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Kinetic pathways of sheared block copolymer systems derived
from Minkowski functionals

G. J. A. Sevink and A. V. Zvelindovsky
LIC, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands

~Received 23 March 2004; accepted 27 May 2004!

We employ Minkowski functionals to analyze the kinetics of pattern formation under an applied
external shear flow. The considered pattern formation model describes the dynamics of phase
separating block copolymer systems. For our purpose, we have chosen two block copolymer
systems~a melt and a solution! that exhibit a hexagonal cylindrical morphology as an equilibrium
structure. Our main objective is the determination of efficient choices for the treshold values that are
required for the calculation of the Minkowski functionals. We find that a minimal set of two treshold
values~one from which should be equal to an average density value and another to a higher density
value! is sufficient to unraffle the phase separation kinetics. Given these choices, we focus on the
influence of the degree of phase separation, and the instance at which the shear is applied, on the
kinetic pathways. We also found a remarkable similarity of the time evolution of Euler characteristic
and the segregation parameter for the average density choice. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1774982#

I. INTRODUCTION

Many phenomena in nature produce complex spatio-
temporal patterns. Although the interactions due to which
these patterns are formed can be simple, the dynamics of
patterns can be quite nontrivial. Examples of such systems
are cellular automata, superconductors of first and second
type, Rayleigh-Bernard cells in liquids, Belousov-
Zhabotinski chemical reactions, and block copolymers.
Block copolymers are long, often flexible, molecules consist-
ing of chemically different blocks. In a melt or solution they
tend to microphase separate~bringing similar blocks to-
gether! under certain conditions, on a scale that is set by the
blocks characteristic length, often nanometers.1 Microphase
separation leads to the formation of periodic structures simi-
lar to crystals. However, upon formation, the patterns are
often highly defected and far from perfect. As block copoly-
mers are fluids with high overall viscosity, the resulting char-
acteristic times for defect movement and annihilation can be
very long. Moreover, processing conditions such as shear2,3

or applied electric fields can influence this behavior and de-
termine to a large extend how the phase separation can pro-
ceed. Determining the symmetry groups for a defected struc-
ture is often a difficult task both experimentally and
theoretically. In computer simulations one obtains informa-
tion on the three-dimensional microstructure. As the struc-
ture is often very defected, simple visual inspection is not
sufficient. Fourier analysis is a common procedure in this
case, but helps only if structure is already mostly periodic. In
the initial stages of microphase separation the structure is
often reminiscent to the periodic one, but deformed—
stretched, squeezed, etc. This is in particular the case if the
system is subjected to external fields such as for instance
shear flow. In this situation the analysis of topological and
geometrical quantities, followed by an expression for the
similarity measure with respect to perfect structures, would

be of great help. The efficient tool for this are additive image
functionals like Minkowski functionals. Minkowski func-
tionals were proven to be very valuable for the description of
complex morphologies in many areas of science, ranging
from phase separating~block co!polymer systems4–11 like
the one considered here, complex fluids,12–15 composite
materials,14 reaction-diffusion systems,15,16 to large-scale
structures in the universe.15,17,18An extensive review, includ-
ing many examples of application, was recently published.19

This field is still growing; a new and very promising vecto-
rial Minkowski functional was recently developed by Klaus
Mecke.

In many cases the structures are given by fields on a
grid: density fields or order parameter fields. In the proce-
dure for the calculation of the Minkowski functionals, there
is a question of choosing the so-called threshold value for
images. For fields, this choice is basically equal to the choice
of the position of interfaces in a microstructure. Usually one
presents Minkowski functionals for a set of several threshold
values. As the values of the Minkowski functionals are sen-
sitive to these values, the interpretation of results is not
unique. Here we demonstrate that the threshold value can be
chosen based upon physical considerations. We show that
this choice is crucial for the correct interpretation of a dy-
namical pathway of a pattern.

II. PATTERN FORMATION IN BLOCK COPOLYMER
SYSTEMS

We give a short outline of the theory used in the simu-
lations; for more details see Refs. 20, 21 and references
therein. We model the pattern formation that occurs when a
block copolymer melt or solution is brought into a state
where the chemically different blocks phase separate on a
mesoscopic level~1–1000 nm!. In our model, a block co-
polymer molecule is represented by a Gaussian chain, con-
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sisting ofN beads. Each bead typically represents a number
of chemical monomers. Differences in monomers gives rise
to different bead species~for example,ANA

BNB
, for a diblock

copolymer,ANA/2BNB
ANA/2 , for a symmetric ABA-triblock

copolymer;N5NA1NB). The three-dimensional volume of
the simulated system is denoted byVsyst, and containsn
Gaussian chains. Solvents are incorporated as single beads.22

The interchain interactions are incorporated via a mean field
with interaction strength controlled by the Flory-Huggins pa-
rametersx IJ . The microstructure patterns are described by
the coarse grained variables, which are the density fields
r I(r ) of the different speciesI . Given these density fields a
free energy functionalF@r# can be defined as follows:20–22

F@r#52kT ln
Cn

n!
2(

I
E

Vsyst
UI~r !r I~r !dr1Fnid@r#. ~1!

HereC is the partition function for the ideal Gaussian chain
in the external fieldsUI andFnid is the contribution due to
the nonideal mean-field interactions. The external potentials
UI and the density fieldsr I are bijectively related in a self-
consistent way via a density functional for Gaussian chains.
Several methods can be employed to find the minimum of
free energy@see Eq. ~1!# and equilibrium density fields
r I(r ). They can roughly be divided intostatic anddynamic
methods, although a number of hybrids exist which are gen-
erally referred to as quasidynamic methods~for instance23!.
A rather complete and recent review is given in Ref. 24. In
this article, we use a dynamic scheme that has been devel-
oped within our group. An advantage of this scheme is that it
intrinsically considers dynamic pathways towards a free en-
ergy minimum, including visits to long-living metastable
states. In this sense, the model can be seen to mimic the
experimental reality when compared to static schemes,
which are optimizations, based upon mathematical argu-
ments. The thermodynamic forces driving the pattern forma-
tion in time are the gradients of the chemical potential
m I(r )5dF/dr I

20–22

]r I

]t
5MI“•r I“m I1h I , ~2!

whereMI is a constant mobility for beadI and h I(r ) is a
noise field, distributed according to the fluctuation-
dissipation theorem. In the presence of a steady shear flow,
with velocity vx5ġy, vy5vz50, an extra convection term
is added to the right-hand side of the diffusion equation~2!
equal to2ġy¹xr I . Hereġ is the shear rate~the time deriva-
tive of the shear straing! and sheared boundary conditions
apply.20,25–28

III. MINKOWSKI FUNCTIONALS

Determining the underlying fundamental mechanisms in
the structure transformation in block copolymers is a difficult
task. The huge scales in space and time covered by our~par-
allel implemented! simulation technique, hampers us from
grasping the important features from imaging the four-
dimensional~4D! data alone. To give an idea: for each of the
simulations considered in this article, the amount of data is

as large as 643643645262 144 double-precision~8 bytes!
spatial data times 600~writing spatial information every 50
time steps for a total of 30 000 time steps!, resulting in a total
amount of data for each simulation of almost 1.3 Gbyte.
Modern integral-geometry morphological image analysis
provides the tool to assign numbers to the shape and connec-
tivity of patterns formed by pixels of 3D images, by means
of additive image functionals. An example of such additive
image functionals are the Minkowski functionals, that de-
scribe the morphological information contained in an image
by numbers that are proportional to very simple geometrical
and topological quantities: the volumeV, the surface areaS,
the mean curvatureH, and the Euler characteristicx. The
first step in the analysis of the information contained in our
density fields is therefore to compute the Minkowski func-
tionals themselves. This is not a direct procedure: a thresh-
olding step must be performed to generate a black-and-white
image from the density fields, prior to the Minkowski func-
tional calculation. A complicating factor, that will be consid-
ered in detail in the remainder, is the resulting dependency of
the Minkowski functional values on the choice of the thresh-
old. The second step is to study the behavior of the four
numbers as a function of time.

A. The calculation procedure

The implementation of the numerical calculation of the
Minkowski functionals used here, is adapted from the work
of Michielsen and de Readt.19,29 A short overview is pre-
sented here for completeness. The starting point is a 3D den-
sity field r, that is the output of our simulations at a time step
~TMS!. Our calculations are carried out on a grid~although
this grid is only introduced in the implementation of the
continuous equations!. The pictureP that is described by the
Minkowski functionals, is build up from the reference field
r~r ! in the following way:

P~r !5Q~r~r !2h! , ~3!

whereQ(x) is the Heaviside step function, giving 1 or 0. In
other words, the black-and-white pictureP ~with black pix-
els representing the object, and white pixels the background!
is build up from the fieldr by thresholding, and setting the
values of the thresholded field to binary valued pixels. One
should keep in mind that the resulting pictureP ~and its
corresponding Minkowski functional values! is also a func-
tion of the choice of the threshold valueh: P~r ! is in fact
P(r ,h). The pictureP(r ,h) can be completely described in
terms of Minkowski functionals.

We consider each pixel as a union of the disjoint collec-
tion of open elements of lengthDx ~with Dx the discretiza-
tion length!: nc interiors,nf faces,ne edges, andnv vertices.
For a single cubic 3D pixel, the number of these basic ele-
ments are:nc51, nf56, ne512, andnv58. The procedure
that follows is simple due to the additivity: the values for the
complete imageP are calculated by simply adding black
pixels to an initially completely white background~where all
geometrical and topological values are equal to zero!. The
pixels themselves are build from the disjunct elements, for
which the Minkowski functional values~or similarly, its
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morphological and geometrical counterparts! can easily be
calculated.19 This leads to a very simple expression for the
geometrical and topological quantities of a three dimensional
object,

V5nc , S526nc12nf , 2H53nc22nf1ne ,

x52nc1nf2ne1nv . ~4!

The implementation is therefore very straightforward~it can
be found in Ref. 29!, and should only be optimized with
respect to double counting. As our simulations are carried
out with periodic boundary conditions, we update boundaries
prior to the Minkowski functional calculation by a common
procedure: we add an extra layer at all sides of the original
grid with the correct~periodic! boundary values. As the pro-
cedure described above is based on the information that is
contained by the grid, we also compared the results of our
calculation with a method that interpolate the grid values by
a marching cube algorithm.30 Especially the surface areaS
and mean curvatureH may deviate between the two, due to
the rather crude discretization used in our method. However,
for the box size under consideration, we found that this dis-
cretization effect is negligible.

B. Relation between structure topology
and Euler characteristics

The Minkowski functionalx of Eq. ~4! is the same as the
Euler characteristic defined in algebraic topology. Using this
equality, the Minkowski functionalx can be understood as
the number of connected components minus the number of
tunnels~holes! plus the number of cavities. For instance,x
51 for a solid sphere,x52 for a hollow sphere,x50 for a
torus, andx521 for ` shape which has two holes. Due to
the additivity, we can use this knowledge for the determina-
tion of the topology of the majority part of the local struc-
tures from the Euler characteristic. For AB and ABA block
copolymers, the amount of amenable mesostructures is lim-
ited to micellar, cylindrical, bicontinuous, or lamellar mor-
phologies. This observation leads to a few very simple rules
for the interpretation of structures: very positivex can be
interpreted as majority of micellar~spherical or cylindrical!
structures, very negativex as highly connected structures
with many tunnels. From the Euler characteristic it is impos-
sible to distinguish between spherical and cylindrical mi-
celles; we therefore will refer to these structures as micelles.
An Euler characteristicx50 can be interpreted as a collec-
tion of tori, which, due to the periodic boundary conditions,
is equal to a collection of highly oriented cylindrical
domains.

C. The choice of the threshold

A normal procedure is to split the interval of amenable
density values on the grid~in our case@0,1#! into 256 bins of
equal width; the number 256 reflects the number of levels
that are present in a 8 bits greyscale image. Consequently, a
threshold valuehbinP$0,..,255% is chosen, and the pictureP
is constructed by placing black pixels~of binary value 1!
using Eq.~3!, with h5hbin/255. Considering all 256 thresh-
old values as a function of time would lead to high redun-

dancy and an explosion of data that is difficult to interpret. A
standard approach is to choose one value of the threshold;
often this value is takenhbin5128 (h'0.5). In the remain-
der, we show how to use physical knowledge about our sys-
tem to condition the choice of the threshold, and therefore
limit the amount of data generated.

All calculations @we numerically solve Eq.~2!# start
from uniform density fieldsr I(r )5r I

0 , with r I
0 the average

density or average concentration of blockI . This reflects the
case were all components are completely mixed. During the
simulation, the total concentration of all speciesI remains
constant. Let us consider a system in course of time. The first
step of simulation corresponds to a quench of the system into
an ordered phase. Locally, deviations of the average valuer I

0

start to develop, in time leading to a final fully phase-
separated melt or solution with valuesr I(r ) between the
natural extremes 0 and 1. The starting and final states of the
system both have distinct different features. A schematic il-
lustration can be found in Fig. 1. Phase separation consists of
two simultaneous processes: the amplitude of the deviation
of the density from its average value grows in time, and
domains of density inhomogeneity change their shape and
size. Let us consider the first process. In Fig. 1 we sketch the
growth of density inhomogeneity for a 1D system. If we
choose the threshhold value equal to the average density
~solid straight line!, the pictureP will have the same features
~connectivity, domain size! for the upper and lower sketches.
For an arbitrary threshold value~dashed line! the features
will be very different: the lines cross the graphs in different
positions, therefore both the connectivity and domain shape
~and even the number of domains! will be different. In this
case, the pictureP is a view on ‘‘the top of the iceberg.’’ For
the second process, where the domains change as well, the
top of the iceberg view is very sensitive to small changes in
inhomogeneity. Changes in domain shape and connectivity
will be in particular seen under the influence of externally
applied shear flow. Therefore by combining two threshold
choices, from which one is equal to the average density value
(h5r0), one can separate information originating from the
two processes that contribute to phase separation.

FIG. 1. Schematic view on the influence of the threshold choice in 1D case.
From top to bottom: development of density inhomogeneityr(x) ~non-
monotonic line! as a function of spatial coordinatex in course of time due to
the progress of phase separation. Straight solid line—level of average den-
sity; dashed line—an arbitrary level.
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In the applications we will therefore consider two
choices for the systems under consideration:h50.5 andh
5r0.

IV. APPLICATION

We analyze the dynamics of structure formation of two
block copolymer systems under an applied shear flow. One
system is a diblock copolymer melt, the other is a solution of
triblock copolymer. The chain architecture and presence of
the solvent might have an influence on the kinetics. Although
the systems differ in several respects, they both form a cy-
lindrical microstructure, which in equilibrium would be a
perfect array of hexagonally packed cylinders. In absence of
the applied shear, the cylinders would be hexagonally packed
on a local scale, but the orientation on a larger scale would
be isotropic, and the structure would have many defects of
relatively low energy.22 We study two shear scenarios, which
differ in the moment that shear was applied to the systems.
This allows us to clarify the influence of shear on both pro-
cesses occurring during phase separation: the growth of den-
sity inhomogeneity and change of domains. The evolution of
both structures in the first shear scenario is shown in Fig. 2.
Shearing of the second system in the second shear scenario
was previously published in Ref. 31. Visual inspection of
images confirms the development of hexagonally arranged
cylinders from an initially poor structure. Initial stages~first
two images in each row! do not exhibit easily spotted differ-
ences, while the more developed structure is clearly more
defected in case of a melt. Two mechanisms play a role in the

formation of a structure: microphase separation is dominant
at the initial stages, orientation of domains is predominant at
later stages. To deduct the details of the processes and their
interplay, one needs to examine a tremendous number of
images in three dimensions. Some guiding is obviously very
desirable. Fourier transformation gives some information on
later stages of alignment process, but is not conclusive at the
initial stages.31 Although visual inspection suggests that there
is a difference in the development of well aligned cylinders
between the melt and the solution, no decisive conclusion is
possible.

We can characterize the degree of phase separation in a
system by considering a segregation parameterPI5r I

2

2(r I
0)2 ~we omit the indexI in the remainder as we will

always consider the cylinder forming component!.22 In a ho-
mogeneous systemP50, while in totally segregated systems
Pmax5r02(r0)2 ~provided that the sum density of all compo-
nents is chosen to be 1!. For the melt system under consid-
eration r050.3, while for the solutionr050.33, which
gives roughly the samePmax in both cases. Figure 3 shows
the time evolution of the segregation parameter for the two
systems. The segregation parameter for the triblock copoly-
mer solution is an order of magnitude lower than for the
diblock copolymer melt. The reason for this difference is that
for the considered Flory-Huggins interaction parameters the
degree of segregation is higher for the melt than for the so-
lution. This clarifies our choice of systems: we can study the
kinetics of phase separation in systems having very different
degrees of phase separation but the same equilibrium micro-

FIG. 2. Top: snapshots of theA3B7 diblock copolymer melt. Bottom: snapshots of the 55% solution ofA3B9A3 triblock copolymer in a one-bead solvent. The
block interaction parameters for the solution were previously published in van Vlimmerenet al. ~Ref. 22!, for the melteAB57.5 kJ/mol. The shear parameter

was choseng̃̇50.001@see~Ref. 20! for details#. The snapshots are taken at dimensionless time steps~from left to right!: 200, 2000, and 25 000 TMS. Fot the
both systems, shear was applied from TMS50. The snapshots show isosurfaces of the cylinder forming component atr I50.33.
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structure~cylinders!, and, moreover, roughly the same aver-
age density of the cylinder forming block. If we would
choose one polymeric composition, say a diblock copolymer
melt, and vary the degree of phase separation by varying the
Flory-Huggins parameters to have to same large difference in
separation, we would necessarily shift into the phase space
where system experiences another symmetry, different from
cylinders.

As one could expect from a global parameter such asP,
it monitors the degree of phase separation rather well, but
does not give any information on local rearrangements in the
structure. To this aim, we consider the Minkowski function-
als as a function of time, that were calculated by the expres-
sion of equation Eq.~4!. Following the motivation discussed
in the preceding section we consider two different choices of
threshold value:h5r0 and an arbitrary one,h50.5.

The Euler characteristic is most illustrative. For the so-
lution ~Fig. 4, top! we observe a large influence of the choice
of the threshold: choiceh5r0 shows a very positive Euler
characteristic, while forh50.5 this number is very negative.
For both choices, the limiting behavior of the Euler charac-
teristic with increasing time is zero, which is reached at the
same instance in time. This value can be associated with the
state of well aligned cylinders~see Sec. III B!, as we can also
see from Fig. 2. The fact that the Euler characteristics at later
stages coincide is therefore expected, as the equilibrium mor-
phology of aligned cylinders is reached at an early stage
~around TMS510 000) and the degree of phase separation
and the position of the interfaces in space does no longer
significantly change. The Euler characteristic for the melt
~Fig. 4, bottom! is distinctively less sensitive to the different
choices of the threshold. For both choices, the Euler charac-
teristic is negative at the initial stages, be it that the Euler
characteristic is significantly lower forh50.5. At later
stages, the two curves approach and coincide to the end.
Based on the Euler charateristic, the two polymer systems
would have completely different kinetic pathways of phase
separation depending on the choice of the threshold. How-
ever, the difference is not so surprising as it might look at the
first glance. If the threshold is chosen at average density

value ~j in the graphs! both systems develop themselves
starting from the initially highly interconnected network
~very negative Euler number! towards infinite cylinders
~tori!, slowly reducing the number of connections and there-
fore holes. This threshold value ‘‘sees’’ all density deviations
aroundr0, even very small ones. As it is clear from the
sketch in the Fig. 1 the topological picture of higher density
modes will be different. If the arbitrary valueh is higher then
r0 ~as in our case!, less interconnections will be seen, as they
have lower density values then tops of the iceberg. Due to
that reason the Euler number for both systems is higher in
case ofh50.5 ~s in the graphs!. Moreover, if the system has
a lower degree of phase separation~as the solution in our
case, Fig. 3! the number of ‘‘seen’’ interconnections is even
less. In this case, the density deviations overshooting theh
50.5 value will be mostly seen as topological micelles, and
the Euler number will be positive~Fig. 4, top,s!. As the
micelles grow and merge into the cylinders~tori!, the Euler
number levels down. As a result, by combining information
from the evolution of the Euler characteristic for two
choices, we conclude that there are two simultaneous pro-
cesses in the kinetic pathway of the structure rearrangement
in a flow. One is removement of interconnections~defects!

FIG. 3. The segregation parameterP as a function of time for the cylinder
forming component. Shear is applied from TMS50. The noisiness of the
lines is a reflection of the noise in the dynamic equations.

FIG. 4. The Euler characteristic as a function of time for the cylinder form-
ing component in the solution~top! and in the melt~bottom!. The shear was
applied starting from TMS50. The Euler characteristics were calculated for
two choices of the threshold parameter:h5r0 ~s!, and an arbitrary one,
h50.5 ~j!.
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between cylinders and another is merging of micelles into
cylinders. The relative contribution of these processes into
the pathway depends on the degree of phase separation.

Figure 5 shows the volume, surface area, and mean cur-
vature for one of the polymer systems~the solution! for the
two different choices of the threshold. The volume and sur-
face area forh50.5 are lower than forh5r0 simply due to
the fact that there are always less regions with high densities

than with the average one. The fact that the volume and
surface area are noisy forh50.5 shows that the high-density
field values are much more sensitive to the breakage and
reformation of local structures. Partial melting of already
phase separated structures makes them drop out of the
thresholded image. Then they emerge again, first as micelles.
As the number of structures with high-density values is
lower, the noisiness in graphs is higher. The volume forh
5r0 decreases fast in the very beginning of the phase sepa-
ration and then stays constant. The most drastic drop in vol-
ume corresponds to the times when phase separation shoots
up ~see Fig. 3!. At that stage the system microphase separates
from the initially homogeneous state, decreasing the contacts
between different blocks and therefore lowering the enthal-
pic contribution to the free energy. The slight increase of the
volume forh50.5, however, is much slower. It corresponds
to the fact that high-density regions are still growing while
phase separation continues, as it is seen on slight increase of
segregation parameterP on the same time scale~Fig. 3!. As
the volume value in this case is smaller than forh5r0 this
increase does not contradicts with the decrease of the total
free energy. The surface area forh5r0 is decreasing, which
suggests that the surface tension of such an interface is posi-
tive. As the surface area levels out at the same time as the
Euler characteristic, this suggests that the main mechanism
of reducing surface area is due to removal of interconnec-
tions in the structure. The surface area of high-density do-
mains (h50.5) is roughly constant~after averaging over the
noise!. The volume in this case is slightly increasing, sug-
gesting that the domains adapt a more round shape in the
cross section; a mechanism that indeed occurs with cylinders
in a flow, see Fig. 2. The mean curvature for both threshold
choices decreases~apart from the very first stages of phase
separation for the choiceh5r0). The monotonic decrease
after the initial stages suggests positive bending constants of
the interfaces. The two graphs of the mean curvature are
qualitatively very different in the very first stages of phase
separation~see Fig. 3 as well!. At that stage the interfaces are
only developing. The mean curvature for the average density
choice h5r0 rapidly grows at the very beginning. In this
case the system starts to develop from the homogeneous den-
sity r0, and initially consists of a network of interconnec-
tions with very diffuse interfaces, induced by the noise. This
network of interconnections is rich of saddle points which
have low mean curvature. While phase segregation
progresses and the network of interconnections coarsens, the
interconnections become longer and posses substantial cylin-
drical parts in between. As a result, the mean curvature in-
creases. As the interface develops, the process continues
mostly by breaking interconnections~therefore reducing the
number of saddle regions!, and the mean curvature drops.
For the high-density domains (h50.5) the decrease is per-
sistent during the evolution and is much more drastic due to
the fact that the system for this threshold choice consists
initially of spherical micelles with have higher curvature
than that of final cylindrical micelles. In this case the inter-
face is only seen starting fromh50.5.r0 and therefore will
be simply absent during first few time steps. This is not

FIG. 5. The volume, surface area, and mean curvature as a function of time
of the cylinder forming component for the solution. The shear was applied
starting from TMS50. The Minkowski functionals were calculated for two
choices of the threshold parameter:h5r0 ~s!, and an arbitrary one,h
50.5 ~j!.
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observed in the graph, because the system is first stored after
50 time steps.

In the remainder, we will concentrate on the Euler char-
acteristic as a function of time. We have seen already, that
the Euler characteristic is a valuable means to distinguish the
dominant mechanisms in kinetic pathways. If we compare
the melt and the solution~Fig. 6! for the thresholdh5r0, we
see that the topological pathways are distinctly different. In
the melt, initially there are less connections than in the solu-
tion, and most of the connections are easily removed. The
remaining connections are very long living. The growth of
the Euler number for the solution is initially slower, and has
a small characteristic plateau around the first thousands time
steps. After this temporarily stagnation, the Euler number
continues to grow, overshoots the values for the melt, and
reaches the state of perfect cylinders, much more perfect than
the melt system~compare also final images in Fig. 2!. This
difference can be explained bearing in mind the results for
the second choice of the threshold value, Fig. 4. The solution
is a much less segregated system than the melt~see Fig. 3!.
High-density regions appear as micelles in the first stages of
phase separation~Fig. 4, top,s!. The micelles will be seen
also at lower threshold values, in reduced quantity, among
newly emerging structures. In the very beginning the number
of micelles grows~increase in Fig. 4, top:s!. The same
process may be expected at other threshold values. This, to-
gether with breakage of interconnections, contribute to the
initial fast growth of Euler number ath5r0. Consequently,
the number of micelles is decreasing, as they merge into the
cylinders. Forh5r0 the two processes~a decrease of mi-
celles and breakage of interconnections! therefore balance
each other, resulting in a short plateau in the Euler number
graph. Finally, when most of the micelles have disappeared,
the second processes takes over and the system proceeds
towards a perfect cylindrical phase. One should bear in mind
that as the solution is much less segregated than the melt,
new micelles will appear and coalesce all the time, which is
making the initial slope of the curve smaller than the one for
the melt system.

As we have two processes in the phase separation in-
volved, namely, development of interfaces and domain rear-

rangement, one should study to what extend shear affects
either of them. In the preceding paragraphs we discussed the
case of shear applied from the start. Here, we proceed with a
discussion of the case where the shear was applied well after
the interfaces were formed, so that we can separate the two
processes. The significance of the instance at which the shear
is applied can already be seen in the segregation parameter,
as shown in Fig. 7. For both systems we have studied two
cases: case 1 where the shear is applied from the beginning,
and case 2 where the shear is applied to an already phase
separated structure at a later instance. The influence of shear
is stronger for a weaker separated system~solution, Fig. 7,
top!. In both melt~see inset in Fig. 7, bottom! and solution
we see the enhancement of phase separation by shear at the
very first stage, when the interfaces are formed. After the first
thousand time steps the shear starts to suppresses the phase
separation in both systems. That could be due to the fact that,
at this stage, the domain rearrangement starts to play a major

FIG. 6. The Euler characteristic as a function of time of the cylinder form-
ing component for two systems. The melt is denoted byl, the solution by
L. Shear was applied at TMS50.

FIG. 7. The segregation parameterP as a function of time of the cylinder
forming component for the solution~top! and the melt~bottom! at different
shear scenarios. The label 1~s! refers to the situation where the shear is
applied from the beginning; label 2~d! refers to the case where the shear is
applied at TMS55000~melt! and TMS510 000~solution!. The inset in the
bottom figure focusses on the enhancement of phase separation by shear at
the very early stages in the melt system. The noisiness of the lines is a
reflection of the noise in the dynamic equations.
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role. The shear breaks some domains such that they can re-
connect in the flow direction.27,31This phenomena is equiva-
lent to partial melting of the microstructure, and the segre-
gation parameter is therefore lower. This region is, however,
relatively short for the solution when compared to the melt
~for the melt this region extends until the instance where
shear is applied in case 2, TMS55000). This could be ex-
plained by the fact that, as the solution is a much weaker
segregated system than the melt, the domain breakage by
shear occurs easier in the solution. By the time most of the
interconnections are removed, the system consists of cylin-
ders in the direction of flow. In general, the system without
interconnections is in true equilibrium~without shear!, and
has a lower free energy than the system with interconnec-
tions. Therefore, if the system reaches that state of perfect
cylinders in the flow direction, it continues to enhance the
interfaces, and has a higher segregation parameter than the
system without shear, full of structural defects like intercon-
nections. The much stronger segregated melt system did not
reach the perfect cylinder state even after longer shear, so it
is simply not yet in the state just discussed for the solution.
The kinetics of defect removal in the stronger segregated
system is simply slower. When shear is applied at a later

instance, to an already well separated system, partial melting
occurs~drop inP in Fig. 7!. The weaker the phase separation
in the system the more the structure melts. This melting con-
sists of two contributions, one of which is due to overall
partial melting of the interfaces, and second and most pro-
found is due to the breakage of domains like interconnec-
tions and cylinders. Both systems recover and reach the same
segregation parameter value as in the scenario where the
shear was applied form the beginning. Therefore, both sys-
tems do not have a long memory of the shear history.

The Euler number gives more information of the kinetic
pathways for the above mentioned shear scenarios. We fur-
ther elaborate on the effect of different shear instances and
threshold choices in Fig. 8. In this figure, the left column
shows the Euler characteristics for choiceh5r0 of the
threshold and different instances of applied shear; the right
column shows the effect of difference choices of the thresh-
old for the second shear scenario~where the shear was ap-
plied at a later instance!. The Euler graphs in the left column
of Fig. 8 are remarkably similar to the graphs of the segre-
gation parameterP for the same systems~shown in Fig. 7!.
All conclusions which have been just drawn on basis of the
segregation parameterP in Fig. 7 and previous knowledge

FIG. 8. Euler characteristics as a function of time of the cylinder forming component for the solution~top! and melt~bottom!. Left: h5r0; the shear initiated
from the beginning~m! and at later instance~n!, which is TMS510 000 for the solution and TMS55000 for the melt. The inset in the bottom figure focusses
on the very early stages of the Euler characteristic for the melt system. Right:h5r0 ~s!, andh50.5 ~j!; the shear initiated at TMS510 000 for the solution
and TMS55000 for the melt.
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derived from the visual inspection of many 3D images31 can
be also made solely on the basis of Euler number graphs in
Fig. 8 ~left!. Moreover, the information contained by the
graphs of the Euler characteristic is much richer. The en-
hancement of the phase separation by the shear in the very
initial stages after TMS50, as well as partial melting and
breakage mechanism after the application of shear at TMS
510 000 ~solution! and TMS55000 ~melt! ~see discussion
of Fig. 7!, are strongly correlated with the removal and cre-
ation of interconnections that can be deduced from the Euler
characteristic for the average density threshold choice,h
5r0 ~Fig. 8, left!. In particular, shear from the beginning
leads to an enhanced removal of connections~see Fig. 8, top
left, and inset in bottom left!. We see that our interpretation,
that partial melting prior to reformation of structures pro-
ceeds via first breakage of domains and then recombination
of them in the flow direction, is not complete. A drop in the
Euler number at the instance where shear was applied~n in
Fig. 8, left! manifests that the sequence can be reverse. First
new interconnections are formed~in the direction of flow
presumably! and only then unfavorable interconnections~in
the way of flow! break. We conclude, without looking into
3D images that the final structure consists of perfect cylin-
ders. We also see that the instance at which the shear is
applied on the stronger separated system~melt! has no dra-
matic effect on the topological dynamics of the structure,
which does not contradict, however, with the interpretations
based on Fig. 7~bottom!. The Euler characteristics for higher
density values (h50.5) gives us addition information, Fig. 8
~right column!. The behavior is very different for the solution
and the melt. At the very beginning in a weakly separated
system~solution! the high-density modes~s! form an inter-
connected network without shear. Later on this network
breaks into micelles. On the contrary, in the presence of
shear~Fig. 4, top,s! the micelles are formed already in the
very beginning. Therefore the shear suppresses interconnec-
tions in the initial stages of phase separation in solution for
both choices of threshold value@notice, that the initial Euler
numbers forh5r0 ~squares! are much lower without shear
as well#. When shear is applied at TMS510 000, the high-
density values,h50.5, show breakage of cylinders into
spherical micelles, while in case of the average density
threshold interconnections are formed~opposite bumps in
graphs in Fig. 8, right top!. Both structural changes lead to
aligned cylinders at the end. Remarkably, breakage into mi-
celles is not seen for the melt when shear is applied at
TMS55000~Fig. 8, right bottom,s!. This suggests why the
less segregated solution system has less defects at the end
than the stronger segregated melt~see Fig. 2!. The solution
system has a rather flexible structure, on which shear, applied
at a later instance, has a generic effect: it recombines the
high-density micelles and breaks up the connections at the
average density level that are not in the shear direction. The
absence of the intermediate micellar phase~at least in notice-
able quantity! for high densities in the melt makes it much
more difficult to reorient in shear flow. The suppression of
high-density micelles by shear in the melt is also seen in
another striking difference in Euler number graphs for the
two systems. The high-density modes of the melt system at

the very first stages of phase separation in the absence of
shear are spherical micelles~Fig. 8, right bottom,s!, con-
trary to interconnections in the solution. These micelles are
absent if shear was applied from the very beginning~Fig. 4,
bottom, s!, although it is possible that the structure is a
collection of interconnections and some spheres, as the total
Euler number is not very low. In the absence of shear, the
micelles promptly form an interconnected network and the
evolution follows the average density modes~Fig. 8, right
bottom!. This difference could be due to the compositional
difference between diblock copolymer melt and triblock co-
polymer solution and is beyond of the scope of the present
paper.

V. CONCLUSION

We have used Minkowski functionals for the determina-
tion of the kinetic pathways of the dynamics of block co-
polymer morphologies in an applied shear flow. As the ap-
plication of Minkowski functionals requires binary valued
pictures, a very important step is the thresholding procedure
that is applied on the simulation data prior to the Minkowski
functional calculation. The important question is: what
threshold value or values contain redundant information? Us-
ing a priori knowledge of our system, we make a physically
motivated choice for the two threshold values that we need
for our analysis. We find that a minimal set of two threshold
values~one from which should be equal to an average den-
sity value and another to a higher density value! is sufficient
to unraffle the phase separation kinetics. This approach en-
hances the efficiency of the morphological analysis and
minimizes the amount of data enormously.

We have used the Euler characteristics for the two
choices of the threshold to extract the kinetic pathways for a
diblock melt and triblock solution. Although the systems
have different composition and different degree of segrega-
tion, both systems form cylinders in bulk; under shear these
cylinders orient into a perfect hexagonal packing. In the ab-
sence of shear, quenching a homogeneous mixture leads to
different phase separation kinetics for the two systems under
consideration. In the high-density mode the melt separates
into disconnected micelles, which merge into an intercon-
nected network very fast. In the same mode the solution first
forms an interconnected network and then partially disas-
sembles into micelles. When shear is applied to the existing
structures at a later instance it does not have a noticeable
effect on the connectivity in the melt. For the solution, shear
enhances the formation of disconnected micelles. However,
in the average density mode the pathway of both system is
qualitatively similar. The shear applied to the existing struc-
tures at a later instance increases connectivity in the first
moments after application.

The effect of shear on the early stages of phase separa-
tion was also studied. We observe that, in the initial stages,
shear enhances phase separation both in the melt and the
solution. After the initial stages, there is a period of suppres-
sion of phase separation by shear due to the breakage of
structures by shear. This period is very short for the solution
as this system is weakly segregated and very flexible. A rea-
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son for less flexibility in the stronger segregated melt is the
suppression of the micellar phase by shear.

We conclude that lower phase segregation enhances the
orientation kinetics under shear. Shear has a different influ-
ence on the initial and later stages of phase separation, which
also depends on the degree of phase separation.

Finally, we point to the amazing similarity of the time
dependent plots of the segregation parameter~Fig. 7! and the
Euler characteristic~left column in Fig. 8! for both systems
under consideration. These parameters are of completely dif-
ferent mathematical constructions, and we therefore cannot
give an easy explanation for this fact. This observation will
hopefully challenge others.
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