Chapter 1. Introduction 9

Adding more computing power and memory makes the process faster only if a
scalable parallelization of the algorithm exists to harness the additional resources.
Therefore, the second goal of parallelization is scalability. It will let the MCTS algo-
rithm converge faster to a solution. By scalability, we mean that when we increase
the number of cores and memory bandwidth, it results in improved performance in a
manner proportional to the resources added. Being scalable is the main idea behind
many parallelization methods for the MCTS algorithm on shared-memory machines
[CWvdH08a, EM10, SKW10, SHM+16].

Definition 1.19 (Scalability Study) A scalability study for parallel MCTS on shared-
memory systems refers to how the performance of parallelization of MCTS changes given
the increase of the number of cores and the amount of memory.

Definition 1.20 (Memory Bandwidth) Memory bandwidth is the rate at which data
can be read from or stored into memory by a processor. Memory bandwidth is usually
expressed in units of bytes per second.

1.6 Scope and Research Goals

Our research handles and investigates parallel systems. To understand later design
and implementation decisions as well as evaluation results, it is necessary to explain
the scope in which the research is conducted.

Concerning the scope, we see that two major types of parallel architectures are
prevailing in the industry: (A) shared-memory architecture and (B) distributed-memory
architecture. Among these two principal types, the shared-memory architecture is of
our main concern. Therefore, we concentrate on developing algorithms and finding
solutions for shared-memory machines only. In passing, we remark that studies with
a focus on distributed-memory systems [SP14, YKK+11] may benefit from our ex-
aminations, since our findings might be indirectly useful for the distributed-memory
community of research. The explanation is that shared-memory machines are build-
ing blocks for distributed-memory systems.

The shared-memory architecture also has two types: (A1) Uniform Memory Access
(UMA) and (A2) Non Uniform Memory Access (NUMA). We are interested in both of
these architectures. In the UMA shared-memory architecture, each processor must use
the same shared bus to access memory. Here we note that the access time remains the
same despite which shared-memory module contains the data to be retrieved. The
Phi co-processor has an UMA-based many-core architecture called Many Integrated
Core (MIC). In the NUMA architecture, each processor has direct access to its local
memory module. At the same time, it can also access any remote memory module

10 1.7. Problem Statement and Research Questions

belonging to another processor using a shared interconnect network. The outcome of
having many memory modules is that memory access time varies with the location
of the data to be accessed. Each processor in a NUMA machine is multi-core. In the
thesis, our goal is to work with both NUMA-based multi-core systems and UMA-based
many-core systems for both the design and the implementation of the algorithms.

Definition 1.21 (Uniform Memory Access) A Uniform Memory Access refers to a mem-
ory system in which the memory access time is uniform across all processors.

Definition 1.22 (Many Integrated Core) A Many Integrated Core is an UMA-based
many-core architecture designed for highly parallel workloads. The architecture empha-
sizes higher core counts on a single die, and simpler cores, than on a traditional CPU.

Definition 1.23 (Non Uniform Memory Access) A Non Uniform Memory Access is a
system in which certain banks of memory take longer to access than others, even though
all the memory uses a single address space.

1.7 Problem Statement and Research Questions

The MCTS algorithm is a good candidate for parallelization. This has been known
since the introduction of the algorithm in 2006 [Cou06, KS06, EM10]. However, until
now, the research community has only used thread-level parallelization when paral-
lelizing the algorithm. The current parallel programming approaches are unstructured
and do not use modern parallel programming patterns, languages, and libraries. We
aim to address the complications of designing parallel algorithms for MCTS using
the modern techniques, tools, and machines which are discussed above. We focus on
both NUMA and MIC architectures to evaluate our implementations. Therefore, the
Problem Statement (PS) of the thesis is as follows.

• PS: How do we design a structured pattern-based parallel programming ap-
proach for efficient parallelism of MCTS for both multi-core and many-core
shared-memory machines?

We define five specific research questions (RQs) derived from the PS that we try to
answer in the following chapters. We will describe the five research questions below.

Thread-level parallelization: Until now, the research community has only used
thread-level parallelization when parallelizing MCTS. However, today, the NUMA-
based multi-core and UMA-based many-core architectures are very important. These
are the architectures that we will use in our experiments. We believe that thread-
level parallelization is not anymore a suitable method for the many-core processors.

Chapter 1. Introduction 11

Therefore, it is important to know the performance of the thread-level parallelization
on the new architectures. It leads us to the first research question.

• RQ1: What is the performance and scalability of thread-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

Task-level parallelization: One of the essential developments in parallel program-
ming methods is the use of task-level parallelization. In task-level parallelization,
calculations are partitioned into tasks, rather than spread over software threads. The
use of task-level parallelization has three benefits: (1) it is conceptually simpler, (2)
it may make the development of parallel MCTS programs easier, and (3) it leads to
more efficient scheduling of CPU time. These benefits lead us to the second research
question.

• RQ2: What is the performance and scalability of task-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

A lock-free data structure: MCTS requires a tree data structure. For efficient par-
allelism, this tree data structure must be lock-free. The existing lock-free tree data
structure is inconsistent; i.e., it suffers from loss of information during the search
phase. We are interested in developing a lock-free tree data structure for use in par-
allelized MCTS, in such a way that it avoids loss of information and simultaneously
improves the speed of MCTS execution. This leads us to the third research question.

• RQ3: How can we design a correct lock-free tree data structure for parallelizing
MCTS?

Patterns for task-level parallelization: Task-level parallelization requires specific
patterns by which the tasks are processed. Modern parallel libraries and languages
support these patterns, thereby allowing quick construction of parallel programs that
have these patterns. It may be possible to apply one or more patterns in the paral-
lelization of MCTS. We are interested in (1) finding these patterns, and (2) using
them in the parallelization of MCTS. This leads us to the fourth research question.

• RQ4: What are the possible patterns for task-level parallelization in MCTS, and
how do we use them?

Improving search quality of MCTS: It has been shown that the parallelization of
MCTS leads to a decrease in the quality of search results. Various solutions have
been developed that attempt to mitigate this decrease in quality. We are interested in

12 1.8. Research Methodology

finding out to what extent the existing solutions apply to the parallelized MCTS that
we will develop in this thesis. This leads us to the fifth research question.

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

By the existing solutions, we mean two methods: (1) ensemble methods, and (2)
virtual loss.

1.8 Research Methodology

For answering a research question, our research methodology consists of four phases:

• The first phase is characterized by collecting knowledge on existing methods
and algorithms. It is performed by reading to some extent, the existing literature
and becoming familiar with the existing tools.

• The second phase is investigating the performance of the existing methods,
tools, and techniques for parallelizing MCTS.

• The third phase is designing new ideas and algorithms. Then, the implementa-
tion of these designs takes place in a new software framework.

• In the fourth phase, an experiment is executed, and the results are collected,
interpreted, analyzed, and reported.

1.9 Structure of the thesis

The problem statement and the five research questions introduced in Section 1.7 are
addressed in eight chapters. Below we provide a brief description of the contents of
each chapter.

Chapter 1 introduces the Monte Carlo Tree Search algorithm and defines the con-
cepts of parallelism and parallelization. Then, it gives four general obstacles for paral-
lelization of MCTS: load balancing, synchronization overhead, search overhead, and
deployment overhead. After that, the chapter gives the definitions for performance
and scalability and provides the scope of research. Then, it formulates the problem
statement, five research questions, and the research methodology. Finally, it lists our
contributions.

Chapter 1. Introduction 13

Chapter 2 provides the necessary background for the rest of the thesis. It discusses
the benchmark problems, the parallelization methods for MCTS, the performance
metrics, and our Upper Confidence Bounds for Trees (UCT) parallelization software
package.

Chapter 3 answers RQ1. The chapter provides, to the best of our knowledge, the
first performance and scalability study of non-trivial MCTS programs on the Intel
Xeon Phi.

Chapter 4 answers RQ2. The chapter investigates how to parallelize irregular and
unbalanced tasks in MCTS efficiently on the Xeon Phi.

Chapter 5 answers RQ3. The chapter proposes a new lock-free tree data structure
for parallel MCTS.

Chapter 6 answers RQ4. The chapter proposes a new algorithm based on a Pipeline
Pattern for Parallel MCTS.

Chapter 7 answers the first part of RQ5. The chapter shows that balancing between
the exploitation-exploration parameter and the tree size can be useful in Ensemble
UCT to improve its performance.

Chapter 8 answers the second part of RQ5. The chapter evaluates the benefit of us-
ing the virtual loss in lock-free (instead of locked-based) Tree Parallelization. Hence,
it addresses the trade-off between search overhead and efficiency.

Chapter 9 concludes the thesis with a summary of the answers to what has been
achieved with regards to the research questions and the problem statement, formu-
lates conclusions, describes limitations and shows possible directions for future work.

1.10 Contributions

Below we list six contributions of our research. There are three main contributions (1
to 3) and three technical contributions (4 to 6).

1. The use of many-core machines for studying the performance and scalability of
MCTS (see Chapter 2 and 3).

2. The use of task-level parallelization for MCTS (see Chapter 4).

14 1.10. Contributions

3. The design of a lock-free data structure for parallel MCTS (see Chapter 5)

4. The introduction of a pipeline pattern for parallel MCTS (see Chapter 6).

5. We established a balance for the trade-off between exploitation-exploration for
Root Parallelization (see Chapter 7).

6. By using lock-free parallelization, a virtual loss does not bring any improvement
in search quality for a Horner Scheme (see Chapter 8).

2
Background

The MCTS algorithm iteratively repeats four steps or operations to construct a search
tree until a predefined computational budget (i.e., time or iteration constraint) is
reached [CWvdH+08b]. Algorithm 2.1 shows the general MCTS algorithm (see Sec-
tion 1.2 and Algorithm 2.2).

Algorithm 2.1: The general MCTS algorithm.
1 Function MCTS(s0)
2 v0 := create root node with state s0;
3 while within search budget do
4 〈vl, sl〉 := SELECT(v0, s0);
5 〈vl, sl〉 := EXPAND(vl, sl);
6 ∆ := PLAYOUT(vl, sl);
7 BACKUP(vl,∆);

The purpose of MCTS is to approximate the domain-dependent theoretic value
of the actions that may be selected from the current state by iteratively creating a
partial search tree [BPW+12]. How the search tree is built depends on how nodes in
the tree are selected (i.e., tree selection policy). For instance, nodes in the tree are
selected according to the estimated probability that they are better than the current
best action. It is essential to reduce the estimation error of the nodes’ values as quickly
as possible. The current chapter provides a more detailed overview of MCTS. Section
2.1 describes the UCB selection policy. In Section 2.2, we provide the UCT formula
and the UCT algorithm. Section 2.3 discusses the parallelization methods for MCTS.
Section 2.4 presents the benchmarks for experimental studies. Section 2.5 explains
the performance metrics. Finally, Section 2.6 briefly describes our software tool.

16 2.1. Upper Confidence Bound (UCB)

2.1 Upper Confidence Bound (UCB)

The tree selection policy in the MCTS algorithm is based on two fundamentally dif-
ferent concepts, viz. exploitation and exploration. Hence, the selection is a search
process and the aim of the search is to reduce the error as soon as possible [KS06].

Definition 2.1 (Exploitation) Exploitation looks in areas which appear to be promis-
ing [BPW+12].

Definition 2.2 (Exploration) Exploration looks in areas that so far have not been sam-
pled well [BPW+12].

Kocsis and Szepesvári [KS06] aimed to design a Monte Carlo search algorithm
that had a small error probability if stopped prematurely and that converged to the
domain-dependent theoretic optimum given sufficient time [KS06]. They proposed
the use of the simplest Upper Confidence Bound (UCB) policy (i.e., UCB1) as a tree
selection policy for MCTS. UCB1 is an obvious choice for node selection given its
application in multi-armed bandit problems for balancing between exploitation and
exploration of actions. Bandit problems are a well-known class of sequential decision
problems, in which one needs to choose among K actions (e.g., the K arms of a multi-
armed bandit slot machine) to maximize the cumulative reward by consistently taking
the optimal action [BPW+12, ACBF02].

Auer et al. [ACBF02] proposed UCB1 for bandit problems. The UCB1 policy selects
the arm j that maximizes:

UCB1 (j) = Xj +

√
2 ln(n)

nj
(2.1)

where Xj is the average reward from arm j; nj is the number of times arm j was
played, and n is the overall number of plays so far. The first term at the right-hand
side Xj encourages the exploitation of higher-reward arms, while the second term at

the right-hand side
√

2 ln(n)
nj

promotes the exploration of less played arms.

2.2 Upper Confidence Bounds for Trees (UCT)

This section explains the most common algorithm in the MCTS family, the Upper
Confidence Bounds for Trees (UCT) algorithm. The formulas are given in Subsection
2.2.1 and the algorithm in Subsection 2.2.2

Chapter 2. Background 17

2.2.1 UCT Formula

The UCT algorithm addresses the exploitation-exploration dilemma in the selection
step of the MCTS algorithm using the UCB1 policy [KS06]. A child node j is selected
to maximize:

UCT (j) = Xj + 2Cp

√
2 ln(N(v))

N(vj)
(2.2)

where Xj =
Q(vj)
N(vj) is an approximation of the node j domain-dependent theoretic

value. Q(vj) is the total reward of all playouts that passed through node j, N(vj) is
the number of times node j has been visited, N(v) is the number of times the parent
of node j has been visited, and Cp ≥ 0 is a constant. The first term at the right-hand
side is for exploitation and the second term is for exploration [KS06]. The decrease or
increase in the amount of exploration can be adjusted by Cp in the exploration term.

2.2.2 UCT Algorithm

The UCT algorithm is given in Algorithm 2.2. Each node v stores four pieces of data:
the action to be taken a(v), p(v) the current player at node v, the total simulation
reward Q(v) (a real number), and the visit count N(v) (a non-negative integer). Each
node v is also associated with a state s. The state s is recalculated as the SELECT and
EXPAND steps descends the tree. The term ∆〈p(v)〉 denotes the reward after simulation
for each player.

2.3 Parallelization Methods for MCTS

In this section, two categories for parallelization of MCTS are presented. Traditionally,
parallelization methods for MCTS are classified based on the parallelism technique.
Currently, we believe that we should classify them into two categories solely based
on the way that the search tree is used. We introduce parallel methods with a shared
tree in Subsection 2.3.1 and with an ensemble of search trees in Subsection 2.3.2.

2.3.1 Parallel Methods with a Shared Data Structure

The first category is for the parallel methods with a shared search tree. The tree is
shared among parallel threads or processes which means data is accessible globally.
The methods that belong to this category can be implemented on both shared-memory
and distributed-memory systems. In both environments, a synchronization method
should create constraints threads from accessing the tree simultaneously. The most
well-known method in this category is Tree Parallelization.

18 2.3. Parallelization Methods for MCTS

Algorithm 2.2: The UCT algorithm.
1 Function UCTSEARCH(s0)
2 v0 := create root node with state s0;
3 while within search budget do
4 〈vl, sl〉 := SELECT(v0, s0);
5 〈vl, sl〉 := EXPAND(vl, sl);
6 ∆ := PLAYOUT(vl, sl);
7 BACKUP(vl,∆);

8 return a(best child of v0)

9 Function SELECT(Node v,State s) : <Node,State>
10 while v is fully expanded do

11 vl := arg max
vj∈children of v

Q(vj)

N(vj)
+ 2Cp

√
2 ln(N(v))

N(vj)
;

12 sl := p(v) takes action a(vl) from state s;
13 v := vl;
14 s := sl;

15 return 〈v, s〉;

16 Function EXPAND(Node v,State s) : <Node,State>
17 if s is non-terminal then
18 choose a ∈ set of untried actions from state s;

19 add a new child v
′

with a as its action to v;

20 s
′

:= p(v) takes action a from state s;

21 return 〈v
′
, s
′
〉;

22 Function PLAYOUT(Node v,State s)
23 while s is non-terminal do
24 choose a ∈ set of untried actions from state s uniformly at random;
25 s := p(v) takes action a from state s;

26 ∆〈p(v)〉 := reward for state s for each player p;
27 return ∆

28 Function BACKUP(Node v,∆) : void
29 while v is not null do
30 N(v) := N(v) + 1;
31 Q(v) := Q(v) + ∆〈p(v)〉;
32 v := parent of v;

Definition 2.3 (Tree Parallelization) In Tree Parallelization, the tree is shared among
parallel threads, tasks, or processes which means data is accessible globally.

2.3.2 Parallel Methods with More than one Data Structure

The second category is for the parallel methods where several search trees or an en-
semble of search trees are used. Each parallel thread has its own search tree which
means the information is local to that thread. The methods that belong to this cate-
gory can also be implemented on both shared-memory and distributed-memory envi-
ronments. The most well-known method in this category is Root Parallelization.

Chapter 2. Background 19

Figure 2.1: A sample board for the game of Hex

Definition 2.4 (Root Parallelization) In Root Parallelization, each parallel thread, task,
or process has its own search tree which means the information is local to that thread.

2.4 Case Studies

In this section, we present two case studies for MCTS. In Subsection 2.4.1 we present
the game of Hex, a strategy board game for two players. In Subsection 2.4.2 we de-
scribe the method for approximating the roots of a polynomial called Horner scheme.

2.4.1 Case 1: The Game of Hex

Hex is a board game with a diamond-shaped board of hexagonal cells [AHH10,
HT19]. The game is usually played on a board of size 11 on a side, for a total of 121
hexagons, as illustrated in Figure 2.1 [Wei17]. Each player is represented by a color
(Black or White). Players take turns placing a stone of their color on a cell on the
board. The goal for each player is to create a connected chain of stones between the
opposing sides of the board marked by their colors. The first player to complete this
path wins the game. The game cannot end in a draw since no path can be completely
blocked except by a complete path of the opposite color. Since the first player to move
in Hex has a distinct advantage, the swap rule is generally implemented for fairness.
This rule allows the second player to choose whether to switch positions with the first
player after the first player has made a move.

Evaluation Function

In our implementation of Hex, a disjoint-set data structure is used to determine the
connected stones. A disjoint-set data structure maintains a collection of disjoint (non-
overlapping) subsets of a set of elements S = {S1, S2, . . . , Sk}. A union-find algorithm

20 2.5. Performance Metrics

performs two operations on such a data structure: First, the Find operation determines
in which subset a particular element is located. This can be used for determining
whether two elements are in the same subset. Second, the Union operation joins two
subsets into a single subset. Each set is identified by a representative, which usually
is a member in the set. Using this data structure and algorithm, the evaluation of the
board position to find the player who won the game becomes very efficient [GI91].

2.4.2 Case 2: Horner Schemes

Horner’s rule is an algorithm for polynomial computation that reduces the number of
multiplications and results in a computationally efficient form [OS12]. For a polyno-
mial in one variable

p(x) = anx
n + an−1x

n−1 + · · ·+ a0, (2.3)

the rule simply factors out powers of x. Thus, the polynomial can be written in the
form

p(x) = ((anx+ an−1)x+ . . .)x+ a0. (2.4)

This representation reduces the number of multiplications to n and has n additions.
Therefore, the total evaluation cost of the polynomial is 2n. Here it is assumed that
the cost of addition and multiplication are equal.

Horner’s rule can be generalized for multivariate polynomials. Here, Eq. 2.4 ap-
plies to a polynomial for each variable, treating the other variables as constants. The
order of choosing variables may be different, each order of the variables is called a
Horner scheme.

The number of operations can be reduced even more by performing common
subexpression elimination (CSE) after transforming a polynomial with Horner’s rule
[ALSU07]. CSE creates new symbols for each subexpression that appears twice or
more and replaces them inside the polynomial. Then, the subexpression has to be
computed only once.

2.5 Performance Metrics

In our experiments, the performance is reported by two metrics: (A) playout speedup
(Subsection 2.5.1) and (B) playing strength (Subsection 2.5.2). Below, we define both
metrics.

Chapter 2. Background 21

2.5.1 Playout Speedup

The most important metric related to performance and parallelism is speedup. In the
literature, this form of speedup is called playout speedup [CWvdH08a]. We use playout
speedup to show the effect on a program’s performance in terms of speed of execution
after any resource enhancement (e.g., increasing the number of threads or cores). The
speedup can be defined for two different types of quantities: (A1) latency and (A2)
throughput.

A1: Playout speedup in latency

We measure the speedup in time, which is a latency measure. Speedup compares the
time for solving the identical computational problem on one worker versus that on P
workers

PlayoutSpeeduplatency =
T1

TP
. (2.5)

where T1 is the time of the program with one worker and TP is the time of the
program with P workers. In our results we report the scalability of our parallelization
as strong scalability which means that the problem size remains fixed as P varies. The
problem size is the number of playouts (i.e., the search budget) and P is the number
of threads or tasks.

Definition 2.5 (Strong Scalability) Strong scalability means that the problem size re-
mains fixed as the number of resources varies.

A2: Playout speedup in throughput

We measure the speedup in Playouts per Second (PPS), which is a throughput mea-
sure. First, we execute the program with one thread, which yields a PPS of n. Next,
we execute the program with P threads, which yields a PPS of m. Using the speedup
formula gives

PlayoutSpeedupthroughput =
QP

Q1
=
m PPS
n PPS

(2.6)

2.5.2 Playing Strength

The second most important metric related to the performance of parallel MCTS is
playing strength. We use playing strength to show the effect on a program’s perfor-
mance in terms of quality of search after any resource enhancement (e.g., increasing
the number of threads or cores). Playing strength can be defined for two different
types of problems: (B1) two-player game and (B2) optimization problem.

22 2.6. Our ParallelUCT Package

B1: Playing Strength in a two player game

We measure the strength of player a in Percentage of Wins (PW) per tournament
versus player b for the two-player game, such as Hex or Go, which is a win-rate

PlayingStrength(a)PW =
Wa

Wa +Wb
∗ 100. (2.7)

where Wa is the number of wins for player a and Wb is the number of wins for player
b. If there is a draw, it will be counted as a win for both players.

B2: Playing strength in an optimization problem

We measure the strength of an MCTS player a in the number of operations in the op-
timized expression, which is a solution for the Horner scheme optimization problem.
A lower value is desirable when we increase the numbers of threads or tasks.

2.6 Our ParallelUCT Package

To be able to investigate the research questions of this thesis a new software frame-
work for parallel MCTS has been developed. The tool has been designed from scratch
and is implemented in C++. Our tool is named ParallelUCT. The tool is open source,
and its source codes are accessible 1.

The ParallelUCT framework has many features that enable us to answer the re-
search questions mentioned in Section 1.7. Below we describe the three most impor-
tant elements of this package, viz. in Subsection 2.6.1 we present multiple benchmark
problems that are provided by the ParallelUCT, in Subsection 2.6.2 we describe mul-
tiple parallelization methods in ParallelUCT, and in Subsection 2.6.3 we provide the
list of parallel programming models that are used in ParallelUCT.

2.6.1 Framework of multiple benchmark problems

In our research we focus on two benchmark problems. They are our case studies (Hex
and Horner schemes). Both are implemented in the ParallelUCT framework. This soft-
ware framework is extensible. It means that new problems such as other games or
optimization problems can be added to it quickly. A developer should solely imple-
ment the original problem and provide it to the framework. The only requirement is
to follow the standard of implementation which is provided by the software frame-
work. The standard is available in the documentation of the ParallelUCT package
[MPvdHV15a].

1 http://github.com/mirsoleimani/paralleluct

http://github.com/mirsoleimani/paralleluct

Chapter 2. Background 23

2.6.2 Framework of multiple parallelization methods

We focus on two parallelization methods. They are methods with a shared data struc-
ture and with more than one data structure which are implemented in the framework.
Examples of such methods are Tree Parallelization and Root Parallelization. A user
can run the ParallelUCT executable program using one of these methods via com-
mand line options. The complete list of command line options is accessible via the
help option of the program (see http://github.com/mirsoleimani/paralleluct).

2.6.3 Framework of multiple programming models

Finally, we focus on programming models. The parallelization methods are imple-
mented in the framework using modern threading libraries such as Cilk [LP98], TBB
[Rei07], and C++11. A user can run the ParallelUCT executable program with one
of these threading libraries also via command line options. The complete list of com-
mand line options is accessible via the help option of the ParallelUCT executable
program (see http://github.com/mirsoleimani/paralleluct).

http://github.com/mirsoleimani/paralleluct
http://github.com/mirsoleimani/paralleluct

3
Thread-level Parallelization for MCTS

This chapter 1 addresses RQ1 which is mentioned in Section 1.7.

• RQ1: What is the performance and scalability of thread-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

The recent successes of MCTS has led to even more investigations in closely re-
lated areas. Among them, considerable research has been put into improving the per-
formance of parallel MCTS algorithms. Obviously, a high-performance parallelization
in combination with additional computing power means that MCTS can investigate
a larger part of the search space. As a direct consequence, MCTS performance studies
(see Section 1.5) have become important in their own right [CWvdH08a, YKK+11,
BCC+11, Seg11, SP14, SHM+16, SSS+17]. Besides the performance studies, there
also exist scalability studies (see Section 1.5). A scalable parallelization means that
performance of the algorithm scales on future architectures (e.g., a transition from
multi-core to many-core). With respect to thread-level parallelization for MCTS we
focus on both performance and scalability.

We do so on shared-memory machines for multi-core and many-core architectures.
So far, only multi-core types of studies have been performed, and all of them were in

1 Based on:

• S. A. Mirsoleimani, A. Plaat, J. Vermaseren, and H. J. van den Herik, Performance analysis of a
240 thread tournament level MCTS Go program on the Intel Xeon Phi, in Proceedings of the 2014
European Simulation and Modeling Conference (ESM 2014), 2014, pp. 88--94.

• S. A. Mirsoleimani, A. Plaat, H. J. van den Herik, and J. Vermaseren, Parallel Monte Carlo Tree
Search from Multi-core to Many-core Processors, in Proceedings of the 2015 IEEE Trustcom/Big-
DataSE/ISPA, 2015, vol. 3, pp. 77--83.

26

some sense limited. The two most important limitations were: (1) a limited number
of cores on multi-core machines; and as a result of the first limitation, (2) the studies
had to simulate a large number of the cores on a simulated environment instead of
real hardware [Seg11]. In the first decade of this century, typically 8-24 core machines
were used [CWvdH08a]. Recently, a scalability study of MCTS in AlphaGo has been
performed with 40 threads on a 48 cores shared-memory machine [SHM+16]. The
advent of the Intel R© Xeon Phi

TM
in 2013 did allow to abandon both (a) a limited

number of cores and the simulated environment and start (b) executing experiments
in a real environment with a large number of cores. Indeed, the new development
enabled us for the first time to study performance and scalability of the parallel MCTS
algorithms on actual hardware, up to 244 parallel threads and 61 cores on shared-
memory many-core machines. Hence, we designed an experimental setup with the
above hardware and three benchmark programs.

In the first experiment (see Section 3.1), we executed operations related to matrix
calculations using a micro-benchmark program on the Xeon Phi. The purpose of the
first experiment was to measure the actual performance of the Xeon Phi and to under-
stand the characteristics of its memory architecture. The results from this experiment
were used as the input to execute the next two experiments.

In the second experiment (see Section 3.2), we ran the game of Go using the
FUEGO program [EM10] that was also used in other studies [Seg11, SHM+16], on
the Xeon CPU and for the first time on the Xeon Phi. FUEGO was one of the strongest
open source programs in that time (2016--2017). It was based on a high performance
C++ implementation of MCTS algorithms [SHM+16]. The purpose of the second
experiment was to measure performance and scalability of FUEGO on both the Xeon
CPU and the Xeon Phi. In this way, a direct comparison between our study on actual
hardware with 244 parallel threads and other studies was possible.

In the third experiment (see Section 3.3), we carried out the game of Hex using
our ParallelUCT program on both the Xeon CPU and the Xeon Phi. ParallelUCT is our
highly optimized C++ library for parallel MCTS (see Section 2.6). The purpose of
the third experiment was to measure performance and scalability of ParallelUCT on
both the Xeon CPU and the Xeon Phi. In this way a direct comparison between our
implementation of parallel MCTS and the FUEGO program was possible.

In the experiments, both FUEGO and ParallelUCT use thread-level parallelization
for parallelizing MCTS. It is worth to mention that, even in all of the current par-
allelization approaches, the parallelism technique for implementing a parallel MCTS
algorithm is thread-level parallelization [CWvdH08a, EM10, SKW10, SHM+16]. It
means that multiple threads of execution which are equal to the number of available
cores, are used. The advent of many-core machines, such as the Xeon Phi with many
cores that are communicating through a complex interconnect network, did raise an

Chapter 3. Thread-level Parallelization for MCTS 27

important question called RQ1a.

• RQ1a: Can thread-level parallelization deliver a comparable performance and
scalability for many-core machines compared to multi-core machines for parallel
MCTS?

The research goals of this chapter are twofold: (1) to investigate the performance
and scalability of parallel MCTS algorithms on the Xeon CPU and the Xeon Phi (i.e.,
RQ1) and (2) to understand whether a comparable high-performance parallelization
of the MCTS algorithm can be achieved on Xeon Phi using thread-level paralleliza-
tion(i.e., RQ1a). We present and compare the results of the three experiments in the
Section 3.1 to 3.3 to answer both research questions, RQ1a and RQ1. In Subsection
3.2.5 we answer RQ1a for FUEGO. In Subsection 3.3.5 we answer RQ1a for Paral-
lelUCT. In Section 3.5 we answer RQ1. Our performance measures on which we will
report are (A) the playout speedup and (B) the improvement of playing strength.

In summary, the chapter is organized as follows. In three sections, we provide
answers to the research questions. Section 3.1 provides the performance of a micro-
benchmark code for matrix calculations on the Xeon Phi. A study for the performance
of FUEGO for the game of Go on a 9× 9 board is presented in Section 3.2. Section 3.3
provides the performance of ParallelUCT for the game of Hex on an 11 × 11 board.
Section 3.4 discusses related work. Finally, Section 3.5 contains our answer to RQ1.

3.1 Micro-benchmark Code Performance

The first experiment is about using a micro-benchmark code to measure the actual
performance of Xeon Phi and to understand the characteristics of its memory archi-
tecture. We first provide an overview of Xeon Phi co-processor architecture in Sub-
section 3.1.1. Then, the experimental setup is discussed in Subsection 3.1.2, and it
is followed by experiments in Subsection 3.1.3. We provide the results in Subsection
3.1.4 and conclude by presenting our findings in Subsection 3.1.5.

3.1.1 Xeon Phi Micro-architecture

A Xeon Phi co-processor board consists of up to 61 cores (of which 8 are shown in
Figure 3.1a) based on the Intel 64-bit Instruction Set Architecture (ISA). Each of these
cores contains Vector Processing Units (VPUs) to execute 512 bits. This means eight
double-precision or 16 single-precision floating-point elements or 32-bit integers at
the same time. The core also contains 4-way Simultaneous Multithreading (SMT), a
dedicated L1 (it is not shown in the figure) and fully coherent L2 caches [Rah13]. The

28 3.1. Micro-benchmark Code Performance

Vector Processing Units (VPUs) are used to look up cache data distributed among the
cores. The theoretical performance of the Xeon Phi card for double-precision floating-
point operations is 1208 Giga Floating Point Operations per Second (GFLOPS). This
is equal to 2416 GFLOPS for single-precision floating-point operations.

The connection between cores and other functional units such as a Memory Con-
troller (MC) is through a bidirectional ring interconnect. There are eight distributed
MCs as an interface between the ring burst and main memory (four MCs are shown
in the figure). The main memory is up to 16 GB. To reduce hot-spot contention for
data among the cores, a distributed Tag Directories (TD) is implemented so that ev-
ery physical address that the co-processor can reach, is uniquely mapped through a
reversible one-to-one address hashing function. This memory architecture provides a
maximum transfer rate of 352 GB/s.

Thread affinity policies: On Xeon Phi, there are three predefined thread affinity
policies for assigning threads to a core for obtaining improved or predictable perfor-
mance [RVW+13]. These three policies are given in Table 3.1. A user can select one of
the three policies for assigning threads or even none for assigning threads randomly.
Figure 3.1b shows how each of the three thread affinity policies works for an exem-
plary case of eight threads and four cores. Thread affinity binds each thread to run
on a specific subset of cores, to take advantage of memory locality. In the compact
policy, the eight threads are bound to the first two cores, which means they are as
close together as possible. The scatter policy distributes the eight threads as evenly as
possible across the entire series of cores. Scatter is the opposite of compact. The bal-
anced policy is between compact and scatter. The same set of rules applies when the
number of threads is 244, and the number of cores is 61. However, we remark that
when using the maximum number of threads (244 threads for 61 cores), the compact
policy is equivalent to the balanced policy.

Definition 3.1 (Thread Affinity Policy) A thread affinity policy is a bit vector mask in
which each bit represents a logical processor that a thread is allowed to run on.

3.1.2 Experimental Setup

Below, we are using two micro-benchmark programs of two nested loops for doing
Fused Multiply Add (FMA) operations to measure the maximum performance and
memory bandwidth on the Xeon Phi. The primary target use for FMA is matrix oper-
ations [SBDD+02, JR13].

The first micro-benchmark code is the computation of 16 FMA vector operations
(constitutes the inner loop) for ITR times (constitutes the outer loop). Listing A.1
shows the micro-benchmark program for measuring performance. The key line of the

Chapter 3. Thread-level Parallelization for MCTS 29

Core

L2

Core

L2
MC

Core

L2

Core

L2
M

C

L2

Core

L2

Core
MC

L2

Co
re

L2

Co
re

M

C

TD

TD

TD TD TD
TD

TD TD

…

…

…

…

(a) Abstract microarchitecture

compact 0 1 2 3 4 5 6 7

balanced 0 1 2 3 4 5 6 7

scatter 0 4 1 5 2 6 3 7

1

(b) Thread-to-core assignment with three
different thread affinity policies when
mapping 8 threads to 4 cores.

Figure 3.1: Intel Xeon Phi Architecture.

Compact It uses all four threads of a core before it begins using the threads
of subsequent cores.

Balanced It maps threads on different cores until all the cores have at least
one thread, as done in the scatter policy. However, when multiple
threads need to use the same core, the balanced policy ensures
that threads with consecutive IDs are close to each other, in con-
trast to what is done by the scatter policy.

Scatter It allocates the threads as evenly as possible over the whole pro-
cessor such that consecutive threads are executed in different
cores.

Table 3.1: Thread affinity policies

code in the inner loop is c[j] = a[j]∗b[j]+c[j]. The outer loop is distributed among the
available threads using OpenMP. For example, having 48 threads and ITR = 48 ∗ 106

each of them executes 106 ∗ 16 operations. The inner loop is unrolled to optimize the
program execution speed.

The second micro-benchmark code is performing 48 ∗ 106 three reads, and one
write memory access pattern (constitutes the inner loop) for ITR times (constitutes
the outer loop). Listing A.2 shows the micro-benchmark program for measuring band-
width. The key line of the code in the inner loop is c[j] = a[j] ∗ b[j] + c[j]. The inner
loop is distributed among the available threads using OpenMP.

We measure the computation cost of arithmetic operations on different data for-
mats (i.e., double-precision floating-point and integer) and provide the performances
of the micro-benchmark code.

30 3.1. Micro-benchmark Code Performance

Definition 3.2 (Double-Precision Floating-Point Format) The double-precision float-
ing-point format is a computer number format, usually occupying 64 bits in computer
memory.

Definition 3.3 (Integer Format) The integer format is a computer number format,
consisting of 4 bytes.

Henceforth, we will call the operations calculated on the double-precision floating-
point format double-precision operations; likewise, we speak of integer operations.

3.1.3 Experimental Design

In our experiments, the benchmark code is compiled with the highest level of opti-
mization (i.e., level three). The turbo mode is also on for the Xeon Phi. First, we set
the thread affinity policy via the KMP AFFINITY environment variable. Second,
we set the number of threads via the OMP NUM THREADS environment variable.
Finally, we run the micro-benchmark code. We rerun the code while increasing the
number of threads methodically from one to 244 for each of the three thread affinity
policies (i.e., compact, balanced, and scatter).

3.1.4 Experimental Results

Figure 3.2, 3.3, and 3.4 show the results of our experiment. We will discuss the results
for (A) double-precision operations and (B) integer operations.

A: Double-precision operations

Below we discuss three issues: performance, scalability, and bandwidth.

Performance Figure 3.2 (a and b) shows the effect of three different thread affinity
policies (compact, balanced, and scatter)2 on the performance of the Xeon Phi for
double-precision arithmetic operations for 244 data points, grouped into intervals of
27 data points. From the experiments we may provisionally conclude that using the
compact policy, the maximum performance of ∼1200 GFLOPS is reached with 244
threads (see the blue line). Both the balanced (see the purple line) and scatter (see the
gray line that is intermingled with the purple line) policies can reach the maximum
performance of ∼1200 GFLOPS at 183 threads.

2In Figure 3.2 and the subsequent similar figures of this chapter, caption none (see the red line) means
none of the three thread affinity policies is used.

Chapter 3. Thread-level Parallelization for MCTS 31

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

Number of Threads

0

200

400

600

800

1000

1200

GF
LO

PS

none
compact

balanced
scatter

(a) Number of iterations 960 ∗ 106.

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

Number of Threads

0

200

400

600

800

1000

1200

GF
LO

PS

none
compact

balanced
scatter

(b) Number of iterations 48 ∗ 106.

Figure 3.2: Performance and scalability of double-precision operations for different
numbers of iterations.

Scalability Figure 3.2b again shows the effect of three different thread affinity poli-
cies on the scalability of double-precision arithmetic operations on the Xeon Phi. We
split 244 threads into four regions: (1) from 1 to 61 threads, (2) from 62 to 122
threads, (3) from 123 to 183 threads, and (4) from 184 to 244 threads. In the com-
pact policy (see the blue line) the performance was steadily scaled until it reaches the
maximum performance of ∼1200 GFLOPS at the end of the fourth region. The per-
formance for both the balanced policy (see the purple line) and the scatter policy (see
the gray line that is intermingled with the purple line) scales up to more than ∼600
GFLOPS at the end of the first region. By entering the second region, the performance
suddenly drops to around 500 GFLOPS and starts increasing until it reaches ∼1000
GFLOPS at the end of the second region (i.e., 122 threads or 2 threads per core). The
beginning of the third region (i.e., 123 threads) shows a drop in performance again,
resulting in ∼800 GFLOPS. The third region is completed by a performance of ∼1200
GFLOPS. The very same pattern occurs in the fourth region, starting from ∼1000
GFLOPS for 184 threads and ending in more than ∼1200 GFLOPS for 244 threads.

Bandwidth Figure 3.3 shows the effect of thread affinity policies on the bandwidth
of the Xeon Phi for executing the benchmark program in double-precision data types
for 244 data points, grouped into intervals of 27 data points. In the compact policy
(see the red line) the memory bandwidth is continuously increased until it reaches a
plateau. The memory bandwidth graph has four regions in the balanced policy (see
the blue line): (1) from 1 to 61 threads, (2) from 62 to 122 threads, (3) from 123 to
183 threads, and (4) from 184 to 244 threads. The maximum bandwidth of ∼180 GB

32 3.1. Micro-benchmark Code Performance

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

Number of Threads

0

25

50

75

100

125

150

175

GB
/s
ec

compact
balanced

Figure 3.3: Memory bandwidth of double-precision operations on the Xeon Phi for
increasing numbers of threads. Each interval contains 27 points.

per second (GB/sec) is reached for 61 threads. By using more threads, the bandwidth
continuously decreased and never reached the same level as in the previous region.
Therefore we may conclude that the memory bandwidth measurement shows that the
maximum bandwidth is available for small numbers of threads (i.e., around 55) for
the balanced policy.

B: Integer Operations

Below we discuss two issues: performance and scalability. We do not have a band-
width graph for integer operations.

Performance Figure 3.4 shows the effect of four different thread affinity policies
on the performance of the Xeon Phi for integer arithmetic operations. The first policy
is compact. In the compact policy (see the blue line), the maximum performance of
∼1500 Giga Integers per Second (GIPS) is reached for around 244 threads. In the
balanced and scatter policies depending on how many threads are assigned to each
core, three different maxima for integer performances exist. As shown in Figure 3.4,
for the both balanced and scatter policies, between 122 threads and 244 threads three
peak points exist (i.e., 122, 183, and 244). At each of the peak points, a maximum
performance of around 1500 GIPS is reached.

Scalability Figure 3.4 shows the effect of four different thread affinity policies on
the scalability of the Xeon Phi for integer arithmetic operations. The first policy is

Chapter 3. Thread-level Parallelization for MCTS 33

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

Number of Threads

0

200

400

600

800

1000

1200

1400

GI
PS

none
compact

balanced
scatter

Figure 3.4: Performance and scalability of integer operations of the Xeon Phi for dif-
ferent numbers of threads.

compact. In the compact policy the performance was steadily increased (see the blue
line). In the balanced and scatter policies depending on how many threads are as-
signed to each core, three different regions for integer performance exist. For exam-
ple, as shown in Figure 3.4 between 122 threads and 183 threads some cores have
two threads and some others have three threads in the balanced policy. The asymmetry
in assigning threads to cores degraded the performance drastically at the beginning
of the region (i.e., 123 threads) and later at the end of the region (i.e., 183), when
thread assignment becomes more symmetric, performance started to increase.

3.1.5 Section Conclusion

We have performed micro-benchmarking on the Xeon Phi and found unexpected sen-
sitivity of performance to thread affinity policies, which we attribute to a complex
interconnect architecture. Although the theoretical performance for the Xeon Phi is
reached, from the results of experiments we may conclude that the performance of
a parallel program on the Xeon Phi is susceptible to the number of threads and the
thread affinity policy.

3.2 FUEGO Performance and Scalability

The second experiment measures the performance and scalability of an open source
library for parallel MCTS which is based on thread-level parallelization. FUEGO is an
open source, tournament level Go-playing program, developed by a team at the Uni-

34 3.2. FUEGO Performance and Scalability

versity of Alberta [EM10]. It is a collection of C++ libraries for developing software
for the game of Go and includes a Go player using MCTS. Using FUEGO would be a
good benchmark for measuring the performance of the Xeon Phi because it has been
used for similar scalability studies on CPUs [CWvdH08a, EM10, SHM+16]. It is essen-
tial to know what settings of the number of threads and the thread affinity policy will
bring the best performance that an algorithm such as MCTS can reach when taking
both computation time (i.e., for doing simulations) and memory bandwidth (i.e., for
updating the search tree) into account.

Below we provide the experimental setup in Subsection 3.2.1. In Subsection 3.2.2
we explain the experiment. Then, the experimental results are discussed in Subsection
3.2.3. Subsection 3.2.4 provides our findings in this experiment.

3.2.1 Experimental Setup

To determine the performance and scalability of FUEGO on the Xeon Phi, we have
performed a set of self-play experiments. The program with N threads plays as the
first player against another instance of the same program but now withN/2 threads. It
is a type of experiment that has been widely adopted for performance and scalability
studies of MCTS [CWvdH08a, BG11]. We carry out the experiments on both the Xeon
Phi co-processor and the Xeon CPU. Our results will allow a comparison between the
two.

Performance Metrics

In our experiments, the performance of FUEGO is reported by (A) playout speedup (see
Eq. 2.6) and (B) playing strength (see Eq. 2.7). We defined both metrics in Section 2.5.
Here we operationalize the definitions. The scalability is the trend that we observe for
these metrics when the number of resources (threads) is increasing.

3.2.2 Experimental Design

To generate statistically significant results in a reasonable amount of time most setups
use the setting of 1 second per move, and so did we, initially. Appendix B provides
details of the statistical analysis method which we used to analyze the result of a self-
play tournament. The experiments were conducted with FUEGO SVN revision 1900,
on a 9 × 9 board, with komi 6, Chinese rules, the alternating player color was en-
abled, the opening book was disabled. The win-rate of two opponents is measured
by running at least a 100-game match. A single game of Go typically lasts around
81 moves. The games were played using the Gomill Python library for tournament
play [Woo14]. Intel’s icc 14 .1 compiler is used to compile FUEGO in native mode. A

Chapter 3. Thread-level Parallelization for MCTS 35

1 2 4 8 16 24 32 48 64 12
0
12
8
24
0

Number of Threads

0

20000

40000

60000

80000

100000

120000

Pl
ay

ou
ts
/S
ec

Phi
CPU

Figure 3.5: Performance and scalability of FUEGO in terms of PPS when it makes the
second move. Average of 100 games for each data point. The board size is 9× 9.

native application runs directly on the Xeon Phi and its embedded Linux operating
system.

3.2.3 Experimental Results

This subsection reports on the performance of FUEGO by using two metrics: (A) play-
out speedup and (B) playing strength. The first metric corresponds to the improve-
ment in the number of playouts or simulations per second (excluding search over-
head), and the second metric corresponds to the improvement in the PW (including
search overhead).

A: Playout Speedup

Figure 3.5 shows the performance and scalability of FUEGO on both the Xeon CPU (see
the blue line) and the Xeon Phi (see the red line) in terms of PPS versus the number
of threads. In the following, the results for the experiments on (A1) the multi-core
Xeon CPU and (A2) the many-core Xeon Phi are discussed.

A1: Experiment on multi-core

Table 3.2 describes details of Figure 3.5 for the performance of FUEGO on the multi-
core Xeon CPU. Although FUEGO does not show a linear speedup on the Xeon CPU it
scales up to 48 threads. It reaches a speedup of 23 times for 48 threads on a 24 core
machine.

36 3.2. FUEGO Performance and Scalability

threads 1 8 16 32 48
count 100 100 100 100 100
mean 5788 37723 70286 106912 131378
std 241 2552 6078 9137 6008
min 4154 28246 40966 69129 97085
max 5979 40480 77210 121989 143630
speedup 1 7 12 18 23

Table 3.2: Performance of FUEGO on the Xeon CPU. Each column shows data for N
threads. The board size is 9× 9.

A2: Experiment on many-core

Figure 3.5 shows the PPS versus the number of threads for FUEGO for 12 data points
where for each data point the number of threads is a power of 2 except for 24 and 48
threads that are selected to compare the Xeon Phi performance with the Xeon CPU.
Moreover, 120 and 240 threads are chosen to find behavior of the curve around 128
threads. Figure 3.5 shows that even using 128 or more threads of the Xeon Phi cannot
reach the performance of 16 threads on the Xeon CPU.

Table 3.3 describes details of Figure 3.5 for the performance of FUEGO on the
Xeon Phi. The maximum speedup versus one core of the Xeon Phi is 74 times for 128
threads. The slow down from 128 threads to 240 threads shows that FUEGO cannot
scale beyond 128 threads. The table also shows that FUEGO achieves only nine times
speedup for 128 threads versus one core of the Xeon CPU. It should be noted that the
number of PPS for eight threads on the Xeon Phi is equal to one thread on the Xeon
CPU (see Table 3.3 where speedup versus CPU equals one for eight threads).

A3: Conclusion

In Paragraph A of Subsection 3.2.3, we reported on the performance and the scala-
bility of FUEGO in terms of playout speedup. The maximum relative speedup on the
multi-core Xeon CPU is 23, and on the many-core Xeon Phi it is 74. The thread-level
parallelization method used by FUEGO scales up to 48 threads on the multi-core Xeon
CPU and up to 128 threads on the many-core Xeon Phi. Due to the higher clock speed,
the amount of work by each core of the Xeon CPU is much more than that by the Xeon
Phi core. However, the difference in clock speed is only a factor of two, whereas the
results show that the difference is more than a factor of 5 for 32 threads and more
than 8 for one thread.

Chapter 3. Thread-level Parallelization for MCTS 37

threads 1 8 16 32 48 128 240
count 100 100 100 100 100 100 100
mean 694 5236 10112 19482 28251 51169 43149
std 14 67 128 255 387 810 2513
min 650 5055 9780 18721 27028 48930 39810
max 723 5361 10428 19976 29162 52957 64959
speedup 1 8 15 28 41 74 62
speedup vs CPU - 1 2 3 5 9 7

Table 3.3: Performance of FUEGO on the Xeon Phi. Each column shows data for N
threads. The board size is 9× 9.

B: Playing Strength

Figure 3.6 shows the scalability of FUEGO on both the Xeon CPU and the Xeon Phi in
terms of the PW versus the number of threads. The graph shows the win-rate of the
program with N threads as the first player. A straight line means that the program is
scalable in terms of PW. In the following, the results for the experiments on (B1) the
multi-core Xeon CPU and (B2) the many-core Xeon Phi are discussed.

B1: Experiment on multi-core

Figure 3.6a shows the results of the self-play experiments for FUEGO on the Xeon
CPU. For the 9 × 9 board, the win-rate of the program with double the number of
threads is better than the base program, starting at 70%, decreasing to 58% at 32
threads and then becomes flat. These results are entirely in line with results reported
in [EMAS10] for 16 vs. eight threads. The phenomenon of search overhead explains
the slightly decreasing lines.

B2: Experiment on many-core

Figure 3.6b shows the performance and scalability of FUEGO in terms of PW on the
many-core Xeon Phi. The scalability for the playing strength of FUEGO on the Xeon
Phi differs notably from the Xeon CPU in Figure 3.6a. The Xeon CPU shows a smooth,
slightly decreasing line. The Xeon Phi shows a more ragged line that first slopes up,
and then slopes down. The maximum win-rate on the Xeon Phi is for eight threads
(i.e., 72), while on the Xeon CPU it is for two threads (i.e., 70). The playing strength
remains above the break-even point of 50% for the first player until 48 threads and
then sharply decreases until 128 threads and becomes 50% for 240 threads. Up to
64 threads, these results confirm the simulation study by Segal [Seg11]. However,
beyond 64 threads the performance drop is unexpectedly large. In the following two

38 3.2. FUEGO Performance and Scalability

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 4 8 16 32 48

P
e
rc

e
n
ta

g
e
 W

in
s

Number of Threads

(a) Xeon CPU processor, with 200 games
for each data point.

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 4 8 16 32 48 64 128
240

P
e
rc

e
n
ta

g
e
 W

in
s

Number of Threads

(b) Xeon Phi co-processor, with 300 games
for each data point.

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 4 8 16 32 64 128
240

P
e
rc

e
n
ta

g
e
 W

in
s

Number of Threads

compact
balanced

scatter

(c) Three thread affinity policies on the
Xeon Phi, with 100 games for each data
point.

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 4 8 16 32 64 128
240

P
e
rc

e
n
ta

g
e
 W

in
s

Number of Threads

balanced

(d) 10 second per move on the Xeon Phi,
with 100 games for each data point.

Figure 3.6: Scalability of FUEGO in terms of PW with N threads against FUEGO with
N/2 threads. The board size is 9× 9.

paragraphs we report the results of our experiment on many cores (B2a) using differ-
ent thread affinity policies and (B2b) increasing the time limit for making a move.

B2a: Different thread affinity policies

Figure 3.6c shows the effect of different thread affinity policies on the performance of
FUEGO. For the FUEGO self-play experiments the compact affinity policy has been used.
To show the effect of different thread affinity policies on FUEGO, the three different
policies have been run. The PW for balanced policy shows more stability compared to
the two other thread affinity policies. The best win-rate is for 4 threads (1 core) in
the compact policy and for 16 threads (16 cores) in the scatter policy.

Chapter 3. Thread-level Parallelization for MCTS 39

B2b: Increasing time limit

Figure 3.6d shows the results when FUEGO can make a move with 10 seconds for do-
ing a simulation on the Xeon Phi. The low PPS numbers of the Xeon Phi suggest ineffi-
ciencies due to the small problem size. Closer inspection of the results on which Figure
3.5 is based suggests that FUEGO is not able to perform sufficient simulations on the
Xeon Phi for a small number of threads in just 1 second. Therefore, we increased the
time limit per move to 10 seconds. We see that now the graph is approaching that
of the Xeon CPU. The win-rate behavior for the low number of threads is now much
closer to that of the CPU (Figure 3.6b), and the counter-intuitive hump-shape has
changed to the familiar down-sloping trend. However, we still see a fluctuation in the
balanced policy. Up to 32 threads, the performance is still reasonable (close to 70%
win-rate for the 2× thread program), but up to 240 threads the performance deterio-
rates. The maximum win-rate is for eight threads, and there is still a marginal benefit
for using 128 threads.

B3: Conclusion

In Paragraph B of the Subsection 3.2.3, we reported the performance of FUEGO in
terms of PW. The maximum PW on the multi-core Xeon CPU is around 70 for two
threads and on the many-core Xeon Phi it is around 72 for eight threads. The thread-
level parallelization method used by FUEGO does not scale very well on both the
multi-core Xeon CPU and on the many-core Xeon Phi. For a time limit equal to 10
seconds per move, FUEGO scales only up to 32 threads on the many-core Xeon Phi.

3.2.4 Section Conclusion

We have carried out, to the best of our knowledge, the first performance and scalabil-
ity study of a strong open source program for playing Go using MCTS called FUEGO

on the Xeon Phi. Previous work only targeted scalability on a CPU [SKW10, BG11,
SHM+16] or used simulation [Seg11]. Our experiments showed the difference in per-
formance of an identical program in an identical setup on the Xeon CPU versus the
Xeon Phi using the standard experimental settings of the 9 × 9 board and 1 second
per move. We found (1) a good performance up to 32 threads, confirming a previous
simulation study and (2) a deteriorating performance from 32 to 240 threads (see
Figure 3.6).

3.2.5 Answer to RQ1a for FUEGO

In this subsection we answer RQ1a for FUEGO. We repeat RQ1a below.

40 3.3. ParallelUCT Performance and Scalability

• RQ1a: Can thread-level parallelization deliver a comparable performance and
scalability for many-core machines compared to multi-core machines for parallel
MCTS?

Using FUEGO, which uses thread-level parallelization for implementing the Tree
Parallelization algorithm, we have found in Subsection 3.1.3 that we cannot reach the
same performance on the Xeon Phi as on the Xeon CPU. The maximum performance
in terms of PPS for Tree Parallelization on the Xeon CPU is around three times more
than the one on the Xeon Phi (see Figure 3.5). Moreover, the scalability of the Tree
Parallelization algorithm in terms of PPS is better on the Xeon CPU (for up to 32
threads) than the Xeon Phi (for up to 240 threads). Our experiments show that the
performance of the algorithm drops after 128 threads on the Xeon Phi (see Figure
3.5). For the performance in terms of PW, the Xeon CPU shows a steadily decreasing
PW (see Figure 3.6a), as expected, where the Xeon Phi shows a hump-like shape (see
Figure 3.6b). Hence, our answer to RQ1a reads: with thread-level parallelization we
cannot reach the same performance of a multi-core machine on a many-core machine.

3.3 ParallelUCT Performance and Scalability

The third experiment is using the ParallelUCT library (see Section 2.6). The open
source MCTS libraries of FUEGO add additional ideas to the simple MCTS algorithm to
improve gameplay. In contrast, the ParallelUCT is solely developed to focus on MCTS
as a general algorithm not only for games but for general optimization problems.
ParallelUCT is our highly optimized parallel C++ library for MCTS. It is developed
to use thread-level parallelization to parallelize MCTS. Therefore, it is chosen for this
study. We provide the experimental setup in Subsection 3.3.1. Then, in Subsection
3.3.2 we explain the experiment. The experimental results are discussed in Subsection
3.3.3. Finally, Subsection 3.3.4 provides our findings of this experiment.

3.3.1 Experimental Setup

In order to generate statistically significant results for the game of Hex (board size
11 × 11) in a reasonable amount of time, both players do playouts of 1 second for
choosing a move. To calculate the playing strength for the first player, we perform
matches of two players against each other. Each match consists of 200 games, 100
with White and 100 with Black for each player. A statistical method based on [Hei01]
and similar to [MKK14] is used to calculate 95%-level confidence lower and upper
bounds on the real winning rate of a player, indicated by error bars in the graphs.
The parameter Cp is set at 1 in all our experiments. To calculate the playout speedup

Chapter 3. Thread-level Parallelization for MCTS 41

for the first player when considering the second move of the game, the average of
the number of PPS over 200 games is measured. Taking the average removes: (1) the
randomized feature of MCTS in game playing and (2) the so-called warm-up phase
on the Xeon Phi [RJM+15].

The results were measured on a dual socket Intel machine with 2 Intel Xeon E5-
2596v2 CPUs running at 2.40GHz. Each CPU has 12 cores, 24 hyperthreads, and
30 MB L3 cache. Each physical core has 256KB L2 cache. The peak TurboBoost fre-
quency is 3.2 GHz. The machine has 192GB physical memory. Intel’s icc 14.1 com-
piler is used to compile the program. The machine is equipped with an Intel Xeon
Phi 7120P 1.238GHz which has 61 cores and 244 hardware threads. Each core has
512KB L2 cache. The co-processor has 16GB GDDR5 memory on board with an aggre-
gate theoretical bandwidth of 352 GB/s. The peak turbo frequency is 1.33GHz. The
theoretical performance of the 7120P is 2.416 TFLOPS or TIPS and 1.208 TFLOPS for
single-precision or integer and double-precision floating-point arithmetic operations,
respectively [Int13]. Intel’s icc 14.1 compiler is used to compile the program in na-
tive mode. A native application runs directly on the Xeon Phi and its embedded Linux
operating system.

Performance Metrics

In our experiments, the performance of ParallelUCT is reported by (A) playout speedup
(see Eq. 2.6) and (B) playing strength (see Eq. 2.7). We defined both metrics in Sec-
tion 2.5. Here we operationalize the definitions. The scalability is the trend that we
observe for these metrics when the number of resources (threads) is increasing.

3.3.2 Experimental Design

In all of our experiments, we perform self-play Hex games in a tournament to measure
performance and scalability. Each tournament consists of 200 head-to-head matches
between the first player with N threads and the second player with N/2 threads. Both
players are given 1 second to make a move.

3.3.3 Experimental Results

The performance of the algorithms is reported by (A) playout speedup and (B) playing
strength.

42 3.3. ParallelUCT Performance and Scalability

A: Playout Speedup

Figure 3.7 shows the performance and scalability of (A1) Tree Parallelization and
(A2) Root Parallelization on both the multi-core Xeon CPU and the many-core Xeon
Phi in terms of PPS versus the number of threads.

A1: Tree Parallelization

In Figure 3.7 the scalability of Tree Parallelization on the Xeon CPU and the Xeon Phi
are compared. In the following the results for the experiments on (A1a) the multi-core
Xeon CPU and (A1b) the many-core Xeon Phi are discussed.

A1a: Experiment on multi-core

Figure 3.7a shows playout speedup on the Xeon CPU. We see a perfect playout speedup
up to 4 threads and a near perfect speedup up to 16 threads. The increase in the num-
ber of playouts continues up to 32 threads, although the increase is no longer perfect.
There is a sharp decrease in the number of playouts for 48 threads. The available
number of cores on the Xeon CPU is 24 cores, with two hyperthreads per core avail-
able, for a total of 48 hyperthreads. Thus, we see the benefit of hyperthreading up
to 32 threads. We surmise that using a lock in the expansion phase of the MCTS al-
gorithm is visible in playout speedup after four threads, but the effect is not severe.
The conclusion here is that our results are different from the results in [CWvdH08a]
and [AHH10] where the authors reported no speedup beyond four threads for locked
Tree Parallelization.

A1b: Experiment on many-core

In Figure 3.7b the playout speedup on the Xeon Phi is shown. A perfect playout
speedup is observed up to 64 threads. We see that using a lock does not affect the per-
formance of the algorithm up to this point. After 64 threads the performance drops,
although the number of PPS still increases up to 240 threads. It should be noted that
even with playout speedup increasing up to 240 threads, we see that at 240 threads
on the Xeon Phi still, the number of PPS is less than on eight threads on the Xeon
CPU. Our provisional conclusion here is that the performance for Tree Parallelization
on the Xeon Phi is almost 30% of the peak performance on the Xeon CPU.

A2: Root Parallelization

Next, we will discuss the Root Parallelization, where threads are running indepen-
dently and where no locking mechanism exists. Root Parallelization is well suited to

Chapter 3. Thread-level Parallelization for MCTS 43

1 2 4 8 16 22 32 48
Number of Threads

100000

200000

300000

400000

500000

Pl
ay

ou
t/s

ec

Roo Par.
Tree Par.

(a) Xeon CPU

8/2 16/4 32/8 64/16 128/32 240/60
Number of Threads/Cores

100000

200000

300000

400000

500000

Pl
ay

ou
t/s

ec

Roo Par.
Tree Par.

(b) Xeon Phi

Figure 3.7: Performance and scalability of ParallelUCT in terms of PPS for both Tree
and Root Parallelization.

see whether the decrease in playout speedup in Tree Parallelization is due to locks
or not. In Figure 3.7 the scalability of Root Parallelization on the Xeon CPU and the
Xeon Phi are compared. In the following the results for the experiments on (A2a) the
multi-core Xeon CPU and (A2b) the many-core Xeon Phi are discussed.

A2a: Experiment on multi-core

As is shown in Figure 3.7a for the Xeon CPU, the playout speedup is perfect for up to
16 threads (while in Tree Parallelization it is for up to 4 threads). The second differ-
ence between these two algorithms is revealed at 48 threads where Root Paralleliza-
tion still shows improvement in playout speedup. We may conclude that removing the
lock in the expansion phase of Tree Parallelization improves performance for a high
number of threads on the Xeon CPU.

A2b: Experiment on many-core

The performance of Root Parallelization on the Xeon Phi is shown in Figure 3.7b.
Here, we require at least eight threads on the Xeon Phi to reach almost the same num-
ber of PPS as one thread on the Xeon CPU. On the Xeon Phi, with Root Parallelization,
perfect playout speedup is achieved for up to 64 threads, which implies that the drops
on 64 threads in Tree Parallelization performance are likely not due to locking. How-
ever, for 240 threads the number of playouts increases by a higher rate compared
to Tree Parallelization. Overall, the peak performance for Root Parallelization on the
Xeon Phi is almost 30% of its counterpart on the Xeon CPU. To understand the reason

44 3.3. ParallelUCT Performance and Scalability

2 4 8 16 22 32 48
Number of Threads

20

30

40

50

60

70

80

90

100

W
in
s(
%
)

11x11

(a) Xeon CPU

8/2 16
/4

32
/8

64
/16

12
8/3
2

24
0/6
0

Number of Threads/Cores

20

30

40

50

60

70

80

90

100

W
in
s(
%
)

11x11

(b) Xeon Phi

Figure 3.8: Scalability of ParallelUCT in terms of PW for Tree Parallelization.

for this low performance we did a detailed timing analysis to find out where most
of the time of the algorithm has been spent in the selection, expansion, playout, or
backup phase. For the Hex board size of 11 × 11, MCTS spends most of its time in
the playout phase. This phase of the algorithm is problem dependent, for example,
it is different for Go (9 × 9) and Hex (9 × 9) because they have different rules; the
difference is even different for distinct board sizes. In our program, around 80% of
the total execution time for performing a move is spent in the playout phase.

A3: Conclusion

In both Tree and Root Parallelization algorithms, the performance of the parallel al-
gorithm is less on the Xeon Phi compared to the Xeon CPU. Comparing the differ-
ences between scalability graphs of both algorithms in terms of PPS on both the Xeon
CPU and the Xeon Phi shows the limited scalability of Tree Parallelization when us-
ing more threads compared to Root Parallelization. Here we may conclude that the
performance of thread-level parallelization for both Tree and Root Parallelization al-
gorithms on the Xeon CPU is better than the one on the Xeon Phi (see RQ1a). In
terms of scalability, the thread-level parallelization for the Root Parallelization algo-
rithm shows better scalability comparing to the Tree Parallelization algorithm on both
the Xeon CPU and the Xeon Phi.

B: Playing Strength

Figure 3.8 shows the performance and scalability of Tree Parallelization on both the
Xeon CPU and the Xeon Phi in terms of the PW versus the number of threads. Figure

Chapter 3. Thread-level Parallelization for MCTS 45

3.9 shows the scalability of Root Parallelization on both the Xeon CPU and the Xeon
Phi in terms of the PW versus the number of threads. The graph shows the win-rate of
the program with N threads as the first player. A straight line means that the program
is scalable in terms of the playing strength.

B1: Tree Parallelization

As already mentioned, it is also essential to evaluate the playing strength of the MCTS
player for a game such as Hex. The goal is to see how the increase in the number of
PPS reflects in a more dominant player. In the following the results for the exper-
iments on (B1a) the multi-core Xeon CPU and (B1b) the many-core Xeon Phi are
discussed.

B1a: Experiment on multi-core

In Figure 3.8a playing strength for Tree Parallelization on the Xeon CPU is shown.
Note that, since we compare the performance of N threads against N/2 threads,
an ideal perfect playing strength would give a straight, horizontal line of, say, 60%
win rate for the player with more threads. We see good playing strength up to 32
threads. The win rate drops to 50 percent for 48 threads. This decrease in win rate
is consistent with the drop in the number of PPS for 48 threads in Figure 3.7a. Our
provisional conclusion here is that on the Xeon CPU, the playing strength follows
playout speedup closely.

B1b: Experiment on many-core

Interestingly, the playing strength on the Xeon Phi is entirely different from that on
the Xeon CPU. The win rate for eight threads is more than 80%. This is due to an
insufficient number of PPS for four threads (the opponent player of the player with
eight threads), caused by the slow computing performance of the Xeon Phi as de-
scribed above. Our provisional conclusion is that for 16 and 32 threads the win rate is
consistent with perfect playout speedup (Figure 3.8b). After 32 threads the decrease
in strength speedup starts and continues to 240 threads.

B2: Root Parallelization

In Figure 3.9 the scalability in terms of PW for Root Parallelization on the Xeon CPU
and the Xeon Phi are shown. In the following the results for the experiments on (B2a)
the multi-core Xeon CPU and (B2b) the many-core Xeon Phi are discussed.

46 3.3. ParallelUCT Performance and Scalability

2 4 8 16 22 32
Number of Threads

20

30

40

50

60

70

80

90

100

W
in
s(
%
)

11x11

(a) Xeon CPU

8/2 16
/4

32
/8

64
/16

12
8/3
2

24
0/6
0

Number of Threads/Cores

20

30

40

50

60

70

80

90

100

W
in
s(
%
)

11x11

(b) Xeon Phi

Figure 3.9: Scalability of ParallelUCT in terms of PW for Root Parallelization.

B2a: Experiment on multi-core

In Figure 3.9a the scalability in terms of PW for Root Parallelization on the multi-core
Xeon CPU is shown. The shape of the scalability graph shows that Root Parallelization
does not scale beyond 8 threads in spite of good scalability in terms of the number of
PPS on the Xeon CPU (see Figure 3.7a).

B2b: Experiment on many-core

In Figure 3.9a the scalability in terms of PW for Root Parallelization on the many-core
Xeon Phi is shown. The shape of the scalability graph shows that Root Parallelization
scales up to 32 threads no beyond that in spite of good scalability in terms of the
number of PPS on the Xeon Phi (see Figure 3.7b).

B3: Conclusion

In both Tree and Root Parallelization algorithms, the differences between scalability
graphs in terms of PW on the Xeon CPU and the Xeon Phi is due to an insufficient
number of PPS on the Xeon Phi compared to the Xeon CPU.

3.3.4 Section Conclusions

We have performed an in-depth scalability study of both Tree and Root Parallelizations
of the MCTS algorithm on the Xeon CPU and the Xeon Phi for the game of Hex. It is
the first large-scale (up to 240 threads and 61 cores) study of Tree Parallelization on
a real shared-memory many-core machine. Contrary to previous results [EM10], we

Chapter 3. Thread-level Parallelization for MCTS 47

show that the effect of using data locks is not a limiting factor on the performance
of a Tree Parallelization for 16 threads on the Xeon CPU and 64 threads on the Xeon
Phi.

To understand the reason for this low performance we performed a detailed tim-
ing analysis to find out where the most time of the algorithm has been spent in the
selection step, expansion step, playout step, or update step. For the Hex board size
of 11 × 11, MCTS spends most of its time in the playout phase. This phase of the
algorithm is problem dependent, for example, it is different for Go and Hex; the dif-
ference is even different for distinct board sizes. In our program, around 80% of the
total execution time for performing a move is spent in the playout phase.

Since the playout phase dominates execution time of each thread, the Xeon CPU
outperforms the Xeon Phi significantly because of more powerful cores. No method
for vectorization has been devised for the playout phase. Therefore, for the current
ratio of Xeon CPU cores versus Xeon Phi cores (24 versus 61), it is not possible to
reach the same performance on the Xeon Phi because each core of the Xeon CPU is
more powerful than each core of the Xeon Phi for sequential execution. From these
results, we may conclude that for the current ratio of Xeon CPU cores versus Xeon
Phi cores, the parallel MCTS algorithms for games such as Hex or Go on the Xeon
Phi have a limitation. Therefore, it is interesting to investigate the limitation problem
in the other domains in which MCTS has been successful such as those mentioned
in [vdHPKV13].

3.3.5 Answer to RQ1a for ParallelUCT

Using our ParallelUCT package, which uses thread-level parallelization for imple-
menting two parallel MCTS algorithms (i.e., Root Parallelization and Tree Paralleliza-
tion), we cannot reach the same performance on the Xeon Phi as on the Xeon CPU
(see Figure 3.7). The maximum performance in terms of PPS for both Root Paral-
lelization and Tree Parallelization on the Xeon CPU is around three times more than
the one on the Xeon Phi. The Root Parallelization algorithm scalability in terms of PPS
on both the Xeon Phi and the Xeon CPU are similar. The Tree Parallelization algorithm
scalability in terms of PPS is better on the Xeon Phi than on the Xeon CPU, since the
performance of the algorithm is dropped after 32 threads on the Xeon CPU. We find
that three obstacles limit performance and scalability on both the Xeon CPU and the
Xeon Phi: (1) the time spent in the sequential part of the algorithm, (2) the thread
management overhead, and (3) the synchronization overhead due to using locks to
protect the shared search tree.

48 3.4. Related Work

3.4 Related Work

Below we review related work on MCTS parallelizations. The two major paralleliza-
tion methods for MCTS are Tree Parallelization and Root parallelization [CWvdH08a].
There are also other techniques such as leaf parallelization [CWvdH08a] and ap-
proaches based on transposition table driven work scheduling [YKK+11, RPBS99].

• Tree Parallelization: For shared-memory machines, Tree Parallelization is a suit-
able method. It is used in FUEGO, an open source Go program. It is shown
in [CWvdH08a] that the playout speedup of Tree Parallelization with virtual
loss cannot scale perfectly for up to 16 threads. The main challenge is the use
of the data locks to prevent data corruption. Moreover, it is shown in [EM10]
that a lock-free implementation of this algorithm provides better scaling than
a locked approach. In [EM10] such a lock-free Tree Parallelization for MCTS is
proposed. The authors intentionally ignored rare faulty updates inside the tree
and studied the scalability of the algorithm for up to 8 threads. In [BG11], the
performance of a lock-free Tree Parallelization for up to 22 threads is reported.
The playing strength is perfect for 16 threads, but the improvement drops for
22 threads. There is also a case study that shows good performance of a (no-
MCTS) Monte Carlo simulation on the Xeon Phi co-processor [Li13]. Segal’s
[Seg11] simulation study of Tree Parallelization on an ideal shared-memory
system suggested that perfect playing strength beyond 64 threads may not be
possible, presumably due to increased search overhead. Baudǐs et al. reported
almost near perfect playing strength up to 22 threads for a lock-free tree paral-
lelization [BG11].

• Root Parallelization: Chaslot et al. [CWvdH08a] reported results that Root Par-
allelization shows perfect playout speedup for up to 16 threads. Soejima et
al. [SKW10] analyzed the performance of Root Parallelization in detail. They
showed that a Go player that uses lock-free Tree Parallelization with 4 to 8
threads outperformed the same program with Root Parallelization which uti-
lizes 64 distributed CPU cores. This result suggests the superiority of Tree Par-
allelization over Root Parallelization in shared-memory machines.

3.5 Answer to RQ1

In this chapter we presented the thread-level parallelization for parallelization of
MCTS. We have already answered RQ1a in Subsection 3.2.5 and Subsection 3.3.5.
This section proposes an answer for RQ1.

Chapter 3. Thread-level Parallelization for MCTS 49

• RQ1:What is the performance and scalability of thread-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

For thread-level parallelization, our study shows that the performance of MCTS
on the many-core Xeon Phi co-processor with its MIC architecture is less than its
performance on the NUMA-based multi-core processor (see Subsections 3.2.3 and
3.3.3). The results show that current Xeon CPUs at 24 cores substantially outper-
form the Xeon Phi co-processor on 61 cores. Our study also shows that the scalability
of thread-level parallelization for MCTS on the many-core Xeon Phi co-processor is
limited.

4
Task-level Parallelization for MCTS

This chapter addresses RQ2 which is mentioned in Section 1.7.

• RQ2: What is the performance and scalability of task-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

In this chapter1, we investigate how to parallelize irregular and unbalanced tasks
efficiently on the Xeon Phi using MCTS. MCTS performs a search process based on
a large number of random samples in the search space. The nature of each sample
in MCTS implies that the algorithm is considered as a good target for paralleliza-
tion. Much of the effort to parallelize MCTS has focused on using parallel threads
to do tree-traversal in parallel along separate paths in the search tree [CWvdH08a,
YKK+11]. Using software threads makes it difficult to deal with irregular parallelism
because creating too many threads for load balancing and better utilization of proces-
sors would cause a problem regarding thread creation overhead and memory usage.
It is often hard to find sufficient parallelism in an application when there is a large
number of cores available as in the Xeon Phi. To find adequate parallelism, we need
to adapt MCTS to use logical parallelism, called tasks. Therefore, we use tasks due to
their increased machine independence, safety, and scalability over threads. Below we
present a task parallelism approach for MCTS which allows controlling the granularity
(or grain size) of a task.

Three main contributions of this chapter are as follows.

1Based on:

• S. A. Mirsoleimani, A. Plaat, H. J. van den Herik, and J. Vermaseren, Scaling Monte Carlo Tree
Search on Intel Xeon Phi, in Proceedings of the 20th IEEE International Conference on Parallel and
Distributed Systems (ICPADS), 2015, pp. 666--673.

52 4.1. Irregular Parallelism Challenge

1. A first detailed analysis of the performance of three widely-used threading li-
braries on a highly optimized program with high levels of irregular and unbal-
anced tasks on the Xeon Phi is provided.

2. A straightforward First In, First Out (FIFO) scheduling policy is shown to be
equal or even to outperform the more elaborate threading libraries Cilk Plus
and Threading Building Blocks (TBB) for running high levels of parallelism for
high numbers of cores. This is surprising since Cilk Plus was designed to achieve
high efficiency for precisely these types of applications.

3. The first parallel MCTS with grain size control is proposed. It achieves, to the
best of our knowledge, the fastest implementation of a parallel MCTS on the
61-core Xeon Phi 7120P (using a real application) with a 47 times speedup
compared to sequential execution on the Xeon Phi itself (which translates to
5.6 times speedup compared to the sequential version on the regular host CPU,
Xeon E5-2596).

The rest of this chapter is organized as follows. Section 4.1 describes the compli-
cations for irregular parallelization of MCTS. Section 4.2 describes how to achieve
task-level parallelization. Section 4.3 explains the threading libraries. Section 4.4 de-
scribes the Grain Size Controlled Parallel MCTS algorithm. Implementation consid-
erations are given in Section 4.5. A scalability study for the proposed algorithm is
presented in Section 4.6. Section 4.7 provides the experimental setup, Section 4.8 de-
scribes the experimental design, and Section 4.9 gives the experimental results (with
five possible implementations of GSCPM). Section 4.10 presents our analysis of re-
sults. Finally, Section 4.11 discusses related work.

4.1 Irregular Parallelism Challenge

One of the obstacles for parallelizing MCTS is parallel execution of iterations with
an asymmetric search tree, resulting in irregular parallelism (see Subsection 1.4.1).
We aim to address this challenge using task-level parallelization with a task scheduler
that ensures a maximum concurrency level with minimum load balancing overhead
(see Section 4.2 to Section 4.4).

4.2 Achieving Task-level Parallelization

Reaching task-level parallelization for the MCTS loop depends on a precise arrange-
ment of the iterations into tasks (Subsection 4.2.1). It also requires us to understand
data dependencies between different iterations of the loop (Subsection 4.2.2).

Chapter 4. Task-level Parallelization for MCTS 53

4.2.1 Decomposition of Iterations into Tasks

The MCTS loop which is based on iteration control flow pattern loop is the best first
place to look to create parallel tasks because considering every iteration of the MCTS
loop to be a task can often keep a large number of threads active. To create tasks, we
use a parallel pattern, namely the fork-join pattern.

Definition 4.1 (Iteration Pattern) In the iteration pattern, a condition c is evaluated.
If it is true, a task a is evaluated, then the condition c is evaluated again, and the process
repeats until the condition becomes false [MRR12].

Definition 4.2 (Fork-join Pattern) A pattern of computation in which new (potential)
parallel flows of control are created/split with forks and terminated/merged with joins.

4.2.2 Ignoring Data Dependencies among Iterations

The body of the MCTS loop depends on previous invocations of itself. The source of
this dependency comes from the fact that the results of computation associated with
each iteration update a single search tree. The constructed search tree guides the next
iterations of search towards a possibly existing global minimum of the search space
avoiding local minima. This type of dependencies is called Iteration-Level Dependen-
cies (ILDs). We can ignore this type of dependency.

4.3 Threading Libraries

In this section, we discuss two threading libraries which allow task-level paralleliza-
tion of loops. Some parallel programming models provide programmers with thread
pools, relieving them of the need to manage their parallel tasks explicitly [LP98,
Rob13]. Creating threads each time that a program needs them can be undesirable.
To prevent overhead, the program has to do two things: (1) managing the lifetime
of the thread objects, and (2) determining the number of threads appropriate to the
problem and the current hardware. The ideal scenario would be that the program
could just (1) divide the code into the smallest logical pieces that can be executed
concurrently (called tasks), and (2) pass them over to the compiler and library, to
parallelize them. This approach uses the fact that the majority of threading libraries
does not destroy the threads once created so that they can be resumed much more
quickly in subsequent use. This is known as creating a thread pool.

A thread pool is a group of shared threads [NBF96]. Tasks that can be executed
concurrently are submitted to the pool and are added to a queue of pending work.
Each task is then taken from the queue by one of the worker threads that execute the

54 4.4. Grain Size Controlled Parallel MCTS

task before looping back to take another task from the queue. The user specifies the
number of worker threads.

Thread pools use either a work-stealing or a work-sharing scheduling method to
balance the workload. Examples of parallel programming models with work-stealing
scheduling are TBB and Cilk Plus [Rei07]. Below we discuss these two threading
libraries: Cilk Plus in Subsection 4.3.1 and TBB in Subsection 4.3.2.

4.3.1 Cilk Plus

Cilk Plus is an extension to C and C++ designed to offer a quick and easy way to
harness the power of both multi-core and vector processing. Cilk Plus is based on
MIT’s research on Cilk [BJK+95]. Cilk Plus provides a simple yet powerful model
for parallel programming, while runtime and template libraries offer a well-tuned
environment for building parallel applications [Rob13].

The function calls in an MCTS can be tagged with the first keyword cilk spawn,
which indicates that the function can be executed concurrently. The calling function
uses the second keyword cilk sync to wait for the completion of all the functions it
spawned. The third keyword is cilk for, which converts a serial for loop (e.g., the main
loop of MCTS) into a parallel for loop. The runtime system executes the tasks within
a provably efficient work-stealing framework. Cilk Plus uses a double-ended queue
per thread to keep track of the tasks to perform and uses it as a stack during regular
operations conserving a sequential semantic. When a thread runs out of tasks, it steals
the most in-depth half of the stack of another (randomly selected) thread [LP98,
Rob13]. In Cilk Plus, thief threads steal continuations.

4.3.2 Threading Building Blocks

Threading Building Blocks (TBB) is a C++ template library developed by Intel for
writing software programs that take advantage of a multi-core processor [Rei07]. TBB
implements work-stealing to balance a parallel workload across available processing
cores to increase core utilization and therefore, to scale. The TBB work-stealing model
is similar to the work-stealing model applied in Cilk, although in TBB, thief threads
steal children [Rei07].

4.4 Grain Size Controlled Parallel MCTS

This section discusses the Grain Size Controlled Parallel MCTS (GSCPM) algorithm.
The pseudo-code for GSCPM is shown in Algorithm 4.1. In the MCTS loop (see Al-
gorithm 2.1 and Algorithm 2.2), the computation associated with each iteration is

Chapter 4. Task-level Parallelization for MCTS 55

independent. Therefore, these are candidates to guide a task decomposition by map-
ping a chunk of iterations onto a task for parallel execution on separate processors.
This type of task is called Iteration-Level Task (ILT) and this type of parallelism is
called Iteration-Level Parallelism (ILP) [CWvdH08a, SP14, MPvdHV15a].

Definition 4.3 (Iteration-level Task) The iteration-level task is a type of task that con-
tains a chunk of MCTS iterations.

Definition 4.4 (Iteration-level Parallelism) Iteration-level parallelism is a type of par-
allelism that enables task-level parallelization to assign a chunk of MCTS iterations as a
separate task for execution on separate processors.

The MCTS loop can be implemented with two different loop constructs (i.e., while
and for). If we cannot predict how many iterations will take place (e.g., the search
continues until a goal value has been found), then this is a while loop. In contrast,
if the number of iterations is known in advance, then this can be implemented in
the form of a for loop. The GSCPM algorithm is designed for the modern threading
libraries. For many threading libraries, it is necessary for parallelizing loops to know
the total number of iterations in advance. Therefore, the outer loop in GSCPM is
a counting for loop (see Line 5 in Algorithm 4.1) which iterates as many times as
the number of available tasks (nTasks). Then, the search budget (nPlayouts) can be
divided into chunks of iterations to be executed by an inner serial loop (see Line 7 in
Algorithm 4.1 and details of the UCTSEARCH function in Algorithm 2.2). A chunk is a
sequential collection of one or more iterations. The maximum size of a chunk is called
grain size. Therefore, the grain size is the number of playouts divided by the number
of tasks (nPlayouts/nTasks) and it could be as small as one iteration or as large as the
total number of iterations. Controlling the number of tasks (nTasks) allows to control
the grain size in GSCPM. The design of GSCPM is based on fork-join parallelism. The
outer loop forks instances of the inner loop as tasks (see Line 7) and the runtime
scheduler allocates the tasks to threads for execution. With this technique, we can
create more tasks than threads. This is called fine-grained task-level parallelism.

Definition 4.5 (Fork-join Parallelism) In fork-join parallelism, control flow splits into
multiple flows that combine later.

By increasing the number of tasks, the grain size is reduced, and we provide more
parallelism to the threading library [RJ14]. Finding the right balance is the key to
achieve proper scaling. The grain size should not be too small because then spawn
overhead reduces performance. It also should not be too large because that reduces
parallelism and load balancing (see Table 4.1).

56 4.5. Implementation Considerations

Table 4.1: The conceptual effect of grain size.

Large grain size
(nTasks� nCores)

Speedup bounded by tasks
(not sufficient parallelism)

Right grain size Good speedup
Small grain size

(nTasks� nCores)
Spawn and scheduling overhead

(reduces performance)

Algorithm 4.1: The pseudo-code of the GSCPM algorithm.
1 Function GSCPM(State s0,nP layouts,nTasks)
2 v0 := create a shared root node with state s0;
3 grain size := nP layouts/nTasks;
4 t := 1;
5 for t ≤ nTasks do
6 st := s0;
7 fork UCTSEARCH(v0,st,grain size) as task t;
8 t := t+1;

9 wait for all tasks to be completed;
10 return action a of best child of v0;

4.5 Implementation Considerations

The performance of a shared search tree in combination with random number gen-
eration is significant for the overall performance of the GSCPM algorithm. Therefore,
we explain our choices for implementing the shared search tree in Subsection 4.5.1,
and for the random number generator in Subsection 4.5.2. For more details on the
implementation of GSCPM, see Appendix C.

4.5.1 Shared Search Tree Using Locks

In a serial MCTS loop, the manipulations are called in order manipulations. Therefore,
the data inside the tree remains valid during the full execution. However, paralleliza-
tion of the loop causes out of order manipulations, which may cause data corruption.
In our implementation of tree parallelism, a lock is used in the expansion phase of the
MCTS algorithm to avoid (1) the loss of any information and (2) corruption of the
tree data structure [EM10]. To allocate all children of a given node, a pre-allocated
vector of children is used. When a thread tries to append a new child to a node, it
increments an atomic integer variable as the index to the next possible child in the
vector of children. The values of wj = Q(vj) and nj = N(vj) are also defined to be
atomic integers (see Algorithm 2.2).

Chapter 4. Task-level Parallelization for MCTS 57

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Cores

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

S
p
e
e
d
u
p

2

32

64

256

512

2048

16384

Figure 4.1: The scalability profile produced by Cilkview for the GSCPM algorithm.
The number of tasks is shown. Higher is more fine-grained.

4.5.2 Random Number Generator

The efficiency of Random Number Generation (RNG) is a crucial performance aspect
of any Monte Carlo simulation [Li13]. In our implementation, the highly optimized
Intel MKL is used to generate a separate RNG stream for each task with a single
seed. One MKL RNG interface API call can deliver an arbitrary number of random
numbers. In our program, a maximum of 64 K random numbers is provided in one
call [WZS+14]. A thread generates the required number of random numbers for each
task.

4.6 Performance and Scalability Study

Many-core processors such as the Xeon Phi have a large number of cores. Therefore, it
is important to study how GSCPM scales as the number of processing cores increases.
The Cilkview scalability analyzer is a software tool for estimating the scalability of
multithreaded Cilk Plus applications. Cilkview will estimate parallelism and predict
how the application will scale with the number of processing cores [HLL10].

Figure 4.1 shows the scalability profile produced by Cilkview that results from a
single instrumented serial run of the GSCPM algorithm for different numbers of tasks.
The curves show the amount of available parallelism in our algorithm; they are lower
bounds indicating an estimation of the potential program speedup with the given
grain size. As can be seen, fine-grained parallelism (many tasks) is needed for MCTS

58 4.7. Experimental Setup

to achieve good intrinsic parallelism. The performance of the GSCPM algorithm for
more than 2048 tasks on 61 cores shows near-perfect speedup. Therefore, GSCPM
has adequate parallelism. However, the actual performance of a parallel application
is determined not only by its intrinsic parallelism but also by the performance of
the runtime scheduler. Therefore, it is important to have an efficient implementation
using modern threading libraries. In the following three sections, we will present
the experimental setup (Section 4.7), the experimental design (Section 4.8), and the
experimental results (Section 4.9) of five methods for parallel implementation with
the help of four different threading libraries for GSCPM.

4.7 Experimental Setup

The performance evaluation of GSCPM is carried out on a dual-socket Intel machine
with 2 Intel Xeon E5-2596v2 CPUs running at 2.40GHz. Each CPU has 12 cores, 24
hyperthreads, and 30 MB L3 cache. Each physical core has 256KB L2 cache. The
peak TurboBoost frequency is 3.2 GHz. The machine has 192GB physical memory.
The machine is equipped with an Intel Xeon Phi 7120P 1.238GHz which has 61 cores
and 244 hardware threads. Each core has 512KB L2 cache. The Xeon Phi has 16GB
GDDR5 memory on board with an aggregate theoretical bandwidth of 352 GB/s.

The Intel Composer XE 2013 SP1 compiler was used to compile for both In-
tel Xeon CPU and Intel Xeon Phi. Five methods for parallel implementation from
four different threading libraries were used: (1) standard thread library comes from
C++11 libraries, (2) Thread Pool with FIFO scheduling (TPFIFO) is based on Boost
C++ libraries 1.41, (3,4) cilk spawn and cilk for come from Intel Cilk Plus, and (5)
task group comes from Intel TBB 4.2. We compiled the code using the Intel C++
Compiler with a -O3 flag.

4.8 Experimental Design

The goal of this chapter is to study the performance and scalability of task-level par-
allelization for MCTS as an irregular unbalanced algorithm on the Xeon Phi (see also
RQ2). We do so using the ParallelUCT package (see Section 2.6). The package im-
plements, a highly optimized, Hex playing program to generate realistic real-world
search spaces.

To generate statistically significant results in a reasonable amount of time, 220

playouts are executed to choose a move. The board size is 11 × 11. The UCT con-
stant Cp is set at 1.0 in all of our experiments. To calculate the playout speedup, the
average of time over ten games is measured for making the first move of the game

Chapter 4. Task-level Parallelization for MCTS 59

Table 4.2: Sequential baseline for GSCPM algorithm. Time in seconds.

Processor Board Size Sequential Time (s)

Xeon CPU 11× 11 21.47± 0.07

Xeon Phi 11× 11 185.37± 0.53

when the board is empty. The empty board is used because it has the most significant
playout time; it is the most time-consuming position (since the whole board should
be filled randomly). The results are within less than 3% standard deviation which is
an acceptable tolerance.

4.9 Experimental Results

In Paragraph A, the performance of a sequential implementation of the MCTS algo-
rithm on both the Xeon CPU and the Xeon Phi is reported. The performance and
scalability of task-level parallelization of MCTS are measured on the Xeon CPU in
Paragraph B and on the Xeon Phi in Paragraph C.

A: Sequential Performance

Table 4.2 shows the sequential time to execute the specified number of playouts. The
time values in Table 4.2 are used to calculate playout speedup values (i.e., sequential
time divided by parallel time to execute the equal number of playouts) in Figure 4.2a
and Figure 4.2b. The sequential time on the Xeon Phi is almost eight times slower
than on the Xeon CPU. This is because each core on the Xeon Phi is slower than each
one on the Xeon CPU. (The Xeon Phi has in-order execution, the CPU has out-of-order
execution, hiding the latency of many cache misses.)

The time of execution in the first game is longer on the Xeon Phi than on a Xeon
CPU. Therefore the overhead costs for thread creation may include a significant con-
tribution to the parallel region execution time. This is a known feature of the Xeon
Phi, called the warm-up phase [RJ14]. Therefore, the first game is not included in the
results to remove that overhead. The majority of threading library implementations
do not destroy the threads created for the first time [RJ14].

B: Performance and Scalability on Xeon CPU

The graph in Figure 4.2b shows the performance and scalability of task-level paral-
lelization for MCTS in terms of playout speedup for different threading libraries on a

60 4.10. Discussion and Analysis

Xeon CPU, as a function of the number of tasks. We recall that going to the right of
the graph, finer grain parallelism is observed.

For the C++11 implementation, the number of threads is equal to the number
of tasks. The best performance for the C++11 implementation is around 18 times
speedup for 128 threads/tasks. The C++11 method does not scale after 128 threads
or tasks. For the other methods, the number of threads is fixed and equal to the
number of cores while the number of tasks is increasing. The best performance for
the cilk spawn and the cilk for methods is around 13 times speedup for 32 tasks.
The scalability of both the cilk spawn method and the cilk for method drops after
32 tasks and becomes almost stable around 12 times speedup after 128 tasks. For
the task group implementation the best performance is around 19 times speedup for
2048 tasks. The scalability of the task group method becomes almost stable around
19 times speedup after 512 tasks.

C: Performance and Scalability on Xeon Phi

The graph in Figure 4.2b shows the performance and scalability of task-level paral-
lelization for MCTS in terms of playout speedup for different threading libraries on a
Xeon Phi, as a function of the number of tasks. We recall that going to the right of the
graph, finer grain parallelism is observed.

Creating a number of threads in C++11 that is equal to the number of tasks is
the first approach that comes to mind. The best performance for the C++11 method
is around 43 times speedup for 256 threads/tasks. However, the limitation of this
approach is that creating larger numbers of threads has a large overhead. Thus, the
method does not scale beyond 256 threads/tasks. For the cilk spawn method and the
cilk for method, the best performance is achieved for fine-grained tasks. The best
performance of cilk spawn and cilk for is close to a speedup of around 39 times (for
1024 tasks), and to a speedup of around 40 times (for 2048 tasks), respectively. The
best performance of task group and TPFIFO is also quite close to a 46 and 47 times
speedup, respectively. TPFIFO and task group scale well for up to 4096 tasks. The
reason for the similarity between TBB and TPFIFO on the Xeon Phi is explained in
Appendix C.

4.10 Discussion and Analysis

We have studied the performance of GSCPM on both the Xeon CPU (see Figure 4.2a)
and the Xeon Phi (see Figure 4.2a) for five parallel implementation methods. These
methods use a range of scheduling policies, ranging from a work-sharing FIFO work
queue, to state-of-the-art work-sharing and work-stealing techniques in Cilk Plus and

Chapter 4. Task-level Parallelization for MCTS 61

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Number of Tasks

2

6

10

14

18

S
p
e
e
d
u
p

C++11

cilk_spawn

cilk_for

task_group

TPFIFO

(a) Speedup on the Intel Xeon CPU with
24 cores and 48 hyperthreads.

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Number of Tasks

2

6

10

14

18

22

26

30

34

38

42

46

50

S
p
e
e
d
u
p

C++11

cilk_spawn

cilk_for

task_group

TPFIFO

(b) Speedup on the Intel Xeon Phi with 61
cores and 244 hardware threads.

Figure 4.2: Speedup for task-level parallelization utilizing five methods for parallel
implementation from four threading libraries. Higher is better. Left: coarse-grained
parallelism. Right: fine-grained parallelism.

TBB libraries. Therefore, we compare our results on the Xeon Phi to the results on
the Xeon CPU for analyzing and understanding the performance of each method on
these two hardware platforms to find out the best method of implementation for each
of these processors. The following contains three of our main observations on (A)
scaling behavior, (B) performance, and (C) range of tasks.

A: Scaling behavior

First, it is noticeable that we achieve good scaling behavior, a speedup of 47 on the 61
cores of the Xeon Phi and a speedup of 19 on the 24 cores of the Xeon CPU. Surpris-
ingly, this performance is achieved using one of the most straightforward scheduling
mechanisms, a work-sharing FIFO thread pool. We expected to observe a similar or
even better performance for Cilk Plus methods (cilk spawn and cilk for). These meth-
ods are designed explicitly for irregular and unbalanced (divide and conquer) paral-
lelism using a work-stealing scheduling policy. The performance of the TBB method
(task group) is close to the FIFO method on the Xeon Phi, but its performance on the
Xeon CPU is definitely worse than TPFIFO.

B: Performance

Second, the performance of each method depends on the hardware platform. We see
five interesting facts.

62 4.10. Discussion and Analysis

• B1: It is shown that on the Xeon CPU (see Figure 4.2a), by doubling the numbers
of tasks the running time becomes almost half for up to 32 threads for C++11,
Cilk Plus (cilk spawn and cilk for), TBB (task group), and TPFIFO. It means that
all of these methods at least scale for up to 32 threads on the Xeon CPU. It is
also shown that on the Xeon Phi (see Figure 4.2b), all of these methods achieve
very close performance for up to 64 tasks. It means that they at least scale for
up to 64 threads on the Xeon Phi.

• B2: The best performance for C++11 is observed for 128 threads/tasks on the
Xeon CPU and 256 threads/tasks on the Xeon Phi. It shows that C++11 does
not scale on the Xeon CPU and the Xeon Phi for fine-grained tasks which sub-
sequently reveals the limitation of thread-level parallelization. Moreover, for 64
and 128 threads/tasks, the speedup for C++11 is better than for Cilk Plus and
TBB on the Xeon CPU.

• B3: The best performance for cilk spawn and cilk for on the Xeon CPU is ob-
served for coarse-grained tasks, when the numbers of tasks are equal to 32.
The best speedup for cilk spawn and cilk for on the Xeon Phi is observed for
fine-grained tasks, when the numbers of tasks are more than 2048. It shows the
optimal task grain size for Cilk Plus on the Xeon CPU is different from the Xeon
Phi. Moreover, the measured performance for Cilk Plus methods comes quite
close to TBB on the Xeon CPU, while it never reaches to TBB performance on
the Xeon Phi after 64 tasks. Cilk Plus’ speedup is less than the other methods up
to 16 threads.

• B4: The best performance for task group on the Xeon CPU is measured for
coarse-grained tasks, when the number of tasks is equal to 32. The best speedup
for task group on the Xeon Phi is observed for fine-grained tasks, when the
numbers of tasks are more than 2048. It shows the optimal task grain size for
task group on the Xeon CPU is different from that for the Xeon Phi. Moreover,
the measured speedup for task group comes quite close to TPFIFO on the Xeon
Phi, while it never reaches TPFIFO performance on the Xeon CPU after 32 tasks.

• B5: The best performance for TPFIFO on the Xeon CPU is measured for fine-
grained tasks when the number of tasks is equal to 2048. The best speedup
for TPFIFO is on the Xeon Phi is also observed for fine-grained tasks, when the
number of tasks is 4096. It shows the optimal task grain size for TPFIFO on the
Xeon CPU is similar to that on the Xeon Phi.

Chapter 4. Task-level Parallelization for MCTS 63

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Cores

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

S
p
e
e
d
u
p

4096

2

32

256

512

2

32

64

256

512

Figure 4.3: Comparing Cilkview analysis with TPFIFO speedup on the Xeon Phi. The
dots show the number of tasks used for TPFIFO. The lines show the number of tasks
used for Cilkview.

C: Range of tasks

Third, Figure 4.3 shows a mapping from TPFIFO speedup to the Cilkview graph for 61
cores (=244 hardware threads). We see (shown by dots) the speedup for a range of
tasks (shown by a line, from 2 to 4096). We remark that the results of Figure 4.2b cor-
respond nicely to the Cilkview results for up to 256 tasks. Thus, the 256-task dot oc-
curs on the 256-task line. However, the 512-task line is above the actual 512-task dot
and also the 4096-task dot. After the 256-task dot, the speedup continues to improve
but not as expected by Cilkview due to overheads. If the program performs beneath
the range of expectation, the programmer can be confident in seeking a cause such as
insufficient memory bandwidth, false sharing, or contention, rather than inadequate
parallelism or insufficient grain size. The source of the contention in GSCPM is the
locked-based shared search tree. Addressing this issue will be the topic of Chapter 5.

In our analysis, we found the notion of grain size to be of central importance
to achieve task-level parallelization. The traditional thread-level parallelization of
MCTS uses a one-to-one mapping of the logical tasks to the hardware threads to
implement different parallelization algorithms (Tree Parallelization and Root Paral-
lelization); see, e.g., [CWvdH08a, MPvdHV15a, MPVvdH14].

64 4.11. Related Work

4.11 Related Work

Below we discuss four related papers. First, Saule et al. [SÇ12] compared the scalabil-
ity of Cilk Plus, TBB, and OpenMP for a parallel graph coloring algorithm. They also
studied the performance of programming models, as mentioned above, for a micro-
benchmark with irregular computations. The micro-benchmark was a for loop that is
parallelized and specifically designed to be less memory intensive than graph color-
ing. The maximum speedup for this micro-benchmark on the Xeon Phi was 47 and is
obtained by using 121 threads.

Second, authors from [TV15] used a thread pool with work-stealing scheduling
and compared its performance to the three libraries: (1) OpenMP, (2) Cilk Plus, and
(3) TBB. They used a parallel program that calculates the Fibonacci numbers by con-
current recursion as an example of unbalanced tasks. In contrast to our approach with
work-sharing scheduling, their approach with work-stealing scheduling shows no im-
provement in performance over the selected libraries for Fibonacci before using 2048
tasks.

Third, Baudǐs et al. [BG11] reported the performance of lock-free Tree Paral-
lelization for up to 22 threads. They used a different speedup measure. The strength
speedup is good up to 16 cores, but the improvement drops after 22 cores.

Fourth, Yoshizoe et al. [YKK+11] study the scalability of the MCTS algorithm on
distributed systems. They have used artificial game trees as the benchmark. Their
closest settings to our study are 0.1 ms playout time and a branching factor of 150
with 72 distributed processors. They showed a maximum of 7.49 times speedup for
distributed UCT on 72 CPUs. They have proposed depth-first UCT and reached 46.1
times speedup for the same number of processors.

4.12 Answer to RQ2

In this chapter, we presented the task-level parallelization for parallelizing of MCTS.
We addressed RQ2.

• RQ2: What is the performance and scalability of task-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

The performance of task-level parallelization to implement the GSCPM algorithm
on a multi-core machine with 24 cores was adequate (see Paragraph B of Section 4.9).
It reached a speedup of 19, and the FIFO scheduling method showed good scalability
for up to 4096 tasks. The performance of task-level parallelization on a many-core co-
processor, with the high level of optimization of our sequential code-base, was also

Chapter 4. Task-level Parallelization for MCTS 65

good; a speedup of 47 on the 61 cores of the Xeon Phi was reached (see Paragraph C
of Section 4.9). Moreover, the FIFO and task group methods showed good scalability
for up to 4096 tasks on the Xeon Phi (see Section 4.10). However, our scalability
study showed that there is still potential for improving performance and scalability by
removing synchronization overhead. This issue will be the topic for the next chapter.

5
A Lock-free Algorithm for Parallel

MCTS

This chapter1 addresses RQ3 which is mentioned in Section 1.7.

• RQ3: How can we design a correct lock-free tree data structure for parallelizing
MCTS?

One of the approaches for parallelizing MCTS for shared-memory systems is Tree
Parallelization. The method is called so because a search tree is shared among multi-
ple parallel threads. Each iteration of the MCTS has four operations (SELECT, EXPAND,
PLAYOUT, and BACKUP). They are executed on the shared tree simultaneously. The
MCTS algorithm uses the tree for storing the states of the domain and guiding the
search process. The basic premise of the tree in MCTS is relatively straightforward:
(a) nodes are added to the tree in the same order as they were expanded and (b)
nodes are updated in the tree in the same order as they were selected. Therefore the
following holds, if two parallel threads are performing the task of adding (EXPAND)
or updating (BACKUP) the same node, there are potentially race conditions. Thus, one
of the main challenges in Tree Parallelization is the prevention of race conditions.

In a parallel program a race condition shows a non-deterministic behavior that is
generally considered to be a programming error [Wil12]. This behavior occurs when

1 Based on:

• S. A. Mirsoleimani, H. J. van den Herik, A. Plaat and J. Vermaseren, A Lock-free Algorithm for Paral-
lel MCTS, in Proceedings of the 10th International Conference on Agents and Artificial Intelligence
- Volume 2, 2018, pp. 589--598.

68 5.1. Shared Data Structure Challenge

parallel threads perform operations on the same memory location without proper
synchronization and one of the memory operations is a write. A program with a race
condition may operate correctly sometimes and fail other times. Therefore, proper
synchronization helps to coordinate threads to obtain the desired runtime order and
avoid a race condition.

There are two lock-based methods to create synchronization in Tree Paralleliza-
tion: (1) a coarse-grained lock, (2) a fine-grained lock [CWvdH08a].

Both methods are straightforward to design and to implement. However, locks are
notoriously bad for parallel performance, because other threads have to wait until the
lock is released. This is called synchronization overhead. The fine-grained lock has less
synchronization overhead than the coarse-grained lock [CWvdH08a]. Yet, even fine-
grained locks are often a bottleneck when many threads try to acquire the same lock.
Hence, a lock-free tree data structure for parallelized MCTS is desirable and has the
potential for maximal concurrency. A tree data structure is lock-free when more than
one thread must be able to access its nodes concurrently. Here, the problem is that
the development of a lock-free tree for parallelized MCTS is shown to be non-trivial.
The difficulty of designing an adequate data structure stimulated the researchers in
the community to come up with a spectrum of ideas [EM10, BG11]. As a case in
point, Enzenberger et al. compromised over the correctness of computation. They
accepted faulty results to have a lock-free search tree [EM10]. Below, we propose a
new lock-free tree data structure without compromises together with a corresponding
algorithm that uses the tree for parallel MCTS.

The remainder of this chapter is organized as follows. Section 5.1 describes the
shared data structure challenge. Section 5.2 discusses related work. Section 5.3 gives
the proposed lock-free algorithm. Section 5.4 shows implementation considerations.
Section 5.5 presents the experimental setup, Section 5.6 describes experimental de-
sign, Section 5.7 provides the experimental results, and Section 5.8 provides an an-
swer to RQ3.

5.1 Shared Data Structure Challenge

One of the difficulties for parallelizing MCTS is protecting a shared search tree with-
out using locks to avoid synchronization overhead. The difficulty of this process
caused the researchers in the MCTS community to even compromise over correctness
of computation to have a lock-free search tree [EM10]. Below we discuss paralleliza-
tion with a single shared tree in Subsection 5.1.1 and race conditions in Subsection
5.1.2. Subsection 5.1.3 provides the data protection methods for a shared tree.

Chapter 5. A Lock-free Algorithm for Parallel MCTS 69

✈✵

✈✶

✈✹ ✈✺

✈✽

✈✷ ✈✸

✈✻ ✈✼

✶

✷
✸

(a)

✈✵

✈✶

✈✹ ✈✺

✈✽

✈✷ ✈✸

✈✻ ✈✼

✶
✷

✸

(b)

✈✵

✈✶

✈✹ ✈✺

✈✽

✈✷ ✈✸

✈✻

✈✾

✁

✈✼

✈✶✵

✶

✷

✸

(c)

✈✵

✈✶

✈✹ ✈✺

✈✽

✈✷ ✈✸

✈✻

✈✾

✈✼

✈✶✵

✶

✷

✸

(d)

Figure 5.1: (5.1a) The initial search tree. The internal and non-terminal leaf nodes
are circles. The terminal leaf nodes are squares. The curly arrows represent threads.
(5.1b) Thread 1 and 2 are expanding node v6. (5.1c) Thread 1 and 2 are updating
node v3. (5.1d) Thread 1 is selecting node v3 while thread 2 is updating this node.

5.1.1 Parallelization with a Single Shared Tree

There are three parallelization methods for MCTS (i.e., Root Parallelization, Leaf Par-
allelization, and Tree Parallelization) that belong to two main categories: (A) paral-
lelization with an ensemble of trees, and (B) parallelization with a single shared tree.
The parallelization methods that belong to the former category (i.e., Root and Leaf
Parallelization) do not need a shared search tree. But the methods that belong to the
latter category use a shared search tree such as Tree Parallelization. In Tree Paral-
lelization, parallel threads are potentially able to perform different MCTS operations
on a same node of the shared tree [CWvdH08a]. These shared accesses are the source
of the potential race conditions.

5.1.2 The Race Conditions

In parallel MCTS, parallel threads are manipulating a shared search tree concurrently.
If two threads are performing the task of adding or updating the same node, there is
a race condition.

Definition 5.1 (Race Condition) A race condition occurs when concurrent tasks per-
form operations on the same memory location without proper synchronization and one
of the memory operations is a write [MRR12].

Consider the example search tree in Figure 5.1. Three parallel threads (1, 2 and 3
from v0 to v3) attempt to perform MCTS operations on the shared search tree. There
are three race condition scenarios.

• Shared Expansion (SE): Figure 5.1b shows two threads (1 and 2) concurrently
performing EXPAND(v6). In this SE scenario, synchronization is required. Obvi-

70 5.1. Shared Data Structure Challenge

ously, a race condition exists if two parallel threads intend to add node v9 to v6

simultaneously. In such an SE race, the child node should be created and added
to its parent only once.

• Shared Backup (SB): Figure 5.1c shows two threads (1 and 3) concurrently
performing BACKUP(v3). In the SB scenario, synchronization is required because
there are two data race conditions when parallel threads update the value of
Q(v3) and N(v3) simultaneously. There are two dangers: (a) the value of either
Q(v3) or N(v3) could be corrupted due to concurrently writing them, and (b)
the variable Q(v3) and N(v3) could be in an inconsistent state when the writing
of their values does not happen together at the same time (i.e., the state of one
variable is ahead of the other one).

• Shared Backup and Selection (SBS): Figure 5.1d shows thread 2 performing
BACKUP(v3) and thread 3 performing SELECT(v3). In the SBS scenario, synchro-
nization is required. Otherwise, a race condition may occur between (i) thread
3 reading the value of Q(v3), and (ii) before thread 3 can read the value of
N(v3), thread 2 updates the value of Q(v3) and N(v3). Thus what happens is
that when thread 3 reads the value of N(v3), the variables Q(v3) and N(v3) are
not in the same state anymore and therefore thread 3 reads an inconsistent set
of values (Q(v3) and N(v3)).

Code with race conditions may operate correctly sometimes and fail other times.
We have tp protect the shared data to avoid uncertainty in the execution.

5.1.3 Protecting Shared Data Structure

There are two groups of methods to protect a shared data structure, lock-based meth-
ods and lock-free methods.

Lock-based Methods use mutexes and locks to create synchronization and pro-
tect the shared data. The first obvious design used one mutex to protect the entire
search tree, but later ones used more than one mutex to protect smaller parts of
the search tree and allow a greater level of concurrency in accesses to the search
tree [CWvdH08a]. Locks are notoriously bad for parallel performance, because other
threads have to wait until the lock is released, and locks are often a bottleneck when
many threads try to acquire the same lock. If we can write a search tree data structure
that is safe for concurrent accesses without locks, there is the potential for maximum
concurrency.

Definition 5.2 (Lock-based) A data structure is lock-based when it uses mutexes and
locks to create synchronization to protect the shared data.

Chapter 5. A Lock-free Algorithm for Parallel MCTS 71

Lock-free Methods use a lock-free data structure. Such a data structure often uses
the compare/exchange operation to make progress in an algorithm, rather than pro-
tecting a part that makes progress. For example, when modifying a shared variable,
an approach using locks would first acquire the lock, then modify the variable, and
finally release the lock. A lock-free approach would use compare/exchange to modify
the variable directly. This requires only one memory operation rather than three, but
designing a lock-free data structure is hard and needs extreme care.

Definition 5.3 (Lock-free) A data structure is lock-free when more than one thread
must be able to access it concurrently.

5.2 Related Work

In this section, we present the related work for two categories of synchronization
methods for Tree Parallelization: (1) lock-based methods and (2) lock-free methods.

5.2.1 Lock-based Methods

As already mentioned, one of the main challenges in Tree Parallelization is to prevent
date race conditions using synchronization. Figure 5.2 shows the Tree Parallelization
where two threads (1 and 2) simultaneously perform the EXPAND operation on a
node (v6) of the tree. There are two methods to create synchronization in this case
for Tree Parallelization: (1) coarse-grained lock [CWvdH08a], (2) fine-grained lock
[CWvdH08a]:

1. The coarse-grained lock method uses one lock to protect the entire search tree
[CWvdH08a]. For example, in Figure 5.2a, both thread 1 and 2 want to expand
node v6, then thread 1 first acquires a lock; subsequently, it performs the EXPAND

operation and finally releases the lock. During this process thread 2 also wanting
to perform the EXPAND operation on node v6 should wait for the release of the
lock (see Figure 5.2b). This method is called coarse-grained because the access
to the tree for performing the EXPAND operation will be given to one and only
one thread, even if multiple threads want to expand different nodes inside the
tree. For example, in Figure 5.2a, thread 3 also wants to perform the EXPAND

operation, but on node v7. However, the lock is already acquired by thread 1.
Therefore, thread 3 should wait until the lock is released (see Figure 5.2b).

2. The fine-grained lock method uses one lock for each node of the tree to protect
a smaller part of the search tree and to allow a greater level of concurrency in
accesses to the search tree [CWvdH08a]. For example, in Figure 5.3a, thread 3

72 5.2. Related Work

v0

v1

v4 v5

v8

v2 v3

v6 v7

1
2

3

(a)

v0

v1

v4 v5

v8

v2 v3

v6

v9

v7

1

2
3

(b)

Figure 5.2: Tree parallelization with coarse-grained lock.

v0

v1

v4 v5

v8

v2 v3

v6 v7

1
2

3

(a)

v0

v1

v4 v5

v8

v2 v3

v6

v9

v7

v10

1

2

3

(b)

Figure 5.3: Tree parallelization with fine-grained lock.

also wants to perform the EXPAND operation, but on node v7. It can acquire the
lock in v7 and should not wait (see Figure 5.2b).

Both lock-based methods use locks to protect shared data. However, these ap-
proaches suffer from synchronization overhead due to thread contentions and do not
scale well [CWvdH08a]. A lock-free method can remove these problems.

5.2.2 Lock-free Methods

A lock-free implementation exists in the FUEGO package [EM10]. However, the method
in [EM10] does not guarantee the computational consistency of the multithreaded
program with the single-threaded program. To address the SE race condition, En-
zenberger et al. assign to each thread an own memory array for creating nodes
[EMAS10]. Only after the children are fully created and initialized, they are linked to
the parent node. Of course, this causes memory overhead. What usually happens is
the following. If several threads expand the same node, only the children created by
the last thread will be used in future simulations. It can also happen that some of the
children that are lost in this way already received some updates; these updates will
also be lost. It means that Enzenberger et al. ignore the SB and SBS race conditions.
They accept the possible faulty updates and the inconsistency of parallel computation.

In the PACHI package [BG11], the method in [EM10] is used for performing lock-

Chapter 5. A Lock-free Algorithm for Parallel MCTS 73

free tree updates. Again, it means that both SB and SBS race conditions are neglected.
However, to allocate children of a given node, PACHI does not use a per-thread mem-
ory pool as FUEGO does, but uses instead a pre-allocated global node pool and a
single atomic increment instruction updating the pointer to the next free node. This
addresses the memory overhead problem in FUEGO. However, there are still two other
issues with this method: (1) the number of required nodes should be known in ad-
vance, and (2) the children of a node may not be assigned in consecutive memory
locations which results in poor spatial locality (i.e., if a particular memory location
is referenced at a particular time, then it is likely that nearby memory locations will
be referenced in the near future). The spatial locality is specifically important for the
SELECT operation.

5.3 A New Lock-free Tree Data Structure and Algorithm

We show our new lock-free tree data structure in Algorithm 5.1. The type name is
Node. The UCT algorithm that uses the proposed data structure is given in Algorithm
5.2 (for the difference, see the end of this section).

Algorithm 5.1 uses the new multithreading-aware memory model of the C++11
Standard [Wil12]. To avoid the race conditions, the ordering of memory accesses
by the threads has to be enforced [Wil12]. In our lock-free approach, we use the
synchronization properties of the atomic operations to enforce an ordering between
the accesses. We have used the atomic variants of the built-in types (i.e., atomic int
and atomic bool); they are lock-free on the most popular platforms. The standard
atomic types have different member functions such as load(), store(), exchange(),
fetch add(), and fetch sub(). The differences are subtle. The member function load()
is a load operation, whereas the store() is a store operation. The exchange() mem-
ber function is special. It replaces the stored value in the atomic variable by a new
value and automatically retrieves the original value. Therefore, we use two memory
models for the memory-ordering option for all operations on atomic types: (1) se-
quentially consistent ordering (memory order seq cst) and (2) acquire release ordering
(memory order acquire and memory order release). The default behavior of all atomic
operations provides for sequentially consistent ordering. This implies that the behav-
ior of a multithreaded program is consistent with a single threaded program. In the
acquire release ordering model, load() is an acquire operation, store() is a release op-
eration, exchange() or fetch add() or fetch sub() are either acquire, release or both
(memory order acq rel).

In Algorithm 5.1 each node v stores nine different pieces of data: (1) a the action
to be taken, (2) p, the current player at node v, (3) w n (a 64-bit atomic integer)

74 5.3. A New Lock-free Tree Data Structure and Algorithm

Algorithm 5.1: The new lock-free tree data structure.
1 type
2 type a : int;
3 type p : int;
4 type w n : atomic int 64;
5 type children : Node*[];
6 type is parent := false : atomic bool;
7 type n nonexpanded children := -1 : atomic int;
8 type is expandable := false : atomic bool;
9 type is fully expanded := false : atomic bool;

10 type parent : Node*;
11 Function CREATECHILDREN(actions) : <void>
12 if is parent.exchange(true) is false then
13 j := 0;
14 while actions is not empty do

15 choose a
′
∈ actions;

16 add a new child v
′

with a
′

as its action and p
′

as its player to the list of children;
17 j := j+1;

18 n nonexpanded children.store(j);
19 is expandable.store(
20 true,memory order release);

21 Function ADDCHILD() : <Node*>
22 index := -1;
23 if is expandable.load(memory order acquire) is true then
24 if (index := n nonexpanded children.fetch sub(1)) is 0 then
25 is fully expanded.store(true);

26 if index < 0 then
27 return current node;
28 else
29 return children[index];

30 else
31 return current node;

32 Function ISFULLYEXPANDED() : <bool>
33 return is fully expanded.load();

34 Function GET() : <int,int>
35 w n

′
:= w n.load();

36 w := high 32 bits of w n
′
;

37 n := low 32 bits of w n
′
;

38 return 〈w, n〉;

39 Function SET(int ∆)
40 w n

′
:= 0;;

41 high 32 bits of w n
′

:= ∆;

42 low 32 bits of w n
′

:= 1;

43 w n.fetch add(w n
′
);

44 Function UCT(int n) : <float>

45 〈w
′
, n
′
〉 := GET();

46 return w
′

n
′ + 2Cp

√
2 ln(n)

n
′

47 Node;

Chapter 5. A Lock-free Algorithm for Parallel MCTS 75

Algorithm 5.2: The Lock-free UCT algorithm.
1 Function UCTSEARCH(Node* v0, State s0, budget)
2 while within search budget do
3 〈vl, sl〉 := SELECT(v0, s0);
4 〈vl, sl〉 := EXPAND(vl, sl);
5 ∆ := PLAYOUT(vl, sl);
6 BACKUP(vl,∆);

7 Function SELECT(Node* v,State s) : <Node*,State>
8 while v.ISFULLYEXPANDED() do
9 〈w, n〉 := v.GET();

10 vl := arg max
vj∈children of v

vj .UCT(n);

11 s := v.p takes action vl.a from state s;
12 v := vl;

13 return 〈v, s〉;

14 Function EXPAND(Node* v,State s) : <Node*,State>
15 if s is non-terminal then
16 actions := set of untried actions from state s;
17 v.CREATECHILDREN(actions);

18 v
′

:= v.ADDCHILD();

19 if v
′

is not v then
20 v := v

′
;

21 s := v.p takes action v.a from state s;

22 return 〈v, s〉;

23 Function PLAYOUT(Node* v,State s)
24 while s is non-terminal do
25 choose a ∈ set of untried actions from state s uniformly at random;
26 s := the current player p takes action a from state s;

27 ∆〈v.p〉 := reward for state s for each player p;
28 return ∆

29 Function BACKUP(Node* v,∆) : void
30 while v is not null do
31 v.SET(∆〈v.p〉);
32 v := v.parent;

76 5.3. A New Lock-free Tree Data Structure and Algorithm

that stores both the total simulation reward Q(v) and the visit count N(v), (4) the
list of children, (5) the is parent flag (an atomic boolean) that shows whether the
list of children is already created, (6) n nonexpanded children the number of children
that are not expanded yet, (7) the is expandable flag (an atomic Boolean) that shows
whether v is ready to be expanded, (8) the is fully expanded flag (an atomic Boolean)
that shows whether all children of v are already expanded and (9) parent that points
to the parent of v. By using (a) the atomic variables, (b) the atomic operations, and
(c) the associated memory models, we can solve all the three above cases of race
conditions (SE, SB, and SBS).

• SE: To solve the SE race condition, the EXPAND operation in Algorithm 5.2 con-
sists of two separate sub-operations: (A) the CREATECHILDREN operation and
(B) the ADDCHILD operation. The first operation has four key steps (A-1, A-
2, A-3, A-4) which are given in Algorithm 5.1. (A-1): Exchanging the value of
is parent from false to true prevents the other threads to create the list of chil-
dren (Line 12). Thus, the problem that the list of children is created by two
threads at the same time is solved. (A-2): Creating the list of children (Line
14--18). (A-3): Set the value of n nonexpanded children to counter j (Line 19),
(A-4): Set the value of is expandable to true (Line 20). After a node successfully
has become a parent, one of the non-expanded children in its list of children can
be added using the ADDCHILD operation. The ADDCHILD operation in Algorithm
5.1 has three key steps (B-1, B-2, B-3). (B-1): Read the value of is expandable

(Line 24), if it is true, try to expand a new child (Line 25--32). Otherwise, re-
turn the current node (Line 34). (B-2): The value of index is calculated (Line
25), if it is zero, then node v is fully expanded (Line 26). (B-3): index shows
the next child to be expanded (Line 31), if index becomes negative, the current
node is returned (Line 29).

• SB: To solve the SB race condition, Algorithm 5.1 uses a single 64-bit atomic
integer w n for storing both variables Q(v) and N(v). The value of Q(v) is
stored in the high 32 bits of w n, while the value of N(v) is stored in the low
32 bits. This compression technique preserves the correct state of the variables
Q(v) and N(v) in all threads because they should always be written together
using a SET operation. Therefore, we have no faulty updates and guarantee
consistency of computation.

• SBS: To solve the SBS race condition, Algorithm 5.2 always reads variable w n

by a GET operation in the SELECT operation. The GET operation always reads
the value of Q(v) and N(v) together. If a BACKUP operation wants to update
the variable w n at the same time, it happens through a SET operation which

Chapter 5. A Lock-free Algorithm for Parallel MCTS 77

Algorithm 5.3: The pseudo-code of the GSCPM algorithm.
1 Function GSCPM(State s0,nP layouts,nTasks)
2 v0 := create a shared root node with state s0;
3 grain size := nP layouts/nTasks;
4 t := 1;
5 for t ≤ nTasks do
6 st := s0;
7 fork UCTSEARCH(v0,st,grain size) as task t;
8 t := t+1;

9 wait for all tasks to be completed;
10 return action a of best child of v0;

writes the value of Q(v) and N(v) together. Therefore, the values of Q(v) and
N(v) are always correct, in the same state, and consistency of computation is
guaranteed.

In Algorithm 5.2, each node v is also associated with a state s. The state s is
recalculated as the SELECT and EXPAND steps descend the tree. The term ∆〈p(v)〉
denotes the reward after simulation for each player.

5.4 Implementation Considerations

We have implemented the proposed lock-free data structure and algorithm in the Par-
allelUCT package [MPvdHV15a]. The implementation is available online as part of
the package. The ParallelUCT package is an open source tool for parallelization of
the UCT algorithm (see Section 2.6). It uses task-level parallelization to implement
different parallelization methods for MCTS. We have used an algorithm called grain-
sized control parallel MCTS (GSCPM) to implement and measure the performance
of the proposed lock-free UCT algorithm. The pseudo-code for GSCPM is given in
Algorithm 5.3. The GSCPM algorithm is implemented by multiple methods from dif-
ferent parallel programming libraries such as C++11 STL, thread pool (TPFIFO),
TBB (task group) [Rei07], and Cilk Plus (cilk for and cilk spwan) [Rob13] in the
ParallelUCT package. More details about each of these methods can be found in
[MPvdHV15a].

5.5 Experimental Setup

Section 5.5.1 discusses our case study, Section 5.5.2 explains the performance metrics,
and Section 5.5.3 provides the details of hardware.

78 5.6. Experimental Design

5.5.1 The Game of Hex

The performance of the lock-free algorithm is measured by using the game of Hex.
The game of Hex is described in Subsection 2.4.1. Below follows complementary
information needed for this chapter. Hex is a board game with a diamond-shaped
board of hexagonal cells [AHH10]. In our experiments, the game is played on a board
of size 11 on a side, for a total of 121 hexagons [Wei17].

In our implementation of Hex, a disjoint-set data structure is used to determine
the connected stones. Using this data structure the evaluation of the board position
to find the player who won the game becomes very efficient [GI91].

5.5.2 Performance Metrics

In our experiments, the performance is reported by (A) playout speedup (or speedup)
and (B) playing strength (or percentage of win). We defined both metrics in Section
2.5. Here we operationalize the definitions. The scalability is the trend that we ob-
serve for these metrics when the number of resources (threads) are increasing.

5.5.3 Hardware

Our experiments were performed on a dual socket Intel machine with 2 Intel Xeon
E5-2596v2 CPUs running at 2.4 GHz. Each CPU has 12 cores, 24 hyperthreads, and 30
MB L3 cache. Each physical core has 256KB L2 cache. The peak TurboBoost frequency
is 3.2 GHz. The machine has 192GB physical memory. We compiled the code using
the Intel C++ compiler with a -O3 flag.

5.6 Experimental Design

The goal of this experiment is to measure the performance and scalability of a lock-
free algorithm for parallel MCTS on both multi-core and many-core shared-memory
machines. We do so using the ParallelUCT packages. The package implements, highly
optimized, Hex playing program, in order to generate realistic real-world search
spaces.

To generate statistically significant results in a reasonable amount of time, 220

playouts are executed to choose a move. The board size is 11× 11. The UCT constant
Cp is either 0, 0.1, or 1 in all of our experiments. To calculate the playout speedup the
average of time over ten games is measured for making the first move of the game
when the board is empty. The empty board is used because it has the biggest playout

Chapter 5. A Lock-free Algorithm for Parallel MCTS 79

time; it is the most time-consuming position (since the whole board should be filled
randomly). The results are within less than 3% standard deviation.

5.7 Experimental Results

In Subsection 5.7.1 we discuss two topics. (A) the scalability is studied and the
achieved playout speedup is reported, and (B) the effect of differences in values of Cp

parameters on the speedup of the parallel algorithm is measured. The performance of
the proposed lock-free algorithm for Tree Parallelization when playing against Root
Parallelization is reported in Subsection 5.7.2.

5.7.1 Scalability and Cp parameters

As mentioned before, we are interested in strong scalability. Therefore, the search
budget is fixed to 220 = 1, 048, 576 playouts as the number of tasks is increasing.
Figure 5.4 shows the scalability of the algorithm for different parallel programming
libraries on a CPU when the first move on the empty board is made. Each data point is
the average of 21 games. Figure 5.4a illustrates the scalability when a coarse-grained
lock is used (the graph is taken from [MPvdHV15a]) and Figure 5.4b demonstrates
the scalability when the proposed lock-free method is used.

A: Playout Speedup

There are three main improvements when the lock-free tree is used (see A1 to A3).

• A1: the maximum speedup increases from 18 to 23.

• A2: the scalability of all methods is improved (it shows the notoriously bad
effect of locks on the scalability for Cilk Plus, TBB, and C++11).

• A3: 32 tasks are sufficient to reach near 17 times speedup, while for the lock-
based method at least 64 tasks are required.

Figure 5.5 shows the scalability on the Xeon Phi. There are three main improve-
ments when the lock-free tree is used (see A4 to A6).

• A4: the maximum speedup increases from 47 to 83.

• A5: the scalability of all methods is improved (it shows the notoriously bad
effect of locks on the scalability for Cilk Plus, TBB, and C++11).

• A6: 64 tasks are sufficient to reach near 46 times speedup, while for the lock-
based method at least 2048 tasks are required.

80 5.7. Experimental Results

2 4 8 16 32 64 12
8

25
6

51
2
10
24

20
48

40
96

Number of Tasks

2

4

6

8

10

12

14

16

18

20

22

S
p
e
e
d
u
p

C++11

cilk_spawn

cilk_for

task_group

TPFIFO

(a)

2 4 8 16 32 64 12
8

25
6

51
2
10
24

20
48

40
96

Number of Tasks

2

4

6

8

10

12

14

16

18

20

22

24

S
p
e
e
d
u
p

C++11

cilk_spawn

cilk_for

task_group

TPFIFO

(b)

Figure 5.4: The scalability of Tree Parallelization for different parallel programming
libraries when Cp = 1. (5.4a) Coarse-grained lock. (5.4b) Lock-free.

2 4 8 16 32 64 12
8

25
6

51
2
10
24

20
48

40
96

Number of Tasks

2

6

10

14

18

22

26

30

34

38

42

46

50

S
p
e
e
d
u
p

C++11

cilk_spawn

cilk_for

task_group

TPFIFO

(a)

2 4 8 16 32 64 12
8
25
6
51
2
10
24
20
48
40
96

Number of Tasks

2

10

18

26

34

42

50

58

66

74

82

S
p
e
e
d
u
p

C++11

cilk_spawn

cilk_for

task_group

TPFIFO

(b)

Figure 5.5: The scalability of Tree Parallelization for different parallel programming
libraries when Cp = 1 on the Xeon Phi. (5.5a) Coarse-grained lock. (5.5b) Lock-free.

B: The Effect of Cp on Playout Speedup

Table 5.1 shows the execution time of the sequential UCT algorithm for three different
Cp values. It is observed that the execution time is decreasing as the value of Cp is
increasing. There is an obvious explanation for this behavior. When the algorithm uses
high exploitation (i.e., low value for Cp), it constructs a search tree that is deeper and
more asymmetric. In Figure 5.6b, the depth of the tree is 56 when the number of tasks
is 1 and Cp = 0. When the shape of the tree is more asymmetric, each iteration of

Chapter 5. A Lock-free Algorithm for Parallel MCTS 81

Table 5.1: Sequential execution time in seconds.

Cp Time (s) Depth of Tree (Avg.)

0 59.97± 10.93 56.66± 12.16

0.1 26.66± 0.81 11.52± 0.98

1 20.7± 0.3 5

2 4 8 16 32 64 12
8

25
6

51
2
10
24

20
48

40
96

Number of Tasks

2

6

10

14

18

22

26

30

34

38

S
p
e
e
d
u
p

Cp=0

Cp=0.1

Cp=1

(a)

1 2 4 8 16 32 64 12
8
25
6
51
2
10
24
20
48
40
96

Number of Tasks

0

5

10

15

20

25

30

35

40

45

50

55

D
e
p
th
 o
f
T
re
e

Cp=0

Cp=0.1

Cp=1

(b)

Figure 5.6: (5.6a) The scalability of the algorithm for different Cp values. (5.6b)
Changes in the depth of tree when the number of tasks are increasing.

the algorithm must traverse a deeper path of nodes inside the tree using the SELECT

operation until it can perform a PLAYOUT operation. The SELECT operation consists
of a while loop which for a tree with a depth of 56 has to perform 56 iterations in the
worst case (see Algorithm 5.2). The BACKUP operation also consists of a while loop
which for a deeper tree has more iterations. These two operations are also memory
intensive ones (i.e., accessing the nodes of the tree which reside in memory). The
results are that the execution time of the sequential algorithm becomes higher for
high exploitation. Increasing the value of Cp means more exploration and thus a
more symmetric tree with a lower depth. In Figure 5.6b, the depth of the tree is 5
when the number of tasks is 1 and Cp = 1. In this case, the while loop in the SELECT

operation has to perform only 5 iterations in the worst case.

We have measured the scalability of the proposed lock-free algorithm for different
Cp values (see Figure 5.6a). The sequential time for each Cp in Table 5.1 is used
as the baseline. The maximum speedup for Cp = 0 is around 34. It is much higher
than 23 times, the speedup when Cp = 1. There is a possible explanation for the

82 5.7. Experimental Results

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Number of Tasks

0

10

20

30

40

50

60

70

80

90

W
in
(%

)

Cp=0 vs 0

Cp=0.1 vs 0.1

Cp=1 vs 0

Cp=1 vs 0.1

Cp=1 vs 1

Figure 5.7: The playing results for lock-free Tree Parallelization versus Root Paral-
lelization. The first value for Cp is used for Tree Parallelization and the second value
is used for Root Parallelization.

higher speedup. The parallel algorithm may be more efficient than the equivalent
serial algorithm, since the parallel algorithm may be able to avoid work that in every
serialization would be forced to be performed [MRR12]. For example, Figure 5.6b
shows the changes in the depth of the constructed tree with regards to the number
of tasks for three different values for Cp. Increasing the number of tasks reduces the
depth of the tree from 56, when the serial execution is exploitative (i.e., Cp = 0), to
around 25. It means that, in parallel execution (a) threads explore different branches
of the tree and (b) the tree is more symmetric compared to the serial execution.
Hence, the number of iterations in both SELECT and BACKUP operations reduces in
parallel execution and therefore causes a higher speedup. When the serial execution
has high exploration (i.e., Cp = 1), increasing the number of tasks does not change
the depth of the tree.

5.7.2 GSCPM vs. Root Parallelization

Figure 5.7 presents the result of playing Hex between the proposed lock-free Tree Par-
allelization against Root Parallelization. Root parallelization is also a parallelization
method that does not use locks because it uses an ensemble of independent search
trees. Therefore, it is interesting to see the performance of the proposed lock-free
algorithm versus Root Parallelization. Figure 5.7 reports the percentage of wins for
lock-free Tree Parallelization for five different combinations of Cp. Both methods use

Chapter 5. A Lock-free Algorithm for Parallel MCTS 83

the same number of tasks. For each data point, 100 games are played.
When Cp = 0 for both algorithms, Tree Parallelization cannot win against Root

Parallelization. It shows that the high speedup for Cp = 0 (see Figure 5.6a) is not
useful. However, when the value of Cp is selected to be more exploratory, the lock-
free Tree Parallelization is superior to Root Parallelization, specifically for a higher
number of tasks.

5.8 Answer to RQ3

In this chapter we presented the lock-free tree data structure for parallelization of
MCTS. As such, this chapter proposes solutions for the following question.

• RQ3: How can we design a correct lock-free tree data structure for parallelizing
MCTS?

To answer RQ3 we have found our way step by step. We did so in three steps.
First, we remark that the existing Tree Parallelization algorithm for MCTS uses

a shared search tree to run the iterations in parallel (see Subsection 5.1.1). Here
we observe that the shared search tree has potential race conditions (see Subsection
5.1.2).

Our second step is to overcome this obstacle (see Section 5.3). In this section,
we have shown that having a correct lock-free data structure is possible. To achieve
this goal we have used methods from modern memory models and atomic operations
(see Section 5.3). Using these methods allows removing of synchronization overhead.
Hence, we have implemented the new lock-free algorithm that has no race conditions
(see Section 5.4).

The third step was to evaluate the lock-free algorithm. Therefore we performed
an extensive experiment in a small area (Hex on a 11 × 11 board), see Sections 5.5
and 5.6.

To conclude, the experiment showed that the lock-free algorithm had a better
performance and scalability when compared to other synchronization methods (see
Section 5.7). The performance of task-level parallelization to implement the lock-free
GSCPM algorithm on a multi-core machine with 24 cores was very good. It reached a
speedup of 23 and showed very good scalability for up to 4096 tasks. The performance
on a many-core co-processor was also very good; a speedup of 83 on the 61 cores of
the Xeon Phi was reached. In summary, the Xeon Phi showed very good scalability for
up to 4096 tasks.

6
Pipeline Pattern for Parallel MCTS

This chapter1 addresses RQ4 which is mentioned in Section 1.7.

• RQ4: What are the possible patterns for task-level parallelization in MCTS, and
how do we use them?

In recent years there has been much interest in the Monte Carlo Tree Search
(MCTS) algorithm. In 2006 it was a new, adaptive, randomized optimization algo-
rithm [Cou06, KS06]. In fields as diverse as Artificial Intelligence, Operations Re-
search, and High Energy Physics, research has established that MCTS can find valu-
able approximate answers without domain-dependent heuristics [KPVvdH13]. The
strength of the MCTS algorithm is that it provides answers with a random amount
of error for any fixed computational budget [GBC16]. Much effort has been put into
the development of parallel algorithms for MCTS to reduce the running time. The ef-
forts are applied to a broad spectrum of parallel systems; ranging from small shared-
memory multi-core machines to large distributed-memory clusters. In the last years,
parallel MCTS played a major role in the success of AI by defeating humans in the
game of Go [SHM+16, HS17].

The general MCTS algorithm has four operations inside its main loop (see Al-
gorithm 2.1). This loop is a good candidate for parallelization. Hence, a signifi-
cant effort has been put into the development of parallelization methods for MCTS

1 Based on:

• S. A. Mirsoleimani S., H. J. van den Herik, A. Plaat and J. Vermaseren, Pipeline Pattern for Parallel
MCTS, in Proceedings of the 10th International Conference on Agents and Artificial Intelligence -
Volume 2, 2018, pp. 614--621.

86 6.1. Data Dependencies Challenges

[CWvdH08a, YKK+11, FL11, SP14, MPvdHV15b]. In Chapter 4, we defined Iteration-
Level Parallelism (ILP) to reach task-level parallelization for MCTS [MPvdHV15a].
In ILP the computation associated with each iteration is assumed to be independent.
Therefore, we can assign a chunk of iterations as a separate task to each parallel
thread for execution on separate processors (see Section 4.4). Close analysis has
learned that each iteration in the chunk can also be decomposed into separate opera-
tions for parallelization. Based on this idea, we introduce Operation-Level Parallelism
(OLP). The main point is to assign each operation of MCTS to a separate task for exe-
cution by separate processors. This type of task is called Operation-Level Task (OLT).
This leads to flexibility in managing the control flow of the operations in the MCTS al-
gorithm. The main contribution of this chapter is introducing a new algorithm based
on the Pipeline Pattern for Parallel MCTS (3PMCTS) and showing its benefits.

Definition 6.1 (Operation-Level Task) The operation-level task is a type of task that
contains one of the MCTS operations.

Definition 6.2 (Operation-Level Parallelism) Operation-level parallelism is a type of
parallelism that enables task-level parallelization to assign each of the MCTS operations
inside an iteration as a separate task for execution on separate processors.

The remainder of the chapter is organized as follows. In Section 6.1 the data
dependencies challenges are described. Section 6.2 provides necessary definitions and
explanations for the design of 3PMCTS. Section 6.3 gives the explanations for the
implementation the 3PMCTS algorithm, Section 6.4 shows the experimental setup,
Section 6.5 describes the experimental design, and Section 6.6 gives the experimental
results.

6.1 Data Dependencies Challenges

One of the obstacles for parallelizing MCTS is the two types of data dependencies that
exist among the steps in the MCTS algorithm. Parallel execution of the steps without
considering related data dependencies may cause danger of getting wrong results. In
the following, we explain these two types of data dependencies formally based on
two control flow patterns: sequence and iteration.

6.1.1 Loop Independent Data Dependency

Each iteration of the MCTS algorithm has a sequence pattern. As it is shown in Figure
1.2, function SELECT will execute before function EXPAND, which will execute before
function PLAYOUT. In the sequence pattern for MCTS the algorithm text ordering will

Chapter 6. Pipeline Pattern for Parallel MCTS 87

be followed, because there are data dependencies between the operations. We define
this type of data dependency as Operation-Level Dependency (OLD).

Definition 6.3 (Sequence Pattern) A sequence pattern is an ordered list of tasks that
are executed in a specific order [MRR12]. Each task is finished before the one after it
starts.

The result of violating the operation-level dependencies would be an incorrect al-
gorithm. Therefore, all the approaches for parallelizing MCTS should not break this
type of dependency. The consequence of accepting this limitation is that the opportu-
nities for parallelization are restricted only to the iterations of the main loop. There
is also a second type of data dependencies among the iterations that we will address
in the next subsection.

6.1.2 Loop Carried Data Dependency

The main loop of the MCTS algorithm has an iteration pattern. The body of the loop
depends on previous invocations of itself because the algorithm needs the past up-
dates to make an optimal selection in the future. We define this type of data depen-
dency as Iteration-Level Dependency (ILD).

Definition 6.4 (Iteration Pattern) In an iteration pattern, a condition is evaluated. If
it is true, a task is executed, then the condition is re-evaluated, and the process repeats
until the condition becomes false.

The result of violating the iteration-level dependencies would be the search over-
head in parallelized MCTS because a new selection in one thread may not have ac-
cess to the updates from other threads. Therefore, the parallel algorithm conducts
repeated or unnecessary searches. All the approaches for parallelizing MCTS should
break this type of dependency, otherwise parallelization is not possible [KUV15]. The
ideal scenario is to achieve parallelism while minimizing the search overhead. In the
next subsection, we introduce our solution to reach this goal.

6.1.3 Why a Pipeline Pattern?

In the previous chapter, we have introduced the fork-join pattern for parallel MCTS.
This parallel pattern provides structured parallelism for MCTS. However, we disrupt
the decision making process in the MCTS algorithm by using the fork-join pattern. The
key element of the MCTS algorithm is the UCT formula which controls the level of
exploitation versus exploration to make the best decision in each iteration of the al-
gorithm. The UCT formula requires updates from the previous iterations; however,

88 6.2. Design of 3PMCTS

SelectBuffer

Expand Buffer

PlayoutBuffer

Backup

(a)

SelectBuffer

Expand

BufferPlayout Playout

Buffer

Backup

(b)

Figure 6.1: (6.1a) Flowchart of a pipeline with sequential stages for MCTS. (6.1b)
Flowchart of a pipeline with parallel stages for MCTS.

parallelization based on the fork-join pattern cannot fulfill this requirement. The
pipeline pattern is the only parallel pattern that allows us to handle the challenge
of data dependencies and to avoid the problem of search overhead to some extent.
In the next section, we provide the details of the proposed algorithm for parallelizing
MCTS based on the pipeline pattern.

Definition 6.5 (Pipeline Pattern) A pipeline pattern is a pattern of computation in
which a set of processing elements is connected in series, generally so that the output of
one element is the input of the next one. The elements of a pipeline are often executed
concurrently.

6.2 Design of 3PMCTS

In this section, we describe our proposed method for parallelizing MCTS. Section
6.2.1 describes how the pipeline pattern is applied in MCTS. Section 6.2.2 provides
the 3PMCTS algorithm.

6.2.1 A Pipeline Pattern for MCTS

Below we describe how the pipeline pattern is used as a building block in the design
of 3PMCTS. Figure 6.1 shows two types of pipelines for MCTS. The inter-stage buffers
are used to pass information between the stages. When a stage of the pipeline com-
pletes its computation, it sends a path of nodes from the search to the next buffer.

Chapter 6. Pipeline Pattern for Parallel MCTS 89

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t0

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t1

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t2

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t3

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t4

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t5

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t6

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t7

4: PE(B)

3: PE(P)

2: PE(E)

1: PE(S)

t8 [T]

C1(S) C2(S) C3(S) C4(S)

C1(E) C2(E) C3(E) C4(E)

C1(P) C2(P) C3(P) C4(P)

C1(B) C2(B) C3(B) C4(B)

Figure 6.2: Scheduling diagram of a pipeline with sequential stages for MCTS. The
computations for stages are equal.

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t0

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t1

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t2

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t3

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t4

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t5

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t6

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t7

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t8

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t9

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t10

5: PE(B)

4: PE(Idle)

3: PE(P)

2: PE(E)

1: PE(S)

t11 [T]

C1(S) C2(S) C3(S) C4(S)

C1(E) C2(E) C3(E) C4(E)

C1(P) C2(P) C3(P) C4(P)

C1(B) C2(B) C3(B) C4(B)

Figure 6.3: Scheduling diagram of a pipeline with sequential stages for MCTS. The
computations for stages are not equal.

The subsequent stage picks a path from the buffer and starts its computation. Here
we introduce two possible types of pipelines for MCTS.

1. Pipeline with sequential stages: Figure 6.1a shows a pipeline with sequential
stages for MCTS. The idea is to map each MCTS operation to pipeline stages
such that each stage of the pipeline computes one operation. Figure 6.2 illus-
trates how the pipeline executes the MCTS operations over time. Let Ci repre-
sent a multiple-step computation on path i. Ci(j) is the jth step of the compu-
tation in MCTS (i.e., j ∈ O = {S, E, P, B} and the elements of the set O are
the first letters of the MCTS operations). Initially, the first stage of the pipeline
performs C1(S). After the step has been completed, the second stage of the
pipeline receives the first path and computes C1(E) while the first stage com-
putes the first step of the second path, C2(S). Next, the third stage computes
C1(P), while the second stage computes C2(E) and the first stage C3(S). Each

90 6.2. Design of 3PMCTS

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t0

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t1

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t2

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t3

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t4

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t5

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t6

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t7

5:PE(B)

4:PE(P)

3:PE(P)

2:PE(E)

1:PE(S)

t8 [T]

C1(S) C2(S) C3(S) C4(S)

C1(E) C2(E) C3(E) C4(E)

C1(P) C3(P)

C2(P) C4(P)

C1(B) C2(B) C3(B) C4(B)

Figure 6.4: Scheduling diagram of a pipeline with parallel stages for MCTS. Using
parallel stages create load balancing.

stage of the pipeline takes the same amount of time to do its work, say T . Fig-
ure 6.2 shows that the expected execution time for 4 paths in an MCTS pipeline
with four stages is approximately 7×T . In contrast, the sequential version takes
approximately 16 × T because each of the 4 paths must be processed one af-
ter another. The pipeline pattern works best if the operations performed by the
various stages of the pipeline are all about equally computationally intensive. If
the stages in the pipeline vary in computational effort, the slowest stage creates
a bottleneck for the aggregate throughput. In other words, when there are a
sufficient number of processors for each pipeline stage, the speed of a pipeline
is approximately equal to the speed of its slowest stage. For example, Figure
6.3 shows the scheduling diagram that occurs when the PLAYOUT stage takes
2× T units of time while others take T units of time. Figure 6.3 shows that the
expected execution time for 4 paths is approximately 11× T .

2. Pipeline with parallel stages: Figure 6.1b shows a pipeline for MCTS with two
parallel PLAYOUT stages. Using two PLAYOUT stages in the pipeline results in
an overall speed of approximately T units of time per path as the number of
paths grows. Figure 6.4 shows that the MCTS pipeline is perfectly balanced by
using two PLAYOUT stages. The expected execution time for 4 paths is approxi-
mately 8 × T . Therefore, introducing parallel stages improves the scalability of
the MCTS pipeline.

Chapter 6. Pipeline Pattern for Parallel MCTS 91

Figure 6.5: The 3PMCTS algorithm with a pipeline that has three parallel stages (i.e.,
EXPAND, RANDOMSIMULATION, and EVALUATION).

6.2.2 Pipeline Construction

The pseudocode of MCTS is shown in Algorithm 2.1. Each operation in MCTS consti-
tutes a stage of the pipeline in 3PMCTS. In contrast to the existing methods, 3PMCTS
is based on OLP for parallelizing MCTS. The pipeline pattern can satisfy the operation-
level dependencies among the OLTs.

The potential concurrency is also exploited by assigning each stage of the pipeline
to a separate processing element for execution on separate processors. If the pipeline
has only sequential stages then the speedup is limited to the number of stages.2 How-
ever, in MCTS, the operations are not equally computationally intensive, e.g., the
PLAYOUT operation (random simulations plus evaluation of a terminal state) could
be more computationally expensive than other operations. Therefore, 3PMCTS uses
a pipeline with parallel stages. Introducing parallel stages makes 3PMCTS more scal-
able.

Figure 6.5 depicts one of the possible pipeline constructions for 3PMCTS. We split
the PLAYOUT operation into two stages to achieve more parallelism (See Section
1.2). The five stages run the MCTS operations SELECT, EXPAND, RANDOMSIMULA-
TION, EVALUATION, and BACKUP, in that order. The SELECT stage and BACKUP stage
are serial. The three middle stages (EXPAND, RANDOMSIMULATION, and EVALUATION)
are parallel and do the most time-consuming part of the search. A serial stage does
process one token at a time. A parallel stage is able to process more than one token.
Therefore, it needs more than one in-flight token. A token represents a path of nodes
inside the search tree during the search.

2This holds when the operations performed by the various stages are all about equally computationally
intensive.

92 6.3. Implementation Considerations

The pipeline depicted in Figure 6.5 is one of the possible constructions for the
3PMCTS algorithm. Each of the five stages could be either serial or parallel. Therefore,
3PMCTS provides a great level of flexibility. For example, a pipeline could have a serial
stage for the SELECT operation and a parallel stage for the BACKUP operation. In our
experiments we use this construction (see Section 6.6).

6.3 Implementation Considerations

We have implemented the proposed 3PMCTS algorithm in the ParallelUCT package
[MPvdHV15a]. The ParallelUCT package is an open source library for parallelization
of the UCT algorithm (see Section 2.6). It uses task-level parallelism to implement
different parallelization methods for MCTS. We have also used an algorithm called
grain-sized control parallel MCTS (GSCPM) to measure the performance of ILP for
MCTS. The GSCPM algorithm creates tasks based on the fork-join pattern [MRR12].
More details about this algorithm can be found in [MPvdHV15a]. Both 3PMCTS and
GSCPM are implemented by the TBB parallel programming library [Rei07] and they
are available online as part of the ParallelUCT package. In our implementation for
the 3PMCTS algorithm, we can specify the number of in-flight tokens. This is equal to
the number of tasks for the GSCPM algorithm. The details of the implementation are
provided in Appendix B.

6.4 Experimental Setup

The performance of 3PMCTS is measured by using a High Energy Physics (HEP) ex-
pression simplification problem [KPVvdH13, RVPvdH14]. Our setup follows closely
[KPVvdH13]. We discuss the case study in Subsection 6.4.1, the hardware in Subsec-
tion 6.4.3, and the performance metrics in Subsection 6.4.2.

6.4.1 Horner Scheme

Our case study is in the field of Horner’s rule, which is an algorithm for polynomial
computation that reduces the number of multiplications and results in a computation-
ally efficient form. For a polynomial in one variable

p(x) = anx
n + an−1x

n−1 + · · ·+ a0, (6.1)

the rule simply factors out powers of x. Thus, the polynomial can be written in the
form

p(x) = ((anx+ an−1)x+ . . .)x+ a0. (6.2)

Chapter 6. Pipeline Pattern for Parallel MCTS 93

This representation reduces the number of multiplications to n and has n additions.
Therefore, the total evaluation cost of the polynomial is 2n. Horner’s rule can be
generalized for multivariate polynomials. The order of choosing variables may be
different, each order of the variables is called a Horner scheme, see Section 2.4.2.

We are using a polynomial from HEP domain, namely HEP(σ) expression with
15 variables to study the results of 3PMCTS [Ver13, KPVvdH13]. The MCTS is used
to find an order of the variables that gives efficient Horner schemes [RVPvdH14].
The root node has n children, with n the number of variables. The children of other
nodes represent the remaining unchosen variables in order. Starting at the root node,
a path of nodes (variables) inside the search tree is selected. The incomplete order is
completed with the remaining variables added randomly (i.e., RANDOMSIMULATION).
The complete order is then used for Horners method followed by CSE to optimize the
expression. The number of operations (i.e., ∆) in this optimized expression is counted
(i.e., EVALUATION).

6.4.2 Performance Metrics

In our experiments, the performance is reported by (A) playout speedup or speedup
(see Eq. 2.5) and (B) playing strength or the number of operations in the optimized
expression (see Paragraph B2 of Subsection 2.5.2). A lower value is desirable for the
second metric when we compare higher numbers of tasks. We defined both metrics in
Section 2.5. Here we operationalize the definitions. The scalability is the trend that
we observe for these metrics when the number of resources (threads) is increasing.

6.4.3 Hardware

Our experiments were performed on a dual socket Intel machine with 2 Intel Xeon
E5-2596v2 CPUs running at 2.4 GHz. Each CPU has 12 cores, 24 hyperthreads, and 30
MB L3 cache. Each physical core has 256KB L2 cache. The peak TurboBoost frequency
is 3.2 GHz. The machine has 192GB physical memory. We compiled the code using
the Intel C++ compiler with a -O3 flag.

6.5 Experimental Design

In our experiments, the maximum number of playouts is 8192. Throughout the ex-
periments, the number of threads is multiplied by a factor of two. Each data point
represents the average of 21 runs.

94 6.6. Experimental Results

Table 6.1: Sequential time in seconds when Cp = 0.5.

Processor Num. Playouts Time (s)
CPU 8192 215.72± 4.12

1 2 4 8 16 32 64 12
8
25
6
51
2
10
24
20
48
40
96

Number of Tasks

2

4

6

8

10

12

14

16

18

20

22

24
S
p
e
e
d
u
p

GSCPM

3PMCTS

Figure 6.6: Playout-speedup as function of the number of tasks (tokens). Each data
point is an average of 21 runs for a search budget of 8192 playouts. The constant Cp

is 0.5. Here a higher value is better.

6.6 Experimental Results

In this section, we first provide the experimental results on the performance and
the scalability of 3PMCTS in Subsection 6.6.1. In Subsection 6.6.2, the experimental
results on the flexibility of task decomposition in 3PMCTS are shown and discussed.

6.6.1 Performance and Scalability of 3PMCTS

In this section, the performance of 3PMCTS is measured. Table 6.1 shows the sequen-
tial time to execute the specified number of playouts.

Figure 6.6 shows the playout-speedup for both 3PMCTS and GSCPM, as a function
of the number of tasks (from 1 to 4096). The search budget for both algorithms is
8192 playouts. The 3PMCTS algorithm uses a pipeline with five stages for MCTS
operations. Four stages are parallel; the SELECT stage is chosen to be serial (see the
end of Section 6.2.2). A playout-speedup close to 21 on a 24-core machine is observed
for both algorithms. From our results, we may provisionally conclude that 3PMCTS
(a) for 4 to 32 parallel tasks, shows a speedup less than GSCPM and (b) for 64 to
512 parallel tasks, shows a better speedup than the GSCPM algorithm (see Figure
6.6). At the same time, 3PMCTS also allows flexible control of the parallel or serial

Chapter 6. Pipeline Pattern for Parallel MCTS 95

1 2 4 8 16 32 64 12
8
25
6
51
2
10
24
20
48
40
96

Number of Tasks

4100

4150

4200

4250

4300

4350

N
u
m
b
e
r
o
f
O
p
e
ra
ti
o
n
s

Cp=0.01

Cp=0.1

Cp=0.5

Cp=1

(a) 3PMCTS

1 2 4 8 16 32 64 12
8
25
6
51
2
10
24
20
48
40
96

Number of Tasks

4100

4150

4200

4250

4300

4350

N
u
m
b
e
r
o
f
O
p
e
ra
ti
o
n
s

Cp=0.01

Cp=0.1

Cp=0.5

Cp=1

(b) GSCPM

1 2 4 8 16 32 64 12
8
25
6

51
2
10
24

20
48

40
96

Number of Tasks

4100

4150

4200

4250

4300

4350

4400

4450

N
u
m
b
e
r
o
f
O
p
e
ra
ti
o
n
s

GSCPM,Cp=0.5

3PMCTS,Cp=0.5

Root Par.,Cp=0.01

(c) Root Parallelization

Figure 6.7: Number of operations as function of the number of tasks (tokens). Each
data point is an average of 21 runs for a search budget of 8192 playouts. Here a lower
value is better.

execution of MCTS operations (e.g., the SELECT stage is sequential and the BACKUP

stage is parallel in our case), something that GSCPM cannot provide.
Figure 6.7a and 6.7b show the results of the optimization in the number of opera-

tions in the final expression for both algorithms. These results show consistency with
the findings in [KPVvdH13, RVPvdH14]. From our results, we may arrive at three con-
clusions. (1) When MCTS is sequential (i.e., the number of tasks is 1), for small values
of Cp, such that MCTS behaves exploitively, the method gets trapped in local minima,
and the number of operations is high. For larger values of Cp, such that MCTS be-
haves exploratively, lower values for the number of operations are found. (2) When
MCTS is parallel, for small numbers of tasks (from 2 to 8), it turns out to be good to
choose a high value for the constant Cp (e.g., 1) for both 3PMCTS and GSCPM. With
higher numbers of tasks, a lower value for Cp in the range [0.5; 1) seems suitable
for both algorithms. Figure 6.7 also shows that 3PMCTS can find a lower number of
operations for 8, 16, and 32 tasks when Cp = 0.5. (3) When both algorithms find the
same number of operations, the one with higher speedup is better. For instance, the
3PMCTS algorithm finds the same number of operations compared to GSCPM for 64
tasks, but it has higher speedup when Cp = 0.5. Note that these values hold for a
particular polynomial and that different polynomials give different optimal values for
Cp and number of tasks.

A comparison to Root Parallelization is illustrated in Figure 6.7c. Both 3PMCTS
and GSCPM belong to the category of Tree Parallelization. For Cp = 0.01, Root Par-
allelization finds a lower number of operations for both 16 and 32 tasks compared
to the two other methods. However, increasing the number of tasks causes Root Par-
allelization to provide a much higher number of operations. From these results, we
may conclude that Root Parallelization could also be a feasible choice in this domain.

96 6.6. Experimental Results

Table 6.2: Definition of layouts for 3PMCTS.

Layout Name Num. Parallel Stage Seq. Stage
3PMCTS(5-4-S) 4 SELECT

3PMCTS(5-4-B) 4 BACKUP

Table 6.3: Details of experiment to show the flexibility of 3PMCTS.

Cp Player a Player b

0.01
GSCPM

GSCPM with 8 tasks3PMCTS(5-4-S)
3PMCTS(5-4-B)

1
GSCPM

GSCPM with 8 tasks3PMCTS(5-4-S)
3PMCTS(5-4-B)

Kuipers et al. remarked that Tree Parallelization would give a result that is sta-
tistically a little bit inferior to a run with sequential MCTS with the same number
of playouts due to the violation of iteration-level dependency that produces search
overhead [KUV15]. It is clear from our results that the effectiveness of any paral-
lelization method for MCTS depends heavily on the choice of three parameters: (1)
the Cp constant, (2) the number of playouts, and (3) the number of tasks. If we select
these parameters carefully, it is possible to overcome the search overhead to some
extent. Furthermore, the 3PMCTS algorithm provides the flexibility of managing the
execution (serial or parallel) of different MCTS operations that helps us even more to
achieve this goal.

6.6.2 Flexibility of Task Decomposition in 3PMCTS

The most important feature of 3PMCTS is the flexibility in alternating each of its
stages from being parallel to be serial and vice versa. Table 6.2 shows two of the
possible layouts for 3PMCTS. In each layout, the first number inside the parentheses
shows the total number of stages in the pipeline. The second number is the number
of parallel stages, and the last letter identifies which one of the stages is serial. For ex-
ample, one of the layouts for 3PMCTS is 3PMCTS(5-4-S). This layout has five stages,
four of which are parallel and the serial stage is SELECT.

An Experiment is designed to present the effect of flexibility on the behavior of
3PMCTS. Table 6.3 gives the details of the experiment with the game Hex (11 × 11

board). Both players use the same Cp value. In all test cases, the opponent player is

Chapter 6. Pipeline Pattern for Parallel MCTS 97

16 32 64 12
8

25
6

51
2

10
24

Number of Tasks

0
10
20
30
40
50
60
70
80
90

W
in
(%

)

GSCPM
3PMCTS(5-4-S)
3PMCTS(5-4-B)

(a) Cp=0.01

16 32 64 12
8

25
6

51
2

10
24

Number of Tasks

0
10
20
30
40
50
60
70
80
90

W
in
(%

)

GSCPM
3PMCTS(5-4-S)
3PMCTS(5-4-B)

(b) Cp=1

Figure 6.8: Percentage of win as function of the number of tasks (tokens). Each data
point is the outcome of 100 rounds of playing between the two opponent players.
Each player has a search budget of 220 = 1, 048, 576 playouts in each round. Here a
higher value is better.

GSCPM with eight tasks.
Figure 6.8 illustrates the results of the experiment. 3PMCTS(5-4-S) strongly de-

feats GSCPM for Cp = 0.01 while 3PMCTS(5-4-B) does not show such a behavior.
From the experiment we may conclude that when the selection step is sequential,
flexibility can solve search overhead to a large extent.

6.7 Answer to RQ4

This chapter proposes solutions for the following question.

• RQ4: What are the possible patterns for task-level parallelization in MCTS, and
how do we use them?

Our research in the previous chapter showed that the task-level parallelization
method combined with lock-free data structure for the GSCPM algorithm achieved a
very good performance and scalability on multi-core and many-core processors (see
Section 5.7).

The GSCPM algorithm was design-based on the iteration-level parallelism. Hence,
it relies on the iteration pattern (see Section 4.4) that violates the iteration-level data
dependencies (see Subsection 6.1.2). The result of this violation is search overhead.
Therefore, scalability is only one issue, although it is an important one.

98 6.7. Answer to RQ4

The second issue is to handle the search overhead. Thus, we designed the 3PMCTS
algorithm based on operation-level parallelism which relies on the pipeline pattern
with the aim to avoid violating the iteration-level data dependencies (see Section
6.2). Hence, we managed to control the search overhead using the flexibility of task
decomposition.

Based on our findings in this chapter we may conclude that different pipeline
constructions are able to provide higher levels of flexibility that allow fine-grained
managing of the execution of operations in MCTS (see Subsection 6.6.2). This is the
answer to RQ4.

7
Ensemble UCT Needs High

Exploitation

The last research question is RQ5 (see our research design in Section 1.7).

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

This research question is derived from the fact that the quality of search in MCTS
depends on the balance between exploitation (look in areas which appear to be
promising) and exploration (look in areas that have not been well sampled yet). The
most popular algorithm in the MCTS family which addresses this dilemma is UCT
[KS06] (see Section 2.2). Parallelization of MCTS intends to decrease the execution
time of the algorithm, but it also affects the exploitation-exploration balance. A set
of solutions has been developed to control the exploitation-exploration balance when
parallelizing MCTS to improve the quality of search [BPW+12, KPVvdH13]. We par-
tition the set of solutions into two parts, (1) adjusting the exploitation-exploration
balance with respect to the tree size, and (2) adjusting the exploitation-exploration
balance by an artificial increase in exploration, called virtual loss. We provide an an-
swer for RQ5 with respect to these two parts. This chapter 1 investigates the applica-
tion of the first solution to Root Parallelization. In Chapter 8, we analyze the use of
the second solution on the lock-free Tree Parallelization algorithm.

1 Based on:

• S. A. Mirsoleimani, A. Plaat, and H. J. van den Herik, and J. Vermaseren, Ensemble UCT Needs
High Exploitation, in Proceedings of the 8th International Conference on Agents and Artificial Intel-
ligence, 2016, pp. 370--376.

100 7.1. Ensemble UCT

Hence, we start investigating the adjustment of the exploitation-exploration bal-
ance with respect to the tree size. As with most sampling algorithms, one way to
improve the quality of the result is to increase the number of samples and thus en-
large the size of the MCTS tree. However, constructing a single large search tree with
t samples or playouts is a time-consuming process (see Subsection 2.3.2). A solution
for this problem is to create a group of n smaller trees that each has t/n playouts and
search these in parallel. This approach is used in Root Parallelization [CWvdH08a]
and in Ensemble UCT [FL11] (from now on we use these two names interchangeably).
In both Root Parallelization and Ensemble UCT, multiple independent UCT instances
are constructed. At the end of the search process, the statistics of all trees are com-
bined to yield the final result [BPW+12]. However, there is contradictory evidence
on the success of Ensemble UCT [BPW+12]. On the one hand, Chaslot et al. found
that, for Go, Ensemble UCT (with n trees of t/n playouts each) outperforms a plain
UCT (with t playouts) [CWvdH08a]. On the other hand, Fern and Lewis were not
able to reproduce this result in other domains [FL11]. They found situations where a
plain UCT outperformed Ensemble UCT given the same total number of playouts. We
aim to shed light on this controversy using an idea from [KPVvdH13]. Kuipers et al.
argued that when the tree size in MCTS is small, more exploitation should be chosen,
and with larger tree sizes, high exploration is suitable [KPVvdH13]. Therefore, the
main contribution of this chapter is to show that this idea can be used in Ensemble
UCT to improve its search quality by adjusting the Cp parameter depending on the
ensemble size.

The remainder of the chapter is organized as follows. Section 7.1 describes En-
semble UCT. Section 7.2 discusses related work. Section 7.3 gives the experimental
setup, Section 7.4 describes the experimental design, and Section 7.5 provides the
experimental results for this study.

7.1 Ensemble UCT

Ensemble UCT or the Root Parallelization algorithm belongs to the category of parallel
algorithms with more than one data structure (see Subsection 2.3.2). It creates an
ensemble of search trees (i.e., one for each thread). The trees are independent of
each other. When the search is over, they are merged, and the action of the best child
of the root is selected to be performed.

Ensemble UCT is given its place in the overview article by [BPW+12]. Table 7.1
shows different possible configurations for Ensemble UCT. Each configuration has its
benefits. The total number of playouts is t, and the size of the ensemble (number of
trees inside the ensemble) is n. It is assumed that n processors are available with n

Chapter 7. Ensemble UCT Needs High Exploitation 101

Table 7.1: Different possible configurations for Ensemble UCT. Ensemble size is n.

Number of playouts playout speedup playing strength

UCT
Ensemble UCT

n cores 1 core
Each tree Total

t t n · t 1 1
n Yes, known

t t
n t n 1 ?

equal to the ensemble size.
The third line of Table 7.1 shows the situation where Ensemble UCT has n · t

playouts in total, while plain UCT has only t playouts. In this case, there would be no
speedup in a parallel execution of the ensemble approach on n cores, but the larger
search effort would presumably result in a better search result. We call this use of
parallelism playing strength (see Subsection 2.5.2). The fourth line of Table 7.1 shows
a different possible configuration for Ensemble UCT. In this case, the total number of
playouts for both UCT and Ensemble UCT is equal to t. Thus, each core searches a
smaller tree of size t/n. The search will be n times faster (the ideal case). We call this
use of parallelism Playout speedup (see Subsection 2.5.1). It is important to note that
in this configuration both approaches take the same amount of time on a single core.
However, there is still the question whether we can reach any playing strength. This
question will be answered in Section 7.5 as the first part of RQ5.

7.2 Related Work

From the introduction of this chapter we know that [CWvdH08a] provided evidence
that, for Go, Root Parallelization with n instances of t/n iterations each outperforms
plain UCT with t iterations, i.e., Root Parallelization (being a form of Ensemble UCT)
outperforms plain UCT given the same total number of iterations. However, in other
domains, [FL11] did not find this result. [SKW10] also analyzed the performance of
root parallelization in detail. They found that a majority voting scheme gives better
performance than the conventional approach of playing the move with the greatest to-
tal number of visits across all trees. They suggested that the findings in [CWvdH08a]
are explained by the fact that Root Parallelization performs a shallower search, mak-
ing it easier for UCT to escape from local optima than the deeper search performed
by plain UCT (see also Section 8.2, in relation with part two).

In Root Parallelization each process does not build a search tree larger than the
sequential UCT. Moreover, each process has a local tree, which contains character-
istics that differ from tree to tree. Rather recently, [TD15] proposed a new idea by

102 7.3. Experimental Setup

distinguishing between tactical behavior and strategic behavior. They transferred the
RAVE (Rapid Action Value Estimate) ideas as developed by [GS07], from the selection
phase to the simulation phase. This implies that influencing the tree policy is changed
into also influencing the Monte-Carlo policy.

Fern and Lewis thoroughly investigated an Ensemble UCT approach in which mul-
tiple instances of UCT were run independently. Their root statistics were combined to
yield the final result [FL11]. So, our task is to explain the differences in their work
and that by [CWvdH08a].

7.3 Experimental Setup

Section 7.3.1 discusses our case study and Section 7.3.2 provides the details of hard-
ware.

7.3.1 The Game of Hex

The game of Hex is described in Subsection 2.4.1. Below follows complementary
information needed for this chapter. The 11×11 Hex board is represented by a disjoint-
set. This data structure has three operations MakeSet, Find and Union. In the best
case, the amortized time per operation is O (α (n)), where α (n) denotes the inverse
Ackermann function. The value of α (n) is less than 5 for all remotely practical values
of n [GI91].

In Ensemble UCT, each tree performs a completely independent UCT search with
a different random seed. To determine the next move to play, the number of wins and
visits of the root’s children of all trees are collected. For each child the total sum of
wins and the total sum of visits are computed. The child with the largest number of
wins/visits is selected.

The plain UCT algorithm and Ensemble UCT are implemented in the ParalellUCT
package. In order to make our experiments as realistic as possible, we use the Par-
allelUCT program for the game of Hex [MPVvdH14, MPvdHV15a]. This program is
highly optimized, and reaches a speed of more than 40,000 playouts per second per
core on a 2,4 GHz Intel Xeon processor (see Section 2.6).

7.3.2 Hardware

The results were measured on a dual socket machine with 2 Intel Xeon E5-2596v2
processors running at 2.40GHz. Each processor has 12 cores, 24 hyperthreads and 30
MB L3 cache. Each physical core has 256KB L2 cache. The pack TurboBoost frequency

Chapter 7. Ensemble UCT Needs High Exploitation 103

Table 7.2: The performance of Ensemble UCT vs. plain UCT based on win rate.

Approach Win (%)
Performance vs.

plain UCT
Playing
Strength

Ensemble UCT
< 50 Worse than No
= 50 As good as No
> 50 Better than Yes

is 3.2 GHz. The machine has 192GB physical memory. Intel’s icc 14.0.1 compiler is
used to compile the program.

7.4 Experimental Design

As Hex is a 2-player game, the playing strength of Ensemble UCT is measured by
playing versus a plain UCT with the same number of playouts. We expect to see an im-
provement for the Ensemble UCT playing strength against plain UCT by choosing 0.1
as the value of Cp (high exploitation) when the number of playouts is small. We start
our experiments by setting the value of Cp to 1.0 for plain UCT (high exploration).
Note that for the purpose of this research, it is not essential to find the optimal value
of Cp, but to show the difference in effect on the performance when Cp is varying.

The board size for Hex is 11×11. In our experiments, the maximum ensemble size
is 28 = 256. Thus, for 217 playouts, when the ensemble size is 1, there are 217 playouts
per tree and when the ensemble size is 26 = 64 the number of playouts per tree is 211.
Throughout the experiments, the ensemble size is multiplied by a factor of two.

7.5 Experimental Results

Our experimental results show the percentage of wins for Ensemble UCT with a par-
ticular ensemble size and a particular Cp value. In Figure 7.1 results are shown, with
Cp =0 (only exploitation) and ensemble size equals 8. Each data point represents the
average of 200 games with a corresponding 99% confidence interval. Table 7.2 sum-
marizes how the performance of Ensemble UCT versus plain UCT is evaluated. The
concept of high exploitation for small UCT tree is significant if Ensemble UCT reaches
a win rate of more than 50%. (Section 7.5 will show that this is indeed the case.)

Below we provide our experimental results. We distinguish them into (A) hidden
exploration in Ensemble UCT and (B) exploitation-exploration trade-off for Ensemble
UCT.

104 7.5. Experimental Results

0 20 40 60 80 100 120
Moves(Children)

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r
o
f
V
is

it
s

Ensemble UCT
Plain UCT

Figure 7.1: The number of visits for root’s children in Ensemble UCT and plain UCT.
Each child represents an available move on the empty Hex board with size 11 × 11.
Both Ensemble UCT and plain UCT have 80,000 playouts and Cp = 0. In Ensemble
UCT, the size of the ensemble is 8.

A: Hidden Exploration in Ensemble UCT

It is important to understand that Ensemble UCT has a hidden exploration factor by
nature. Two reasons are: (1) each tree in Ensemble UCT is independent, and (2)
an ensemble of trees contains more exploration than a single UCT search with the
same number of playouts would have. The hidden exploration is because each tree in
Ensemble UCT searches in different areas of the search space.

In Figure 7.1 the difference in exploitation-exploration behavior of the Ensemble
UCT and plain UCT is shown in the number of visits that one of the root’s children
counts when using one of the algorithmic approaches with Cp = 0. Both Ensemble
UCT [BPW+12] and plain UCT [BPW+12] have 80,000 of playouts. In each exper-
iment, a search tree for selecting the first move on an empty board is constructed.
Each of the children corresponds to a possible move of an empty Hex board (i.e.,
121 moves). Ensemble UCT is more explorative compared to plain UCT if it generates
more data points with more distance from the x-axis than plain UCT. In Ensemble
UCT the number of playouts is distributed among 8 separate smaller trees. Each of
the trees has 10,000 playouts and for each child the number of visits is collected.
When the value of Cp is 0, which means the exploration part of the UCT formula is
turned off, all possible moves in the Ensemble UCT receive at least a few visits. While
for plain UCT with 80,000 playouts and Cp = 0 there are many of the moves with

Chapter 7. Ensemble UCT Needs High Exploitation 105

20 21 22 23 24 25 26 27 28

Ensemble Size

0

10

20

30

40

50

60

Pe
rc
e
n
ta
g
e
 W

in
s

cp=0.1

cp=1.0

(a) The total number of playouts is 217 =

131072

20 21 22 23 24 25 26 27 28

Ensemble Size

0

10

20

30

40

50

60

Pe
rc
e
n
ta
g
e
 W

in
s

cp=0.1

cp=1.0

(b) The total number of playouts is 218 =

262144

Figure 7.2: The percentage of wins for ensemble UCT is reported. The value of Cp for
plain UCT is always 1.0 when playing against Ensemble UCT. To the left few large
UCT trees, to the right many small UCT trees.

no visits. The data points when using plain UCT are closer to the x-axis compared to
Ensemble UCT. However, for Ensemble UCT the peak is 2400, while it is 4000 visits
for plain UCT. It means that plain UCT is more exploitative.

B: Exploitation-Exploration trade-off for Ensemble UCT

Below we discuss two experiments: (B1) an experiment with 217 playouts and (B2)
an experiment with 218 playouts. In Figures 7.2a and 7.2b, from the left side to the
right side of the graph, the ensemble size (the number of search trees per ensemble)
increases by a factor of two, and the number of playouts per tree (tree size) decreases
by the same factor. Thus, at the right-hand side of the graph, we have the largest
ensemble with the smallest trees. The total number of playouts always remains the
same throughout an experiment for both Ensemble UCT and plain UCT. The value of
Cp for plain UCT is always 1.0, which means high exploration.

B1: Experiment with 217 playouts

Figure 7.2a shows the relations between the value of Cp and the ensemble size, when
both plain UCT and Ensemble UCT have the same number of total playouts. More-
over, Figure 7.2a shows the performance of Ensemble UCT for different values of Cp.
It shows that when Cp = 1.0 (highly explorative) Ensemble UCT performs as good
as (or mostly worse than) plain UCT. When Ensemble UCT uses Cp = 0.1 (highly
exploitative) then for small ensemble sizes (large sub-trees) the performance of En-

106 7.6. Answer to the First Part of RQ5

semble UCT sharply drops down. By increasing the ensemble size (smaller sub-trees),
the performance of Ensemble UCT keeps improving until it becomes as good as or
even better than plain UCT.

B2: Experiment with 218 playouts

A second experiment is conducted using 218 playouts to investigate the effect of en-
larging the number of playouts on the performance of Ensemble UCT. Figure 7.2b
shows that when for this large number of playouts the value of Cp = 1.0 is high (i.e.,
highly explorative) the performance of Ensemble UCT cannot be better than plain
UCT, while for a small value of Cp = 0.1 (i.e., highly exploitative) the performance of
Ensemble UCT is almost always better than plain UCT when the ensemble size is 25

or larger. Hence, our conclusion is that there exists a marginal playing strength. The
potential playout speedup could be up to the ensemble size if a sufficient number of
processing cores is available.

7.6 Answer to the First Part of RQ5

This chapter aims at answering the first part of RQ5 (i.e., adjusting the exploitation-
exploration balance with respect to the tree size) of the following question.

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

The chapter described an empirical study on Ensemble UCT with different sets of
configurations for the ensemble size, the tree size, and the exploitation-exploration
trade-off. Previous studies on Ensemble UCT/Root Parallelization provided inconclu-
sive evidence on the effectiveness of Ensemble UCT (see the beginning of the chapter).

Our results suggest that the reason for uncertainty (concerning the controversy in
the previous studies) lies in the exploitation-exploration trade-off in relation to the
size of the sub-trees. With this knowledge, it is explainable that [CWvdH08a] found
an improvement in their Root Parallelization for Go (which has big search trees for
small ensemble sizes where exploration can open new perspectives). For [FL11], it is
also explainable that they did not arrive at the same success in other domains (which
have small search trees for large ensemble sizes). Our experiments for Ensemble UCT
now confirm earlier ideas as provided by [KPVvdH13] on this topic. In summary, our
results provide clear evidence that the performance of Ensemble UCT is improved by
selecting higher exploitation for smaller search trees given a fixed time-bound or fixed
number of simulations.

Chapter 7. Ensemble UCT Needs High Exploitation 107

Our work is particularly motivated, in part, by the observation in [CWvdH08a]
of super-linear speedup in Root Parallelization. Finding super-linear speedup in two-
agent games occurs infrequently. Most studies in parallel game-tree search report
a battle against search overhead, communication overhead (e.g., [Rom01]), syn-
chronization overhead, and deployment overhead (see, Chapter 1). For super-linear
speedup to occur, the parallel search must search fewer nodes than the sequential
search.

8
An Analysis of Virtual Loss in Parallel

MCTS

We reiterate the last research question, RQ5, and continue the research work started
in Chapter 7.

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

In part one of RQ5 (see Chapter 7) we investigated to what extent the successes of
MCTS depend on the balance between exploitation and exploration (see also Section
2.2). The parallelization of MCTS intends to decrease the execution time of the algo-
rithm, but it also affects this trade-off. Therefore, solutions are developed to control
the exploitation-exploration balance when parallelizing MCTS to improve the quality
of search [CWvdH08a, BPW+12, KPVvdH13]. We have partitioned the set of solutions
into two parts, (1) adjusting exploitation-exploration balance with respect to the tree
size, and (2) adjusting the exploitation-exploration balance by an artificial increase in
exploration called virtual loss. We provided an answer for RQ5 (part one) in Chapter
7. This chapter1 addresses the second part of RQ5.

Each iteration of the MCTS algorithm adds a new node to a tree by first selecting
a path inside the tree and then using Monte Carlo simulations. This iterative process
is path-dependent, which means that the outcomes of previous iterations guide the

1 Based on:

• S. A. Mirsoleimani, A. Plaat, and H. J. van den Herik, and J. Vermaseren, An Analysis of Virtual
Loss in Parallel MCTS, in Proceedings of the 9th International Conference on Agents and Artificial
Intelligence, 2017, pp 648--652.

110 8.1. Virtual Loss

future selections. Rather recently, several studies have addressed the topic of mak-
ing parallel methods for MCTS, such as Tree Parallelization and Root Parallelization
[BG11, BPW+12, SHM+16, SSS+17]. Here we focus on Tree Parallelization that dis-
tributes different iterations of MCTS among parallel workers. Therefore, it has to
violate the path dependency feature of sequential MCTS to make the algorithm faster.

In Tree Parallelization, the performance is decreasing when increasing the num-
ber of parallel workers. It is widely believed that part of the performance loss is due
to a redundant search being done by separate parallel workers (i.e., Search Over-
head). However, if the parallel algorithm is using a lock to guarantee synchroniza-
tion, the contention among parallel workers also contributes to the performance loss.
Therefore, a method called virtual loss is proposed for lock-based Tree Parallelization
[CWvdH08a]. It forces parallel workers to traverse different paths inside the MCTS
tree to avoid contention around a particular node. However, virtual loss then affects
the balance between exploitation and exploration in the UCT algorithm by increasing
the exploration level irrespective of the value of the Cp parameter.

In this chapter, we evaluate the benefit of using the virtual loss (i.e., an artificial
increase in exploration against exploitation) for lock-free (instead of locked-based)
Tree Parallelization. We carry out our experiments for a full range of exploitation-
exploration in UCT (i.e., the Cp parameter) and a varying number of parallel workers.
The result is reported concerning Search Overhead (SO) and Time Efficiency (Eff).
The case studies are problems from the High Energy Physics domain.

The remainder of the chapter is organized as follows. The virtual loss method is
explained in Section 8.1, the related work is presented in Section 8.2, the experimen-
tal setup is described in Section 8.3, followed by the experimental design in Section
8.4, and the experimental results in Section 8.5. Finally, the answer to the second part
of RQ5 is given in Section 8.6, with the complete answer to RQ5 in Section 8.7.

8.1 Virtual Loss

In Tree Parallelization one MCTS tree is shared among several threads that are per-
forming simultaneous searches [CWvdH08a]. The main challenge in this method is
using data locks to prevent data corruption. A lock-free implementation of this algo-
rithm addresses the problem as mentioned earlier with better scaling than a locked
approach [EM10]. Therefore, in our implementation of Tree Parallelization, locks are
removed.

Definition 8.1 (Virtual Loss) Virtual loss is a method to make a node in the tree less
favorable to be selected and therefore force parallel workers to traverse different paths
inside the MCTS tree.

Chapter 8. An Analysis of Virtual Loss in Parallel MCTS 111

Here we note that in Tree Parallelization with fine-grained locks (see Subsection
5.2.1), it is still possible that different threads traverse the tree in mostly the same
way. This phenomenon causes thread contention when two different threads visit the
same node concurrently, and one thread is waiting for a lock that is currently being
held by another thread. Increasing the number of threads exacerbates this problem.
[CWvdH08a] suggested a solution to assign a temporary virtual loss (a marker) to a
node when a thread selects it. Without the marker, there is a higher chance for thread
contention.

Implementing the virtual loss is straightforward. A thread is selecting a path inside
the tree to find a leaf node. It is reducing the UCT value of all the nodes that belong to
the path, assuming that the playout from the leaf node results in a loss. Therefore, the
virtual loss will inspire other threads to traverse different paths and avoid contention.
A thread removes the assigned virtual loss immediately before the backup step when
updating the nodes with the real playout result. It is worth mentioning that Tree Par-
allelization with virtual loss is more explorative compared to plain Tree Parallelization
because the virtual loss encourages different threads to explore different parts of the
tree regardless of the value of Cp. Regarding the virtual loss, UCT (j) decreases as
more threads select node j, which encourages other threads to favor other nodes.
Algorithm 8.1 gives the pseudocode for the virtual loss technique.

Algorithm 8.1: The lock-free UCT algorithm with virtual loss.
1 Function UCTSEARCH(Node* v0, State s0, budget)
2 while within search budget do
3 〈vl, sl〉 := SELECT(v0, s0);
4 〈vl, sl〉 := EXPAND(vl, sl);
5 ∆ := PLAYOUT(vl, sl);
6 BACKUP(vl,∆);

7 Function SELECT(Node* v, s) : <Node*,State>
8 while v.ISFULLYEXPANDED() do
9 〈w, n〉 := v.GET();

10 vl := arg max
vj∈children of v

vj .UCT(n);

11 s := v.p takes action vl.a from state s;
12 vl.SET(+LOSS(vl.p));
13 v := vl;

14 return 〈v, s〉;

15 Function BACKUP(Node* v,∆) : void
16 while v is not null do
17 v.SET(−LOSS(v.p));
18 v.SET(∆〈v.p〉);
19 v := v.parent;

112 8.2. Related Work

8.2 Related Work

[CWvdH08a] reported that Tree Parallelization with local locks and virtual loss per-
forms as well as Root Parallelization in the game of Go. However, [SCP+14] suggested
that adding a virtual loss to Tree Parallelization with local locks has almost no effect
on the performance for the game of Lords of War. [Seg11] showed that MCTS could
scale nearly perfectly to at least 64 threads when combined with virtual loss, but
without virtual loss scaling is limited to just eight threads. [EMAS10] showed that the
virtual loss technique is very effective for Go in FUEGO. However, [BG11] found that
increasing exploration by multiple virtual losses slightly improves Tree Parallelization
with lock-free updates for Go in Pachi.

8.3 Experimental Setup

We perform a sensitivity analysis of Cp on the number of iterations for different thread
configurations for one expression, namely HEP(σ) which is a polynomial from the
HEP domain with 15 variables [Ver13, KPVvdH13, RVPvdH14]. The plain UCT algo-
rithm and parallel methods are implemented in the ParallelUCT package.

The results are measured on a dual socket machine with 2 Intel Xeon E5-2596v2
processors running at 2.40GHz. Each processor has 12 cores, 24 hyper-threads and 30
MB L3 cache. Each physical core has 256KB L2 cache. The pack TurboBoost frequency
is 3.2 GHz. The machine has 192GB physical memory. Intel’s icc 14.0.1 compiler is
used to compile the program.

8.4 Experimental Design

In our case study, we investigate Horner schemes. We consider a Horner Scheme as an
optimization problem (see Subsection 2.4.2). The playing strength of Tree Paralleliza-
tion for the Horner scheme is measured by the number of operations that are found
for a number of playouts (see Subsection 2.5.2). Here, we define search overhead
((SO)) and time efficiency (Eff) based on the number of playouts.

SO =
number of playoutsparallel

number of playoutssequential
− 1. (8.1)

Eff =
timesequential

number of parallel workers · timeparallel
. (8.2)

In our experiments, the algorithm stops when it found 4,150 operations, or the
limit of 10,240 playouts is reached. The numbers are set at 4,150 and 10,240 as

Chapter 8. An Analysis of Virtual Loss in Parallel MCTS 113

0

2

4

S
O

Cp=0.0 Cp=0.1 Cp=0.2

0

2

4

S
O

Cp=0.3 Cp=0.4 Cp=0.5

0

2

4

S
O

Cp=0.6 Cp=0.7 Cp=0.8

2 4 8 16 32 64

0

2

4

S
O

Cp=0.9

2 4 8 16 32 64

Number of Tokens

Cp=1.0

Figure 8.1: Search overhead (SO) for Horner (average of 20 instances for each data
point). Tree parallelization is the green line which is indicated by circles, and Tree
Parallelization with virtual loss is the blue line which is indicated by triangles. Note
that the higher SO of Tree Parallelization with virtual loss means lower performance.

“relaxed” upper bound above 4,000 and 10,000 which are found by [KPVvdH13] for
the HEP(σ) polynomial. Throughout the experiments, the number of tokens or tasks
is multiplied by a factor of two. Each data point represents the average of 20 runs.

8.5 Experimental Results

Below we provide our experimental results. The first factor is Search Overhead (SO).
We hope for the reduction of SO by using virtual loss. Figure 8.1 shows the SO of
plain Tree Parallelization and Tree Parallelization with virtual loss for different values

114 8.5. Experimental Results

0

100

200

E
ff
(%

)

Cp=0.0 Cp=0.1 Cp=0.2

0

50

100

E
ff
(%

)

Cp=0.3 Cp=0.4 Cp=0.5

0

50

100

E
ff
(%

)

Cp=0.6 Cp=0.7 Cp=0.8

2 4 8 16 32 64
0

50

100

E
ff
(%

)

Cp=0.9

2 4 8 16 32 64

Number of Tokens

Cp=1.0

Figure 8.2: Efficiency (Eff) for Horner (average of 20 instances for each data point).
Tree parallelization is the green line which is indicated by circles and Tree Paralleliza-
tion with virtual loss is the blue line which is indicated by triangles. Note that Tree
Parallelization with virtual loss has a lower efficiency meaning lower performance.

of Cp. With four tokens (a parallel thread can run each token/task) we see that both
methods have similar SO for all values for Cp. However, plain Tree Parallelization
has smaller SO than Tree Parallelization with the virtual loss on all points, which is
opposite to our expectation. The second factor is Time Efficiency (Eff). We hope for
the increase of Eff by using virtual loss. Figure 8.2 shows the Eff of each method.
We see that plain Tree Parallelization outperforms Tree Parallelization with the virtual
loss in almost all tokens for all values of Cp, which is opposite to our expectation. The
only exception is when the number of tokens is 4 and Cp is 0 and 0.3.

Interestingly, adding virtual loss degrades the performance of lock-free Tree Par-

Chapter 8. An Analysis of Virtual Loss in Parallel MCTS 115

allelization in the selected problems. This outcome may be due to several factors. We
mention two of them. (1) Virtual loss enables parallel threads to search different parts
of the shared tree, thus reducing the synchronization overhead caused by using the
locks [SKW10]. However, when the algorithm is lock-free, there is no such overhead.
(2) Virtual loss disturbs the exploitation-exploration balance of the UCT algorithm.

8.6 Answer to the Second Part of RQ5

In this chapter, we addressed part two of RQ5.

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

We investigated the virtual loss method (i.e., an artificial increase in exploration)
for task-level parallelization of the lock-free Tree Parallelization algorithm (see Sec-
tion 8.1). Our preliminary results using an application from the High Energy Physic
domain shows that when a virtual loss is used for lock-free Tree Parallelization, there
is almost no improvement in performance. That is our provisional conclusion of part
two of RQ5. We showed that (1) the virtual loss method suffered from a high search
overhead and that (2) it suffered from a low time efficiency (see Section 8.5).

Originally virtual loss was designed to improve the performance of lock-based
Tree Parallelization for the game of Go and not for lock-free Tree Parallelization. If
this trend continues, then the new setting (without virtual loss) is (according to our
findings) to be preferred. Therefore, we recommend not to use virtual loss along with
the task-level parallelization of the lock-free Tree Parallelization algorithm to achieve
higher performance.

8.7 A Complete answer to RQ5

In Chapter 7 and Chapter 8, we answered RQ5 in two parts. Here we provide a com-
plete answer for RQ5.

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

Chapter 7 provided an answer for part one of RQ5. We investigated to what extent
a solution (i.e., adjusting the exploitation-exploration balance with respect to the tree
size) is for improving the quality of search in Ensemble UCT/Root Parallelization. Pre-
vious studies on Ensemble UCT provided inconclusive evidence on the effectiveness

116 8.7. A Complete answer to RQ5

of Ensemble UCT. Our results suggest that the reason for uncertainty (concerning the
controversy in the previous studies) lies in the exploitation-exploration trade-off in
relation to the size of the sub-trees (or ensemble size). Our results provide clear ev-
idence that the performance of Ensemble UCT will be improved by selecting higher
exploitation for smaller search trees given a fixed number of playouts or a fixed search
budget.

Chapter 8 presented an answer for part two of RQ5. We analyzed a solution (i.e.,
an artificial increase in exploration called virtual loss) for the lock-free Tree Paral-
lelization algorithm (see Section 8.1). Our preliminary results using an application
from the HEP domain showed that when a virtual loss is used for lock-free Tree Paral-
lelization, there is almost no improvement in performance. Moreover, we showed that
the virtual loss method suffered from (1) a high search overhead and (2) a low time
efficiency (see Section 8.5). As stated in Section 8.6, we recommend not to use vir-
tual loss along with the task-level parallelization of the lock-free Tree Parallelization
algorithm to achieve higher performance.

9
Conclusions and Future Research

This chapter is built up as follows. Section 9.1 provides a summary of all answers
to the five research research questions posed in Chapter 1. Moreover, a definitive
answer to the Problem Statement (PS) is formulated in Section 9.2. After that, two
limitations concerning the research are discussed in Section 9.3. They are considered
as directions along which we will suggest future research. Finally, two additional
directions for future research are suggested in Section 9.4.

9.1 Answers to the RQs

Below we answer five RQs in the Subsections 9.1.1 to 9.1.5. We start by repeating the
RQ, then we provide the answer in brief, and meanwhile references to the relevant
sections are given.

9.1.1 Answer to RQ1

• RQ1: What is the performance and scalability of thread-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

For thread-level parallelization, our study shows that the performance of MCTS
on the many-core Xeon Phi co-processor with its MIC architecture is less than its
performance on the NUMA-based multi-core processor (see Subsections 3.2.3 and
3.3.3). The results show that current Xeon CPUs at 24 cores substantially outper-
form the Xeon Phi co-processor on 61 cores. Our study also shows that the scalability
of thread-level parallelization for MCTS on the many-core Xeon Phi co-processor is
limited.

118 9.1. Answers to the RQs

9.1.2 Answer to RQ2

• RQ2: What is the performance and scalability of task-level parallelization for
MCTS on both multi-core and many-core shared-memory machines?

The performance of task-level parallelization to implement the GSCPM algorithm
on a multi-core machine with 24 cores was adequate (see Paragraph B of Section 4.9).
It reached a speedup of 19, and the FIFO scheduling method showed good scalability
for up to 4096 tasks. The performance of task-level parallelization on a many-core co-
processor, with the high level of optimization of our sequential code-base, was also
good; a speedup of 47 on the 61 cores of the Xeon Phi was reached (see Paragraph C
of Section 4.9). Moreover, the FIFO and task group methods showed good scalability
for up to 4096 tasks on the Xeon Phi (see Section 4.10). However, our scalability
study showed that there is still potential for improving performance and scalability
by removing synchronization overhead.

9.1.3 Answer to RQ3

• RQ3: How can we design a correct lock-free tree data structure for parallelizing
MCTS?

To answer RQ3 we have found our way step by step. We did so in three steps.
First, we remark that the existing Tree Parallelization algorithm for MCTS uses a
shared search tree to run the iterations in parallel (see Subsection 5.1.1). Here we
face that the shared search tree has potential race conditions (see Subsection 5.1.2).
Our second step is to overcome this obstacle (see Section 5.3). In this section, we
have shown that having a correct lock-free data structure is possible. To achieve this
goal, we have used methods from modern memory models and atomic operations
(see Section 5.3). Using these methods allows removing of synchronization overhead.
Hence, we have implemented the new lock-free algorithm that has no race conditions
(see Section 5.4). The third step was to evaluate the lock-free algorithm. Therefore
we performed an extensive experiment in a small area (Hex on an 11 × 11 board),
see Sections 5.5 and 5.6. The experiment showed that the lock-free algorithm had a
better performance and a better scalability when compared to other synchronization
methods (see Section 5.7). The performance of task-level parallelization to implement
the lock-free GSCPM algorithm on a multi-core machine with 24 cores was very good.
It reached a speedup of 23 and showed very good scalability for up to 4096 tasks. The
performance on a many-core co-processor was also very good; a speedup of 83 on the
61 cores of the Xeon Phi was reached. It showed very good scalability for up to 4096
tasks.

Chapter 9. Conclusions and Future Research 119

9.1.4 Answer to RQ4

• RQ4: What are the possible patterns for task-level parallelization in MCTS, and
how do we use them?

Our research showed that the task-level parallelization method combined with
a lock-free data structure for the GSCPM algorithm achieved very good performance
and scalability on multi-core and many-core processors (see Section 5.7). The GSCPM
algorithm was design based on the iteration-level parallelism which relies on the iter-
ation pattern (see Section 4.4) that violates the iteration-level data dependencies (see
Subsection 6.1.2). The result of this violation is search overhead. Therefore, scalabil-
ity is only one issue, although it is an important one. The second issue is to handle the
search overhead. Thus, we designed the 3PMCTS algorithm based on operation-level
parallelism which relies on the pipeline pattern (the answer to the first part of RQ4)
to avoid violating the iteration-level data dependencies (see Section 6.2). Hence, we
managed to control the search overhead using the flexibility of task decomposition
(the answer to the second part of RQ4). Different pipeline constructions provided
the higher levels of flexibility that allow fine-grained managing of the execution of
operations in MCTS (see Subsection 6.6.2).

9.1.5 Answer to RQ5

In Chapter 7 and Chapter 8, we answered RQ5 in two parts. Here we provide a com-
plete answer for RQ5 which is a summary of both answers.

• RQ5: To what extent do the existing solutions which improve search quality, apply
to our version of parallelized MCTS?

Chapter 7 investigated a solution (i.e., adjusting the exploitation-exploration bal-
ance with respect to the tree size) for improving the quality of search in Ensemble
UCT or Root Parallelization. Previous studies on Ensemble UCT provided inconclu-
sive evidence on the effectiveness of Ensemble UCT. Our results suggest that the
reason for uncertainty (concerning the controversy in the previous studies) lies in the
exploitation-exploration trade-off in relation to the size of the sub-trees (or ensemble
size). Our results provide clear evidence that the performance of Ensemble UCT is im-
proved by selecting higher exploitation for smaller search trees given a fixed number
of playouts or a fixed search budget.

Chapter 8 analyzed a solution (i.e., adjusting the exploitation-exploration balance
by an artificial increase in exploration called virtual loss) for the lock-free Tree Par-
allelization algorithm (see Section 8.1). Our preliminary results using an application

120 9.2. Answer to the PS

from the HEP domain shows when a virtual loss is used for lock-free Tree Paralleliza-
tion, there is almost no improvement in performance. We showed that the virtual
loss method suffered from a high search overhead and showed a low time efficiency
(see Section 8.5). We recommend not to use virtual loss along with the task-level
parallelization of the lock-free Tree Parallelization algorithm to achieve higher per-
formance.

9.2 Answer to the PS

• PS: How do we design a structured pattern-based parallel programming ap-
proach for efficient parallelism of MCTS for both multi-core and many-core
shared-memory machines?

We can design a structured parallel programming approach for MCTS in three
levels: (1) implementation level, (2) data structure level, and (3) algorithm level.
In the implementation level, we proposed task-level parallelization over thread-level
parallelization (see Chapters 3 and 4). Task-level parallelization provides us with ef-
ficient parallelism for MCTS to utilize cores on both multi-core and many-core ma-
chines.
In the data structure level, we presented a lock-free data structure that guarantees
the correctness (see Chapters 5). A lock-free data structure removes the overhead of
using data locks when a parallel program needs a lot of tasks to utilized cores.
In the algorithm level, we explained how to use patterns (e.g., pipeline) for paral-
lelization of MCTS to overcome search overhead (see Chapter 6).

Hence the answer to the PS is provided through a step by step approach.

9.3 Limitations

There are two limitations in this study, viz. hardware and case studies. We address
them below and consider them as topics of future research. In Subsection 9.3.1 we
consider the hardware limitations and in Subsection 9.3.2 we briefly discuss the lim-
itations of the case studies.

9.3.1 Maximizing Hardware Usage

The first limitation is that the current study used the native mode of the program-
ming paradigm for the execution of the parallel MCTS on the many-core co-processor
(i.e., the Xeon Phi). The native mode is the natural first step because it is a fast way
to get the existing parallel code running on the Xeon Phi with a minimum of code

Chapter 9. Conclusions and Future Research 121

changes. However, approaching the co-processor in native mode limits access to only
on the Xeon Phi and ignores the resources available on the CPU host or possibly other
computing resources. Overcoming this limitation is possible by using offline mode.
With offline mode, the parallel program is launched on the CPU side and there data
initialization also takes place. The program subsequently pushes (offloads) data and
specialized code to the co-processor for executing. After execution, results are pulled
back to the CPU. The offload mode allows parallel code to exploit both the CPU and
the co-processor. It prepares the application for any foreseeable developments of prod-
ucts.

The future of parallel computing are machines with Systems on Chips (SoC). An
SoC is specially designed to incorporate the required electronic circuits of numer-
ous computer components, such as CPU, GPU, or Field-Programmable Gate Array
(FPGA), onto a single integrated chip. Therefore, future parallel code for artificial
intelligence applications should consider it. For example, an artificial intelligence ap-
plication based on the MCTS algorithm and deep neural networks has three phases:
(1) perception, (2) decision making, and (3) execution. The perception phase can be
carried out by a deep neural network. A suitable hardware choice could be a GPU. The
decision making phase is handled by MCTS which is running on a CPU. Finally, the
execution phase that may need a real-time action can be run on an FPGA co-processor.

9.3.2 Using More Case Studies

The second limitation is that the current study used two case studies (i.e., Hex and
Horner Scheme). We consider it a limitation for our research, especially for making a
definitive conclusion about the performance of the 3PMCTS algorithm. Therefore, a
future study should consider using more case studies.

9.4 Future Research

Below we give two additional suggestions for future studies.

• From our results, we may conclude the following. Our new method is highly
suitable for heterogeneous computing because it is possible that some of the
MCTS operations might not be suitable for running on a target processor, though
others are. Our 3PMCTS algorithm gives us full flexibility for offloading a variety
of different operations of MCTS to a target processor. Therefore, it is suggested
to adapt 3PMCTS for heterogeneous computing.

• For future work, we also suggest exploring other parts of the parameter space,
to find optimal Cp settings for different combinations of tree size and ensemble

122 9.4. Future Research

size. Moreover, we suggest to study the effect in different domains. Even more
important will be the study on the effect of Cp in Tree Parallelization.

Bibliography

[ACBF02] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis
of the multiarmed bandit problem. Mach. Learn., 47(2-3):235–256,
2002.

[AHH10] Broderick Arneson, Ryan B. Hayward, and Philip Henderson. Monte
Carlo Tree Search in Hex. IEEE Transactions on Computational Intelli-
gence and AI in Games, 2(4):251–258, 2010.

[ALSU07] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, & Tools. Addison-Wesley series in
computer science. Pearson/Addison Wesley, 2007.

[BCC+11] Amine Bourki, Guillaume Chaslot, Matthieu Coulm, Vincent Danjean,
Hassen Doghmen, Jean-Baptiste Hoock, Arpad Rimmel, Fabien Tey-
taud, Olivier Teytaud, Paul Vayssi, Thomas Hérault, Paul Vayssière,
and Ziqin Yu. Scalability and Parallelization of Monte-Carlo Tree
Search. In Proceedings of the 7th International Conference on Com-
puters and Games, Lecture Notes in Computer Science (LNCS) 6515,
pages 48–58, 2011.

[BG11] Petr Baudǐs and Jean-Loup Gailly. Pachi: State of the Art Open Source
Go Program. In Advances in Computer Games 13, Lecture Notes in
Computer Science (LNCS) 7168, pages 24–38, 2011.

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Effi-

124 Bibliography

cient Multithreaded Runtime System. In Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming - PPOPP ’95, volume 30, pages 207–216. ACM Press, 1995.

[BPW+12] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton.
A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[CJ08] T. Cazenave and N. Jouandeau. A Parallel Monte-Carlo Tree Search
Algorithm. In Computers and Games, Lecture Notes in Computer Sci-
ence (LNCS) 5131, pages 60–71, 2008.

[Cou06] R. Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search. In Proceedings of the 5th International Conference on
Computers and Games, Lecture Notes in Computer Science (LNCS)
4630, pages 72–83, 2006.

[CWvdH08a] G. M. J. B. Chaslot, M. H. M. Winands, and H. J. van den Herik.
Parallel Monte-Carlo Tree Search. In the 6th International Conference
on Computers and Games, Lecture Notes in Computer Science (LNCS)
5131, pages 60–71, 2008.

[CWvdH+08b] Guillaume M. J. B. Chaslot, Mark H. M. Winands, H. J. van den Herik,
Jos W. H. M. Uiterwijk, and Bruno Bouzy. Progressive Strategies for
Monte-Carlo Tree Search. New Mathematics and Natural Computa-
tion, 4(03):343–357, 2008.

[EM10] M. Enzenberger and M. Müller. A Lock-free Multithreaded Monte-
Carlo Tree Search algorithm. In Advances in Computer Games, Lecture
Notes in Computer Science (LNCS) 6048, pages 14–20, 2010.

[EMAS10] Markus Enzenberger, Martin Muller, Broderick Arneson, and Richard
Segal. Fuego-An Open-Source Framework for Board Games and Go
Engine Based on Monte Carlo Tree Search. IEEE Transactions on Com-
putational Intelligence and AI in Games, 2(4):259–270, 2010.

[FL11] Alan Fern and Paul Lewis. Ensemble Monte-Carlo Planning: An Em-
pirical Study. In International Conference on Automated Planning and
Scheduling (ICAPS), pages 58–65, 2011.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive
Computation and Machine Learning Series. MIT Press, 2016.

Bibliography 125

[GI91] Zvi Galil and Giuseppe F. Italiano. Data Structures and Algorithms
for Disjoint Set Union Problems. ACM Comput. Surv., 23(3):319–344,
1991.

[GS07] S. Gelly and D. Silver. Combining online and offline knowledge in
UCT. In the 24th International Conference on Machine Learning, pages
273–280. ACM Press, 2007.

[Hei01] E.A. Heinz. New self-play results in computer chess. In Computers
and Games, Lecture Notes in Computer Science (LNCS) 2063, pages
262–276, 2001.

[HLL10] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. The
Cilkview scalability analyzer. Proceedings of the 22nd ACM Symposium
on Parallelism in Algorithms and Architectures - SPAA ’10, pages 145–
156, 2010.

[HS17] Demis Hassabis and David Silver. Alphago’s next move.
https://deepmind.com/blog/alphagos-next-move/, 2017.

[HT19] Ryan B Hayward and Bjarne Toft. Hex: The Full Story. CRC Press,
2019.

[Int13] Intel. Intel Xeon Phi Processor Competitive Performance.
http://www.intel.com/content/www/us/en/benchmarks/server/
xeon-phi/xeon-phi-theoretical-maximums.html, 2013.

[JR13] J. Jeffers and J. Reinders. Intel Xeon Phi Coprocessor High Performance
Programming. Elsevier Science, 2013.

[KPVvdH13] J. Kuipers, A. Plaat, J. A. M. Vermaseren, and H. J. van den Herik. Im-
proving Multivariate Horner Schemes with Monte Carlo Tree Search.
Computer Physics Communications, 184(11):2391–2395, 2013.

[KS06] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo plan-
ning. In Machine Learning: ECML 2006, Lecture Notes in Computer
Science (LNCS) 4212, pages 282–293, 2006.

[KUV15] J. Kuipers, T. Ueda, and J. A. M. Vermaseren. Code optimization in
FORM. Computer Physics Communications, 189(October):1–19, 2015.

[Lee06] Edward A. Lee. The problem with threads. Computer, 39(5):33–42,
2006.

126 Bibliography

[Li13] Shou Li. Case Study: Achieving High Performance on Monte
Carlo European Option Using Stepwise Optimization Framework.
https://software.intel.com/en-us/articles/case-study-achieving-
high-performance-on-monte-carlo-european-option-using-stepwise,
2013.

[LP98] Charles E. Leiserson and Aske Plaat. Programming Parallel Applica-
tions in Cilk. SINEWS: SIAM News, 31(4):6–7, 1998.

[MKK14] S. Ali Mirsoleimani, Ali Karami, and Farshad Khunjush. A Two-Tier
Design Space Exploration Algorithm to Construct a GPU Performance
Predictor. In Architecture of Computing Systems–ARCS 2014, pages
135–146. Springer, 2014.

[MPvdHV15a] S. Ali Mirsoleimani, Aske Plaat, Jaap van den Herik, and Jos Ver-
maseren. Parallel Monte Carlo Tree Search from Multi-core to Many-
core Processors. In ISPA 2015: The 13th IEEE International Symposium
on Parallel and Distributed Processing with Applications (ISPA), pages
77–83, 2015.

[MPvdHV15b] S. Ali Mirsoleimani, Aske Plaat, Jaap van den Herik, and Jos Ver-
maseren. Scaling Monte Carlo Tree Search on Intel Xeon Phi. In The
20th IEEE International Conference on Parallel and Distributed Systems
(ICPADS), pages 666–673, 2015.

[MPVvdH14] S. Ali Mirsoleimani, Aske Plaat, Jos Vermaseren, and Jaap van den
Herik. Performance analysis of a 240 thread tournament level MCTS
Go program on the Intel Xeon Phi. In The 2014 European Simulation
and Modeling Conference (ESM’2014), pages 88–94. Eurosis, 2014.

[MRR12] M. McCool, J. Reinders, and A. Robison. Structured Parallel Program-
ming: Patterns for Efficient Computation. Elsevier, 2012.

[NBF96] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell.
Pthreads programming. O’Reilly & Associates, Inc., 1996.

[OS12] D. O’Shea and R. Seroul. Programming for Mathematicians. Universi-
text. Springer Berlin Heidelberg, 2012.

[Rah13] Rezaur Rahman. Intel Xeon Phi Coprocessor Architecture and Tools:
The Guide for Application Developers. Apress, 2013.

[Rei07] J. Reinders. Intel threading building blocks: Outfitting C++ for multi-
core processor parallelism. O’Reilly Media, Inc., 2007.

Bibliography 127

[RJ14] James Reinders and James Jeffers. High Performance Parallelism
Pearls: Multicore and Many-core Programming Approaches, volume 4.
Elsevier Science, 2014.

[RJM+15] James Reinders, Jim Jeffers, Iosif Meyerov, Alexander Sysoyev, Nikita
Astafiev, and Ilya Burylov. High Performance Parallelism Pearls. Else-
vier, 2015.

[Rob13] Arch D. Robison. Composable Parallel Patterns with Intel Cilk Plus.
Computing in Science & Engineering, 15(2):66–71, 2013.

[Rom01] John W. Romein. Multigame – An Environment for Distributed Game-
Tree Search. PhD thesis, Vrije Universiteit, 2001.

[RPBS99] John Romein, Aske Plaat, Henri E. Bal, and Jonathan Schaeffer.
Transposition Table Driven Work Scheduling in Distributed Search.
In The 16th National Conference on Artificial Intelligence (AAAI’99),
pages 725–731, 1999.

[RVPvdH14] Ben Ruijl, Jos Vermaseren, Aske Plaat, and Jaap van den Herik.
Combining Simulated Annealing and Monte Carlo Tree Search for
Expression Simplification. Proceedings of ICAART Conference 2014,
1(1):724–731, 2014.

[RVW+13] A. Ramachandran, J. Vienne, R. V. D. Wijngaart, L. Koesterke, and
I. Sharapov. Performance Evaluation of NAS Parallel Benchmarks on
Intel Xeon Phi. In 2013 42nd International Conference on Parallel
Processing, pages 736–743, 2013.

[SBDD+02] L. Susan Blackford, James Demmel, Jack Dongarra, Iain Duff, Sven
Hammarling, Gwendolyn Henry, Michael Heroux, Linda Kaufman,
Andrew Lumsdaine, Antoine Petitet, Roldan Pozo, Karin Remington,
and R Clint Whaley. An Updated Set of Basic Linear Algebra Subpro-
grams (BLAS). ACM Trans. Math. Softw., 28(2):135–151, 2002.

[SÇ12] Erik Saule and Umit V. Çatalyürek. An early evaluation of the scala-
bility of graph algorithms on the Intel MIC architecture. Proceedings
of the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops, IPDPSW 2012, pages 1629–1639, 2012.

[SCP+14] N. Sephton, P. I. Cowling, E. Powley, D. Whitehouse, and N. H. Slaven.
Parallelization of Information Set Monte Carlo Tree Search. In The
2014 IEEE Congress on Evolutionary Computation (CEC), pages 2290–
2297, 2014.

128 Bibliography

[Seg11] Richard B. Segal. On the Scalability of Parallel UCT. In Proceedings
of the 7th International Conference on Computers and Games, Lecture
Notes in Computer Science (LNCS) 6515, pages 36–47, 2011.

[SHM+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the Game of Go with Deep Neural Networks and Tree Search. Na-
ture, 529(7587):484–489, 2016.

[SKW10] Yusuke Soejima, Akihiro Kishimoto, and Osamu Watanabe. Evaluat-
ing Root Parallelization in Go. IEEE Transactions on Computational
Intelligence and AI in Games, 2(4):278–287, 2010.

[SP14] L. Schaefers and M. Platzner. Distributed Monte-Carlo Tree Search: A
Novel Technique and its Application to Computer Go. IEEE Transac-
tions on Computational Intelligence and AI in Games, 6(3):1–15, 2014.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,
Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of Go without human knowledge. Na-
ture, 550:354, 2017.

[Suk15] Jim Sukha. Brief announcement: A compiler-runtime application bi-
nary interface for pipe-while loops. In Proceedings of the 27th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’15,
pages 83–85. ACM, 2015.

[TD15] Fabien Teytaud and Julien Dehos. On the Tactical and Strategic Be-
haviour of MCTS When Biasing Random Simulations. ICCA Journal,
38(2):67–80, 2015.

[TV10] M. Tentyukov and J. A. M. Vermaseren. The multithreaded version of
FORM. Computer Physics Communications, 181(8):1419–1427, 2010.

[TV15] Ashkan Tousimojarad and Wim Vanderbauwhede. Steal locally, share
globally. Int. J. Parallel Program., 43(5):894–917, 2015.

[vdHPKV13] Jaap van den Herik, Aske Plaat, Jan Kuipers, and Jos Vermaseren.
Connecting Sciences. In In 5th International Conference on Agents and
Artificial Intelligence (ICAART), volume 1, pages IS–7–IS–16, 2013.

Bibliography 129

[Ver13] J. A. M. Vermaseren. Hepgame-description of work.
https://www.nikhef.nl/ form/maindir/HEPgame/HEPgame.html,
2013.

[Wei17] Eric W. Weisstein. Game of Hex. From MathWorld—A Wolfram Web
Resource. http://mathworld.wolfram.com/GameofHex.html, 2017.

[Wil12] A. Williams. C++ Concurrency in Action: Practical Multithreading.
Manning Pubs Co Series. Manning, 2012.

[Woo14] Matthew Woodcraft. Gomill Python Library.
http://mjw.woodcraft.me.uk/gomill/, 2014.

[WZS+14] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei
Lu, Qing Wu, and Yajuan Wang. High-Performance Computing on the
Intel R© Xeon Phi. Springer International Publishing, 2014.

[YKK+11] K. Yoshizoe, A. Kishimoto, T. Kaneko, H. Yoshimoto, and Y. Ishikawa.
Scalable Distributed Monte-Carlo Tree Search. In Fourth Annual Sym-
posium on Combinatorial Search, pages 180–187, 2011.

Appendices

A
Micro-benchmark Programs

1 double Performance (unsigned i n t const ITR) {
unsigned i n t const SIZE = 16;

3 double s t a r t t i m e , durat ion ;
i n t i , j ;

5 d e c l s p e c (a l igned (64)) double a [SIZE] , b[SIZE] , c [SIZE] ;
f o r (i = 0; i < SIZE ; i++) {

7 a[i] = b[i] = c [i] = (double) rand () ;
}

9 #pragma omp p a r a l l e l f o r
f o r (i = 0; i < ITR ; i++) {

11 #pragma vec to r a l igned (a , b , c)
#pragma u n ro l l (16)

13 f o r (i n t j = 0; j < SIZE ; j++)
{ a[j] = b[j] ∗ c [j] + a[j] ; }

15 }
s t a r t t i m e = elapsedTime () ;

17 #pragma omp p a r a l l e l f o r
f o r (i = 0; i < ITR ; i++) {

19 #pragma vec to r a l igned (a , b , c)
#pragma u n ro l l (16)

21 f o r (i n t j = 0; j < SIZE ; j++)
{ a[j] = b[j] ∗ c [j] + a[j] ; }

23 }
durat ion = elapsedTime () − s t a r t t i m e ;

25 double g f lop = ((double) 2.0 ∗ SIZE ∗ ITR) / 1e+9;
double g f l o p s = gf lop / durat ion ;

27 re turn g f l o p s ;
}

Listing A.1: Micro-benchmark code for measuring performance of Xeon Phi.

134

void Bandwidth (unsigned i n t const ITR) {
2 unsigned i n t const SIZE = 48 ∗ 1000 ∗ 1000;

double s t a r t t i m e , durat ion ;
4 i n t i , j ;

d e c l s p e c (a l igned (64)) s t a t i c double a [SIZE] , b[SIZE] , c [SIZE] ;
6 f o r (i = 0; i < SIZE ; i++) {

c [i] = 0.0 f ;
8 a[i] = b[i] = (double) 1.0 f ;

}
10 f o r (i = 0; i < 1; i++) {

#pragma omp p a r a l l e l f o r
12 f o r (j = 0; j < SIZE ; j++)

{ c [j] = a[j] ∗ b[j] + c [j] ; }
14 }

s t a r t t i m e = elapsedTime () ;
16 f o r (i = 0; i < ITR ; i++) {

#pragma omp p a r a l l e l f o r
18 f o r (j = 0; j < SIZE ; j++)

{ c [j] = a[j] ∗ b[j] + c [j] ; }
20 }

durat ion = elapsedTime () − s t a r t t i m e ;
22 double gb = (SIZE ∗ s i z e o f (double)) / 1e+9;

double gbs = 4 ∗ ITR ∗ gb / durat ion ;
24 re turn gbs ;
}

Listing A.2: Micro-benchmark code for measuring memory bandwidth of Xeon Phi.

B
Statistical Analysis of Self-play

Experiments

Suppose p as true wining probability of a player [Hei01]. The value of p is estimated
by 0 ≤ w = x/n ≤ 1 which results from x ≤ n wins in a match of n games. Therefore,
we may simply assume w the sample mean of a binary-valued random variable that
counts two draws as a loss plus a win.
The expected value of w is E(w) = p and the variance of w is V ar(w) = p(1 − p)/n.
According to central limit theorem approximately, w ≈ Normal(p, p(1−p)n), so (w−
p)/

√
p(1− p)/n ≈ Normal(0, 1). Let z% denote the upper critical value of the stan-

dardN(0, 1) normal distribution for any desired %-level of statistical confidence(z90% =

1.645, z95% = 1.96). Then, the probability of w − 1.96
√
p(1− p)/n ≤ p ≤ w +

1.96
√
p(1− p)/n is about 95%. Therefore, the 95% confidence interval on the true

wining probability p is [w − 1.96
√
p(1− p)/n,w + 1.96

√
p(1− p)/n]. There are two

ways to substitute the value of p which is unknown:

1. substitute p for w: [w − 1.96
√
w(1− w)/n,w + 1.96

√
w(1− w)/n]

2. substitute p for 1/2 which gives wider confidence interval: [w − 0.98
√
n,w +

0.98
√
n]

C
Implementation of GSCPM

This section will show how the GSCPM algorithm is implemented with three differ-
ent threading libraries. Furthermore, the implementations for shared search tree and
random number generation are explained.

C.1 TBB

Listing C.1 gives a TBB implementation of GSCPM. TBB has task group class for fork-
join pattern. Method run marks where a fork occurs; method wait marks a join.

1 tbb : : task group g ;
f o r (i n t t = 0; t < nTasks ; t++) {

3 g . run (UCTSearch (r ,m)) ;
}

5 g . wait () ;

Listing C.1: Task parallelism for GSCPM using TBB (task group).

C.2 Cilk Plus

Two Cilk Plus implementations for GSCPM are given in Listing C.2 and C.3 . Cilk
Plus has keywords for marking fork and join points. In the first implementation, the
cilk spawn marks the fork and the cilk sync marks an explicitly join operation. The
spawning tasks are within a for loop. A cilk sync waits for all spawned calls in the
loop.

138 C.3. TPFIFO

1 f o r (i n t t = 0; t < nTasks ; t++) {
c i lk spawn UCTSearch (r ,m) ;

3 }
c i l k s y n c ;

Listing C.2: Task parallelism for GSCPM using Cilk Plus (cilk spawn).

In the second implementation, the cilk for construct uses recursive forking even though
it looks like a loop. The cilk sync (joint) at the end of the loop is implicit.

c i l k f o r (i n t t = 0; t < nTasks ; t++) {
2 UCTSearch (r ,m) ;
}

Listing C.3: Task parallelism for GSCPM using Cilk Plus (cilk for).

C.3 TPFIFO

In TPFIFO the tasks are put in a queue. It implements work-sharing, but the order
that the tasks are executed is similar to child stealing. The first task that enters the
queue is the first task that gets executed.

In our thread pool implementation (called TPFIFO) the task functions are exe-
cuted asynchronously. A task is submitted to a FIFO task queue and will be executed
as soon as one of the pool’s threads is idle. Schedule returns immediately and there
are no guarantees about when the tasks are executed or how long the processing will
take. Therefore, the program waits for all the tasks to be completed.

1 f o r (i n t t = 0; t < nTasks ; t++) {
TPFIFO . schedule (UCTSearch (r ,m)) ;

3 }
TPFIFO . wait () ;

Listing C.4: Task parallelism for GSCPM, based on TPFIFO.

D
Implementation of 3PMCTS

In this section, we present the implementation of our 3PMCTS algorithm. In section
D.1 we present the concept of token (when used as type name, we write Token).
Section D.2 describes the implementation of 3PMCTS using TBB.

D.1 Definition of Token Data Type (TDT)

A token represents a path inside the search tree during the search. Algorithm D.1
presents definition for the type Token. It has four fields. (1) id represents a unique
identifier for a token, (2) v represents the current node in the tree, (3) s represents
the search state of the current node, and (4) ∆ represents the reward value of the
state. The definition of lock-free data structure Node is given in Algorithm 5.1. In
Algorithm D.2, the serial UCT algorithm (which is already presented in Algorithm
2.2) is provided using token data type.

Algorithm D.1: Type definition for token.
1 type
2 type id : int;
3 type v : Node*;
4 type s : State*;
5 type ∆ : int;
6 Token;

140 D.1. Definition of Token Data Type (TDT)

Algorithm D.2: The serial UCT algorithm using Token, with stages SELECT,
EXPAND, PLAYOUT, and BACKUP.

1 Function UCTSEARCH(s0)
2 v0 = create root node with state s0;
3 t0.s = s0;
4 t0.v = v0;
5 while within search budget do
6 tl = SELECT(t0);
7 tl = EXPAND(tl);
8 tl = PLAYOUT(tl);
9 BACKUP(tl);

10 Function SELECT(Token t) : <Token>
11 while t.v →IsFullyExpanded() do
12 t.v := arg max

v
′∈childrenofv

v
′
.UCT(Cp);

13 t.s→SetMove(t.v → move);

14 return t;

15 Function EXPAND(Token t) : <Token>
16 if !(t.s→IsTerminal()) then
17 moves := t.s→UntriedMoves();
18 shuffle moves uniformly at random;
19 t.v →Init(moves);

20 v
′

:= t.v →AddChild();

21 if t.v 6= v
′

then
22 t.v :=v

′
;

23 t.s→SetMove(v
′ → move);

24 return t;

25 Function PLAYOUT(Token t)
26 RANDOMSIMULATION(t);
27 EVALUATION(t);
28 return t

29 Function RANDOMSIMULATION(Token t)
30 moves := t.s→UntriedMoves();
31 shuffle moves uniformly at random;
32 while !(t.s→IsTerminal()) do
33 choose new move ∈ moves;
34 t.s→SetMove(move);

35 return t

36 Function EVALUATION(Token t)
37 t.∆ := t.s→ Evalute();
38 return t

39 Function BACKUP(Token t) : void
40 while t.v 6= null do
41 t.v → Update(t.∆);
42 t.v := t.v → parent;

Appendix D. Implementation of 3PMCTS 141

D.2 TBB Implementation Using TDD

In our implementation for 3PMCTS, each stage (task) performs its operation on a
token. We can also specify the number of in-flight tokens.

Each function constitutes a stage of the non-linear pipeline in 3PMCTS. There are
two approaches for parallel implementation of a non-linear pipeline [MRR12]:

• Bind-to-stage: A processing element (e.g., thread) is bound to a stage and pro-
cesses tokens as they arrive. If the stage is parallel, it may have multiple pro-
cessing elements bound to it.

• Bind-to-item: A processing element is bound to a token and carries the token
through the pipeline. When the processing element completes the last stage, it
goes to the first stage to select another token.

void 3PMCTS(to ken l im i t){
2 . . .

/∗ The rout ine tbb : : p a r a l l e l p i p e l i n e takes two parameters .
4 (1) A token l i m i t . I t i s an upper bound on the number of tokens tha t are processed s imul taneous ly .

(2) A p i p e l i n e . Each s tage i s c rea ted by func t ion tbb : : m a k e f i l t e r . The template arguments to
6 m a k e f i l t e r i n d i c a t e the type of input and output i tems fo r the f i l t e r . The f i r s t ord inary argument

s p e c i f i e s whether the s tage i s p a r a l l e l or not and the second ord inary argument s p e c i f i e s a func t ion
8 tha t maps the input item to the output item .
∗/

10 tbb : : p a r a l l e l p i p e l i n e (token l imi t ,
/∗ The SELECT stage i s s e r i a l and mapping a s p e c i a l o b j e c t of type tbb : : f l ow cont ro l , used

12 to s i g n a l the end of the search , to an output token . ∗/
tbb : : make f i l t e r<void , Token∗>(tbb : : f i l t e r : : s e r i a l i n o r d e r , [&](tbb : : f l o w c o n t r o l & f c)−>Token∗

14 {
/∗ A c i r c u l a r b u f f e r i s used to minimize the overhead of a l l o c a t i n g and f r e e i n g tokens

16 passed between p i p e l i n e s t age s (i t reduces the communication overhead) . ∗/
Token∗ t = tokenpool [index] ;

18 index = (index+1) % toke n l i m i t ;
i f (wi th in the search budget) {

20 /∗ Invoca t ion of the method stop () t e l l s the tbb : : p a r a l l e l p i p e l i n e tha t no more
paths w i l l be s e l e c t e d and tha t the value returned from the func t ion should be

22 ignored . ∗/
f c . s top () ;

24 re turn NULL ;
} e l s e {

26 t = SELECT(t) ;
re turn t

28 }
}

30) &
// The EXPAND stage i s p a r a l l e l and mapping an input token to an output token .

32 tbb : : make f i l t e r<Token∗ , Token∗>(tbb : : f i l t e r : : p a r a l l e l , [&](Token ∗ t){
re turn EXPAND(t) ;

34 }) &
// The RANDOMSIMULATION stage i s p a r a l l e l and mapping an input token to an output token .

36 tbb : : make f i l t e r<Token∗ , Token∗>(tbb : : f i l t e r : : p a r a l l e l , [&](Token ∗ t){
re turn RANDOMSIMULATION(t) ;

38 }) &
// The Eva luat ion s tage i s p a r a l l e l and mapping an input token to an output token .

40 tbb : : make f i l t e r<Token∗ , Token∗>(tbb : : f i l t e r : : p a r a l l e l , [&](Token ∗ t){
retun EVALUATION(t) ;

42 }) &
/∗ The BACKUP stage has an output type of void s ince i t i s only consuming tokens ,

44 not mapping them . ∗/
tbb : : make f i l t e r<Token∗ , void>(tbb : : f i l t e r : : s e r i a l i n o r d e r , [&](Token ∗ t){

46 re turn BACKUP(t) ;
})

48) ;
. . .}

Listing D.1: An implementation of the 3PMCTS algorithm in TBB.

142 D.2. TBB Implementation Using TDD

Our implementation for 3PMCTS algorithm is based on a bind-to-item approach.
Figure 6.5 depicts a five-stage pipeline for 3PMCTS that can be implemented us-
ing TBB tbb::parallel pipeline template [Rei07]. The five stages run the functions SE-
LECT, EXPAND, RANDOMSIMULATION, EVALUATION, and BACKUP, in that order. The
first (SELECT) and last stage (BACKUP) are serial in-order. They process one token
at a time. The three middle stages (EXPAND, RANDOMSIMULATION, and EVALUATION)
are parallel and do the most time-consuming part of the search. The EVALUATION and
RANDOMSIMULATION functions are extracted out of the PLAYOUT function to achieve
more parallelism. The serial version uses a single token. The 3PMCTS algorithm aims
to search multiple paths in parallel. Therefore, it needs more than one in-flight token.
Listing D.1 shows the key parts of the TBB code with the syntactic details for the
3PMCTS algorithm.

Summary

The thesis is part of a bigger project, the HEPGAME (High Energy Physics Game). The main

objective for HEPGAME is the utilization of AI solutions, particularly by using MCTS for simpli-

fication of HEP calculations. One of the issues is solving mathematical expressions of interest

with millions of terms. These calculations can be solved with the FORM program, which is soft-

ware for symbolic manipulation. Since these calculations are computationally intensive and

take a large amount of time, the FORM program was parallelized to solve them in a reasonable

amount of time.

Therefore, any new algorithm based on MCTS, should also be parallelized. This require-

ment was behind the problem statement of the thesis: “How do we design a structured pattern-

based parallel programming approach for efficient parallelism of MCTS for both multi-core and

manycore shared-memory machines?”.

To answer this question, the thesis approached the MCTS parallelization problem in three

levels: (1) implementation level, (2) data structure level, and (3) algorithm level.

In the implementation level, we proposed task-level parallelization over thread-level par-

allelization. Task-level parallelization provides us with efficient parallelism for MCTS to utilize

cores on both multi-core and manycore machines.

In the data structure level, we presented a lock-free data structure that guarantees the cor-

rectness. A lock-free data structure (1) removes the synchronization overhead when a parallel

program needs many tasks to feed its cores and (2) improves both performance and scalability.

In the algorithm level, we first explained how to use pipeline pattern for parallelization

of MCTS to overcome search overhead. Then, through a step by step approach, we were able

to propose and detail the structured parallel programming approach for Monte Carlo Tree

Search.

Samenvatting

Het proefschrift maakt deel uit van een groter project, het HEPGAME (High Energy Physics

Game) project. Het hoofddoel van HEPGAME is het gebruik van AI-oplossingen, met name

door MCTS te gebruiken voor de vereenvoudiging van HEP-berekeningen. Een van de proble-

men is het oplossen van relevant wiskundige expressies met miljoenen termen. Deze berekenin-

gen kunnen worden verricht met het FORM-programma, dat is een specifiek software-pakket

voor symbolische manipulatie. Omdat de berekeningen rekenintensief zijn en daardoor veel

tijd kosten, is het FORM-programma parallel uitgevoerd om berekeningen binnen een redelijke

tijd te executeren. Daarom moet elk nieuw algoritme op basis van MCTS ook parallel kunnen

worden uitgevoerd. Deze eis ligt direct onder de probleemstelling van het proefschrift: “Hoe

ontwerpen we een gestructureerde, op patronen gebaseerde parallelle programma-aanpak voor

efficiënt parallellisme van MCTS voor zowel multi-core als manycore machines met een gedeeld

geheugen?”. Om deze vraag te beantwoorden, benadert het proefschrift de MCTS de parallellis-

erings problemen op drie niveaus: (1) implementatieniveau, (2) datastructuurniveau, en (3) al-

goritmeniveau. Op het implementatieniveau hebben we parallellisatie op taakniveau verkozen

boven parallellisatie op threadniveau. Parallellisatie op taakniveau biedt ons efficiënte parallel-

liteit voor MCTS om kernen (cores) te gebruiken op zowel multi-core als manycore machines. Op

het niveau van de datastructuur hebben we een lock-free datastructuur voorgesteld die de kor-

rektheid garandeert. Een lock-free gegevensstructuur (1) verwijdert de synchronisatie-overhead

wanneer een parallel programma veel taken nodig heeft om cores te gebruiken en (2) verbetert

zowel de prestaties als de schaalbaarheid. Op het algoritmeniveau hebben we eerst uitgelegd

hoe een pijplijnpatroon moet worden gebruikt voor parallellisatie van MCTS om de search

overhead te overwinnen. Daarna konden we via een stapsgewijze aanpak de gestructureerde

parallelle programmering voor Monte Carlo Tree Search gestalte geven.

Acknowledgment

First and foremost, I would like to express my sincere appreciation to my first advisor Professor
Jaap van den Herik for the endless support of my Ph.D. study and the research involved, for
his patience, motivation, enthusiasm, and extensive knowledge. His supervision helped me in
all times of research and writing of this thesis.

Besides my first advisor, I would like to thank my other advisors Professor Aske Plaat and
Dr. Jos Vermaseren, for their encouragement, insightful comments, and endless support.

Besides my advisors, I would like to gratefully recognize the members of my thesis com-
mittee: Professor P. J. G. Mulders, Professor F. J. Verbeek, Professor H. A. G. Wijshoff, Dr. F.
Khunjush, Dr. W. A. Kosters, and Dr. A. L. Varbanescu, for their time to read the thesis.

Moreover, I acknowledge my fellow labmates at Leiden University: Ben Ruijl, Bilal Karas-
neh, Hafeez Osman. Also, I pay tribute to my friends at Leiden University: Sobhan Niknam and
Ramin Etemadi.

Furthermore, my sincere thanks also go to Joke Hellemons for offering tremendous help
during my first three years of study. Notably, the first year, by helping me to settle in Tilburg.

Then, my special thanks also go to Letty Raaphorst for her warm acceptance of me at their
home during the last phase of writing the thesis.

I want to thank my family, especially my parents Mehdi Mirsoleimani and Masoomeh
Zarinkolah, for supporting me throughout my entire life. My thanks also go to my parents-in-
law. Here, I also want to thank specifically my grandmother Keyhan Masoudi for encouraging
me in pivotal moments of life.

Last but not least, I would like to thank my dear wife Elahe, for her endless support, es-

pecially. Without her love, I would not have been able to overcome the challenges during this

period.

Curriculum Vitae

Sayyed Ali Mirsoleimani was born in Abadeh, Iran, on May 28, 1986. He obtained his bachelor
degree in Computer Software Engineering at the Islamic Azad University in Najafabad, Iran. In
2013, he continued with a Master in Software Engineering at the Shiraz University in Shiraz,
Iran. His Master’s thesis was titled “Proposing and Evaluation of a Performance Prediction
Model for Graphics Processing Units”.

Immediately thereafter, Ali started to work in an ERC Advanced Grant funded Ph.D. project
at the Tilburg University under supervision of Professor Jaap van den Herik and Professor
Aske Plaat and at Nikhef in Amsterdam under supervision of Dr. Jos Vermaseren (the PI of the
project). In April 2014, he accompanied his supervisors to the Leiden University. He defended
his Ph.D thesis in 2020.

Currently, Ali is working at ASML, the world’s leading manufacturer of lithography ma-

chines, in Eindhoven. Ali is mainly responsible for developing calibration models to contribute

to realizing Moore’s Law.

Publications

• S. A. Mirsoleimani, A. Plaat, J. Vermaseren, and H. J. van den Herik, Performance anal-
ysis of a 240 thread tournament level MCTS Go program on the Intel Xeon Phi, in Pro-
ceedings of the 2014 European Simulation and Modeling Conference (ESM 2014), 2014,
pp. 88--94.

• S. A. Mirsoleimani, A. Plaat, H. J. van den Herik, and J. Vermaseren, Parallel Monte Carlo
Tree Search from Multi-core to Many-core Processors, in Proceedings of the 2015 IEEE
Trustcom/BigDataSE/ISPA, 2015, vol. 3, pp. 77--83.

• S. A. Mirsoleimani, A. Plaat, H. J. van den Herik, and J. Vermaseren, Scaling Monte Carlo
Tree Search on Intel Xeon Phi, in Proceedings of the 20th IEEE International Conference
on Parallel and Distributed Systems (ICPADS), 2015, pp. 666--673.

• S. A. Mirsoleimani, A. Plaat, and H. J. van den Herik, and J. Vermaseren, Ensemble UCT
Needs High Exploitation, in Proceedings of the 8th International Conference on Agents
and Artificial Intelligence, 2016, pp. 370--376.

• S. A. Mirsoleimani, A. Plaat, and H. J. van den Herik, and J. Vermaseren, An Analysis
of Virtual Loss in Parallel MCTS, in Proceedings of the 9th International Conference on
Agents and Artificial Intelligence, 2017, pp. 648--652.

• S. A. Mirsoleimani, H. J. van den Herik, A. Plaat and J. Vermaseren, A Lock-free Algo-
rithm for Parallel MCTS, in Proceedings of the 10th International Conference on Agents
and Artificial Intelligence - Volume 2, 2018, pp. 589--598.

• S. A. Mirsoleimani S., H. J. van den Herik, A. Plaat and J. Vermaseren, Pipeline Pattern
for Parallel MCTS, in Proceedings of the 10th International Conference on Agents and
Artificial Intelligence - Volume 2, 2018, pp. 614--621.

SIKS Dissertation Series

2011 01 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in
Latent Gaussian Models

02 Nick Tinnemeier (UU), Organizing Agent Organizations. Syntax and Op-
erational Semantics of an Organization-Oriented Programming Language

03 Jan Martijn van der Werf (TUE), Compositional Design and Verification
of Component-Based Information Systems

04 Hado van Hasselt (UU), Insights in Reinforcement Learning; Formal anal-
ysis and empirical evaluation of temporal-difference

05 Bas van der Raadt (VU), Enterprise Architecture Coming of Age - Increas-
ing the Performance of an Emerging Discipline.

06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations in Cul-
tural Heritage

07 Yujia Cao (UT), Multimodal Information Presentation for High Load Hu-
man Computer Interaction

08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented Di-
alogues

09 Tim de Jong (OU), Contextualised Mobile Media for Learning
10 Bart Bogaert (UvT), Cloud Content Contention
11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused HCI

Perspective
12 Carmen Bratosin (TUE), Grid Architecture for Distributed Process Mining
13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling for Air-

port Ground Handling
14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Mar-

kets

154 SIKS Dissertation Series

15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link Evi-
dence for Information Retrieval

16 Maarten Schadd (UM), Selective Search in Games of Different Complexity
17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Diversity and Re-

latedness
18 Mark Ponsen (UM), Strategic Decision-Making in complex games
19 Ellen Rusman (OU), The Mind’s Eye on Personal Profiles
20 Qing Gu (VU), Guiding service-oriented software engineering - A view-

based approach
21 Linda Terlouw (TUD), Modularization and Specification of Service-

Oriented Systems
22 Junte Zhang (UVA), System Evaluation of Archival Description and Access
23 Wouter Weerkamp (UVA), Finding People and their Utterances in Social

Media
24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Co-

ordination with Virtual Humans On Specifying, Scheduling and Realizing
Multimodal Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VU), Analysis and Validation of Models
for Trust Dynamics

26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communication -
Emotion Regulation and Involvement-Distance Trade-Offs in Embodied
Conversational Agents and Robots

27 Aniel Bhulai (VU), Dynamic website optimization through autonomous
management of design patterns

28 Rianne Kaptein (UVA), Effective Focused Retrieval by Exploiting Query
Context and Document Structure

29 Faisal Kamiran (TUE), Discrimination-aware Classification
30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unraveling

the mystery of emotions
31 Ludo Waltman (EUR), Computational and Game-Theoretic Approaches

for Modeling Bounded Rationality
32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliometric Map-

ping of Science
33 Tom van der Weide (UU), Arguing to Motivate Decisions
34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Logical and

Game-theoretical Investigations
35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Training
36 Erik van der Spek (UU), Experiments in serious game design: a cognitive

approach
37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Applica-

tions for Preference Learning and Supervised Network Inference
38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization

SIKS Dissertation Series 155

39 Joost Westra (UU), Organizing Adaptation using Agents in Serious Games
40 Viktor Clerc (VU), Architectural Knowledge Management in Global Soft-

ware Development
41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data Access

Control
42 Michal Sindlar (UU), Explaining Behavior through Mental State Attribu-

tion
43 Henk van der Schuur (UU), Process Improvement through Software Op-

eration Knowledge
44 Boris Reuderink (UT), Robust Brain-Computer Interfaces
45 Herman Stehouwer (UvT), Statistical Language Models for Alternative

Sequence Selection
46 Beibei Hu (TUD), Towards Contextualized Information Delivery: A Rule-

based Architecture for the Domain of Mobile Police Work
47 Azizi Bin Ab Aziz (VU), Exploring Computational Models for Intelligent

Support of Persons with Depression
48 Mark Ter Maat (UT), Response Selection and Turn-taking for a Sensitive

Artificial Listening Agent
49 Andreea Niculescu (UT), Conversational interfaces for task-oriented spo-

ken dialogues: design aspects influencing interaction quality
2012 01 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda

02 Muhammad Umair (VU), Adaptivity, emotion, and Rationality in Human
and Ambient Agent Models

03 Adam Vanya (VU), Supporting Architecture Evolution by Mining Software
Repositories

04 Jurriaan Souer (UU), Development of Content Management System-
based Web Applications

05 Marijn Plomp (UU), Maturing Interorganisational Information Systems
06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge Workers in

Research Networks
07 Rianne van Lambalgen (VU), When the Going Gets Tough: Exploring

Agent-based Models of Human Performance under Demanding Condi-
tions

08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajectories
09 Ricardo Neisse (UT), Trust and Privacy Management Support for Context-

Aware Service Platforms
10 David Smits (TUE), Towards a Generic Distributed Adaptive Hypermedia

Environment
11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large: Prepro-

cessing, Discovery, and Diagnostics
12 Kees van der Sluijs (TUE), Model Driven Design and Data Integration in

Semantic Web Information Systems

156 SIKS Dissertation Series

13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal expressions
of emotion during playful interactions

14 Evgeny Knutov (TUE), Generic Adaptation Framework for Unifying Adap-
tive Web-based Systems

15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling of Inte-
grated Internal and Social Dynamics of Cognitive and Affective Processes.

16 Fiemke Both (VU), Helping people by understanding them - Ambient
Agents supporting task execution and depression treatment

17 Amal Elgammal (UvT), Towards a Comprehensive Framework for Busi-
ness Process Compliance

18 Eltjo Poort (VU), Improving Solution Architecting Practices
19 Helen Schonenberg (TUE), What’s Next? Operational Support for Busi-

ness Process Execution
20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust

Paradigm for Brain-Computer Interfacing
21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information Re-

trieval
22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenigbare

grootheden?
23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Ex-

ploring the Neurophysiology of Affect during Human Media Interaction
24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken

Document Retrieval
25 Silja Eckartz (UT), Managing the Business Case Development in Inter-

Organizational IT Projects: A Methodology and its Application
26 Emile de Maat (UVA), Making Sense of Legal Text
27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evaluation &

Brain-Computer Interface Games
28 Nancy Pascall (UvT), Engendering Technology Empowering Women
29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval
30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Reflec-

tive Decision Making
31 Emily Bagarukayo (RUN), A Learning by Construction Approach for

Higher Order Cognitive Skills Improvement, Building Capacity and In-
frastructure

32 Wietske Visser (TUD), Qualitative multi-criteria preference representa-
tion and reasoning

33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON)
34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and applica-

tions
35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolution of Con-

trollers in Swarm- and Modular Robotics

SIKS Dissertation Series 157

36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative
Modeling Processes

37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Architec-
ture Creation

38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evolution-
ary Algorithms

39 Hassan Fatemi (UT), Risk-aware design of value and coordination net-
works

40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia
41 Sebastian Kelle (OU), Game Design Patterns for Learning
42 Dominique Verpoorten (OU), Reflection Amplifiers in self-regulated

Learning
43 Withdrawn
44 Anna Tordai (VU), On Combining Alignment Techniques
45 Benedikt Kratz (UvT), A Model and Language for Business-aware Trans-

actions
46 Simon Carter (UVA), Exploration and Exploitation of Multilingual Data

for Statistical Machine Translation
47 Manos Tsagkias (UVA), Mining Social Media: Tracking Content and Pre-

dicting Behavior
48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-series

Data
49 Michael Kaisers (UM), Learning against Learning - Evolutionary dynamics

of reinforcement learning algorithms in strategic interactions
50 Steven van Kervel (TUD), Ontologogy driven Enterprise Information Sys-

tems Engineering
51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practical

framework with a case study in elevator dispatching
2013 01 Viorel Milea (EUR), News Analytics for Financial Decision Support

02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store
Database Technology for Efficient and Scalable Stream Processing

03 Szymon Klarman (VU), Reasoning with Contexts in Description Logics
04 Chetan Yadati (TUD), Coordinating autonomous planning and scheduling
05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns
06 Romulo Goncalves (CWI), The Data Cyclotron: Juggling Data and Queries

for a Data Warehouse Audience
07 Giel van Lankveld (UvT), Quantifying Individual Player Differences
08 Robbert-Jan Merk (VU), Making enemies: cognitive modeling for oppo-

nent agents in fighter pilot simulators
09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Methods

and Applications

158 SIKS Dissertation Series

10 Jeewanie Jayasinghe Arachchige (UvT), A Unified Modeling Framework
for Service Design.

11 Evangelos Pournaras (TUD), Multi-level Reconfigurable Self-organization
in Overlay Services

12 Marian Razavian (VU), Knowledge-driven Migration to Services
13 Mohammad Safiri (UT), Service Tailoring: User-centric creation of inte-

grated IT-based homecare services to support independent living of el-
derly

14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised Learning
Learning

15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Appli-
cations

16 Eric Kok (UU), Exploring the practical benefits of argumentation in multi-
agent deliberation

17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the Smart
Electricity Grid

18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classification
19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and

Scheduling
20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for In-

formation Retrieval
21 Sander Wubben (UvT), Text-to-text generation by monolingual machine

translation
22 Tom Claassen (RUN), Causal Discovery and Logic
23 Patricio de Alencar Silva (UvT), Value Activity Monitoring
24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learn-

ing
25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision

Support. A new way of representing and implementing clinical guidelines
in a Decision Support System

26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare Ser-
vice Provisioning

27 Mohammad Huq (UT), Inference-based Framework Managing Data
Provenance

28 Frans van der Sluis (UT), When Complexity becomes Interesting: An In-
quiry into the Information eXperience

29 Iwan de Kok (UT), Listening Heads
30 Joyce Nakatumba (TUE), Resource-Aware Business Process Management:

Analysis and Support
31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for Engineering

Cloud Applications

SIKS Dissertation Series 159

32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Net-
working in a Lifelong Learner’s Professional Development

33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging
Sphere

34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search
35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction
36 Than Lam Hoang (TUe), Pattern Mining in Data Streams
37 Dirk Börner (OUN), Ambient Learning Displays
38 Eelco den Heijer (VU), Autonomous Evolutionary Art
39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design of

Enterprise Information Systems
40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games
41 Jochem Liem (UVA), Supporting the Conceptual Modelling of Dynamic

Systems: A Knowledge Engineering Perspective on Qualitative Reasoning
42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning
43 Marc Bron (UVA), Exploration and Contextualization through Interaction

and Concepts
2014 01 Nicola Barile (UU), Studies in Learning Monotone Models from Data

02 Fiona Tuliyano (RUN), Combining System Dynamics with a Domain Mod-
eling Method

03 Sergio Raul Duarte Torres (UT), Information Retrieval for Children:
Search Behavior and Solutions

04 Hanna Jochmann-Mannak (UT), Websites for children: search strategies
and interface design - Three studies on children’s search performance and
evaluation

05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing Dy-
namic Capability

06 Damian Tamburri (VU), Supporting Networked Software Development
07 Arya Adriansyah (TUE), Aligning Observed and Modeled Behavior
08 Samur Araujo (TUD), Data Integration over Distributed and Heteroge-

neous Data Endpoints
09 Philip Jackson (UvT), Toward Human-Level Artificial Intelligence: Repre-

sentation and Computation of Meaning in Natural Language
10 Ivan Salvador Razo Zapata (VU), Service Value Networks
11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for Social

Support
12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Autonomous

Vehicle Control
13 Arlette van Wissen (VU), Agent-Based Support for Behavior Change:

Models and Applications in Health and Safety Domains
14 Yangyang Shi (TUD), Language Models With Meta-information

160 SIKS Dissertation Series

15 Natalya Mogles (VU), Agent-Based Analysis and Support of Human Func-
tioning in Complex Socio-Technical Systems: Applications in Safety and
Healthcare

16 Krystyna Milian (VU), Supporting trial recruitment and design by auto-
matically interpreting eligibility criteria

17 Kathrin Dentler (VU), Computing healthcare quality indicators automati-
cally: Secondary Use of Patient Data and Semantic Interoperability

18 Mattijs Ghijsen (UVA), Methods and Models for the Design and Study of
Dynamic Agent Organizations

19 Vinicius Ramos (TUE), Adaptive Hypermedia Courses: Qualitative and
Quantitative Evaluation and Tool Support

20 Mena Habib (UT), Named Entity Extraction and Disambiguation for In-
formal Text: The Missing Link

21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Environments
22 Marieke Peeters (UU), Personalized Educational Games - Developing

agent-supported scenario-based training
23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for the Big

Data Era
24 Davide Ceolin (VU), Trusting Semi-structured Web Data
25 Martijn Lappenschaar (RUN), New network models for the analysis of

disease interaction
26 Tim Baarslag (TUD), What to Bid and When to Stop
27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating Fuzzy

and Probabilistic Representations of Uncertainty
28 Anna Chmielowiec (VU), Decentralized k-Clique Matching
29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Software
30 Peter de Cock (UvT), Anticipating Criminal Behaviour
31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel Manu-

facturing and Product Support
32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data
33 Tesfa Tegegne (RUN), Service Discovery in eHealth
34 Christina Manteli (VU), The Effect of Governance in Global Software De-

velopment: Analyzing Transactive Memory Systems.
35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds: A Middleware

Design Approach
36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for Mining Structured

Process Models
37 Maral Dadvar (UT), Experts and Machines United Against Cyberbullying
38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces better:

improving usability through post-processing.
39 Jasmina Maric (UvT), Web Communities, Immigration, and Social Capital

SIKS Dissertation Series 161

40 Walter Omona (RUN), A Framework for Knowledge Management Using
ICT in Higher Education

41 Frederic Hogenboom (EUR), Automated Detection of Financial Events in
News Text

42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Relevance
Models

43 Kevin Vlaanderen (UU), Supporting Process Improvement using Method
Increments

44 Paulien Meesters (UvT), Intelligent Blauw. Met als ondertitel:
Intelligence-gestuurde politiezorg in gebiedsgebonden eenheden.

45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-Based Ap-
proach

46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redundancy, Diver-
sity

47 Shangsong Liang (UVA), Fusion and Diversification in Information Re-
trieval

2015 01 Niels Netten (UvA), Machine Learning for Relevance of Information in
Crisis Response

02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compliance Checking in
Customs Controls

03 Twan van Laarhoven (RUN), Machine learning for network data
04 Howard Spoelstra (OUN), Collaborations in Open Learning Environments
05 Christoph Bösch (UT), Cryptographically Enforced Search Pattern Hiding
06 Farideh Heidari (TUD), Business Process Quality Computation - Comput-

ing Non-Functional Requirements to Improve Business Processes
07 Maria-Hendrike Peetz (UvA), Time-Aware Online Reputation Analysis
08 Jie Jiang (TUD), Organizational Compliance: An agent-based model for

designing and evaluating organizational interactions
09 Randy Klaassen (UT), HCI Perspectives on Behavior Change Support Sys-

tems
10 Henry Hermans (OUN), OpenU: design of an integrated system to support

lifelong learning
11 Yongming Luo (TUE), Designing algorithms for big graph datasets: A

study of computing bisimulation and joins
12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dynamics: The

Effect of Context on Scientific Collaboration Networks
13 Giuseppe Procaccianti (VU), Energy-Efficient Software
14 Bart van Straalen (UT), A cognitive approach to modeling bad news con-

versations
15 Klaas Andries de Graaf (VU), Ontology-based Software Architecture Doc-

umentation
16 Changyun Wei (UT), Cognitive Coordination for Cooperative Multi-Robot

Teamwork

162 SIKS Dissertation Series

17 André van Cleeff (UT), Physical and Digital Security Mechanisms: Prop-
erties, Combinations and Trade-offs

18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational Data in
Asymmetric Memories

19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong Learners
20 Lois Vanhée (UU), Using Culture and Values to Support Flexible Coordi-

nation
21 Sibren Fetter (OUN), Using Peer-Support to Expand and Stabilize Online

Learning
22 Zhemin Zhu (UT), Co-occurrence Rate Networks
23 Luit Gazendam (VU), Cataloguer Support in Cultural Heritage
24 Richard Berendsen (UVA), Finding People, Papers, and Posts: Vertical

Search Algorithms and Evaluation
25 Steven Woudenberg (UU), Bayesian Tools for Early Disease Detection
26 Alexander Hogenboom (EUR), Sentiment Analysis of Text Guided by Se-

mantics and Structure
27 Sándor Héman (CWI), Updating compressed colomn stores
28 Janet Bagorogoza (TiU), Knowledge Management and High Performance;

The Uganda Financial Institutions Model for HPO
29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for One-

Player and Two-Player Domains
30 Kiavash Bahreini (OU), Real-time Multimodal Emotion Recognition in E-

Learning
31 Yakup Koç (TUD), On the robustness of Power Grids
32 Jerome Gard (UL), Corporate Venture Management in SMEs
33 Frederik Schadd (TUD), Ontology Mapping with Auxiliary Resources
34 Victor de Graaf (UT), Gesocial Recommender Systems
35 Jungxao Xu (TUD), Affective Body Language of Humanoid Robots: Per-

ception and Effects in Human Robot Interaction
2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Ma-

chines
02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews

through decision support: prescribing a better pill to swallow
03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowl-

edge Worker Support
04 Laurens Rietveld (VU), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and

an Application in Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environment
07 Jeroen de Man (VU), Measuring and modeling negative emotions for vir-

tual training

SIKS Dissertation Series 163

08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical
Social Networks from Unstructured Data

09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on
Cultural Artefacts

10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms
11 Anne Schuth (UVA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-

Agent Systems
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Devel-

opment in West Africa - An ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects,

Algorithms and Experiments
16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn

from Human Reward
17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms
18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web
19 Julia Efremova (Tu/e), Mining Social Structures from Genealogical Data
20 Daan Odijk (UVA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive

Playspaces: Automatic Analysis of Player Behavior in the Interactive Tag
Playground

22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging
Systems

23 Fei Cai (UVA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data;

An Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand

Searching and Browsing Behavior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computa-

tional Models to Study the Role of Human Awareness and Control in Be-
havioural Choices, with Applications in Aviation and Energy Management
Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media
28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A

study on epidemic prediction and control
29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems

- Markets and prices for flexible planning
30 Ruud Mattheij (UvT), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability

Risks for Crisis Organisations

164 SIKS Dissertation Series

33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from
just one example

34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Anal-
ysis, and Enactment

35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classifi-
cation and Recommendation

36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interac-
tion behavior optimized for robot-specific morphologies

37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and com-
putational inquiry

38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art &
Interaction Design

39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interper-
sonal Style Selection for an Artificial Suspect

40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Framework for

Analysing Institutional Design and Enactment Governance
42 Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of

Bilingual Aligned Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-

Management: From Theory to Practice
44 Thibault Sellam (UVA), Automatic Assistants for Database Exploration
45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic in-

novation networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-

Theoretic Analysis
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Opera-

tional Performance Alignment in IT-enabled Service Supply Chains
2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime

02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian
Networks using Argumentation

03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Ap-
proach with Autonomous Products and Reconfigurable Manufacturing
Machines

04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UVA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web Product

Search
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly

SIKS Dissertation Series 165

08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining in Health
Insurance Data using Outlier Detection and Subgroup Discovery

09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational
Perspective on Variation in Text

10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emotion in

Twitter #anticipointment
12 Sander Leemans (TUE), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of

social touch through haptic technology
14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling

Player Traits from Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern

Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UVA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in

Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge

Sharing: The Role of Perceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious

Gaming (A Play on Worlds)
22 Sara Magliacane (VU), Logics for causal inference under uncertainty
23 David Graus (UVA), Entities of Interest — Discovery in Digital Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
25 Veruska Zamborlini (VU), Knowledge Representation for Clinical Guide-

lines, with applications to Multimorbidity Analysis and Literature Search
26 Merel Jung (UT), Socially intelligent robots that understand and respond

to human touch
27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of So-

cial Robots: People’s Preferences, Perceptions and Behaviors
28 John Klein (VU), Architecture Practices for Complex Contexts
29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Perfor-

mance: A Moderated Mediation Model of Social Innovation, and Enter-
prise Governance of IT”

30 Wilma Latuny (UvT), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT calculations
32 Thaer Samar (RUN), Access to and Retrievability of Content in Web

Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software Docu-

mentation: A Model of Computer-Mediated Activity

166 SIKS Dissertation Series

34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics
35 Martine de Vos (VU), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from

High-throughput Imaging
37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation

Framework that Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system

and compressive sensing methods to increase noise robustness in ASR
40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration

of Human Control in Relation to Emotions, Desires and Social Support
For applications in human-aware support systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of
Mental Processes and a Smart Environment to Provide Support for a
Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing data
with applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computational Lin-

guistics in Agile Requirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Representations
02 Felix Mannhardt (TUE), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Model-

ing, Model-Driven Development of Context-Aware Applications, and Be-
havior Prediction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis
Teams in Data-Centric Engineering Tasks

05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the Infor-
mation Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of
Socio-Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems
08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems
09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VUA), Moving forward: supporting physical activity be-

havior change through intelligent technology

SIKS Dissertation Series 167

11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented Col-
laborative Networks

12 Xixi Lu (TUE), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal Gabor

Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in

a group of children
17 Jianpeng Zhang (TUE), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OUN), EMERGO: a generic platform for authoring and

playing scenario-based serious games
22 Eric Fernandes de Mello Araujo (VUA), Contagious: Modeling the Spread

of Behaviours, Perceptions and Emotions in Social Networks
23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis
24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-

Autonomous Telepresence Robots
25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motiva-

tional Messages for Behavior Change Technology
27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable Soft-

ware Analysis
28 Christian Willemse (UT), Social Touch Technologies: How they feel and

how they make you feel
29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech
30 Wouter Beek, The ”K” in ”semantic web” stands for ”knowledge”: scaling

semantics to the web
2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding sys-

tems. A graph-based approach to RTB system classification
02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations for

Assessing Class Size Uncertainty
03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on

Databases: Extracting Event Data from Real Life Data Sources
04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data
05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data
06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to Linked Cul-

tural Heritage Datasets
07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms

168 SIKS Dissertation Series

08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision
Processes

09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy effi-
ciency in software systems

10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Alloca-
tion and Prediction

11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner
Behavioral Engagement in MOOCs

12 Jacqueline Heinerman (VU), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content

Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner

Behavior & Improving Learning Outcomes in Massive Open Online
Courses

15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained and
Partially Observable Environments

16 Guangming Li (TUE), Process Mining based on Object-Centric Behavioral
Constraint (OCBC) Models

17 Ali Hurriyetoglu (RUN),Extracting actionable information from micro-
texts

18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human collec-

tive intelligence
21 Cong Liu (TUE), Software Data Analytics: Architectural Model Discovery

and Design Pattern Detection
22 Martin van den Berg (VU), Improving IT Decisions with Enterprise Archi-

tecture
23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Veri-

fication
24 Anca Dumitrache (VU), Truth in Disagreement - Crowdsourcing Labeled

Data for Natural Language Processing
25 Emiel van Miltenburg (VU), Pragmatic factors in (automatic) image de-

scription
26 Prince Singh (UT), An Integration Platform for Synchromodal Transport
27 Alessandra Antonaci (OUN), The Gamification Design Process applied to

(Massive) Open Online Courses
28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning to

prepare airline pilots for critical situations
29 Daniel Formolo (VU), Using virtual agents for simulation and training of

social skills in safety-critical circumstances
30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems
31 Milan Jelisavcic (VU), Alive and Kicking: Baby Steps in Robotics

SIKS Dissertation Series 169

32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intel-
ligence in Games

33 Anil Yaman (TUE), Evolution of Biologically Inspired Learning in Artificial
Neural Networks

34 Negar Ahmadi (TUE), EEG Microstate and Functional Brain Network Fea-
tures for Classification of Epilepsy and PNES

35 Lisa Facey-Shaw (OUN), Gamification with digital badges in learning pro-
gramming

36 Kevin Ackermans (OUN), Designing Video-Enhanced Rubrics to Master
Complex Skills

37 Jian Fang (TUD), Database Acceleration on FPGAs
38 Akos Kadar (OUN), Learning visually grounded and multilingual repre-

sentations
2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Be-

haviour
02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Prob-

abilistic Graphical Models
03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for Lan-

guage Understanding
04 Maarten van Gompel (RUN), Context as Linguistic Bridges
05 Yulong Pei (TUE), On local and global structure mining
06 Preethu Rose Anish (UT), Stimulation Architectural Thinking during Re-

quirements Elicitation - An Approach and Tool Support
07 Wim van der Vegt (OUN), Towards a software architecture for reusable

game components
08 Sayyed Ali Mirsoleimani (UL), Structured Parallel Programming for

Monte Carlo Tree Search

	Preface
	Contents
	List of Definitions
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	HEPGAME
	Monte Carlo Tree Search
	Parallelism and Parallelization
	Thread-level Parallelization
	Task-level Parallelization

	General Obstacles for Parallelization of MCTS
	Irregular Parallelism Causes Load Balancing Overhead
	Shared Data Structure Causes Synchronization Overhead
	Ignoring Data Dependencies Causes Search Overhead
	Complex Interactions Leading to Deployment Overhead

	Performance and Scalability Studies
	Scope and Research Goals
	Problem Statement and Research Questions
	Research Methodology
	Structure of the thesis
	Contributions

	Background
	ucb
	uct
	UCT Formula
	UCT Algorithm

	Parallelization Methods for MCTS
	Parallel Methods with a Shared Data Structure
	Parallel Methods with More than one Data Structure

	Case Studies
	Case 1: The Game of Hex
	Case 2: Horner Schemes

	Performance Metrics
	Playout Speedup
	Playing Strength

	Our ParallelUCT Package
	Framework of multiple benchmark problems
	Framework of multiple parallelization methods
	Framework of multiple programming models

	Thread-level Parallelization for MCTS
	Micro-benchmark Code Performance
	Xeon Phi Micro-architecture
	Experimental Setup
	Experimental Design
	Experimental Results
	Section Conclusion

	FUEGO Performance and Scalability
	Experimental Setup
	Experimental Design
	Experimental Results
	Section Conclusion
	Answer to RQ1a for FUEGO

	ParallelUCT Performance and Scalability
	Experimental Setup
	Experimental Design
	Experimental Results
	Section Conclusions
	Answer to RQ1a for ParallelUCT

	Related Work
	Answer to RQ1

	Task-level Parallelization for MCTS
	Irregular Parallelism Challenge
	Achieving Task-level Parallelization
	Decomposition of Iterations into Tasks
	Ignoring Data Dependencies among Iterations

	Threading Libraries
	Cilk Plus
	Threading Building Blocks

	gscpm
	Implementation Considerations
	Shared Search Tree Using Locks
	Random Number Generator

	Performance and Scalability Study
	Experimental Setup
	Experimental Design
	Experimental Results
	Discussion and Analysis
	Related Work
	Answer to RQ2

	A Lock-free Algorithm for Parallel MCTS
	Shared Data Structure Challenge
	Parallelization with a Single Shared Tree
	The Race Conditions
	Protecting Shared Data Structure

	Related Work
	Lock-based Methods
	Lock-free Methods

	A New Lock-free Tree Data Structure and Algorithm
	Implementation Considerations
	Experimental Setup
	The Game of Hex
	Performance Metrics
	Hardware

	Experimental Design
	Experimental Results
	Scalability and Cp parameters
	GSCPM vs. Root Parallelization

	Answer to RQ3

	Pipeline Pattern for Parallel MCTS
	Data Dependencies Challenges
	Loop Independent Data Dependency
	Loop Carried Data Dependency
	Why a Pipeline Pattern?

	Design of 3PMCTS
	A Pipeline Pattern for MCTS
	Pipeline Construction

	Implementation Considerations
	Experimental Setup
	Horner Scheme
	Performance Metrics
	Hardware

	Experimental Design
	Experimental Results
	Performance and Scalability of 3PMCTS
	Flexibility of Task Decomposition in 3PMCTS

	Answer to RQ4

	Ensemble UCT Needs High Exploitation
	Ensemble UCT
	Related Work
	Experimental Setup
	The Game of Hex
	Hardware

	Experimental Design
	Experimental Results
	Answer to the First Part of RQ5

	An Analysis of Virtual Loss in Parallel MCTS
	Virtual Loss
	Related Work
	Experimental Setup
	Experimental Design
	Experimental Results
	Answer to the Second Part of RQ5
	A Complete answer to RQ5

	Conclusions and Future Research
	Answers to the RQs
	Answer to RQ1
	Answer to RQ2
	Answer to RQ3
	Answer to RQ4
	Answer to RQ5

	Answer to the PS
	Limitations
	Maximizing Hardware Usage
	Using More Case Studies

	Future Research

	Bibliography
	Appendices
	Micro-benchmark Programs
	Statistical Analysis of Self-play Experiments
	Implementation of GSCPM
	TBB
	Cilk Plus
	TPFIFO

	Implementation of 3PMCTS
	Definition of Token Data Type (TDT)
	TBB Implementation Using TDD

	Summary
	Samenvatting
	Acknowledgment
	Curriculum Vitae
	Publications
	SIKS Dissertation Series

