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Chapter 5
The cytokine secretion profile of mesenchymal 

stromal cells is determined by surface 
structure of the microenvironment

Daniëlle G. Leuning*, Nick R.M. Beijer *, Nadia A. du Fossé, Steven Vermeulen, 
Ellen Lievers, Cees van Kooten, Ton J. Rabelink, Jan de Boer

Scientific Reports, accepted

d.leuning-layout.indd   95 22/05/2018   16:43



96 Chapter 5

Abstract

Mesenchymal stromal cells (MSC) secrete factors that contribute to organ homeostasis 
and repair in a tissue specific manner. For instance, kidney perivascular mesenchymal 
stromal cells (kPSCs) can facilitate renal epithelial repair through secretion of 
hepatocyte growth factor (HGF) while the secretome of bone marrow MSCs gives 
rise to immunosuppression. Stromal cells function in a complex 3-dimensional (3D) 
connective tissue architecture that induces conformational adaptation. Here we tested 
the hypothesis that surface topography and associated cell adaptations dictate stromal 
cell function through tuning of the cytokines released. To this end, we cultured human 
bone marrow and kidney perivascular stromal cells in the TopoWell plate, a custom-
fabricated multi-well plate containing 76 unique bioactive surface topographies. Using 
fluorescent imaging, we observed profound changes in cell shape, accompanied by 
major quantitative changes in the secretory capacity of the MSCs. The cytokine secretion 
profile was closely related to cell morphology and was stromal cell type specific. Our data 
demonstrate that stromal cell function is determined by microenvironment structure 
and can be manipulated in an engineered setting. Our data also have implications for the 
clinical manufacturing of mesenchymal stromal cell therapy, where surface topography 
during bioreactor expansion should be taken into account to preserve therapeutic 
properties.
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Introduction

Mesenchymal stromal cells are immunomodulatory and regenerative cells originally isolated 
from the bone marrow (bmMSCs). The functionality of MSCs largely depends on the secretion 
of soluble factors such as growth factors and cytokines. For the immunomodulatory potential 
of MSCs, for example, indoleamine 2,3-dioxygenase (IDO), prostaglandin E2, macrophage 
colony-stimulating factor (M-CSF) and interleukin (IL)-6 are of major importance1,2, while 
for vascular stabilization the secretion of VEGF and angiopoietin-1 is essential3,4. Due to these 
characteristics, bmMSCs are an interesting cell source for cellular therapy for, amongst others, 
graft versus host disease (GvHD) and kidney transplantation and currently several trials are 
being performed with these cells 2,5,6. 

Mesenchymal stromal cells are a diverse cell population with different functionalities throughout 
the body 7-9. We showed, for example, that kidney derived perivascular stromal cells (kPSCs) 
display a distinct organotypic gene expression profile as well as different functionality compared 
to bmMSCs9. kPSCs were, in contrast to bmMSCs, able to support kidney epithelial wound 
healing, which could be attributed to the specific production of hepatocyte growth factor (HGF) 
by kPSCs9. It is of relevance to know whether such organotypic features can be preserved during 
MSC culture for clinical purposes.

The current standard clinical grade cell culture method of bmMSCs and kPSCs consists of culture 
on cell culture plastic in flasks or in cell factories. However, this method is time consuming and, 
due to the need of clean room facilities, costly. Therefore, there is a growing interest in closed-
system bioreactor culture systems. In these systems, cells are usually grown on microcarriers10,11. 
These microcarriers can be different in material and culture surface compared to standard cell 
culture plastic. However, little is known about how these differences in microenvironment 
influence the functionality of stromal cells. 

In order to study the effects of both the chemistry and surface structure of the microenvironment 
on cell behavior, we previously developed the TopoChip. The TopoChip is a high-throughput 
screening tool for bioactive algorithm-generated surface topographies, allowing to screen 
biomarker expression in cells exposed to over 2000 unique surface topographies on application-
specific materials of interest 12. On the TopoChip, we identified surfaces able to induce osteogenic 
differentiation of bmMSCs in vitro and bone bonding in vivo. Similarly, we were able to optimize 
clonogenic growth of IPSCs, growth of human hepatocytes and bmMSC proliferation where we 
observed a correlation between cell shape and cell physiology, based on high content imaging of 
single biomarkers12-14.
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This system does, however, not allow the assessment of the secretome of the cells studied. To 
allow analysis of multiple genes or secreted proteins we therefore subsequently developed the 
TopoWellPlate (TWP), comprising a 96 well plate with unique topographies selected based on 
cell shape diversity from the earlier TopoChip experiments 15.

Here, using the TWP technology, the effect of surface topographies on major growth factors 
and cytokines released by two different organotypic sources of MSCs, bmMSCs and kPSCs, was 
analyzed. 

Materials and Methods

TopoWellPlate production

As described previously, the topography enhanced well plates (TWP) are produced using a 
multiple step cleanroom process15,27. In short, a supervised machine learning approach was 
used to identify multiple defined surface topographies which are able to induce 11 morphology 
classes including specific cell (8) and nuclear (3) morphologies in a robust and reproducible 
manner. Topography numbers used in this manuscript are derived from the second generation 
TopoChip12 produced in polystyrene. Instead of the full topography identifier, we use a short 
notation throughout this manuscript. For example, T2_PS_0365 will be referred to as 0365. 
The short 4 digit annotations are built-up as followed: the first two digits represent the row 
number counted from the top, and the second two digits represent the column number. These 
surface topographies were included in a 96-well plate lay-out as design for a chromium mask for 
photolithography of a silicon wafer. Using a polydimethylsiloxane (PDMS, curing agent: base 
= 1:10 w/w, Sylgard 184 silicone elastomer kit, Dow Corning Corporation) and Ormostamp 
(Micro Resist Technology GmbH, Germany) intermediate mould, we created topographically 
enhanced polystyrene films (Goodfellow, United Kingdom) by hot embossing. Subsequently 
the topographically enhanced polystyrene films were fused to bottomless 96-well plates 
(Greiner Bio-One) using thermal bonding, giving rise to leakage and chemical contaminant 
free TopoWellPlates. Prior to cell culture, TopoWellPlates were sterilized with 70% ethanol and 
washed thoroughly with phosphate buffered saline.
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Isolation and expansion of clinical-grade human kidney-derived perivascular stromal 

cells

Kidney perivascular stromal cells were isolated and cultured as described in detail previously9. In 
short, cells were isolated from a human transplant-grade kidney discarded for surgical reasons. 
Specific research consent was given for all kidneys by either the donor, confirmed by the next of kin 
or by the next of kin directly according to Dutch legislation. None of the transplant donors were 
from a vulnerable population. The study was approved by the local medical ethical committee of 
the Leiden University Medical Centre (p13.054) and the ethical advisory board of the European 
Union consortium STELLAR. All methods were performed in accordance with the relevant 
guidelines and regulations. The kidney was perfused via the renal artery with collagenase (2500 
units, NB1, Serva) and DNAse (2,5ml Pulmozyme, Genetech) at 37°C with a flow of 100ml/min. 
After approximately 30 minutes, the tissue was digested and the resulting cell suspension was 
washed and collected. Cells were either directly cultured at 37°C, 5% carbon dioxide or frozen 
in liquid nitrogen. Kidney cell suspensions were cultured in alphaMEM (Lonza) containing 
5% platelet lysates, glutamine (Lonza) and penicillin/streptomycin (Lonza). At passage 1 NG2 
cell enrichment was performed using MACS according to manufacturer’s protocol (Miltenyi 
Biotech, Gladbach, Germany) and afterwards cells were cultured in alphaMEM containing 5% 
platelet lysates in a density of 4x103 cells per cm2 9. Experiments were performed with kPSCs 
from one donor at passage 7. 

Isolation and expansion of human bone marrow-derived mesenchymal stromal cells

Ethical committee approval from the ethical advisory board of the Leiden University Medical 
Centre was given and written consent from the donors was obtained for the aspiration of human 
bone marrow. Heparinized bone marrow was aspirated under local or general anaesthesia. 
The mononuclear cell fraction was isolated by Ficoll density gradient separation and plated in 
tissue culture flasks at a density of 160x103 mononuclear cells per cm2 in alphaMEM(Lonza), 
supplemented with penicillin/streptomycin (Lonza) and 5% platelet lysate. The cultures were 
maintained at 37°C, 5% carbon dioxide. Half of the medium was refreshed twice a week. When 
the MSC colonies or cultures reached confluence, the cells were collected using trypsin (Lonza) 
and replated at 4x103 cells per cm2. Experiments were performed with bmMSCs from one donor 
at passage 7.
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Cytokine secretion profiling

kPSCs and bmMSCs were seeded on 3 TopoWellPlates per cell type in a density of 6700 cells/
well. Cells were cultured for 48 hours in 200µl 5% alphaMEM platelet lysates/well before the 
culture medium was collected. Subsequently, growth factors and cytokines were measured of the 
3 plates per cell type with a custom-made Luminex® multiplex ELISA following manufacturer’s 
protocols (R&D Systems, Minneapolis, MN). 

Imaging for data normalization

After removal of the supernatant, cells were fixed with 4% PFA for 10 minutes, washed twice 
with PBS and stained for phalloidin and Hoechst (Thermo Fisher Scientific, Landsmeer, the 
Netherlands). Cells were imaged at 5x magnification (Leica AF6000, Leica Biosystems) and 
nuclei/field of view were determined for 1 field per view for all wells with Image J software. 
Wells with less than respectively 200 cells per field of view (kPSC) or 150 cells per field of view 
(bmMSCs) were excluded from further analysis to prevent biased results based on cell numbers. 

Data analysis

To assess the quality of the data, we calculated the coefficient of variation (CV) of each triplicate 
measurement by dividing their respective standard deviation with the mean of the measurements 
and is represented as a percentage. 

The averaged concentrations of secreted growth factors and cytokines from the individual cell 
culture supernatants (separated analyses per cell type in triplicate) were used to create a scaled 
heatmap. To create a heatmap in which the different factors could be compared, we standardized 
the data according to z-scores. Dissimilarities between secreted factors as well as the topography 
specific secretion fingerprints were calculated using Euclidean distances and visualized in 
dendrograms via Ward’s clustering (analysis in R ver.3.3.228, using packages: “cluster” ver. 2.0.6. 
29, and “ggplot2” ver. 2.2.130). 

For the clustering of surface topography induced secretion fingerprints, we calculated the 
ideal number of clusters to divide the topographical responses in cytokine secretion profile in 
comparable groups per cell types. Subsequently, the cell morphologies – as classified before 
– were assigned to each topography-induced secretion profile to visualize the effect of cell 
morphology on secretion profiles.
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Statistical analysis

Statistical analysis was performed with Graph Pad Prism (Graph Pad Prism Software Incl. San 
Diego, USA). Differences between kPSCs and bmMSCs were analysed using a two-way ANOVA 
with Bonferroni’s posthoc comparison analysis.

Data availability statement

The datasets generated during and/or analysed during the current study are available from the 
corresponding author on reasonable request.

Results

Stromal cells show an organotypic cytokine secretion profile 

When looking at the reference unpatterned wells most of the factors (FGF, VEGF, MCP-1, IL-8, 
IL-1ra, and Thrombospondin-2) are secreted in similar amounts comparing kPSCs and bmMSCs. 
GM-CSF, IFN-y and TNF-α were below detection limit in all conditions. Interestingly, HGF 
and SDF-1α showed significant differences in secretion. HGF, important for kidney epithelial 
wound repair, was not detectable in bmMSC-conditioned medium and high in kPSCs (890 pg/
ml) and SDF-1α was secreted in a more then 100 fold higher concentration by kPSCs compared 
to bmMSCs (respectively 1579 and 10 pg/ml) (Fig 1A). SDF-1 is, as HGF, an important factor 
for kidney regeneration16. 

Both kPSCs and bmMSCs showed a marker expression typical for MSCs, as these cells were 
positive for the pericyte markers NG2, PDGFR-β and CD146 and the MSC markers CD73, 
CD90 and CD105 while being negative for CD31, CD34, CD45, CD56 (supplementary figure 1 
and 2).

Stromal cells cultured on different topographies show pronounced differences in cell and 

nuclear morphology

The TWP consists of 76 unique bioactive algorithm-generated surface topographies (Fig 1B). We 
previously observed that surface topography can greatly influence the phenotype of mesenchymal 
stromal cells 12,15. To evaluate cell- and nuclear morphology of bmMSCs and kPSCs cultured on 
the different topographies on the TWP, we stained the actin cytoskeleton and nucleus of the 
cells and we observed pronounced differences in cell and nuclear morphology both in bmMSCs 
and kPSCs (fig 1B, supplementary fig3). In figure 1C, an example of a surface topography on the 
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TWP is shown, with the corresponding cell morphology of kPSCs and bmMSCs cultured on this 
specific topography (fig. 1D). Nuclear counting displayed little effect of different topographies 
on cell numbers (figure 1E and F). However, in few cases viable cell numbers were below the 
lower threshold (dashed line figure 1E, F) and to exclude an effect on cytokine and growth factor 
secretion caused by cell density, these wells were excluded. 

Cell type specific effects of topography on cytokine and growth factor secretion

When comparing the 76 different surface topographies in growth factor and cytokine expression 
profile, major differences can be observed between secretion levels between topographies of 
several growth factor and cytokine levels, such as HGF, SDF1α and trombospondin-I while 
others showed a more stable secretion such as VEGF (figure 2). Importantly, the variation 
between the triplicates for most cytokines is low as shown by the coefficient of variation (CV) of 
each triplicate measurement (figure 2). There were however two exceptions, FGF secreted by the 
kPSCs is highly variable which is due to the low secretion resulting in higher relative variability. 
Furthermore, we notice a higher variability for IL-8 secreted by the BM-hMSCs, which can most 
likely be attributed to technical variation.

Figure 1. Cell behavior on the TopoWellPlate A) Cytokine and growth factor secretion of bmMSCs 
and kPSCs cultured on unpatterned “flat” culture surfaces. B) Development of the TopoWellPlate. 
Cells were cultured on 76 unique algorithm generated topographies in a 96 wells plate resulting 
in different cell (8) and nuclear (3) morphologies. C) Example of a surface topography on the 
TWP (#1901). D) kPSC and bmMSC cell morphology when cultured on topography 1901. E) Cell 
numbers of kPSCs and F) bmMSCs cultured for 48 hours on different topographies were stable. 
Below dashed line: excluded values based on cell number. ***p<0.001, Abbreviations: kPSC: 
kidney-derived perivascular stromal cell; bmMSC: bone marrow-derived mesenchymal stromal cell; 
FGF: fibroblast growth factor; HGF: hepatocyte growth factor; VEGF: vascular endothelial growth 
factor; MCP-1: monocyte chemotactic protein-1; IL: interleukin; GM-CSF: granulocyte macrophage 
colony-stimulation factor; IFN-y: interferon gamma; TNF-α: tumor necrosis factor alpha; SDF-1 α: 
stromal cell-derived factor 1 alpha; TSP2: thrombospondin-2; DIC: differential interference contrast; 
Br: branched; BN: bizar nuclei; EN: eccentric nuclei; IS: interesting shapes; MP: multipolar; NCM: 
normal cell morphology; ON: oval nuclei; P: pancake; S: stick; SB: small and branched; SP: 
stretched pancake. Scalebar C: 25 μm, scalebar D: 200 μm
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Figure 2. Cytokine and growth factor secretion on different culture surfaces. A) Concordance 
of replicas of bmMSCs as shown by the coefficient of variation (CV) of each triplicate. B) Cytokine 
and growth factor secretion of bmMSCs cultured on different classes of surface topographies. 
C) Coefficient of variation of cytokines and growth factors secreted by kPSCs. D) Cytokine 
and growth factor secretion of bmMSCs cultured on different classes of surface topographies. 
Abbreviations: kPSC: kidney-derived perivascular stromal cell; bmMSC: bone marrow-derived 
mesenchymal stromal cell; FGF: fibroblast growth factor; HGF: hepatocyte growth factor; VEGF: 
vascular endothelial growth factor; MCP-1: monocyte chemotactic protein-1; IL: interleukin; GM-
CSF: granulocyte macrophage colony-stimulation factor; IFN-y: interferon gamma; TNF-α: tumor 
necrosis factor alpha; SDF-1 α: stromal cell-derived factor 1 alpha; TSP2: thrombospondin-2; DIC: 
differential interference contrast; Br: branched; BN: bizar nuclei; EN: eccentric nuclei; IS: interesting 
shapes; MP: multipolar; NCM: normal cell morphology; ON: oval nuclei; P: pancake; S: stick; SB: 
small and branched; SP: stretched pancake; CV: coefficient of variation. 
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Similar results were obtained when secretion levels were adjusted for cell numbers (supplementary 
figure 4). Moreover, each topography resulted in a unique kPSC and bmMSC cytokine secretion 
profile as depicted in figure 3A and 3B respectively. Some cytokines are secreted similarly when 
comparing kPSCs to bmMSCs during culture on the various topographies, but some noticeable 
differences were observed as well. bmMSCs cultured on topography 0365, for example, showed a 
2.3 and 2.2 fold decrease in secretion of IL-6 and MCP-1 respectively compared to flat reference 
wells while IL-6 and MCP-1 secretion by kPSCs stayed rather stable (respectively 1.08 and 1.27). 
In the principal component analysis (PCA) plots, disparate secretory responses to the same 
defined topographies can be observed between the two organotypic stromal cell populations. 
Moreover, the topography induced variability in function exceeds the variability observed when 
such topography is compared to a flat surface as reference, underscoring the strong influence of 
surface structure on adaptive stromal cell function (supplementary figure 5).

Stromal cell cytokine secretion is closely related to cell morphology

We analyzed whether the cytokine profiles correlated to classes of predefined adaptive cell 
morphology to the various topographies15. kPSCs with similar cell shape are enriched in 
cytokine profile classes (figure 3A). For instance, when looking at the 9 different clusters, the 
first 2 clusters contained 15 topographies and all cells in these clusters show a similar broad and 
flat morphology indicated as “pancakes” or “stretched pancakes”. 

Figure 3. Unique secretome fingerprint of kPSCs and bmMSCs cultured on different 
topographies related to cell shape. A) Heatmap of the secretome of kPSCs cultured on the 76 
different topographies and 4 reference unpatterned “flat” culture surfaces, including a dendrogram 
of the secretome of kPSCs showing clustering into 9 different classes. This clustering according 
to secretome is closely related to clustering according to cell morphology. B) Heatmap of the 
secretome of bmMSCs including adendrogram of the secretome of bmMSCs showing clustering 
into 8 different classes which is again closely related to cell morphology. Abbreviations: kPSC: 
kidney-derived perivascular stromal cell; bmMSC: bone marrow-derived mesenchymal stromal cell; 
FGF: fibroblast growth factor; HGF: hepatocyte growth factor; VEGF: vascular endothelial growth 
factor; MCP-1: monocyte chemotactic protein 1; IL: interleukin; GM-CSF: granulocyte macrophage 
colony-stimulation factor; IFN-y: interferon gamma; TNF-α: tumor necrosis factor alpha; SDF-1 α: 
stromal cell-derived factor 1 alpha; TSP2: thrombospondin-2.
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Similar results were obtained with bmMSCs. When clustered based on secretion profile, 8 
different clusters were defined which clustered according to specific cell shape adaptations 
(figure 3B). For example, bmMSCs cultured on the 16 topographies that constitute the last two 
clusters, characterized by a relatively high cytokine secretion profile, have a predominance of 
multipolar and branched cell morphology (figure 3B). Together, this indicates that the cytokine 
secretion profile of both kPSCs and bmMSCs is correlated to the morphology of the cells.

Surface topography influences the secretion of functional important factors IL-6, SDF-1α 

and HGF

From a clinical perspective it is of interest to identify surface structures and cellular responses 
of MSCs that preserve the secretion of cytokines involved in tissue homeostasis. This is of 
particular relevance to the use of microcarriers in bioreactor systems for expansion of MSCs 
as noticeable differences could be observed in the secretion of these factors on the different 
topographies. This is depicted in box plots of the fold change of cytokine and growth factor 
secretion of both bmMSCs and kPSCs compared to control (fig 4A, B). For example, when 
bmMSCs are cultures on surface 0365 they will respond with a very elongated morphology 
with eccentric nuclei (figure 4C) and a 2.3 fold decrease in IL-6 secretion, one of the effector 
cytokines in immune regulation by bmMSCs (figure 4D). Similarly, specific topographies could 
be identified that foster the combined secretion of HGF and SDF-1α by kPSCs,two cytokines that 
have been implicated in kidney regeneration9,16-18. HGF and SDF-1α showed a strong correlation 
in secretion levels (figure 4E) with a Pearson’ s correlation of 0.81 (p<0.0001). Moreover, this was 
also highly associated with cell shape as surface structures that resulted in a normal cell shape, 
long elongated small cells (“sticks”) or cells with a multipolar morphology showed the highest 
levels of HGF and SDF1 secretion (respectively 40, 20 and 30% in the top 10 highest secretion of 
HGF and SDF-1 α), while broad spreading cells on top of the topographies resulted in the lowest 
levels (“pancakes” and “stretched pancakes”, both 50% in the top 10 lowest secretion of HGF and 
SDF-1 α) (figure 4F). 

Another noticeable difference was observed with respect to thrombospondin-2, which is 
expressed higher in both kPSCs and bmMSCs on most surfaces compared to flat reference 
surfaces. As thrombospondin-2 is a matricellular protein involved in cellular adaptation 19, this 
points to the active stromal cell adaptation induced by the cell surface changes.
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Figure 4. Surface topographies influence secretion of functional important factors A) There is 
a large variation in trophic factor secretion of kPSCs on different topographies as depicted as fold 
change compared to reference “flat” culture surface and shown in boxplots. B) Similar variation was 
observed with bmMSCs C) Cell morphology of bmMSCs cultures on the topography with the largest 
difference in cytokine secretion D) The largest difference in secretion of trophic factors of bmMSCs 
was observed for IL-6. E) Correlation between HGF and SDF-1α secretion. F) Characteristic cell 
shapes of kPSCs on topographies with the highest and lowest secretion of HGF and SDF-1α. Scale 
bar 40μm. Abbreviations: kPSC: kidney-derived perivascular stromal cell; bmMSC: bone marrow-
derived mesenchymal stromal cell; FGF: fibroblast growth factor; HGF: hepatocyte growth factor; 
VEGF: vascular endothelial growth factor; MCP-1: monocyte chemotactic protein 1; IL: interleukin; 
GM-CSF: granulocyte macrophage colony-stimulation factor; IFN-y: interferon gamma; TNF-α: 
tumor necrosis factor alpha; SDF-1 α: stromal cell-derived factor 1 alpha; TSP2: thrombospondin-2.
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Discussion

In contrast to 2D in vitro cell culture, stromal cells normally function in vivo in a 3D connective 
tissue environment where they stretch between the different cell types and communicate via 
paracrine signaling5. While stromal cells are a diverse cell population important for tissue structure, 
organization and homeostasis, little is known about how changes in the microenvironmental 
structure influence stromal cell function in reverse. Here we show for the first time, using a novel 
high throughput screening platform, that changing the microenvironment in vitro, specifically 
via surface topographies, is able to change the shape of stromal cells and influence quantitatively 
the cytokine secretion profile of stromal cells. Qualitative, however, organotypic, stromal cell 
secretory characteristics are preserved irrespective of microenvironmental surface factors. This 
points to a deeper imprinting of MSC function depending on the tissue, or site, of origin.

Only little data is available on the role of the microenvironment on MSC function. We and 
others previously demonstrated that in vitro culture conditions can greatly influence the 
cytokine expression profiles and thus their therapeutic efficacy. Treatment of bmMSCs with the 
small molecule dibutyryl-cAMP induced the expression of a panel of pro-osteogenic cytokines 
among which BMP2 and IGF1 resulting in a profound increase in in vivo bone formation20,21. 
Substrate stiffness can also greatly influence cell function as several cell types, including 
bmMSCs, showed not only different cell morphology but also different secretory profiles based 
on substrate elasticity22-26. Our current data extend these observations in that not only stiffness 
but also the cell shape adaptations enforced by surface morphology is an important determinant 
of the secretory profile of MSCs. In particular, the quantitative capacity to secrete cytokines and 
chemokines seemed to be directly related to these cell shape adaptations.

In line with the observation that stromal cells derived from different parts of the body show 
different functionality7-9, we found cell type specific differences in cytokine and growth factor 
secretions between kPSCs and bmMSCs which were qualitatively preserved independent of the 
surface topography. Moreover, while bmMSCs cultured on specific topographies resulted in 
changes of cytokine secretion, no differences were observed for kPSCs cultured on these same 
topographies, and vice versa. These observations point to a deeper organotypic programming of 
MSCs that is independent of its microenvironment. 

As the concentration of important factors for the homeostatic function of stromal cells, including 
HGF and IL-6, varied directly with topographies, our findings are of importance for the 
development of bioreactor culture systems. The culture surface of the carriers in these bioreactors 
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should be designed in such a way that there is preservation of important characteristics of these 
cells, taking into account the cellular adaptations to the ultrastructure of the surface on which 
they grow.
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Supplementary figure 1. Marker expression of bmMSCs as analysed by flow cytometry. These 
cells are positive for the pericytic markers NG2, PDGFR-β and CD146 and the MSC markers CD73, 
CD90 and CD105 while being negative for CD31, CD34, CD45. Cells expressed type I HLA (HLA-
ABC) and are negative for type II HLA (HLA-DR). Blue: isotype control, orange: bmMSC.
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Supplementary figure 2. Marker expression of bmMSCs as analysed by flow cytometry. These 
cells are positive for the pericytic markers NG2, PDGFR-β and CD146 and the MSC markers CD73, 
CD90 and CD105 while being negative for CD31, CD34, CD45. hkPSCs express type I HLA (HLA-
ABC) and are negative for type II HLA (HLA-DR). Blue: isotype control, orange: kPSC.
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Supplementary figure 3. Cell and nuclear morphology of both bmMSCs (left panels) and kPSCs 
(right panels) cultured on different classed of surface topographies.
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Supplementary figure 4. Cytokine and growth factor secretion of bmMSCs and kPSCs cultured on 
different classes of surface topographies adjusted for cell numbers.
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Supplementary figure 5. Principal component analysis (PCA) of kPSCs and bmMSCs cultured on 
76 unique surface topographies.

d.leuning-layout.indd   118 22/05/2018   16:43



d.leuning-layout.indd   119 22/05/2018   16:43




