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Appendices

Appendix A Transfer matrices

A sample presents an electric potential to incoming Low-Energy Electrons
(LEE). We approximate this as a localized one-dimensional potential:

0 ifx<_7L
Vieg)=qV(x) ifzf<a<? (Aa)
0 if 2 > L

V (z) is only non-zero in a finite region. To determine the LEE reflectivity or
transmissivity of the potential generated by a sample, we have to consider the
one-dimensional Schrédinger equation:
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Figure A.1: Representation of the incoming and outgoing plane waves that scatter

off V (z).

133



134 Appendices

where U () is the wave function and E is the energy of the electron. Since
the potential outside the region around the origin is constant everywhere, the
wave function is a superposition of plane waves:

V=0t +0;

A.
Up=VE+T, (A:3)

where the + or — superscript indicates the direction in which the plane wave
moves and the R and L subscripts indicate on which side of the potential the
wave functions are. This is depicted in figure A.1.

We are interested in the transmission and reflection properties of a potential.
We know that an incident electron can be reflected or transmitted from the
potential. Hence, when we consider an incident electron from the left (\If'g),
we know that:

U, =r¥f
Ul =t0; (A.a)
U, =0

where r and ¢ are the reflection and transmission amplitudes for an incoming
electron from the left side. For incident electron form the right (V) we know:

Ui =0
U, =t0f (A.5)
Ul =r"U}

where 7’ and ' are the reflection and transmission amplitudes for an incoming
electron from the right side. We can thus write:

(-0

where S is the scattering matrix. S is given by:
t
S = (A7)
rt
We can also see how the electron wave functions on one side of the potential
relate to those on the other side of the potential:

+ +
() = (52) “
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Figure A.2: Representation of the incoming and outgoing plane waves that scatter
off V (z) and V5 (z).

Where M is the so-called transfer matrix:

¢ —
t
M= (A.9)

1
t

,
t
,r,l
Tt

The reflectivity and transmissivity of the potentials are given by:
R=|r)? (A10)
.10
T =t

We now know how the wave function on the left side of the potential is related
to the one on the right side of the potential. This notation also allows us to
use the right side wave function as the left side of another potential, V5 (),
as depicted in figure A.2. We label this intermediate wave function as ;. The
transmission of the combined system is given by:

+ +
(v = (57) o

We can define a transfer matrix My, of the combined system:

oo r12r r12
12 t12 t12
MMy = My = (A12)
T2 a1
t12 t12

Here 713 and 12 are the reflection and transmission probability amplitudes of
the combined system. They are functions of r and ¢. For example when we
takery =g =7 =rhand t; =ty =t] = ti:

tits

tio = — (A.13)
— T2
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which takes all different reflections into account. This can be seen by expanding
it in a power series:

tio = t1 (L +rary + rorirary + -+ - ) to (A1g)

By multiplying these transfer matrices, the reflectivity and transmissivity of
systems with any number of layers can be determined. We call these R;,; and
7115015'

Rio = |r12]?

(A.15)
Tiot = |1512\2

By taking the phase of the wave functions into account we can determine the
effect of quantum interferences on the reflection and transmission. We can do
this by introducing a propagation matrix:

e’ 0
MprOp = ( 0 e—iqj) (A.16)

where ¢ is the phase an electron traveling over a distance d gains, with d
the distance between the potentials. ¢ is given by qd were ¢ is the wave
vector in between the layers, with d the distance between the layers and

q= Qh—’? (E — ¢y) , where ¢,, is the work function of graphene. With this,
equation A.12 becomes My, = M1M,;.o,Ms.

The total transmission of a combined system of two potentials is given by:

(¢
615752
Tiot = 1 cior2 (A7)
and the reflection by:
1 —re' (7“2 + t2) ?
Riot = 1= 12010 (A.18)
This can also be done for three potentials:
3 2
Tiot3 = . , A.
tot3 ‘6_74(15 — 92 + €Z¢7"2 (7’2 + t2) ( 19)
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Figure A.3: Total transmission and reflection (R, and T},;) of systems consisting
of two, three, and four identical potentials (blue, green, and red). Each potential has
reflectivity R = 0.2 and T' = 0.8, indicated by the black line. (a), (b), R:o: and T;s;
as a function of phase. (c), (d), as a function of energy.
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. . . 2
¢ior (1 + 20 (12 4 2)% — &0 (272 t2)>
e~ — 2r2 4 eir2 (r2 4 ¢2)

Rz = (A.20)

In figure A.3 the total reflectivity and transmissivity are plotted as a function
of phase (in a and b) and as a function of energy (c and d). As a consequence
of interference there are high transmission resonances where ¢ is a multiple
of 27r. Since the phase and electron energy are related via

@ =dy/ %E (A.21)

the energy, Eyes n, which the n resonance occurs is given by:

R2 (n2m\?
Eresn = % <d> (A.22)

Appendix B Coherence length

An electron beam with a certain energy spread A F has an associated spread in
momentum AAk. The energy and momentum of an electron beam are related
via the vacuum electron dispersion:

_ﬁkQ

E =
2m

(B.1)
The variation in momentum associated with a variation in energy is propor-
tional to the derivative of momentum with respect to energy. AFE therefore
gives Ak via:

AE Ak

2Ey ko
The wave function associated with an electron beam with a finite AE' consists
of a sum of many plane waves with different momenta and is thus given by:

(B.2)

Ak
k+&E

v (z,t) = ﬁ / eikortwl) gk — sine (A;x) ekoztwt) (B.3)

Ak
ko—5
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This gives a coherence length of:

2T

Sal?

(B.4)
The coherence length of an electron beam with an energy width AF, is there-
fore given by:

4mh EO

= /=2 B.
AFE N 2m (B:5)

Iy

Appendix C Channel plate calibration for high dy-
namic range

The detector, described in section 2.1.5, consists of two MicroChannel Plates
(MCP), a phosphor screen and an optical camera with a 12-bit CCD. The signal
we want to measure is the current, Ig, that arrives on the MCP where it is
amplified. The amplification factor is determined by the MCP voltage, V.. The
amplified current, I3y, is consequently converted into light by the phosphor
plate, which is imaged by the light camera which records the image with a
CCD. The intensity of the light emitted by the phosphor plate is proportional
to Ips. The measured signal is related to the signal, I, via:

Iny = Ipg + Ige9Ver (Ca)

where I is the background current that is always present and g is the MCP
gain. To determine the value of g we illuminate the MCP with a constant Ig
and measure ) as a function of V.. This is plotted in figure C.2. The blue
crosses are the measured data point and the red line is a fit of those data points
with equation C.1. We use the fitting parameters I, Ig, and g. We find:

Ipg = 36.9
I, =253 %107 (C.2)
g=19.7kv!

We get Ig via:
Is = (In — Ipg) e 9" (C3)
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Figure C.1: Microchannel plates and phosphor screen. An incident current I, (the
minus sign is such that the arrow points in the direction the electrons move). This
current is amplified to a much higher current /), with a factor that depends on the
MCP voltage V,, (see equation C.1). The current I;; is converted into light with the
phosphor screen. Data is recorded by a conventional light camera with a 12-bit CCD,
that images the phosphor screen.
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Figure C.2: Response of the MCP as a function of V,,,. The blue crosses are measured
points and the red line is a fit of the data with equation C.1. The fit parameters are
presented in equation C.2.
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The conventional way to determine [g is to just measure I; with a fixed value
for V.. However, the dynamic range can be dramatically increased when V7,
is also controlled. We refer to this measurement method as High Dynamic
Range (HDR) measurements. This is especially useful when determining LEE
reflection and transmission spectra where Ig can have values in a range that
spans several orders of magnitude. With HDR, the amplification can be high
when I is low and low when Ig is high. The latter is very important, a large
Iy can cause permanent damage to the MCP and phosphor screen.

Appendix D Datasets obtained with a different elec-
tron source

Reflected and transmitted signals are acquired with two electron sources with
different energy widths. The eV-TEM and LEEM electron guns have an energy
width of respectively A Er and A E'r. The electron source we used for eV-TEM
has an energy width of approximately 0.8 eV and the main electron gun used
for reflection measurement about 0.25 eV. The reflected data therefore contain
higher frequency components than the transmitted data. When two data sets
are compared we have to make sure they share the same frequency range. To
do this we first note that the measured signal can be written as:

T(E) = (fr*Gagr) (E)
R(E) = (fr*Gapg) (E)

Where f7 and fr are the transmitted and reflected signal if they would have
been measured with an infinitely small energy width, Gag is the Gaussian
energy distribution with an energy width AFE, and (f * ¢)(t) denotes the
convolution of f and g, which is defined as:

(D.1)

(f+g) (E) = / f()g(E—7)dr (D.2)

To ensure that the two data sets share the same frequency range the data set
with the largest range should be convoluted with a Gaussian such that:

R+ Gap = (Jr*Gapg) * Gap = [R* G xmyeramye = IR * Gabr
(D.3)
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Where we use that (f xg) *xh = f* (g*h) and Gaog * G. = G\/m.
To compare the two data sets AFE’ has to be chosen such that:

AE' = \/(AEr)?2 — (AER)? (D.4)

Appendix E Normalization of reflected and trans-
mitted signals

The electron reflectivity or transmissivity can be measured by determining the
reflected or transmitted fraction of the incident current, I;. The normalized
signal is given by:

Inr
Io
In a reflection measurement this can easily be done by determining the reflected
intensity at a negative incident electron energy. Here, the full incident current
is reflected back into the imaging system before any electron reached the
sample. The normalized reflected signal is therefore determined by dividing
the signal by the average intensity measured at /' < 0, as shown in figure E.1.

Irr = (E.1)

In a transmission experiment, Iy can be determined by measuring the current
transmitted through an open hole in the sample. However, when the electric
fields on both sides of the opening are not equal such an aperture acts as an
electron lens. This should be taken into account to determine Ij. In figure E.2
ray traces™ are presented. Electrons are decelerated as they come closer to the
middle electrode, which has a hole in it. Electrons arrive at this electrode with
an energy that is indicated below the figures. Due to electric field components
perpendicular to the optical axis, electrons in the vicinity of the hole are also
transmitted through the hole. This causes an overestimation of Iy when the
lensing effect is not taken into account. At higher electron energies this effect
is much smaller. Therefore, the electron current through the hole at higher
electron energies is a good measure for the incident electron current in eV-TEM.

“Calculated with SIMION.
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Figure E.1: Normalization for reflection and transmission expermiments. (a) A typical
LEEM reflectivity spectrum. This is measured on triple-layer graphene. The signal
is normalized to the intensity measured in mirror mode, i.e. the intensity for £ < 0.
Here electrons are reflected back before they reach the sample. (b) An eV-TEM
measurement on the same region. Here the incident current cannot be determined
from the same region and has to be measured from an uncovered aperture in the
sample, nearby the position where the spectrum is obtained.

In figure E.3 we compare an eV-TEM measurement with the electron optical
simulation. The intensity is measured in eV-TEM on an uncovered aperture
in the sample. Both datasets are normalized to the intensity at 10 eV. The
simulations and measurements are in good agreement. This means that we
can determine the incident current density in eV-TEM by measuring the trans-
mitted current through a hole with an incident electron energy > 10 eV.
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Figure E.2: Electron ray traces calculated with SIMION. Electrons arrive from the
bottom and are decelerated as they come close to the middle electrode. The electron
energy with which they enter the figure is chosen such that they arrive at the middle
electrode with the energy that is indicated below the figures. The middle electrode
has a hole in it (2.5 pwm diameter) through which electrons can travel. 1mm above
this figure an electrode (not shown) is placed at +15 kV, towards which the electrons

are accelerated.
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Figure E.3: eV-TEM measurement of the intensity through 2.5 ym hole, compared
to the transmission determined from the SIMION ray-traces. The measurement and
simulation are in good agreement. At low electron energies, the transmitted current
is much higher than Ij. Electrons in the vicinity of the hole are also directed through
the hole due to in-plane electric field components. From the simulations we know
that at higher energies this effect becomes less important and the transmitted current
through the hole approaches Ij. Here the two datasets are normalized to the intensity
at 10 eV.






