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A
Appendix A

Theoretical background of approach 1

Starting from Eq. 3.3, we first take at a look at one of the two possible virtual states. The
first virtual state is where an electron from the left lead tunnels through the left molecule
onto the nanoparticle. This pathway is finalized by an electron from the nanoparticle that
tunnels through the right molecule to the right lead. The matrix element for this state is as
follows:

⟨i|Ĥ|v1⟩ ⟨v1|Ĥ|f⟩
Ev1 − Ei

=
TM1TM2

EL − ES1 + EC + eVL
. (A.1)

For the other virtual state, an electron first goes from the nanoparticle through the right
molecule to the right lead and is then followed by an electron from the left lead that goes
through the molecule onto the nanoparticle. The expression for this process is as follows:

⟨i|Ĥ|v2⟩ ⟨v2|Ĥ|f⟩
Ev2 − Ei

=
TM2TM1

ES2 − ER + EC − eVR
. (A.2)

The initial, virtual and final states are the unperturbed eigenstates of the molecule-nano-
particle-molecule system, defined analogously to thedefinitionusedbyAverin et al.[Ch. 3, ref 3].
Substituting this back into Eq. A.1, we have to take the occupation of states into account to
change the sum over states to a sum over energies. Also rewriting the delta function in terms
of the energies in the system, we obtain:

R =
2π

~

∑
EL,ER,ES1,ES2

|TM1|2 |TM2|2

×
∣∣∣∣ 1

EL − ES1 + EC + eVL
+

1

ES2 − ER + EC − eVR

∣∣∣∣2
× f(EL)

[
1− f(ER)

]
f(ES2)

[
1− f(ES1)

]
× δ(ER + ES1 − EL − ES2 − eV ).

(A.3)

We change the sum for an integral and pragmatically assume:

|TM1|2 |TM2|2 = TM1(EL)TM2(ES2) (A.4)

to obtain Eq. 3.4. This is done analogously to previous work[Ch. 3, ref 3], where these ma-
trix elements are replaced by constants. To solve this integral numerically, we use the delta
function to relate ER to the other energies (ER = EL − ES1 + ES2 + eV ) and replace
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A. Theoretical background of approach 1

the four-dimensional integral by a three-dimensional one. We also calculated the current by
relatingEL to the other energies (EL = ER + ES1 − ES2 − eV ) and found no difference
between results.
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Appendix B

Equivalence of multiple cotunneling model to second-order cotunneling

We start with the Fermi golden rule, just as with normal cotunneling:

Ri→f =
2π

~
|M |2δ(Ef − Ei), (B.1)

whereEi andEf are the initial energy and final energy of the system respectively andM the
matrix element for a fourth order cotunneling event. For the model considered by Averin et
al.[Ch. 3, ref 3], this matrix element can be written as:

M =
∑
v

⟨i| ˆ̂H|v⟩ ⟨v| ˆ̂H|f⟩
Ev − Ei

, (B.2)

whereas for the fourth order cotunneling event,M can be written as:

M =
∑

{j1,j2,j3,j4}

3∏
k=1

⟨vk+1| Ĥ |vk⟩
Evk

− Ei
⟨v1| Ĥ |i⟩ . (B.3)

The summation is now over 4! virtual states, and the product is over the whole sequence of
cotunneling events. In other words, this product can be written as:

3∏
k=1

⟨vk+1| Ĥ |vk⟩
Evk − Ei

⟨v1| Ĥ |i⟩ =
⟨i| Ĥ |v1⟩ ⟨v1| Ĥ |v2⟩ ⟨v2| Ĥ |v3⟩ ⟨v3| Ĥ |f⟩

∆E1∆E2∆E3
, (B.4)

where the energy differences of the Heisenberg uncertainty relation are taken into account
by the∆Ei in the denominator. Following the derivation by Averin et al.[Ch. 3, ref 16], we can
replace thematrix elements by transmission constants. Theprevious equation thenbecomes:

3∏
k=1

⟨vk+1| Ĥ |vk⟩
Evk − Ei

⟨v1| Ĥ |i⟩ = T1T2T3T4

∆Ev1∆Ev2∆Ev3
. (B.5)

Since the result of multiplication does not depend on the order of multiplication, we can
simply write the transmission coefficients as follows:

T1T2T3T4 = TL,M1TM1,NPTNP,M2TM2,R. (B.6)

where the transmission coefficients here are respectively from the left lead to the first mole-
cule, from the first molecule to the charging island, from the charging island to the second
molecule and from the second molecule to the right lead.
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B. Equivalence of multiple cotunneling model to second-order cotunneling

If we assume that the energy differences∆Ei are dominated by the charging energies of
the nanoparticle and molecules, all other energies can be ignored. This means that the sum
over all virtual pathways becomes a constant which only depends on the charging energies
of the molecules and nanoparticle.

∑
v

T1T2T3T4

∆E1∆E2∆E3
=

TL,M1TM1,NPTNP,M2TM2,R

ES(EC,M1, EC, EC,M2)
,

ES(EC,M1, EC, EC,M2) ≡

(∑
v

1

∆Ev1∆Ev2∆Ev3

)−1

.

(B.7)

If we now define T †1 ≡ TL,M1TM1,NP and T †2 ≡ TNP,M2TM2,R, we have:

M =
T †
1T

†
2

ES
, (B.8)

which is similar to thematrix element in cotunneling derived byAverin et al.[Ch. 3, ref 16]. This
therefore means that our fourth order cotunneling event will resemble the already familiar
cotunneling, with a transmission function that decreases with increasingCoulomb charging
energy. This in turn means that even if there are single levels in between the charging island
and the leads, the transmission probability of these levels will be constants.
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Appendix C

Pulse tube operation

The Oxford Instruments Teslatron is a closed loop cryostat, which means that it uses a com-
pression/decompression cycle in a pulse tube to cool down the sample. A typical pulse tube
is shown in Fig. C.1. In the beginning of the compression cycle, the piston moves down-
wards, increasing the pressure of the gas and forcing it to flow through the regenerator, heat-
ing it. The flow continues through the cold end of the pulse tube (TC) to the hot end (TH).
The hot end is kept at room temperature, and the compressed gas is cooled down at the end
of the compression cycle (Fig. C.1 center image). During the decompression cycle (Fig. C.1
right image), the gas in the pulse tube expands, causing it to cool down. The cool gas cools
down the heat exchanger at the cold end and enters the regenerator. Here, the regenerator
exchanges heat with the cold gas, causing it to cool down to a lower temperature than in the
previous cycle. Since the regenerator pre cools the gas before compression the cold end of
the pulse tube iteratively achieves a lower temperature. In most systems, the gas on the hot
end of the pulse tube does not reach the cold end, which thermally insulates both ends.

The Teslatron uses a two-stage pulse tube cooler to achieve its base cold stage temper-
ature of 3 K. This means that a second pulse tube and regenerator are added to the loop.
The first pulse tube and regenerator cool a stage down to between 70 and 40 K, which is
used to pre-cool the second stage. Although Fig. C.1 shows a piston to act as a compressor,
no piston is used in the cryostat. Instead, an external 7.5 kW compressor compresses and
pre-cools the helium back to room temperature. The high pressure (20 bars) helium is fed

TC

TH

TH

Reg PT

Fig. C.1: Schematic of a pulse tube cooler during various stages of the cooling cycle. Left is
before the compression cycle, center is after the compression cycle, right is after the decom-
pression cycle, seen as a difference in position of the piston. Each cycle iteratively cools down
the regenerator (Reg), by repeatedly compressing and expanding the gas in the pulse tube (PT).
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C. Pulse tube operation

into the cryostat using a rotary valve to control the flow. This valve periodically switches
between the high and low pressure lines of the compressor

In order to cool down to even lower temperatures, the 3 K stage is used to cool down
a helium gas flow. The helium exchanges heat with the stage, causing it to cool down. By
pumping on the other side of the helium, the helium expands and cools down even further.
It then flows past the insert chamber, cooling down the chamber and the insert inside of it.
By varying the flow of the helium using a needle valve, the cooling power can be regulated.
A lower flow gives a lower pressure, causing the helium to cool down more. However, since
the helium pressure is low, the amount of helium flowing past the insert chamber is also low,
causing a low cooling power. Increasing the helium flow increases the cooling power, but
raises the helium temperature. Therefore, in order to cool down quickly, the insert is first
cooled down to 50 K at high helium flow, after which the flow is reduced in order to reach
base temperature.

It is worthwhile to note that the bottom of the insert is physically separated from the
insert chamber. In order to allowheat to flow from the insert to the chamberwalls, the insert
chamber is filled with room pressure helium exchange gas before cooling down. In order to
increase heat exchange at low temperatures, extra helium is added at low temperature∗.

∗Due to the ideal gas law, a volume of room pressure gas at low temperatures will build up a high pressure
when heated up. It is therefore important that a properly working overpressure valve is fitted to the insert
chamber.
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Insert

Outer radiation shield

Inner radiation shields

Magnet

Insert radiation shields

Outer vacuum chamber

Pulse tube assembly

Sample

Insert chamber

Insert chamber gas inlet/outlet

VTI gas outlet (inlet not shown)

First pulse tube stage

Second pulse tube stage

Fig. C.2: Schematic of the Teslatron cryostat as delivered by Oxford Instruments. The bulk
of the machine is made up by the outer vacuum chamber providing thermal solation from the
environment. The placement of the two stage pulse tube and the attachment to the radiation
shields can be clearly seen in this figure.
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Appendix D

Exploring the parameter space of the alternative model

In order to determine whether the correlation between the slope and the average cotunnel-
ing length, we explore more of the parameter space by varying EC and GT . We repeat the
calculation for 30 values of the transmission probability GT/G0 and 30 values of EC, each
for 25 temperatures (22 500 IV-curve calculations for 11 250 000 total data points). Since
22 500 IV-curves are too many to analyze individually, we determine jmean and the slope at
each data point and correlate them in a histogram. The results can be seen in Fig. D.1, which
shows the logarithm of the number of occurrences of each combination of jmean and slope.
The logarithm is taken, since a large part of the IV-curves are sequential tunneling (CI and
CIII regimes) and push the rest of the histogram off of the scale.
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Fig. D.1: Histogram showing the number of occurrences for each combination of jmean and
slope, colormap is on a logarithmic scale. Left is the model using the alternative model in Eq.
5.13, right replaces the probability term P from Eq. 5.12 by the term in Eq. 5.10, effectively
removing the dependence on cotunneling length of EC . Removing this dependence slightly
decreases the cotunneling length for all systems, seen as the general downward shift of the
green graph. Otherwise, the graphs look similar. It can be seen that as the slope increases, so
does the cotunneling length. However, certain values of slope (e.g. 3.5, 7, 10) correspond to
many values of average cotunneling length. We think this might have something to do with the
sharp steps in jmean corresponding to peaks in the slope, as seen in Fig. 5.4, but the exact origin
of this is unclear.
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D. Exploring the parameter space of the alternative model

The graphs show that although no one-to-one correspondence is present, there is a cor-
relation between the slope and jmean in both diagrams. Interestingly, there are certain values
of slope which occur more often than others and correspond to a range of jmean. Although
the origin of these features is unclear, they might have to do with the stepwise increase in
jmean correlating with peaks in the slope, seen in Fig. 5.4.

Since the prediction of the Arrhenius model that jmean depends on the slope is only an
approximation valid in a certain regime, it makes sense to compare the results in Fig. D.1 to
the same calculation using the Arrhenius model. These can be seen in Fig. D.2.
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Fig. D.2: Histogram showing the number of occurrences for each combination of jmean and
slope, calculated with the Arrhenius model. Left is the model using Eq. 5.1, but replaced the
probability term by Eq. 5.12, left is calculated using Eq. 5.1. The left therefore has a reduction in
EC , and the right one has not, identical to Fig. D.1. Using the reduction in EC slightly increases
the cotunneling length in cases of high slope. The graphs are smoother than those in Fig. D.1,
indicating less preference for certain values of slope. Otherwise, there is a wide distribution in
jmean and slope, similar to the previous graph.

Although the general structure is similar to Fig. D.1, there are some striking differences.
The first is that the predicted cotunneling length according to the Arrhenius model is lower
than according to the new model. Furthermore, the graphs are more smoothed out than
Fig. D.1, whichhavemoredetailed features. Thismeans that there are nopreferred values for
slope, such as in the previousmodel, nor are there preferred cotunneling lengths. Otherwise,
the graphs have the same structure, indicating that the overall correlation between jmean and
the slope is similar in both models across all regimes. It should be noted that these figures
show data across all regimes, not only the C2 regime.

We further investigated both models in the C2 and CII regimes, so see if the link be-
tween slope and jmean is more clear here. The results are shown in Fig. D.3.
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Fig. D.3: Histogram showing the number of occurrences for each combination of jmean and
slope, calculated with the Arrhenius model (left) and the new model (right). The Arrhenius
model shows a much stronger correlation between jmean and slope in the C2 regime, although
there are still a lot of possible values for jmean for each value of slope. The New model shows
an even more peculiar pattern. Certain values of slope are preferred, which correspond to
many different average cotunneling lengths.

Comparing these figures to the previous calculations, we see that there is less freedom in
jmean for each value of slope. However, there are still many possible values for jmean at each
slope, especially for the new model. Moreover, the new model shows that certain slopes
have a very high occurrence rate, with those in between almost not happening at all. These
features can also be seen in Fig. D.1. We think that these have the same origin, and the values
in between the preferred slopes fall outside the CII regime.

From these data, we conclude that in both models, but especially in the new model, the
correlation between jmean and slope is non-trivial. Specifically, it is not generally possible to
determine jmean from α.
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Appendix E

Additional data for chapter 6

E.1 Additionalfittingon10nmnanoparticlenet-
works

In addition to the data shown in Fig. 5.8, we show that a different device on the same sample
can be fitted using the newmodel. We fit themodel to the data before and after exchange, as
can be seen in Fig. E.1. Themodel follows the pre-exchange data nicely, although it predicts
a current that is too low at around 0.1 V. This underestimation is less present in the post-
exchange data. Moreover, the model gives an accurate fit to the post-exchange data, only
needing a significant change inGT (around four orders of magnitude) andEC andEC,var
(a factor of two). The rest of the fitted parameters are almost identical.

EC EC,var GT AR N
Pre exchange 28.9 meV 5.75 meV 3.50·10-10 G0 302 36
Post exchange 15.4 meV 2.87 meV 5.94·10-6 G0 277 36
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E. Additional data for chapter 6
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Fig. E.1: Pre-exchange (top) and post-exchange (bottom) current versus voltage plots with the
corresponding fitted curves using the new model. The data is of a different device on the same
sample as the data from Fig. 5.8. The fits show the same trend as in chapter 5, with the pre-
exchange fit being slightly too low around 0.1 V, a feature which is less present post exchange.
The parameters before and after exchange are similar to those in chapter 5, with the exception
of the post-exchange GT being an order of magnitude lower in this device. Additionally, the
post-exchange EC is 25% smaller in this device, which is half the pre-exchange value.
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E.2. Full data set on slope versus voltage

E

E.2 Full data set on slope versus voltage

Fig. E.2: The original data from Fig. 5.10, in-
cluding the data removed in this figure. For a
complete description, see Fig. 5.10 in chapter
5.
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Appendix F

Fits to the data after exchange with molecular switches

The figure below shows the fits to the data obtained in chapter 6.
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Fig. F.1: Fits to the data in Fig. 6.8 using the new model. The parameters are similar to those
found in chapter 5, although EC is around twenty percent lower.
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