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Kinetic pathways of sheared block copolymer systems derived
from Minkowski functionals

G. J. A. Sevink and A. V. Zvelindovsky
LIC, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands

(Received 23 March 2004; accepted 27 May 2004

We employ Minkowski functionals to analyze the kinetics of pattern formation under an applied
external shear flow. The considered pattern formation model describes the dynamics of phase
separating block copolymer systems. For our purpose, we have chosen two block copolymer
systemga melt and a solutionthat exhibit a hexagonal cylindrical morphology as an equilibrium
structure. Our main objective is the determination of efficient choices for the treshold values that are
required for the calculation of the Minkowski functionals. We find that a minimal set of two treshold
values(one from which should be equal to an average density value and another to a higher density
value is sufficient to unraffle the phase separation kinetics. Given these choices, we focus on the
influence of the degree of phase separation, and the instance at which the shear is applied, on the
kinetic pathways. We also found a remarkable similarity of the time evolution of Euler characteristic
and the segregation parameter for the average density choic200® American Institute of
Physics. [DOI: 10.1063/1.1774982

I. INTRODUCTION be of great help. The efficient tool for this are additive image
) _ functionals like Minkowski functionals. Minkowski func-
Many phenomena in nature produce complex spatiotipnals were proven to be very valuable for the description of
temporal patterns. Although the interactions due to Whid’tomplex morphologies in many areas of science, ranging
these patterns are formed can be simple, the dynamics @fom phase separatingplock copolymer systenfs?! like
patterns can be quite nontrivial. Examples of such systemge one considered here, complex fluldst® composite
are cellular automata, superconductors of first and seconghaterialst* reaction-diffusion systemi$:'® to large-scale
type, Rayleigh-Bernard cells in liquids, Belousov- stryctures in the univers&!”18an extensive review, includ-
Zhabotinski chemical reactions, and block copolymersi,g many examples of application, was recently publistfed.
Block copolymers are long, often flexible, molecules consist-rhis field is still growing; a new and very promising vecto-
ing of chemically different blocks. In a melt or solution they rjg Minkowski functional was recently developed by Klaus
tend to microphase separatbringing similar blocks to- pecke.
gethej under certain conditions, on a scale that is set by the |, many cases the structures are given by fields on a
blocks characteristic length, often nanomefemsicrophase  grig: density fields or order parameter fields. In the proce-
separation leads to the formation of periodic structures simigre for the calculation of the Minkowski functionals, there
lar to grystals. However, upon formation, the patterns ar§s g question of choosing the so-called threshold value for
often highly defected and far from perfect. As block copoly-jmages. For fields, this choice is basically equal to the choice
mers are fluids with high overall viscosity, the resulting char-of the position of interfaces in a microstructure. Usually one
acteristic times for defect movement and annihilation can bgyesents Minkowski functionals for a set of several threshold
very long. Moreover, processing conditions such as SHear ya|yes. As the values of the Minkowski functionals are sen-
or applied electric fields can influence this behavior and degjtive to these values, the interpretation of results is not
termine to a large extend how the phase separation can prgnigque. Here we demonstrate that the threshold value can be
ceed. Determining the symmetry groups for a defected strucshosen based upon physical considerations. We show that

ture is often a difficult task both experimentally and this choice is crucial for the correct interpretation of a dy-
theoretically. In computer simulations one obtains informa-ygmijcal pathway of a pattern.

tion on the three-dimensional microstructure. As the struc-

ture is often very defected, simple visual inspection is not
sufficient. Fourier analysis is a common procedure in thisg'YFéA%TETl\fSRN FORMATION IN BLOCK COPOLYMER

case, but helps only if structure is already mostly periodic. In

the initial stages of microphase separation the structure is We give a short outline of the theory used in the simu-
often reminiscent to the periodic one, but deformed—Iations; for more details see Refs. 20, 21 and references
stretched, squeezed, etc. This is in particular the case if ththerein. We model the pattern formation that occurs when a
system is subjected to external fields such as for instandelock copolymer melt or solution is brought into a state
shear flow. In this situation the analysis of topological andwhere the chemically different blocks phase separate on a
geometrical quantities, followed by an expression for themesoscopic leve(1-1000 nm. In our model, a block co-
similarity measure with respect to perfect structures, woulgpolymer molecule is represented by a Gaussian chain, con-
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sisting of N beads. Each bead typically represents a numbeas large as 64 64X 64=262 144 double-precisio(8 bytes

of chemical monomers. Differences in monomers gives risespatial data times 60Qwriting spatial information every 50

to different bead specigfor exampIeANABNB, foradiblock time steps for a total of 30 000 time step®sulting in a total
COD0|ymer,ANA/2BNBANA/2, for a symmetric ABA-triblock ~amount qf data for each simulation qf almost 1.3 Gbytt_a.
copolymer;N=N,+Ng). The three-dimensional volume of Modern integral-geometry morphological image analysis
the simulated system is denoted &Y\ and contains prgwdes the tool to assign nu'mbers to thg shape and connec-
Gaussian chains. Solvents are incorporated as single BeaddiVity of patterns formed by pixels of 3D images, by means
The interchain interactions are incorporated via a mean fiel@f 2dditive image functionals. An example of such additive

Ui(Np(ndr+F"pl. (1)

with interaction strength controlled by the Flory-Huggins pa-IMmage functionals are the Minkowski functionals, that de-
rametersy,;. The microstructure patterns are described byscnbe the morphological information contained in an image
p,(r) of the different specieb. Given these density fields a @nd topological quantities: the volurvg the surface are8,
free energy functiona[p] can be defined as follow&:22 the mean curvaturél, and the Euler characteristje The
density fields is therefore to compute the Minkowski func-
syst tionals themselves. This is not a direct procedure: a thresh-
HereW is the partition function for the ideal Gaussian chain; i . . .
in the externa?fieldsU and E™ is the contribution due to mage from the density fields, prior to the Minkowski func-
' tional calculation. A complicating factor, that will be consid-
Y, andt thf density f'edldﬁ' _?ref bljet<.:t|vell); relgted na Sﬁlf'. the Minkowski functional values on the choice of the thresh-
consistent way via a densily functional for Laussian Chains, -t gecong step is to study the behavior of the four
free energy[see Eg.(1)] and equilibrium density fields
pi(r). They can roughly be divided intstatic and dynamic
erally referred to as quasidynamic methdgttsr instancé®). ) ) i )
A rather complete and recent review is given in Ref. 24. In The implementation of the numerical calculation of the
. . l29 . . _
oped within our group. An advantage of this scheme is that in Mu(:jhrl]elser; and del Readf: Ar\]short OVEIVIEW 1S pre q
intrinsically considers dynamic pathways towards a free enSented here for completeness. The starting point is a 3D den-
states. In this sense, the model can be seen to mimic t .MS)', Ol,” calcullations are garried .OUt ona g@though
experimental reality when compared to static schemeé, is grid is only introduced in the implementation of the
ments. The thermodynamic forces driving the pattern formaMinkowski functionals, is build up from the reference field
(r) in the following way:

the coarse grained variables, which are the density field8Y Numbers that are proportional to very simple geometrical
. first step in the analysis of the information contained in our
N4
Flp]=—kTIn—-2> f
n! ] V;
olding step must be performed to generate a black-and-white
the nonideal mean-field interactions. The external potentlalgred in detail in the remainder, is the resulting dependency of
Several methods can be employed to find the minimum o umbers as a function of time.
methods, although a number of hybrids exist which are gena. The calculation procedure
this article, we use a dynamic scheme that has been devéwlnkowsm functionals used here, is adapted from the work
ergy minimum, including visits to long-living metastable sity field p, that is the output of our simulations at a time step
which are optimizations, based upon mathematical argu(_:ontmuous equationsThe pictureP that is described by the
tion in time are the gradients of the chemical potential?

pi(r) = 6F 1 6p 0722 P(1)=0(p(r)—h), ®)
%: M,V p,V i+ 7, 2) where®(x) is the Heaviside st_ep fu_nction, giving 1 or_O. In
ot other words, the black-and-white pictuRe(with black pix-

where M, is a constant mobility for beati and 7,(r) is a _els re_presenting the quect, and white pixels the bac_kgr)ound
noise field, distributed according to the fluctuation-iS build up from the fieldp by thresholding, and setting the
dissipation theorem. In the presence of a steady shear flow2lues of the thresholded field to binary valued pixels. One
with velocity v,= %y, v,=v,=0, an extra convection term should kee_p in mmd tha_lt the .resultlng p|ctUFé (and its

is added to the right-hand side of the diffusion equati®n qorrespondlng _Mlnkowskl functional values aIsp a func-
equal to— yyV,p, . Herey is the shear ratéhe time deriva- tion of the choice of the threshold valie P(r) is in fact

tive of the shear strain) and sheared boundary conditions P(r;h). The pictureP(r,h) can be completely described in
apply2025-28 terms of Minkowski functionals.

' We consider each pixel as a union of the disjoint collec-
tion of open elements of lengthx (with Ax the discretiza-
tion length: n. interiors,n; faces,n, edges, ana, vertices.
For a single cubic 3D pixel, the number of these basic ele-
Determining the underlying fundamental mechanisms inments aren.=1, n;=6, n,=12, andn,=8. The procedure
the structure transformation in block copolymers is a difficultthat follows is simple due to the additivity: the values for the
task. The huge scales in space and time covered bypawr complete imageP are calculated by simply adding black
allel implementedl simulation technique, hampers us from pixels to an initially completely white backgrourtathere all
grasping the important features from imaging the four-geometrical and topological values are equal to z€efbe
dimensional4D) data alone. To give an idea: for each of the pixels themselves are build from the disjunct elements, for
simulations considered in this article, the amount of data isvhich the Minkowski functional valuegor similarly, its

IIl. MINKOWSKI FUNCTIONALS
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morphological and geometrical counterparntan easily be p(x)
calculated® This leads to a very simple expression for the
geometrical and topological quantities of a three dimensional
object,

V=n., S=-6n.+2n;, 2H=3n.—2n¢+ng,

X=—N¢+ng—ng+n,. 4

time

The implementation is therefore very straightforwéitcdcan

be found in Ref. 28 and should only be optimized with
respect to double counting. As our simulations are carried
out with periodic boundary conditions, we update boundaries
prior to the Minkowski functional calculation by a common
procedure: we add an extra layer at all sides of the original
grid with the correc(periodid boundary values. As the pro- FIG. 1. Schematic view on the influence of the threshold choice in 1D case.

. . . . From top to bottom: development of density inhomogeneifx) (non-
cedure described above is based on the information that ﬁonotonic ling as a function of spatial coordinatdn course of time due to

contained by the grid, we also compared the results of OUthe progress of phase separation. Straight solid line—level of average den-
calculation with a method that interpolate the grid values bysity; dashed line—an arbitrary level.

a marching cube algorithif. Especially the surface areh

and mean curvaturel may deviate between the two, due to

the rather crude discretization used in our method. Howevegancy and an explosion of data that is difficult to interpret. A
for the box size under consideration, we found that this disstandard approach is to choose one value of the threshold,

cretization effect is negligible. often this value is takeh®"=128 (h~0.5). In the remain-

der, we show how to use physical knowledge about our sys-
B. Relation between structure topology tem to condition the choice of the threshold, and therefore
and Euler characteristics limit the amount of data generated.

. . . . All calculations [we numerically solve Eq(2)] start
The Minkowski functionaly of Eq. (4) is the same as the from uniform density fieldsp,(r) =p?, with p? the average

Eulerlcharacter}stlc def!ned n algebraic topology. Using thlsdensity or average concentration of bldcKThis reflects the
equality, the Minkowski functiona} can be understood as

) se were all components are completely mixed. During the
the number of connected components minus the number cﬁ? P pletely g

” . simulation, the total concentration of all speciesemains
tunnels(holes plus the number of cavities. For instange, . . : )
; constant. Let us consider a system in course of time. The first
=1 for a solid spherey=2 for a hollow spherey=0 for a

torus, andy= — 1 for = shape which has two holes. Due to step of simulation corresponds to a quench of the system into

the additivity, we can use this knowledge for the determina—an ordered phase. Locally, deviations of the average vﬁﬂue

. o start to develop, in time leading to a final fully phase-
tion of the topology of the majority part of the local struc- . .

- separated melt or solution with valugs(r) between the
tures from the Euler characteristic. For AB and ABA block . ;
natural extremes 0 and 1. The starting and final states of the

popolyme_rs, the a”"."“’?t of amenqble mesostructures is IIms_ystem both have distinct different features. A schematic il-
ited to micellar, cylindrical, bicontinuous, or lamellar mor-

. . ; . lustration can be found in Fig. 1. Phase separation consists of
phologies. This observation leads to a few very simple rule . i ; "
. . ; . wo simultaneous processes: the amplitude of the deviation
for the interpretation of structures: very positixecan be

. o . . U of the density from its average value grows in time, and
interpreted as majority of micellaspherical or cylindrical . L . .

. : domains of density inhomogeneity change their shape and
structures, very negativg as highly connected structures

with many tunnels. Erom the Euler characteristic it is impos_S|ze. Let us consider the first process. In Fig. 1 we sketch the

sible to distinguish between spherical and cylindrical mi-grOWth of density inhomogeneity for a 1D system. If we

celles; we therefore will refer to these structures as micellesChoose the threshhold value equal to the average density

S . (solid straight ling, the pictureP will have the same features
An Euler characteristig=0 can be interpreted as a collec- - Ln
. ) . e o (connectivity, domain siz2efor the upper and lower sketches.
tion of tori, which, due to the periodic boundary conditions, ; .
. . . . L For an arbitrary threshold valu@ashed ling the features
is equal to a collection of highly oriented cylindrical " i “the li h hs in diff
domains wi _b_e very different: the lines cross t e graphs in d_| erent
' positions, therefore both the connectivity and domain shape
(and even the number of domajnsill be different. In this
case, the pictur@ is a view on “the top of the iceberg.” For

A normal procedure is to split the interval of amenablethe second process, where the domains change as well, the

density values on the gri@in our casd0,1]) into 256 bins of  top of the iceberg view is very sensitive to small changes in
equal width; the number 256 reflects the number of levelsnhomogeneity. Changes in domain shape and connectivity
that are presenhia 8 bits greyscale image. Consequently, awill be in particular seen under the influence of externally
threshold valué"" e {0,..,255 is chosen, and the pictuf@  applied shear flow. Therefore by combining two threshold
is constructed by placing black pixelsf binary value 1  choices, from which one is equal to the average density value
using Eq.(3), with h=hP"/255. Considering all 256 thresh- (h=p°), one can separate information originating from the
old values as a function of time would lead to high redun-two processes that contribute to phase separation.

C. The choice of the threshold
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FIG. 2. Top: snapshots of the;B- diblock copolymer melt. Bottom: snapshots of the 55% solutioAgB,A; triblock copolymer in a one-bead solvent. The
block interaction parameters for the solution were previously published in van Viimme=n(Ref. 22, for the melte,g= 7.5 kJ/mol. The shear parameter

was chosery=0.001[see(Ref. 20 for detail§. The snapshots are taken at dimensionless time éfieps left to right: 200, 2000, and 25 000 TMS. Fot the
both systems, shear was applied from T#& The snapshots show isosurfaces of the cylinder forming component8t33.

In the applications we will therefore consider two formation of a structure: microphase separation is dominant
choices for the systems under consideratior:0.5 andh at the initial stages, orientation of domains is predominant at

=p°. later stages. To deduct the details of the processes and their
interplay, one needs to examine a tremendous number of
IV. APPLICATION images in three dimensions. Some guiding is obviously very

desirable. Fourier transformation gives some information on

bIoc\livioanoallyéirtges?ggasmulﬁzgrf ;:]ru;tulriee (;0;?:;02035 t\gﬂgﬂer stages of alignment process, but is not conclusive at the
poly Y PP ) itial stages’* Although visual inspection suggests that there

X . . . ni
S)_/stem is a diblock copolymgr meIt,.the other is a solution Of a difference in the development of well aligned cylinders
triblock copolymer. The chain architecture and presence of

the solvent might have an influence on the kinetics. Although etwgen the meit and the solution, no decisive conclusion is
the systems differ in several respects, they both form a cyp ossible. . .
lindrical microstructure, which in equilibrium would be a We can chara_cter_lze the degree (_)f phase separan_(z)n ina
perfect array of hexagonally packed cylinders. In absence (ffySt‘gm by considering a segregation parame?gr pj

the applied shear, the cylinders would be hexagonally packed (P1)> (we omit the index! in the remainder as we wil

on a local scale, but the orientation on a larger scale woul@Wways consider the cylinder forming componéfitin a ho-

be isotropic, and the structure would have many defects offogeneous systef=0, while in totally segregated systems
relatively low energy#2 We study two shear scenarios, which P™=p°—(p")* (provided that the sum density of all compo-
differ in the moment that shear was applied to the systemdents is chosen to be).1For the melt system under consid-
This allows us to clarify the influence of shear on both pro-eration p°=0.3, while for the solutionp®=0.33, which
cesses occurring during phase separation: the growth of degives roughly the same™® in both cases. Figure 3 shows
sity inhomogeneity and change of domains. The evolution othe time evolution of the segregation parameter for the two
both structures in the first shear scenario is shown in Fig. 2systems. The segregation parameter for the triblock copoly-
Shearing of the second system in the second shear scenafiter solution is an order of magnitude lower than for the
was previously published in Ref. 31. Visual inspection ofdiblock copolymer melt. The reason for this difference is that
images confirms the development of hexagonally arrangetbr the considered Flory-Huggins interaction parameters the
cylinders from an initially poor structure. Initial stagéfisst ~ degree of segregation is higher for the melt than for the so-
two images in each romwdo not exhibit easily spotted differ- lution. This clarifies our choice of systems: we can study the
ences, while the more developed structure is clearly moré&inetics of phase separation in systems having very different
defected in case of a melt. Two mechanisms play a role in thdegrees of phase separation but the same equilibrium micro-
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FIG. 3. The segregation parameteras a function of time for the cylinder
forming component. Shear is applied from TM8. The noisiness of the -100 1
lines is a reflection of the noise in the dynamic equations.

structure(cylinderg, and, moreover, roughly the same aver-
age density of the cylinder forming block. If we would
choose one polymeric composition, say a diblock copolymer
melt, and vary the degree of phase separation by varying the
Flory-Huggins parameters to have to same large difference in
separation, we would necessarily shift into the phase space
where system experiences another symmetry, different from
cylinders.
~ As one could expect from a global parameter sucR as -500 10000 20000 30000
it monitors the degree of phase separation rather well, but ™S
does not give any information on local rearrangements in the
structure. To this aim, we consider the Minkowski function- FIG. 4. The Euler characteristic as a function of time for the cylinder form-
als as a function of time, that were calculated by the expreg'd component in the solutiofiop) and in the meltbottom. The shear was

. . . - . applied starting from TMS 0. The Euler characteristics were calculated for
_Slon of equat'_on Eq<4) Followmg_the mOtIV_atlon dlscussed two choices of the threshold parametar=p° (O), and an arbitrary one,
in the preceding section we consider two different choices of=q 5 (m).
threshold valueh=p° and an arbitrary oné)=0.5.

The Euler characteristic is most illustrative. For the so-

lution (Fig. 4, top we observe a large influence of the choicevalue (B in the graphs both systems develop themselves
of the threshold: choicé=p° shows a very positive Euler starting from the initially highly interconnected network
characteristic, while foh= 0.5 this number is very negative. (very negative Euler numbertowards infinite cylinders
For both choices, the limiting behavior of the Euler charac-(tori), slowly reducing the number of connections and there-
teristic with increasing time is zero, which is reached at thefore holes. This threshold value “sees” all density deviations
same instance in time. This value can be associated with theround p°, even very small ones. As it is clear from the
state of well aligned cylindersee Sec. Il B, as we can also sketch in the Fig. 1 the topological picture of higher density
see from Fig. 2. The fact that the Euler characteristics at latemodes will be different. If the arbitrary valdeis higher then
stages coincide is therefore expected, as the equilibrium mop® (as in our case less interconnections will be seen, as they
phology of aligned cylinders is reached at an early stagdave lower density values then tops of the iceberg. Due to
(around TMS=10000) and the degree of phase separatiorthat reason the Euler number for both systems is higher in
and the position of the interfaces in space does no longesase oh=0.5(O in the graphs Moreover, if the system has
significantly change. The Euler characteristic for the melta lower degree of phase separati@s the solution in our
(Fig. 4, bottom is distinctively less sensitive to the different case, Fig. Bthe number of “seen” interconnections is even
choices of the threshold. For both choices, the Euler charadess. In this case, the density deviations overshootinghthe
teristic is negative at the initial stages, be it that the Euler=0.5 value will be mostly seen as topological micelles, and
characteristic is significantly lower foh=0.5. At later the Euler number will be positivéFig. 4, top,O). As the
stages, the two curves approach and coincide to the endhicelles grow and merge into the cylinddteri), the Euler
Based on the Euler charateristic, the two polymer systemaumber levels down. As a result, by combining information
would have completely different kinetic pathways of phasefrom the evolution of the Euler characteristic for two
separation depending on the choice of the threshold. Howehoices, we conclude that there are two simultaneous pro-
ever, the difference is not so surprising as it might look at thecesses in the kinetic pathway of the structure rearrangement
first glance. If the threshold is chosen at average densitin a flow. One is removement of interconnectidigefects

Euler number
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than with the average one. The fact that the volume and
surface area are noisy far=0.5 shows that the high-density
field values are much more sensitive to the breakage and
reformation of local structures. Partial melting of already
phase separated structures makes them drop out of the
thresholded image. Then they emerge again, first as micelles.
As the number of structures with high-density values is
lower, the noisiness in graphs is higher. The volumetfor
=pY decreases fast in the very beginning of the phase sepa-
ration and then stays constant. The most drastic drop in vol-
ume corresponds to the times when phase separation shoots
0.1 s - up (see Fig. 3 At that stage the system microphase separates
0 10000 20000 from the initially homogeneous state, decreasing the contacts
between different blocks and therefore lowering the enthal-
pic contribution to the free energy. The slight increase of the
45 volume forh=0.5, however, is much slower. It corresponds
to the fact that high-density regions are still growing while
phase separation continues, as it is seen on slight increase of
segregation parametér on the same time scal€ig. 3. As
the volume value in this case is smaller than fier p° this
increase does not contradicts with the decrease of the total
free energy. The surface area for p° is decreasing, which
suggests that the surface tension of such an interface is posi-
tive. As the surface area levels out at the same time as the
Euler characteristic, this suggests that the main mechanism
of reducing surface area is due to removal of interconnec-
tions in the structure. The surface area of high-density do-
mains (= 0.5) is roughly constar(after averaging over the
noise. The volume in this case is slightly increasing, sug-
gesting that the domains adapt a more round shape in the

Volume

Surface area

700 cross section; a mechanism that indeed occurs with cylinders
in a flow, see Fig. 2. The mean curvature for both threshold
choices decreasdapart from the very first stages of phase

) separation for the choick=p®). The monotonic decrease

% after the initial stages suggests positive bending constants of

g the interfaces. The two graphs of the mean curvature are

u qualitatively very different in the very first stages of phase

3 separatiorisee Fig. 3 as well At that stage the interfaces are

= only developing. The mean curvature for the average density
choice h=p° rapidly grows at the very beginning. In this
case the system starts to develop from the homogeneous den-

300 sity p°, and initially consists of a network of interconnec-

tions with very diffuse interfaces, induced by the noise. This
™S network of interconnections is rich of saddle points which

FIG. 5. The volume, surface area, and mean curvature as a function of imgave low mean curvature. While phase segregation
of the cylinder forming component for the solution. The shear was appliedyrogresses and the network of interconnections coarsens, the
starting from TMS=0. The Minkowski functionals were calculated for two interconnections become longer and posses substantial cylin-
choices of the threshold parametér=p° (O), and an arbitrary oneh . . .
—0.5(m). drical parts in between. As a result, the mean curvature in-
creases. As the interface develops, the process continues

mostly by breaking interconnectiortgherefore reducing the

between cylinders and another is merging of micelles intdlumber of saddle regionsand the mean curvature drops.
cylinders. The relative contribution of these processes intd-or the high-density domain$&0.5) the decrease is per-
the pathway depends on the degree of phase separation. Sistent during the evolution and is much more drastic due to
Figure 5 shows the volume, surface area, and mean cuthe fact that the system for this threshold choice consists
vature for one of the polymer systertthe solution for the initially of spherical micelles with have higher curvature
two different choices of the threshold. The volume and surthan that of final cylindrical micelles. In this case the inter-
face area foh=0.5 are lower than foh=p° simply due to  face is only seen starting from=0.5> p° and therefore will
the fact that there are always less regions with high densitiese simply absent during first few time steps. This is not
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FIG. 6. The Euler characteristic as a function of time of the cylinder form- ™S

ing component for two systems. The melt is denotedébythe solution by
. Shear was applied at TMSD.

observed in the graph, because the system is first stored after 0.13 -
50 time steps.

In the remainder, we will concentrate on the Euler char-
acteristic as a function of time. We have seen already, that
the Euler characteristic is a valuable means to distinguish the
dominant mechanisms in kinetic pathways. If we compare
the melt and the solutioFig. 6) for the thresholdh= p°, we
see that the topological pathways are distinctly different. In
the melt, initially there are less connections than in the solu-
tion, and most of the connections are easily removed. The

remaining connections are very long living. The growth of 0% 1000 2000
the Euler number for the solution is initially slower, and has 0.1 . L
a small characteristic plateau around the first thousands time 0 10009I’MS 20000

steps. After this temporarily stagnation, the Euler number
continues to grow, overshoots the values for the melt, angg. 7. The segregation paramefras a function of time of the cylinder
reaches the state of perfect cylinders, much more perfect thasrming component for the solutioftop) and the melibottom at different
the melt systen(compare also final images in Fig).Z'his shee}r scenarios. Th(_e Iqbel(@) refers to the situation where the shear i_s
dierence can be explained bearing in mind the resuis of9P1ES fOm e beang: e eersto e cosewhere e secr i
the second choice of the threshold value, Fig. 4. The solutioBottom figure focusses on the enhancement of phase separation by shear at
is a much less segregated system than the (ee#t Fig. 3. the very early stages in the melt system. The noisiness of the lines is a
High-density regions appear as micelles in the first stages dgflection of the noise in the dynamic equations.
phase separatioffig. 4, top,0O). The micelles will be seen
also at lower threshold values, in reduced quantity, among
newly emerging structures. In the very beginning the numberangement, one should study to what extend shear affects
of micelles grows(increase in Fig. 4, top©). The same either of them. In the preceding paragraphs we discussed the
process may be expected at other threshold values. This, toase of shear applied from the start. Here, we proceed with a
gether with breakage of interconnections, contribute to theliscussion of the case where the shear was applied well after
initial fast growth of Euler number dt=p°. Consequently, the interfaces were formed, so that we can separate the two
the number of micelles is decreasing, as they merge into therocesses. The significance of the instance at which the shear
cylinders. Forh=p° the two processeg decrease of mi- is applied can already be seen in the segregation parameter,
celles and breakage of interconnectiptiserefore balance as shown in Fig. 7. For both systems we have studied two
each other, resulting in a short plateau in the Euler numbetases: case 1 where the shear is applied from the beginning,
graph. Finally, when most of the micelles have disappearedind case 2 where the shear is applied to an already phase
the second processes takes over and the system proceedparated structure at a later instance. The influence of shear
towards a perfect cylindrical phase. One should bear in minds stronger for a weaker separated systswiution, Fig. 7,
that as the solution is much less segregated than the metgp). In both melt(see inset in Fig. 7, bottoyrand solution
new micelles will appear and coalesce all the time, which isve see the enhancement of phase separation by shear at the
making the initial slope of the curve smaller than the one forvery first stage, when the interfaces are formed. After the first
the melt system. thousand time steps the shear starts to suppresses the phase
As we have two processes in the phase separation irseparation in both systems. That could be due to the fact that,
volved, namely, development of interfaces and domain rearat this stage, the domain rearrangement starts to play a major
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FIG. 8. Euler characteristics as a function of time of the cylinder forming component for the sdtotpand melt(bottom. Left: h= p°; the shear initiated
from the beginningA) and at later instancg\), which is TMS= 10 000 for the solution and TMS5000 for the melt. The inset in the bottom figure focusses
on the very early stages of the Euler characteristic for the melt system. Righ (O), andh=0.5 (W); the shear initiated at TMS10 000 for the solution

and TMS=5000 for the melt.

role. The shear breaks some domains such that they can nestance, to an already well separated system, partial melting
connect in the flow directio”’* This phenomena is equiva- occurs(drop inP in Fig. 7). The weaker the phase separation
lent to partial melting of the microstructure, and the segredin the system the more the structure melts. This melting con-
gation parameter is therefore lower. This region is, howeversists of two contributions, one of which is due to overall
relatively short for the solution when compared to the meltpartial melting of the interfaces, and second and most pro-
(for the melt this region extends until the instance wherefound is due to the breakage of domains like interconnec-
shear is applied in case 2, TM$000). This could be ex- tions and cylinders. Both systems recover and reach the same
plained by the fact that, as the solution is a much weakesegregation parameter value as in the scenario where the
segregated system than the melt, the domain breakage Ishear was applied form the beginning. Therefore, both sys-
shear occurs easier in the solution. By the time most of théems do not have a long memory of the shear history.
interconnections are removed, the system consists of cylin- The Euler number gives more information of the kinetic
ders in the direction of flow. In general, the system withoutpathways for the above mentioned shear scenarios. We fur-
interconnections is in true equilibriurgwithout shear, and  ther elaborate on the effect of different shear instances and
has a lower free energy than the system with interconnedhreshold choices in Fig. 8. In this figure, the left column
tions. Therefore, if the system reaches that state of perfeshows the Euler characteristics for choibe=p°® of the
cylinders in the flow direction, it continues to enhance thethreshold and different instances of applied shear; the right
interfaces, and has a higher segregation parameter than thelumn shows the effect of difference choices of the thresh-
system without shear, full of structural defects like intercon-old for the second shear scenathere the shear was ap-
nections. The much stronger segregated melt system did nptied at a later instangeThe Euler graphs in the left column
reach the perfect cylinder state even after longer shear, sodff Fig. 8 are remarkably similar to the graphs of the segre-
is simply not yet in the state just discussed for the solutiongation parameteP for the same systemshown in Fig. 7.

The kinetics of defect removal in the stronger segregated\l conclusions which have been just drawn on basis of the
system is simply slower. When shear is applied at a latesegregation parametér in Fig. 7 and previous knowledge
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derived from the visual inspection of many 3D imatfasan  the very first stages of phase separation in the absence of
be also made solely on the basis of Euler number graphs ishear are spherical micell€Big. 8, right bottom,O), con-

Fig. 8 (left). Moreover, the information contained by the trary to interconnections in the solution. These micelles are
graphs of the Euler characteristic is much richer. The enabsent if shear was applied from the very beginr(ifig. 4,
hancement of the phase separation by the shear in the vebpttom, O), although it is possible that the structure is a
initial stages after TMS 0, as well as partial melting and collection of interconnections and some spheres, as the total
breakage mechanism after the application of shear at TM&uler number is not very low. In the absence of shear, the
=10000 (solution and TMS=5000 (melt) (see discussion micelles promptly form an interconnected network and the
of Fig. 7), are strongly correlated with the removal and cre-evolution follows the average density mod@sg. 8, right
ation of interconnections that can be deduced from the Euldpottom. This difference could be due to the compositional
characteristic for the average density threshold cholice, difference between diblock copolymer melt and triblock co-
=p° (Fig. 8, left. In particular, shear from the beginning polymer solution and is beyond of the scope of the present
leads to an enhanced removal of connecti@e® Fig. 8, top  paper.

left, and inset in bottom left We see that our interpretation,

that partial melting prior to reformation of structures pro-

ceeds via first breakage of domains and then recombinatioty CONCLUSION

of them in the flow direction, is not complete. A drop in the We have used Minkowski functionals for the determina-
Euler number at the instance where shear was applieth  jon of the kinetic pathways of the dynamics of block co-
Fig. 8, lef) manifests that the sequence can be reverse. Firﬂolymer morphologies in an applied shear flow. As the ap-
new interconnections are formeh the direction of flow  pjication of Minkowski functionals requires binary valued
presumably and only then unfavorable interconnectidits  pictures, a very important step is the thresholding procedure
the way of flow break. We conclude, without looking into tnat is applied on the simulation data prior to the Minkowski
3D images that the final structure consists of perfect cylinfynctional calculation. The important question is: what
ders. We also see that the instance at which the shear {freshold value or values contain redundant information? Us-
applied on the stronger separated systemlt) has no dra-  ing a priori knowledge of our system, we make a physically
matic effect on the topological dynamics of the structure,motivated choice for the two threshold values that we need
which does not contradict, however, with the interpretationgor our analysis. We find that a minimal set of two threshold
based on Flg Ybottom The Euler characteristics for hlgher Va|ues(0ne from which should be equa| to an average den-
density valuest{=0.5) gives us addition information, Fig. 8 sty value and another to a higher density valisesufficient
(right column). The behavior is very different for the solution to unraffle the phase separation kinetics. This approach en-
and the melt. At the very beginning in a weakly separatechances the efficiency of the morphological analysis and
system(solution the high-density mode&O) form an inter-  minimizes the amount of data enormously.

connected network without shear. Later on this network \We have used the Euler characteristics for the two
breaks into micelles. On the contrary, in the presence oghoices of the threshold to extract the kinetic pathways for a
shear(Fig. 4, top,O) the micelles are formed already in the diblock melt and triblock solution. Although the systems
very beginning. Therefore the shear suppresses interconnegave different composition and different degree of segrega-
tions in the initial stages of phase separation in solution fotion, both systems form cylinders in bulk; under shear these
both choices of threshold valieotice, that the initial Euler cylinders orient into a perfect hexagonal packing. In the ab-
numbers forh=p° (squaresare much lower without shear sence of shear, quenching a homogeneous mixture leads to
as well. When shear is applied at TMSLO 000, the high-  different phase separation kinetics for the two systems under
density values,h=0.5, show breakage of cylinders into consideration. In the high-density mode the melt separates
spherical micelles, while in case of the average densitynto disconnected micelles, which merge into an intercon-
threshold interconnections are forméadpposite bumps in  nected network very fast. In the same mode the solution first
graphs in Fig. 8, right top Both structural changes lead to forms an interconnected network and then partially disas-
aligned cylinders at the end. Remarkably, breakage into misembles into micelles. When shear is applied to the existing
celles is not seen for the melt when shear is applied astructures at a later instance it does not have a noticeable
TMS=5000(Fig. 8, right bottom). This suggests why the effect on the connectivity in the melt. For the solution, shear
less segregated solution system has less defects at the emuhances the formation of disconnected micelles. However,
than the stronger segregated miske Fig. 2. The solution in the average density mode the pathway of both system is
system has a rather flexible structure, on which shear, appliegualitatively similar. The shear applied to the existing struc-
at a later instance, has a generic effect: it recombines thiures at a later instance increases connectivity in the first
high-density micelles and breaks up the connections at themoments after application.

average density level that are not in the shear direction. The The effect of shear on the early stages of phase separa-
absence of the intermediate micellar phésdeast in notice- tion was also studied. We observe that, in the initial stages,
able quantity for high densities in the melt makes it much shear enhances phase separation both in the melt and the
more difficult to reorient in shear flow. The suppression ofsolution. After the initial stages, there is a period of suppres-
high-density micelles by shear in the melt is also seen irsion of phase separation by shear due to the breakage of
another striking difference in Euler number graphs for thestructures by shear. This period is very short for the solution
two systems. The high-density modes of the melt system as this system is weakly segregated and very flexible. A rea-
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