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3.1 Introduction
Asdiscussed in chapter 2, at sufficiently low temperature and applied bias, electron transport
through a gold nanoparticle array is expected to be dominated by higher order processes,
specifically: multiple inelastic cotunneling. Multiple inelastic cotunneling involves two or
more electrons that all contribute to the transport process. Since the intermediate states are
energetically forbidden, this form of transport binds the fates of two or more electrons to-
gether in one transport event. In cotunneling, electrons are the ultimate party poopers; if
one electron does not contribute to the event, none of the electrons will and transport does
not occur. Since each single electron contribution is independent of the other, it can be eas-
ily seen that the resulting current scales with the single electron transmission probability to
the Nth power I ∝ T N , where N > 2 is related to the amount of electrons involved [1,2].
This can also be seen in the previous chapter; in Eq. 2.7 the current scales with the conduc-
tance to the second power. Here, there are two electrons involved, and the conductance is
proportional to the single electron transmission probability.

A)

B)

C)

Fig. 3.1: Three approaches to the cotunnel-
ing problem. A: the original method devel-
oped by Nazarov et al. [3] . Here, the elec-
trons tunnel through tunnel barriers with en-
ergy independent transmission probability in
a single cotunneling process. B: electrons go
from left to right via a single cotunneling pro-
cess, but the transmission probability of the
electrons depends on their incoming energy.
C: an adaptation of the multiple cotunneling
model [4] . Electrons go from the left lead to
the right lead via a multiple cotunneling pro-
cess through various virtual states. Since the
molecules are modeled as single levels as op-
posed to the leads and nanoparticle, cotunnel-
ing through the molecules is elastic, whereas
tunneling through the nanoparticle is inelastic.

Thus far, the resulting cotunneling current has only been calculated for systems inwhich
the transmission probability is independent of energy. This assumption does not gener-
ally apply to molecules bridging between neighboring nanoparticles however, as molecular
transmission functions can be strongly energy-dependent. Understanding the influence of
the latter is not only of fundamental interest; it is also relevant for practical devices, since co-
tunneling can be utilized to enhance the signature of themolecules bridging [5] the nanopar-
ticles in an array. If, for example, the bridges are formed by molecular switches, the ratio
between the conductance in the ‘on’ and the ‘off ’ state can be artificially increased. In this
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chapter, we study the effect of an energy-dependent transmission function on transport be-
tween nanoparticles in the Coulomb blockade regime. We propose two methods (outlined
in Fig. 3.1B,C) to tackle this problem.

3.2 Theory of cotunneling mechanisms
In this sectionwe briefly review themechanisms of inelastic cotunneling. Classically, when a
system is Coulomb blockaded, no current is expected to flow. However, it was predicted [3]

and found experimentally [6,7] that due to quantum corrections, this is not completely the
case. The current flowing in the Coulomb blockade regime is due to the process of cotun-
neling [3]. Cotunneling is the simultaneous transfer of multiple electrons through energet-
ically forbidden virtual states. The basic mechanism is as follows. Consider the device il-
lustrated in Fig. 3.1A. Two leads connect to a charging island from either side through a
tunnel barrier. An electron can temporarily hop from the left lead onto the charging island.
The resulting virtual charge state is energetically forbidden, but temporarily allowed by the
Heisenberg uncertainty relation. In this time window, an electron already residing on the
islandmay hop onto the right lead. If these two processes occur within this timewindow, an
electron has effectively been transferred from the left to the right lead. The reverse process
(i.e. to the right lead) is also possible, but the symmetry between these processes is broken
by applying a voltage bias. The final charge state of the island is equal to the initial charge
state, complying with total energy conservation.

There are two different types of cotunneling; elastic and inelastic. Elastic cotunneling
can only be observed at sufficiently low bias and temperature [6], compared to the quantum
level spacing of the charging island. In an elastic cotunneling process, the electron hopping
onto the charging island and the electron hopping off have the same energy. In inelastic co-
tunneling, this is not the case. This results in the charging island being left in an excited state
after the process. The inelastic cotunneling current through a single junction as depicted in
Fig. 3.1A can be written as [3]:

I =
1

6π2
G0T 2 (eV )

2
+ (2πkBT )

2

E2
C

V, (3.1)

where T is the transmission probability of the tunnel barrier, G0 = 2e2/h is the conduc-
tance quantum,EC is the charging energy of the island,T is the temperature, kB is theBoltz-
mann constant, e is the elementary charge and V is the voltage across the junction. Since
two barrier transmissions are needed for transport to occur, it makes intuitive sense that
I ∝ T 2. However, in the derivation of Eq. 3.1, it has been assumed that the transmission
probability of the tunnel barriers is independent of energy. While this is normally a reason-
able assumption, it is not always the case. In this chapter, we will explore the possibility of
an energy-dependent transmission function. In the next section we consider the case where
the two leads are connected to the nanoparticle throughmolecules, as seen in Fig. 3.1B.The
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contact transmission is then expected to become dependent on electron energy, assuming a
Lorentzian lineshape.

3.3 Approach 1: Lorentzian transmission
In this section, we will assume that each of the two molecules involved in the cotunneling
problem can be represented by a single level, symmetrically connected to a lead and the cen-
tral nanoparticle (see Fig. 3.1B). Furthermore, we will suppose that transport through each
molecule is coherent, such that the transmission function becomes Lorentzian with a width
determined by the lead-molecule coupling [8]. Still, inelastic cotunneling behavior in the
full molecule-nanoparticle-molecule system is to be derived by allowing for virtual excita-
tions. More specifically, an electron in the lead, with an energy EL, will temporarily take
up a different energy,ES2, within the nanoparticle. As a result, the exact energy of electron
transmission through themolecule is somewhat ill-defined. To circumvent this problem, we
will assume that any change of energy, related to the formation of a virtual state, happens
inside the nanoparticle. In that case, the molecular transmission function depends only on
the energy of the incoming electron. Summarizing, we assume that all virtual processes take
place within the charging island, while transmission through the molecules can still be de-
scribed by the Lorentzian functions in Eq. 3.2:

TM1(EL) =
Γ 2

(EL − ϵL − ηLeV )2 + Γ 2
,

TM2(ES1) =
Γ 2

(ES1 − ϵR − ηReV )2 + Γ 2
.

(3.2)

Here Γ is the half width half maximum of the Lorentzian which takes into account lead-
molecule and molecule-nanoparticle coupling, ϵR and ϵL are the resonance energies of the
molecular levels (we take ϵR = ϵL in our calculations), EL, ES1 are the incoming electron
energies and ηeV determines the shift of the level as an effect of the applied voltage. We
take ηL(R) = (−)1/4 in every calculation, implying an equal coupling to both the lead and
the nanoparticle. Note that the maximum of the transmission function is taken to be unity.

To calculate the transition rate R from the initial state |i⟩ to the final state |f⟩, the
Fermi Golden Rule [9] can be expanded in order to sum over all virtual states |v⟩. Within
this perturbative approach, the small parameter is the coupling between the nanoparticle
and the two leads. The rate is given by:

R =
2π

~
∑
v

∣∣∣∣∣ ⟨i|Ĥ|v⟩ ⟨v|Ĥ|f⟩
Ev − Ei

∣∣∣∣∣
2

δ(Ei − Ef), (3.3)

where the delta function ensures total energy conservation. Ĥ is the same Hamiltonian as
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used by Averin et al., Eq. 1 [3], pragmatically extended to include energy-dependent trans-
mission through themolecules. The initial, virtual andfinal states are theunperturbed eigen-
states of the molecule-nanoparticle-molecule system. The process amplitude should scale
with the lifetime of the virtual state which is inversely proportional to the energy difference
between the initial and virtual states: Ei − Ev . There are two different virtual states as
can be seen in Fig. 3.2. Either an electron on the left lead tunnels through the molecule to
the nanoparticle, or an electron first goes from the nanoparticle through the molecule to
the right lead. These processes are complementary; if the former process causes the virtual
state, the latter leads to the final state and vice versa. For a system depicted in Fig. 3.2 the
expression for the rateR is given in Eq. 3.4.

ES1

ES2

EL

ES2

EL

ER

EM2

EM1

eV
2

eV
2

0

En
er

gy

Fig. 3.2: Energy diagram of a charging island coupled to two leads with an applied bias voltage
V . EL and ER are the electron energies of the left lead and the right lead, respectively. ES1

and ES1 are electron energies on the charging island.

R =
2π

~

∫
E

TM1(EL)TM2(ES1)

[
1

∆Ev1
+

1

∆Ev2

]2
× FFDδ(Ei − Ef) dELdERdES1dES2, (3.4)

FFD = f(EL)
[
1− f(ES2)

]
f(ES1)

[
1− f(ER)

]
.

Here, the sum over virtual states has been replaced by an integral over all relevant en-
ergies. In Eq. 3.4, the matrix elements from Eq. 3.3 have been replaced by transmission
probabilities TM1(EL) and TM2(ES1) analogously to Averin et al. [3], depending on the in-
coming electron energiesEl andES1. It should be noted that these transmission functions
are chosen for their general applicability and ease of understanding. The model presented
here is not limited to these Lorentzian-shaped transmission functions, however and would
work with other transmission functions as well. The energiesEL,ES2,ER,ES1 are depicted
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in Fig. 3.2. The energies ∆Ev1 and ∆Ev2 are defined as the energy differences between
the initial and the first and second virtual state respectively. The occupation of states on the
leads and nanoparticle are taken into account by their Fermi-Dirac distributions f(E) (a
derivation can be found in Appendix A).

Using Matlab we now calculate the cotunneling current I(V ) and differential conduc-
tance dI/dV by solving Eq. 3.4 numerically for the system in Fig. 3.2. To test the validity
of our approach, current versus voltage (dI/dV ) was calculated for increasing coupling Γ
for resonant transport (ϵ = ϵL = ϵR = 0). As the coupling increases, the width of the
transmission function (as seen in Eq. 3.2) increases. The consequence of this is that asΓ be-
comes larger, the cotunneling current should approach the constant transmission case. This
can indeed be seen in Fig. 3.3. Here,Γ was varied from 3 meV to 1 eV and compared to the
situation with constant transmission T = 1, as derived by Averin et al. [3]. In Fig. 3.4 it can
also be seen that as the coupling increases, the voltage at which the current starts to deviate
from the constant-transmission case increases as well, as expected.

0
1

2

3

4

5

6
7 Constant transmission

Γ=1 eV
Γ=300 meV
Γ=100 meV
Γ=30 meV
Γ=10 meV
Γ=3 meV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Voltage [V/EC

]

dI
/d

V
 [ A

/e
V

] x
10

-3

Fig. 3.3: Differential conductance (dI/dV ) ver-
sus voltage curves for the system in Fig. 3.2
with varying Γ . It can be seen that as the cou-
pling increases, the current approaches the
constant transmission case, as is expected.
The temperature is 116 K (10 meV/kB), the
charging energy EC is 100 meV and we take
ϵL = ϵR = 0 to ensure resonant transport
through the molecules. The maximum value
of the transmission function is unity in every
case.

Next, we study the effects of molecular gating on the cotunneling current. Gating shifts
the resonance position (ϵL and ϵR in Eq. 3.2) of the level. As a benchmark, let us first con-
sider coherent transport through a single level connected to two leads, i.e. withoutCoulomb
blockade. In that case, the maximal possible current can be calculated from the Landauer
formula at 0 K. [10] (Eq. 3.5).

I =
G0

e

∫ eV/2

− eV/2

T (E)dE. (3.5)

Clearly, themaximumpossible current is the integral over the transmission function asV →
∞. This (finite) number does not change if the peak of theLorentzian is shifted and/or if the
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temperature is changed tofinite values.∗ In the cotunneling regime, the situation is different,
as can be seen in Fig. 3.4. At low bias (for example at 0.2 eV/EC), increasing ϵ = ϵL = ϵR
away from zero, results in a decrease of the current indeed. However, at larger bias (for
example at 0.45 eV/EC), the current calculated for ϵ = 0meV is equal to the current found
for ϵ = 5 meV. In the dI/dV (see Fig. 3.4B) at large bias (for example 0.7 eV/EC), it can be
seen that the differential conductance is larger for larger ϵ. This is never the case for systems
without cotunneling, as the total current is only determined by the area of the transmission
curve that is in the bias window. This suggests that cotunneling is selective for higher energy
electrons, as long as the transmission function allows them to pass.

∗As we saw in chapter 1, the maximum current is given by: G0Γ/e
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Fig. 3.4: Plots of current and differential conductance versus voltage for the system in Fig. 3.2,
with ϵ varying from 0 to 25 meV (corresponding colors for all plots are denoted in A). The
temperature is 12 K (1 meV/kB), Γ = 10 meV and the charging energy EC = 100 meV. The
maximum transmission is unity in every case. The constant transmission curve (black) is added
for reference. A: IV-plots. At low bias, the current decreases with increasing ϵ. However, as
the bias gets larger, the difference decreases. At 0.45 eV/EC , the curve for ϵ =0 meV crosses
the curve for ϵ = 5 meV; it even crosses the curve for ϵ =10 meV at 0.75 eV/EC . B: dI/dV-
curves derived from A, magnifying the trends observed in A. It can be seen that at 0.7 eV/EC ,
the current increases most rapidly for ϵ = 10 meV. C: IV-curves calculated upon approximating
the denominator of eq. 3.4 by EC . The crossings are still present, although somewhat shifted
compared to A. D: dI/dV-curves derived from C. Again, crossings are found, but the shape of
the individual curves differs from B. This can be expected, since the denominator of Eq. 3.4 as
used in A and B diverges, in contrast to the case of C and D.

To explore possible explanations for this effect, we first note that the cotunneling cur-
rent is inversely proportional to (Ev − Ei)

2 (or ∆E2), as can be seen in Eq. 3.3. Hence,
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electrons with a higher energy are energetically closer to the island charging energy. Thus
they have a lower∆E, increasing their transmission probability (see Eq. 3.4). To test if this
phenomenon could lead to the crossing of curves as found in Fig. 3.4A and B, we have done
a similar calculation but have replaced the 1/∆E2 by 1/E2

C . The results can be seen in Fig.
3.4C. We find that even though the crossings from Fig. 3.4C, D have changed their posi-
tion, they have not disappeared. We conclude that the∆E2 in the denominator cannot be
the principal source of the crossings.

A second explanation for the crossings can be seen in Eq. 3.4. Here, the electron energy
not only appears due to the Heisenberg uncertainty relation, but also in the overall conser-
vation of energy. The delta function relating the initial to the final energy in Eq. 3.4 can
be written as δ(ES1 + ER − EL − ES1 − eV ). This means that as the voltage increases,
more cotunneling pathways are opened to allow transport. If the peak of the transmission
function is at this higher energy, these pathways can also tunnel through the molecule, in-
creasing the total current. If the peak of the transmission function lies at a lower energy, the
high energy pathways are blocked by the molecule and can therefore not contribute to the
current.

To experimentally test the predictionsmade here, a device that can gatemolecules selec-
tively is required, as a back-gate would also gate the nanoparticle. This is non-trivial, how-
ever. Fortunately, it may also be possible to test our model using molecular switches [11].
Diarylethylene based switches, for example, do not only change their total transmission,
but also the position of the resonances [12]. Our predictions could be examined on nano-
particle arrays interlinked by molecular bridges, but this would also require our model to
include percolation effects [11]. A more direct evaluation can be done on nanogap devices
with a single nanoparticle placed in between the electrodes using dielectrophoresis [13,14].
The current within the Coulomb blockade regime should then be compared to the current
outside of it for both states of the switch. This allows for a direct test of the validity of the
model proposed above.

In this section, we have assumed that the molecular coupling to the leads and nanopar-
ticle is strong. However, if this coupling is weak, the charging energy of the molecule itself
could start to play a role too [15]. In that case, elastic transmission through the molecule is
no longer possible and the only allowed pathway from the left lead to the right is through
multiple cotunneling. The next section discusses this problem.
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|i
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|V1

|V2

|V3

Fig. 3.5: The permutation {3, 2, 1, 4} that con-
tributes to the cotunneling current. Here, the
process starts with an electron hopping from the
nanoparticle to the right molecule, then from the
left molecule to the nanoparticle, followed by an
electron from the left lead to the left molecule
and is completed by transfer from the right mo-
lecule to the right lead.

In this section, we study the system de-
picted in Fig. 3.1C and introduce a charg-
ing energy to each (weakly coupled) mo-
lecule in order to shift transport across
them to the Coulomb blockade regime.
To study transport in this regime, we pro-
pose a second model based on higher or-
der cotunneling. In the previous section
our model consisted of a second-order
cotunneling event with coherent trans-
port through the molecule. However, if
the molecular energy levels are Coulomb
blockaded, direct tunneling through the
molecule is no longer allowed. There-
fore transport across the molecules will
only occur through cotunneling. In the
system depicted in Fig. 3.1C, an elec-
tron can be transferred from the left
lead to the right lead by a fourth-order
cotunneling event, consisting of a col-
lective hopping through four junctions:
left lead-molecule, molecule-nanoparticle,
nanoparticle-molecule andmolecule-right
lead.

Transport across the nanoparticle is
due to inelastic cotunneling. Since the
molecules are modeled by a single level,
transport across themolecule occurs through
elastic cotunneling. Therefore, cotunnel-
ing transport in our system is of the fourth-
order and consists of a collective combina-
tion of two elastic and one inelastic cotun-
neling events. In a second-order cotunnel-
ing event there are two possible hop per-
mutations with distinct virtual states, as stated in the previous section. However, we now
have four junctions, whichmeans that there are 4! hop permutations, eachwith three virtual
states. To calculate the total current in a four junction system, the contribution from each
permutation needs to be taken into account. This can be done by considering the matrix
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elements from Eq. 3.3 as:

M =
∑

{j1,j2,j3,j4}

3∏
k=1

⟨Vk+1| Ĥ |Vk⟩
EVk

− Ei
⟨V1|H |i⟩ , (3.6)

which sums over all possible permutations of the electron hops that yield the transport of an
electron from the left lead to the right lead, e.g. {3, 2, 1, 4} (see Fig. 3.5). The states |Vk⟩
are the corresponding virtual states analogously to those defined in approach 1, used dur-
ing the cotunneling process of each permutation, of which there are three per permutation.
The Hamiltonian in Eq. 3.6 is the same as the one in Eq. 1 of Ref. [3], with two additional
terms describing the two molecules (see below). The unperturbed eigenstates of the cen-
tral molecule-nanoparticle-molecule region are represented, analogously to Ref. [3], as |ni⟩,
with ni (i = M1,NP,M2) the number of electrons on molecule 1, the nanoparticle and
molecule 2. The tunnel couplings between the left lead and left molecule, left molecule and
nanoparticle, nanoparticle and right molecule and finally right molecule and right lead are
the small parameters in this perturbative approach.

We model each molecule as a singly occupied energy level at the initial state as depicted
in Fig. 3.5. This approximation is valid for a small bias if the energy level is in the Coulomb
blockade regime, namely ϵ = −1

2EC,M, where EC,M is the Coulomb charging energy of
the molecules. For the situation in Fig. 3.5, the initial energy for every permutation isEi =
EL+V/2+2ϵ+ES2, and thefinal energy for every permutation isEf = 2ϵ+ES1+ER−V/2.
We can thenwrite the total rate as a contribution of all possible initial and final energies, the
sum of Eq. (3.3) for every set of energies, EL, ER, ES1 and ES2. By converting the sum
into an integral and thematrix elements ⟨Vk+1| Ĥ |Vk⟩ in Eq. (3.6) into tunneling rates we
write an explicit equation to calculate the cotunneling rate in our system [3,16] (see Appendix
for details):

R =
~3

8π3
T 4
M

∫
E

∣∣∣∣∣∣
∑

{j1,j2,j3,j4}

3∏
k=1

1

EVk − Ei

∣∣∣∣∣∣
2

× fFDδ(Ei − Ef)dELdERdES1dES2.

(3.7)

TheFermi distribution functions have been added toEq. (3.7) to account for the probability
of a state being empty or occupied, accordingly. The conservation of energy is taken into
account by δ(Ef − Ei). TM is the transmission probability for an electron going out of or
into the molecule, TM takes the same role as TM1 and TM2 in Eq. 3.2, except that it is now
assumed to be a constant (set to 1) independent of electron energy.

Moreover, the matrix element from Eq. 3.6 can be further simplified if we assume that
the charging energy of themolecule and of the nanoparticle are larger than all other energies
in the system. Interestingly, the energy independence of the matrix element results in the
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multiple cotunneling behavior of the system reducing to singular cotunneling. This matrix
element then becomes:

M =
T †1T

†
2

ES
, (3.8)

with T †1 , T
†
2 taking into account the transmission probability to and from the molecules

andES is a function of the charging energies of themolecules and nanoparticle. A complete
derivation can be found in the appendix.

Using Matlab, we now calculate the cotunneling current (I(V )) by solving Eq. 3.7 nu-
merically (see Fig. 3.6). We take the charging energy of the molecule to be ten times larger
than the charging energy of the nanoparticle, EC,M = 10EC, together with a small bias
voltage and ϵ = −1

2EC,M ensures Coulomb blockade in the molecule and single occu-
pancy. Analogously to our calculations in the previous section, we first calculate the current
for varying molecular charging energies (EC,M). From Eq. 3.7, we expect the current to
decrease as the molecular charging energy increases. This can be seen in Fig. 3.6A.

Since the amplitude of each pathway scales inversely with the product of all three energy
differences ∆Ei, it can be expected that the total current should decrease with increasing
molecular charging energyEC,M. Furthermore, if the charging energies of themolecules and
nanoparticle are much larger than both the electrostatic and thermal energies (eV and kBT
respectively) in the system, the shape of the I-V curves should not change when changing
the charging energy. In Fig. 3.6B we have normalized each curve by the current at 70 meV.
It can be seen that this moves the curves very close together, confirming our expectations.
However, the rescaled curves are still not precisely identical.

If we now remove any thermal and electrostatic energy from the energy differences in
the virtual pathways, we expect the IV-curves to fully overlap. Removing all energies except
the charging energies in our calculation of the energy differences, we get the results shown
in Fig. 3.6C. After normalization, these curves, displayed in Fig. 3.6D, lie fully on top of
each other, as expected.

Interestingly, the calculations in this section predict that when a charging island is cou-
pled to leads through Coulomb blockaded single levels, it is not possible to distinguish be-
tweenmultiple cotunneling and inelastic cotunnelingwith a constant transmission function
(as derived by Averin et al. [3]). This holds for any system where transport across the system
is through two instances of elastic cotunneling and one instance of inelastic cotunneling.
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Fig. 3.6: IV curves for varying EC,M , calculated using Eq. 3.7. The temperature is set to 11.6 K,
we take EC = 100 meV, and EC,M is varied between 1 and 1.5 eV (see legend of A for the
color coding, holding for all panels)A: IV-curves calculated. It can be seen that asEC,M increases,
the current decreases, as expected. B: Normalized IV-curves using the same parameters as in
A, i.e. the current at eV/EC = 0.7 has been set to unity for every curve. It can be seen that this
normalization corrects for most of the differences due to variations in EC,M . However, it does
not fully remove the variation between the curves. C: IV-curves calculated for varying EC,M ,
where all terms in the denominator other than the charging energies have been neglected. The
result of this is that the sum over all virtual states is now a constant, independent of voltage.
It can be seen that the total current is lower than in A. D: Normalized IV-curves using the
same parameters as in C (normalization at eV/EC = 0.7 again). Now the curves, calculated for
different EC,M , lie exactly on top of one another.
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3.5 Conclusion
We have explored two approaches to calculate inelastic cotunneling through a nanoparticle
connected to two leads through molecules with energy-dependent transmission functions.
In the first approach, the molecules are modeled as having single-level Lorentzian trans-
mission functions. Interestingly, we find that at large applied bias, the current for systems
with the molecular levels slightly off-resonant can be higher than for the case of resonant
molecular levels. This remarkable behavior is a direct consequence of transport taking place
via cotunneling. To test this prediction, a nanoparticle covered with molecules could be
trapped in a nanogap using dielectrophoresis. Cotunneling transport in such a system is ex-
pected to deviate from results derived by Averin et al. [3]. In the second approach we model
the molecules as Coulomb blockaded, so that transport across the molecules takes place
through elastic cotunneling. We show that at low temperature and bias, themultiple cotun-
neling current should approach the expression for regular cotunneling. Our calculations
support this by showing that the IV-curves are identical when normalized.
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