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S E L F - E N E R G I E S A N D Q U A S I PA RT I C L E
S C AT T E R I N G I N T E R F E R E N C E

5.1 introduction

The copper-oxide superconductors are well-known to be strongly cor-
related materials. Many phenomena exhibited by the cuprates evade
explanations based on weakly interacting quasiparticles. Perhaps the
most notorious example of this is the “strange metal,” the normal state
of these materials near optimal doping. This shows behavior that, as
probed by transport, is very different from that seen in conventional
metals, which are described well by Fermi-liquid theory [84]. An-
other similarly perplexing phase of these cuprates is the pseudogap, in
which the density of states is prominently suppressed near the Fermi
energy, exhibiting numerous exotic phenomena such as various or-
dered phases, gap inhomogeneities, and “Fermi arcs”— disconnected
segments in momentum space hosting gapless excitations—as seen
in experiments such as scanning tunneling spectroscopy (STS) and
angle-resolved photoemission spectroscopy (ARPES) [164, 121]. Even
the superconducting state, which is comparatively well-understood
among the various phases of these materials, is highly unusual: it
has d-wave pairing, leading to gapless, Dirac-like nodal quasiparticles

169



self-energies and quasiparticle scattering interference

[157, 36]. It appears to be much more stable against disorder than
d-wave mean-field BCS theory predicts, while unusual interaction ef-
fects, as probed by ARPES, are seen to emerge as the temperature ap-
proaches Tc [141, 140, 138, 139], which in turn is much higher than in
conventional superconductors. The T = 0 states at low and high dop-
ing are rather firmly established as an antiferromagnetic Mott insula-
tor and a conventional Fermi liquid, respectively, but the intermediate-
doping states remain to be fully understood. A full microscopic theory
of these materials consistent with all of these phenomena has yet to be
developed.

Much understanding can nevertheless be gained by adopting a phe-
nomenological approach towards modeling these various phases of the
cuprates. Starting from a weakly-interacting picture, interaction or dis-
order effects can be included by putting in the appropriate self-energy,
which “dresses” up the mean-field description one starts out with.
For instance, many of the unusual transport properties of the strange
metal, such as linear-in-T resistivity, can be captured by the marginal
Fermi liquid self-energy first introduced by Varma et al. [173]. While
this self-energy enters the Fermi-liquid propagator in what appears to
be an innocuous manner, it results in the complete absence of quasi-
particles at T = 0: the quasiparticle weight of a marginal Fermi liquid
vanishes at zero temperature. This MFL self-energy has been shown
to account for much of the transport anomalies seen in the cuprates,
although its microscopic origins remain largely unknown. Similarly,
much insight can be derived by treating the d-wave superconducting
state as a mean-field, albeit unconventional, BCS superconductor. This
starting point is largely justified by experiment. In general, ARPES
finds that the Bogoliubov quasiparticles inside the superconducting
state are well-defined excitations [82, 46, 163, 102, 176], while STS sim-
ilarly finds behavior consistent with coherent quasiparticles scattering

170



5.1 introduction

off of disorder, leading to quasiparticle scattering interference (QPI)
[70, 112, 61, 90, 99, 50]. From a purely phenomenological standpoint,
the d-wave superconducting state can be reasonably studied starting
with this mean-field description, with self-energies included to model
phenomena that deviate strikingly from the mean-field expectation.

Recently, a number of ARPES experiments on both normal and su-
perconducting Bi2Sr2CaCu2O8+δ (Bi-2212) across a wide doping range
have provided a more complete picture of the various phenomena in
these materials, with the self-energy playing a crucial role in both
phases. In the superconducting state, it is observed that the super-
conducting gap is not the sole factor determining Tc—contrary to ex-
pectations from BCS theory. Instead, the quasiparticle scattering rate
exhibits a pronounced uptick near Tc. It appears that Tc is set by the
scale at which the gap and the scattering rate cross over into each
other, and the temperature at which the gap closes is larger than Tc

[141, 140, 138, 139]. Meanwhile, in the normal state, experiments af-
firm the validity of the marginal Fermi liquid description at optimal
doping, but in addition find that the ARPES data are well-described by
a self-energy that interpolates smoothly between a Fermi-liquid one at
extreme overdoping and a marginal-Fermi-liquid one at optimal dop-
ing. Such a doping-dependent self-energy has been central to the pro-
posed “power-law liquid” phenomenology first proposed by Reber et
al. [142].

Our goal in this chapter is to provide a detailed theoretical explo-
ration of the effects of these self-energies, in both the normal and
superconducting phases, on the real-space local density of states as
probed by experiments. We will focus on QPI, which has not been
looked at in related high-temperature STS studies on Bi-2212. Very
few experimental studies on the temperature-dependent behavior in
the superconducting state have been performed thus far [53, 132, 131],
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and the effects of self-energies on STS spectra have been largely unex-
plored save for a small number of studies [132, 9]. Given this situa-
tion, we will provide a template demonstrating how STS results might
look like, providing a guide for future experiments. QPI can be used
as a real-space method of probing the momentum-space structure of
the excitations: one takes the power spectrum of the differential con-
ductance maps, and the most prominent wavevectors appearing can
be used to map out the underlying band structure of these materials
[70, 112, 182, 25, 61, 90, 99, 50]. In addition, STS experiments can, in
principle, demonstrate whether the excitation spectra are coherent or
not. The presence of sharp peaks in the power spectrum of the dif-
ferential conductance maps taken from the d-wave superconducting
state at low temperatures is a clear-cut demonstration of the existence
of the Bogoliubov quasiparticles as sharp, phase-coherent excitations
[189]. This fact is corroborated by evidence from ARPES suggesting
that the excitations in the superconducting state at optimal doping
are long-lived, unlike those in the normal state at the same doping
[82, 46, 163, 102, 176]. These peaks in the power spectrum behave
exactly as the heuristic “octet model” suggests. If these Bogoliubov
quasiparticles are no longer long-lived, there is no reason to suspect
that these peaks will continue to be present. These will be broadened
and, if the scattering rate is large enough, will be rendered diffuse
enough that these no longer exist as well-defined peaks. Throughout
this chapter we will examine closely in several case studies the effect
of the quasiparticle scattering rate on the power spectrum of the LDOS
in the superconducting and normal state.

We first study the superconducting state as temperature is varied,
and consider three different possible scenarios and how these can be
seen in ARPES and STS. The first, which we call the “gap-closing”
scenario, is well-known from BCS theory. Here the gap shrinks contin-
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5.1 introduction

uously as temperature is increased until Tc is reached, at which point
it vanishes. The scattering rate is constant as a function of temper-
ature. The second scenario is “gap-filling/closing” and is argued to
be seen in ARPES experiments. Here the gap shrinks with increasing
T, vanishing at some temperature Tp, but, importantly, Tc 6= Tp. In
addition, additional spectral weight fills in at low energies as T is in-
creased. This can be accounted for by a temperature-dependent imagi-
nary part of the self-energy which takes on a value comparable to that
of the gap at temperatures near Tc. The third scenario is “gap-filling,”
wherein the superconducting gap is temperature-independent, while
the scattering rate is strongly temperature-dependent, as in the second
scenario. We observe the gradual disappearance of the octet-model
peaks as the scattering rate becomes very large. In the two scenarios
where the gap closes, we observe that the octet-model peaks can be
seen to disperse when the energy is fixed and temperature is varied,
but that these peaks lose coherence if the scattering rate becomes very
large.

As for the normal state, three scenarios are also considered. The
first is the ordinary Fermi liquid, the second is the marginal Fermi
liquid, and the third is a realistic marginal Fermi liquid whose spectral
function exhibits considerable momentum-space anisotropy, with the
nodal regions being much more coherent than the antinodal ones. We
see that the power spectrum of the LDOS in the first two cases appears
superficially similar to each other—the main feature for both is a set
of caustics which correspond to the scattering wavevectors between
points along the Fermi surface. The difference between the two sets of
spectra is quite subtle: the caustics in the marginal Fermi liquid power
spectrum are much more broadened than those in the ordinary Fermi
liquid power spectrum, owing to the smaller self-energies present in
the ordinary Fermi liquid compared to those in the marginal Fermi
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liquid. Finally, the momentum-dependence of the self-energy of the
anisotropic marginal Fermi liquid results in a highly anisotropic LDOS
power spectrum as well—scattering between incoherent portions of the
Fermi surface results in very broadened segments of the caustics in the
power spectrum, while the wavevectors corresponding to scattering
between coherent quasiparticles give rise to sharp caustic segments.

We note that STS as a probe is particularly vulnerable to finite-
temperature smearing, which can obscure the features described in
our numerics. We thus augment our single-impurity results with-
out thermal smearing with macroscopically disordered and thermally
smeared simulations to provide guides to experimentalists. It is in
principle possible to deconvolute the thermally smeared STS data to
obtain differential conductances that feature only intrinsic broadening;
this has been performed in a number of STS studies [132]. However it
is nevertheless worthwhile to examine the extent to which the features
described in the single-impurity, thermally unsmeared case survive
when multiple impurities and thermal smearing are included. We find
that the thermally smeared case obscures many of the features seen
in the superconducting state, with the octet model peaks disappear-
ing even when the thermally unsmeared simulations suggest they are
present. In the normal state cases we study, however, the general fea-
tures of the thermally unsmeared results—the caustics—survive even
with thermal smearing included.

5.2 self-energies and broadening

When considered as phenomenological inputs and in the limit of weak
disorder, self-energies do not fundamentally alter any of the funda-
mental physics of quasiparticle scattering interference in both the nor-
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mal and the superconducting state. Their main nontrivial effect is to
broaden the density of states relative to the clean, non-interacting limit.
In what follows we will illustrate these effects in the normal and su-
perconducting states.

Consider a normal metallic system described by a Hamiltonian H
without any self-energies. The density of states ρ at energy E is

ρ(E) = ∑
n

δ(E− εn), (5.1)

where εn is an eigenvalue of H and n is some quantum number. (In
a translationally-invariant system, this quantum number could be the
momentum k, for example, and the sum amounts to integrating over
k.) If one has a finite-sized system, the spectrum of H is discrete, and
the DOS consists of spikes at energies equal to εn. Now we include the
effect of self-energies. In this system, the self-energy is defined as

ΣN(n, ω) = G−1
0 (n, ω)− G−1(n, ω), (5.2)

where G is the Green’s function for the full system (with interactions,
disorder, or both) and G0 is the noninteracting/clean Green’s function,
written in the basis which diagonalizes H (i.e., the set of eigenstates
|n〉) [107]. The self-energy is assumed to incorporate all the effects of
interactions or disorder, so the Green’s function for the full system has
the same symmetries as that of the non-interacting/clean one. The
retarded full Green’s function can be written as

G(n, ω) =
1

ω− εn − ΣN(n, ω)
. (5.3)
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We can define a spectral function A(n, ω) = − 1
π ImG(n, ω). It has the

following form:

A(n, ω) = − 1
π

ΣN
2 (n, ω)

[ω− ΣN
1 (n, ω)− εn]2 + [ΣN

2 (n, ω)]2
. (5.4)

Here ΣN
1 and ΣN

2 are the real and imaginary parts, respectively, of
the self-energy. In the limit ΣN → 0, this reduces to a delta function
describing the noninteracting system:

lim
Σ→0

A(n, ω) = − lim
ΣN→0

1
π

ΣN
2 (n, ω)

[ω− ΣN
1 (n, ω)− εn]2 + [ΣN

2 (n, ω)]2

= δ(ω− En).

(5.5)

The DOS for the full system is

ρ(E) = ∑
n

A(n, ω → E). (5.6)

This means that, in the presence of ΣN , the density of states at an
energy E does not consist merely of states which statisfy εn = E. For
one, ΣN

1 (n, ω) shifts the real parts of the poles of the Green’s function
from ω = εn to ω − ΣN

1 (n, ω) = εn. More importantly, the spectrum
is broadened and ρ(E) now incorporates nonlocal contributions from
states located away from E in energy space. This will be reflected in
the local density of states (LDOS) as well: a map of the LDOS taken
at energy E will include contributions from states at other energies,
weighted by Eq. 5.4.
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5.2 self-energies and broadening

None of our discussion fundamentally changes when one considers
the superconducting state. The full Green’s function in Nambu space,
including self-energies, is

G̃−1 =

(
ω− εn − ΣN(n, ω) −ΣA(n, ω)

−ΣA(n, ω) ω + εn + ΣN(n,−ω)∗

)
. (5.7)

εn is the normal-state energy, and ΣN(n, ω) and ΣA(n, ω) are the nor-
mal and anomalous self-energies, respectively [29]. Under this def-
inition, in the superconducting state the real part of the anomalous
self-energy is equal to the pairing gap. In the cases involving d-wave
superconductors that we will discuss, we will focus only on normal-
state self-energies, and we will take the anomalous self-energy to be
frequency-independent, so that in the translationally-invariant case
the gap has the usual noninteracting d-wave form given by ΣA(k) =

∆(k) = 2∆0(cos kx − cos ky).
We start with a normal-state self-energy of the form ΣN(ω) = ΣN

1 (ω)+

iΣN
2 (ω). We assume that the self-energy depends only on ω, and that

ΣN
1 (ω) = −ΣN

1 (−ω) and ΣN
2 (ω) = ΣN

2 (−ω). It can be shown that
the the spectral functions corresponding to the particle and hole parts
of the Green’s functions, A1(n, ω) = − 1

π ImG11(n, ω) and A2(n, ω) =

− 1
π ImG22(n, ω), are

A1(n, ω) = − 1
π

ΣN
2 (ω)

[ω− ΣN
1 (ω)− En]2 + [ΣN

2 (ω)]2
(5.8)

and

A2(n, ω) = − 1
π

ΣN
2 (ω)

[ω− ΣN
1 (ω) + En]2 + [ΣN

2 (ω)]2
, (5.9)

where En =
√

εn + ∆n are the energies of the Bogoliubov quasipar-
ticles. Without self-energies these spectral functions consist of delta
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functions at energies En. As in the normal case, the spectral functions
are broadened by ΣN

2 (ω), and the presence of ΣN
1 (ω) shifts the real

parts of the poles by ΣN
1 (ω). The full spectral function A(n, ω) is

A(n, ω) = u2
n A1(n, ω) + v2

n A2(n, ω), (5.10)

where u2
n and v2

n are coherence factors, given by u2
n = 1

2 (1 + εn
En
) and

v2
n = 1

2 (1−
εn
En
) [24]. Consequently the density of states at energy E

takes the following form:

ρ(E) = ∑
n

[
u2

n A1(n, ω → E) + v2
n A2(n, ω → E)

]
. (5.11)

5.3 methods

Here we will briefly sketch the methods we utilize in the chapter. Both
real- and momentum-space methods are used to ensure that our nu-
merical results can be compared well with STS and ARPES. We first
focus on real-space methods. To obtain quantities such as the local
density of states, we start with the Bogoliubov-de Gennes Hamilto-
nian, written in a site basis:

H = −∑
ijσ

tijc†
iσcjσ + ∑

ij
(∆∗ijci↑cj↓ + h.c.). (5.12)

We will parametrize the normal-state Fermi surface with a minimal
single-band model capturing most of the salient features of the nor-
mal state of optimally-doped BSCCO. We set the nearest-neighbor and
next-nearest neighbor hopping amplitudes to be t = 1 and t′ = −0.3,
respectively. The chemical potential µ is tuned to ensure that the hole
doping concentration is p ≈ 16%. In the superconducting state the
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5.3 methods

pairing amplitude is of a d-wave nature; this is ensured by taking
∆ij = ∆0 and ∆ij = −∆0 whenever i and j are nearest-neighbor sites in
the x- and y-directions, respectively.

All real-space information about the spectrum of Eq. 5.12 can be
extracted from the Green’s function G. The bare Green’s function G0—
without disorder or interactions—can be written in terms of the lattice
Hamiltonian H as follows:

G−1
0 (ω) = ω1− H. (5.13)

As we have defined them, G0 and H are 2Nx Ny × 2Nx Ny matrices liv-
ing in Nambu space, as in Eq. 5.7. We will incorporate disorder or
interactions into this mean-field formalism by means of a self-energy
Σ(ω), which is another 2Nx Ny × 2Nx Ny matrix with a similar Nambu-
space substructure as G0. Most generally, Σ(ω) = ΣN(ω) + ΣA(ω) in
the d-wave state; however we will assume that d-wave pairing has al-
ready been incorporated into the bare Green’s function, so only the
normal part of the self-energy enters into consideration. The full
Green’s function becomes

G−1(ω) = G−1
0 (ω)− Σ(ω), (5.14)

and before proceeding we need to input first the needed form of Σ(ω).
Note that in principle, Σ(ω) could be momentum-dependent; this can
be incorporated into a lattice description by putting the appropriate
off-diagonal couplings into Eq. 5.14.

By judiciously choosing the indexing of the sites, G−1 can be written
in block tridiagonal form. We then invert G−1 using an efficient algo-
rithm for block tridiagonal matrices [52, 69, 38, 136, 184, 103, 143, 104,
94]. The details of this method have been worked out in detail in prior
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work, so we will not repeat them here [161, 162]. The advantage of this
method is that it is extremely fast compared to exact diagonalization;
allows general forms of disorder to be included, unlike the T-matrix
method, which is exact only for pointlike impurities; and enables self-
energies to be included explicitly in the Green’s function, allowing the
study of the unusual effects of self-energies on measurable real-space
quantities. We take Nx = 1000 and Ny = 120.

The local density of states ρ(r, E) can be obtained from G using the
following equation:

ρ(r, E) = − 1
π

ImG11(r, ω → E). (5.15)

To study quasiparticle scattering interference, we first introduce a sin-
gle weak (V = 0.5) pointlike scatterer in the middle of the sample. We
obtain the LDOS map of the central 100× 100 region from Eq. 5.15 and
take the absolute value of its Fourier transform to obtain the QPI power
spectrum P(q, ω). The general case of a macroscopically disordered
sample can be modeled by randomly distributing a number of these
weak scatterers across the sample. To provide a guide for experimen-
talists, we also include results in which thermal broadening is present.
It is known that the differential conductance as measured by STS at
temperature T is broadened by a factor Γt ≈ 3.5kBT—this is simply
the width of the first derivative of the Fermi-Dirac distribution func-
tion which enters into the expression for the density of states at tem-
perature T [132]. This can be incorporated into our model by adding
this temperature-dependent thermal smearing factor—note here that
Γt is the full width at half maximum—to the intrinsic broadening due
to disorder and interactions.

Another major quantity we are interested in is the spectral function
A(k, ω). Assuming that we have only normal self-energies entering
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5.4 self-energies in the superconducting state

the Green’s function, the spectral function can be computed directly
from the dispersion of the Bogoliubov quasiparticles using Eqs. 5.8, 5.9
and 5.10, with n → k. Here, Ek =

√
εk + ∆k, and εk = −2t(cos kx +

cos ky)− 4t′ cos kx cos ky − µ and ∆k = 2∆0(cos kx − cos ky). To numer-
ically calculate this, the first Brillouin zone is divided into a discrete
1000 × 1000 grid, which is large enough to render finite-size effects
insignificant.

5.4 self-energies in the superconducting state

In this section we will focus our attention on the various effects of
self-energies in the superconducting state which can be seen in STS
and ARPES. The main phenomenon of interest is “gap filling,” which
is seen across a wide range of dopings via ARPES and STS [141, 140,
138, 139, 132]. We will examine the phenomenological consequences
of a nontrivial temperature-dependence of the scattering rate Γ on
the observed spectral function, A(k, ω), and the power spectrum of
the LDOS, P(q, ω), both for the single-impurity case without thermal
smearing (the idealized case) and the case with an dilute array of weak
impurities with thermal smearing (to simulate actual tunneling data).

Recall that STS experiments on the superconducting cuprates show
weak and energy-dependent modulations in the LDOS due to QPI. QPI
results from scattering off of weak impurities, which generate Friedel
oscillations around impurities. Because of the unusual, banana-like
shape of the contours of constant energy (CCEs) of d-wave supercon-
ductors, the most dominant scattering processes are those from states
on one tip of a “banana” to those on another, and these dominant
wavevectors appear as peaks in the power spectrum of the LDOS—this
in a nutshell is the so-called “octet model.” Indeed, the peaks seen in
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Figure 5.1: Plot of the gap and the quasiparticle scattering rate as a function of
temperature in the gap-closing (left), gap-filling and -closing (mid-
dle), and gap-filling (right) scenarios. The behavior seen in the
middle plot—corresponding to the gap-filling/closing scenario—
is seen in ARPES measurements by Reber et al. on optimally-
doped BSCCO. The markers label the values of the gap and scatter-
ing rate at selected temperatures which are used in plots through-
out this section.

experimentally-obtained power spectra behave entirely in accordance
with the predictions of this simple model of d-wave Bogoliubov quasi-
particles scattering off of weak impurities. That said, the vast majority
of STS experiments on the superconducting state of the cuprates have
been performed at temperatures well below Tc, where the quasiparti-
cle scattering rate Γ is fairly small and is only weakly dependent on
temperature. However, various experiments have shown that Γ is not
temperature-independent, as one would expect from elastic scattering
off of impurities—it instead exhibits a very pronounced dependence
on T as temperatures are increased. In fact, recent ARPES results sug-
gest that Γ(T) is roughly of the same size as the superconducting gap
∆0(T) itself as T → Tc [138]. Furthermore, the same ARPES results
show that ∆0(T) does not go to zero at Tc, as one would expect from
BCS theory. Instead, d-wave pairing correlations are seen to exist be-
yond Tc, and persist up to a higher temperature scale which appears
to decrease as doping is increased. We show in Fig. 5.1 plots of the
superconducting gap and the quasiparticle scattering rate as a func-
tion of temperature for three different scenarios: the BCS scenario, in
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5.4 self-energies in the superconducting state

which the gap closes as T is increased, becoming zero at Tc; the gap-
filling and -closing scenario, seen in ARPES experiments by Reber et
al. on optimally-doped BSCCO (Tc ≈ 90 K), in which the gap shrinks
and the quasiparticle scattering rate increases as T is increased, but
the gap remains finite past Tc [138]; and the gap-filling scenario, in
which the gap remains roughly temperature-independent while the
scattering rate increases at T near Tc. We will carry out the exercise
of obtaining results measurable by STS experiments in the cuprates as
temperature is increased, assuming consistency with ARPES results. It
is an interesting experiental question to see if the peaks suggested by
the “octet model” still appear when the quasiparticle scattering rate is
very large, as appears to be the case when T ≈ Tc.

The temperature-dependence of the superconducting gap and the
scattering rate can be parametrized simply as follows. As argued by
Reber et al., the experimentally-measured gap amplitude at optimal
doping can be fit to the following BCS-like functional form,

∆0(T) = ∆0(0)× tanh

(
α

√
Tp

T
− 1

)
, (5.16)

where Tp is the temperature at which the gap fully closes, ∆0(0) is the
value of the gap at T = 0, and α is a dimensionless number of order
unity [139]. In our numerics we will take ∆0(0) = 0.096, Tp = 100 K,
and α = 2.32. We remind the reader that ∆0(T) enters the momentum-
space gap function as ∆(k, T) = 2∆0(T) × (cos kx − cos ky). As for
the scattering rate, we use the form obtained by Chubukov et al. [28],
which we write in the following manner:

Γ(T) = Γ0 + Ωsinh
(

Tb

T

)
. (5.17)
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Here Tb is some very large temperature scale included phenomenolog-
ically in order to provide a good fit with the experimental results and
Γ0 is the elastic scattering rate. Reasonably good fits can be obtained
by using Γ0 = 0.015, Ω = 2350, and Tb = 1100 K. We will neglect any
momentum-dependence of the scattering rate. These two functional
forms in tandem with each other explain very well the phenomenol-
ogy of the closing and the filling of the gap as seen in experiments.

The BCS case features only the closing of the gap, and only elastic
scattering is present; as such we will take Γ(T) = 0.015 in that case.
To allow us to compare the results of the first case with the BCS case,
we take the same functional form for the BCS case as in Eq. 5.16. This
ensures that the values of the superconducting gap are the same at
each temperature, and that the effects of the self-energies in the first
case can be isolated very clearly and contrasted with the trivial effects
seen in the BCS case. It is very important to note that in the case with
both the filling and closing of the gap, Tp is not equal to Tc, whereas
in the BCS case Tp = Tc. Finally, for the gap-filling case, we will
freeze ∆0(T) at its T = 0 value, and let the scattering rate vary with
temperature as in Eq. 5.17.

To illustrate clearly the differences between BCS and gap-filling phe-
nomenology, we first discuss the BCS case with only the closing of
the gap and show in Fig. 5.2 plots of A(k, ω → E = 0.100) and
P(q, ω → E = 0.100) for various temperatures. The main changes
one can observe with increasing temperature at fixed frequency are
due to way the CCEs—as seen directly in A(k, ω)—are altered by the
decreasing size of ∆0 as T is increased. At T = 10 K, the superconduct-
ing gap is large, implying that at the low frequencies (E = 0.100 ≈ 15
meV) at which these plots were taken the banana-shaped contours only
cover a small part of the underlying normal-state Fermi surface. As
∆0 shrinks with increasing temperature, more and more of the un-
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Figure 5.2: Gap-closing phenomenology at various temperatures. Tc here is
100 K. Left to right: The spectral function A(k, ω); the Fourier
transform of the LDOS P(q, ω); linecuts of P(q, ω) in the nodal
and antinodal directions; P(q, ω) in the presence of multiple
weak impurities and finite-temperature smearing; and linecuts of
P(q, ω) in the presence of multiple weak impurities and finite-
temperature smearing. Arrows indicate the locations of the peaks
predicted by the octet model. All plots are taken at E = 0.100.
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derlying Fermi surface becomes covered by the “bananas.” However,
because Γ is constant as a function of temperature, the spectral func-
tions taken at various temperatures remain similarly sharp—the CCEs
maintain their shape without much visible smearing. These imply that
for the power spectrum of the LDOS, the peaks corresponding to the
“octet model” remain very much visible. Because no change in in-
trinsic broadening occurs as temperature is increased, the octet-model
peaks retain their sharpness throughout the temperature ranges we
consider, and even the caustics corresponding to scattering between
the off-tip segments of the “bananas” are still visible and do not get
broadened. The only change that occurs as temperature is changed is
in the positions of the characteristic peaks of the power spectrum. Be-
cause ∆0 decreases in size as T increases at fixed frequency, the CCEs
all increase in size with increasing T, and consequently the seven octet-
model peaks disperse as T is changed at fixed frequency. For instance,
q7—the smallest diagonal scattering wavevector, corresponding to tip-
to-tip scattering within one “banana”—is seen to increase in magni-
tude as T is increased. When the gap finally fully closes, the QPI
power spectrum consists of sharp, well-defined caustics characteristic
of a normal metal. With realistic disorder (i.e., a 0.5% concentration
of weak pointlike scatterers) and finite-temperature smearing, the ex-
pected (unconvoluted) LDOS power spectra is seen to feature the loss
of the octet-model peaks as temperature is increased. In particular,
only at 10 K does the disordered and thermally-smeared power spec-
trum show these peaks. However, a sharp transition in the features
of the power spectrum once the gap fully closes is still visible even at
the high temperatures at which these occur—there is a change from a
highly anisotropic power spectrum in the superconducting state, with
pronounced spectral weight near the corners and suppressed antin-
odal scattering wavevectors, to the caustics seen in the zero-gap case.
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If deconvolution is carefully applied to the real-space differential con-
ductance data, only the intrinsic (that is, non-thermal) broadening will
affect the LDOS and the octet-model peaks should be recovered.

Dramatically different behavior is seen once a strongly temperature-
dependent but momentum- and frequency-independent quasiparticle
scattering rate is included, as is the case in the gap-filling/closing sce-
nario, the results for which we plot in Fig. 5.3. We used the same
superconducting gap for each temperature as in the BCS case, so all dif-
ferences between the two sets of plots can be attributed to the presence
of a T-dependent Γ. At low temperatures both A(k, ω → E = 0.100)
and P(q, ω → E = 0.100) are identical, as in that particular regime
there is little difference between the two scenarios. However, when
T ≈ Tc, Γ is no longer parametrically smaller than ∆0 but is instead al-
most of similar size, and thus the effects of the intrinsic broadening are
no longer trivial. Consider first the behavior of A(k, ω). At 85 K, the
CCEs are still well-defined, albeit broadened considerably compared
to the BCS case, with more spectral weight found in the streaks emanat-
ing from the ends of the contours which follow the underlying Fermi
surface. At T = Tc = 90 K, even more broadening is present, and yet
more spectral weight moves towards the streaks. At 95 K, Γ ≈ ∆0, and
consequently the spectral function resembles neither that of a d-wave
superconductor nor that of a normal metal. Instead, it shows a quasi-
particle excitation spectrum which resembles Fermi arcs. That is, there
is considerable spectral weight present near the nodes, and one sees
less spectral weight as one moves along the underlying Fermi surface
towards the antinodes. Once the gap fully closes, what is seen is the
expected isotropic normal-state spectrum in which the spectral weight
along the CCE is uniform. In our plots where the gap is fully zero, we
have assumed the value of the scattering rate to be equal to that given
by the marginal Fermi liquid self-energy at T = 100 K.
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Figure 5.3: Gap-filling and -closing phenomenology at various temperatures.
Tc here is 90 K. Left to right: The spectral function A(k, ω); the
Fourier transform of the LDOS P(q, ω); linecuts of P(q, ω) in the
nodal and antinodal directions; P(q, ω) in the presence of multi-
ple weak impurities and finite-temperature smearing; and linecuts
of P(q, ω) in the presence of multiple weak impurities and finite-
temperature smearing. Arrows indicate the locations of the peaks
predicted by the octet model. All plots are taken at E = 0.100.
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The strong temperature-dependence of Γ has an even more pro-
nounced effect on the single-impurity P(q, ω) without thermal smear-
ing. At 85 K, the patterns are the same as in the BCS case, with the
difference that the octet-model peaks that were visible and sharp in
the BCS case are now muted—the intensities of the peaks are quite
weak in the gap-filling scenario. At 90 K even more smearing of the
QPI patterns becomes apparent, and some peaks, such as q7, almost
completely disappear. The points corresponding to certain other octet-
model peaks such as q2 and q6, while still discernible, are so broad-
ened as to be almost undefined at this point, and only streaks corre-
sponding to diagonal internodal scattering remain as the prominent
signal. At 95 K and beyond, all octet-model peaks cease to be well-
defined signals. Instead what remains are caustics which track scatter-
ing along the underlying normal-state Fermi surface, but with variable
weights depending on the location of the initial and final states on
the Fermi surface, resulting in a nonuniform distribution of spectral
weight along the caustics. This is considerably different from the QPI
power spectrum of a normal metal with a momentum-independent
scattering rate, wherein the magnitude of P along the caustics is uni-
form. Finally, at the point where the gap has fully closed, we see a
return to a metallic QPI power spectrum, with uniform weight along
all the caustics, but which is considerably smeared compared to that
seen in the BCS scenario. The addition of thermal broadening and
distributed disorder however results in power spectra which are very
similar to those of the BCS case. This makes it difficult to distinguish
the gap-filling/closing scenario from the BCS one from unconvoluted
data, and one needs to perform a deconvolution of the data to recover
the power spectrum with only intrinsic broadening present.

The change in the behavior of P(q, ω) from a small-gap d-wave su-
perconductor with very large Γ to a normal-state metal with zero gap
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is quite stark—in contrast to what is seen in A(k, ω), where the change
appears to occur smoothly. Compared to the QPI power spectrum for
the normal metal, the spectrum at energies below the gap for a broad-
ened d-wave superconductor is much more suppressed in the antin-
odal directions (i.e., the (0, 0) → (0,±π) and (0, 0) → (±π, 0) direc-
tions in q-space). It also features much more spectral weight near the
corners. All of this can be attributed to the fact that, because the gap is
finite in this regime, the scattering matrix element is affected by coher-
ence factors. In the presence of a weak perturbation in the chemical
potential (as in the case of our numerics), scattering between two states
where the d-wave gap has the same sign is suppressed compared to
that between states where the gap has opposite signs [182, 133]. With
a finite gap, this would explain why the intensities of wavevectors
corresponding to scattering in the antinodal directions (which would
be between states where the gap has the same sign) are weaker com-
pared to those of internodal scattering wavevectors, resulting in the
comparatively strong signal near (±π,±π). This coherence-factor ef-
fect completely disappears upon the closing of the gap. It should be
emphasized that this dramatic change in the spectrum as ∆0 → 0 is
still visible even in the unconvoluted thermally-smeared spectrum.

The third scenario we consider is one in which the superconducting
gap remains finite and temperature-independent, while the quasipar-
ticle scattering rate increases monotonically as temperature is raised.
We plot results for this case in Fig. 5.4. We used the same scattering
rate as in the gap-filling/closing case; note that at higher temperatures
the scattering rate becomes of the same size as the gap. Unlike in
the second case, because the gap remains a constant as T is increased,
there is no change in the position and size of the CCEs as seen in
A(k, ω → E = 0.100). What differs is the sharpness of these con-
tours in momentum space. At T = 85 K, the contours remain sharp,
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Figure 5.4: Gap-filling phenomenology at various temperatures. Left to right:
The spectral function A(k, ω); the Fourier transform of the LDOS
P(q, ω); linecuts of P(q, ω) in the nodal and antinodal directions;
P(q, ω) in the presence of multiple weak impurities and finite-
temperature smearing; and linecuts of P(q, ω) in the presence of
multiple weak impurities and finite-temperature smearing. Ar-
rows indicate the locations of the peaks predicted by the octet
model. All plots are taken at E = 0.100.
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with only a small amount of spectral weight found beyond the ends
of the “banana.” When temperature is increased, the scattering rate
increases, and the contours become less sharp, with more and more
spectral weight found in the tails. At the highest temperatures, what
had once been well-defined banana-shaped contours resemble more
and more the underlying Fermi surface, but with anisotropy in the
spectral weight along the Fermi surface. While most of the spectral
weight remains near the nodes, considerably more weight has shifted
towards the tails, which track the Fermi surface and which now extend
all the way to the antinodes. However, unlike the scenario in which
the gap both closes and fills, here the shape of the contours is largely
preserved even with increasing broadening.

Because no change in the gap occurs with increasing temperature,
the peaks seen in the single-impurity P(q, ω) without thermal smear-
ing do not disperse when frequency is fixed and temperature is varied.
The main change that occurs is in the sharpness of the peaks, which
is affected by how large the quasiparticle scattering rate is. At T = 85
K, the peaks can still be seen, but with more bluriness than at lower
temperatures due to the large Γ at this temperature scale. Increasing
T from this point onwards results in these peaks becoming progres-
sively more broadened and less visible, turning into blurry patches
with nonzero spectral weight. At the highest value of the scattering
rate we considered, no isolated peaks are visible. With distributed dis-
order and thermal smearing, the plots show similar behavior as the
thermally unsmeared single-impurity results, insofar as no shifts in
the spectral weight as T increases appear in the spectra due to the
constancy of the gap, but no peaks can be discerned at these high tem-
peratures, and in experiment one has to deconvolute the dI/dV data
to disentangle the intrisinc broadening from finite-temperature effects.
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Figure 5.5: Frequency-dependence at T = 10 K—a temperature at which all
three scenarios are essentially identical—of the spectral function
A(k, ω) (upper row); the LDOS power spectrum with a single
pointlike scatterer without thermal smearing (middle row); and
the LDOS power spectrum with both a 0.5% concentration of
pointlike scatterers and thermal smearing (bottom row). Arrows
indicate the locations of the peaks predicted by the octet model.
Note that the scales used for plotting the LDOS power spectra
change with frequency.
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Figure 5.6: Frequency-dependence at T = 90 K in the gap-closing scenario of
the spectral function A(k, ω) (upper row); the LDOS power spec-
trum with a single pointlike scatterer without thermal smearing
(middle row); and the LDOS power spectrum with both a 0.5%
concentration of pointlike scatterers and thermal smearing (bot-
tom row). Arrows indicate the locations of the peaks predicted by
the octet model. Note that the scales used for plotting the LDOS
power spectra change with frequency. In this scenario, this tem-
perature is less than Tc.

Further differences between the BCS and the two gap-filling scenar-
ios can be seen by plotting both A(k, ω) and P(q, ω) for various fre-
quencies. At the lowest temperatures, all three scenarios result in the
same behavior, as seen in Fig. 5.5: the small scattering rate results in
both sharp features in the spectral function, and well-defined peaks
in the LDOS power spectrum whose position in q-space changes as ω

is varied, in agreement with the octet model. Because at low tem-
peratures thermal smearing only has a weak effect, the disordered
and thermally-smeared power spectra show octet-model peaks that
are clearly discernable.
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Figure 5.7: Frequency-dependence at T = 90 K in the gap-closing/filling
scenario of the spectral function A(k, ω) (upper row); the LDOS
power spectrum with a single pointlike scatterer without thermal
smearing (middle row); and the LDOS power spectrum with both
a 0.5% concentration of pointlike scatterers and thermal smear-
ing (bottom row). Arrows indicate the locations of the peaks pre-
dicted by the octet model. Note that the scales used for plotting
the LDOS power spectra change with frequency. In this scenario,
this temperature is the same as Tc.
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Figure 5.8: Frequency-dependence at T = 90 K in the gap-filling scenario of
the spectral function A(k, ω) (upper row); the LDOS power spec-
trum with a single pointlike scatterer without thermal smearing
(middle row); and the LDOS power spectrum with both a 0.5%
concentration of pointlike scatterers and thermal smearing (bot-
tom row). Arrows indicate the locations of the peaks predicted by
the octet model. Note that the scales used for plotting the LDOS
power spectra change with frequency.
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At higher temperatures, how these CCEs and QPI peaks appear in
measurements depends on the degree of broadening present. In the
BCS scenario, the CCEs in the spectral function remain sharp as fre-
quency and temperature are changed. In comparison, in the two gap-
filling scenarios the CCEs feature much more smearing, which in turn
affects how prominent the QPI peaks appear in the LDOS power spec-
trum. Fig. 5.6 shows A(k, ω) and P(q, ω) taken for the gap-closing
scenario at T = 90 K, while Fig. 5.7 shows similar quantities with
gap-closing/filling assumed, and Fig. 5.8 shows the case with only the
filling of the gap. At this temperature it is already apparent that in
the gap-closing/filling case the QPI peaks broaden so much that it is
difficult to see them clearly. What had been very visible QPI peaks in
the gap-closing scenario have turned into barely-discernible patches
in the gap-closing/filling scenario, while at higher energies no trace
of the QPI peaks remain. Similarly, in the gap-filling scenario, one
can see that because the gap is temperature-independent, the LDOS
power spectrum resembles that of the low-temperature case, but with
so much more smearing that the octet-model peaks become far less
discernable. In all three cases, the thermal smearing at T = 90 K is so
large that the fine features seen in the single-impurity unsmeared data
are lost in the smeared data, and the plots appear qualitatively similar
to each other.

We note further that in the two scenarios in which the gap closes
(shown in Figs. 5.6 and 5.7), the shrinking of the gap with increasing T
alters the shape of the CCEs as seen in A(k, ω), and consequently the
positions of the QPI peaks in P(q, ω) change as well. The smallness
of the gap ensures that the superconducting coherence peaks, located
at Ec ≈ ±4∆0, are shifted closer to the Fermi level. At energies which
satisfy |E| > |Ec| the spectral function and QPI power spectrum in
the superconducting state are largely similar to those of the normal
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Figure 5.9: Plots of the spectral function A(k, ω) (left), the power spectrum
of the single-impurity LDOS without thermal smearing (middle),
and the power spectrum of the multiple-impurity LDOS with ther-
mal smearing (right) at T = 95 K in the gap-closing/filling sce-
nario, taken at the Fermi energy (E = 0). The spectral function at
this regime bears a marked resemblance to the “Fermi arcs” found
in the pseudogap regime of the underdoped cuprates.

state at E, except for additional features which arise from the presence
of shadow-like streaks in the spectral function, which in turn are an
effect of the coherence factors which enter Eq. 5.10. The similarity to
the normal-state LDOS power spectrum here is such that even in the
BCS case, which has minimal broadening, no traces of the octet-model
peaks appear at these high energies.

We end this section by revisiting our earlier observation that the
combination of small but nonzero d-wave pairing correlations and a
large scattering rate at T > Tc can give rise to Fermi arc-like patterns
in the spectral function. It is interesting to note that this can be seen
right at the Fermi energy itself. In Fig. 5.9 we plot the spectral function
and the LDOS power spectrum at the Fermi energy at T = 95 K for
the gap-filling and -closing scenario. In the absence of broadening, the
d-wave superconducting state would result in zero-energy states being
localized only at the nodes—the four points on the Fermi surface at
which the superconducting gap is zero. With broadening, however,
there is now a finite density of zero-energy states in the neighborhood
of the nodes. When the scattering rate is small, the effect is minor,
and apart from a small arc centered near the nodes the zero-energy

198



5.5 self-energies in the normal state

states disappear a short distance away from the nodes. However, once
Γ ≈ ∆0 the regions about the nodes which support low-energy states
become large: the “arc” along the Fermi surface which supports zero-
energy states becomes longer and broader, and a comparable lack of
spectral weight is found at the antinodes. The QPI power spectrum is
quite pronounced even at the Fermi energy, and is completely differ-
ent from that of a d-wave superconductor or a normal metal. Instead
it shows streaks near the corners due to strong internodal scattering,
and large low-q patches showing strong intranodal scattering. We note
that this particularly simple set of ingredients (nonzero d-wave pairing
past Tc and a large quasiparticle scattering rate) has already been pro-
posed as an explanation for the Fermi arcs found via ARPES in the
underdoped cuprates [123, 120, 28, 175]. It is an interesting experimen-
tal challenge to see if these Fermi arc-like patterns can be seen by STS
in the optimally-doped cuprates above Tc.

5.5 self-energies in the normal state

We next turn our attention to the effects of self-energies on the spectra
in the normal state. We had briefly touched upon aspects of this in
the previous section when we considered the ARPES and STS spectra
at temperatures in which the gap fully closes. We will more closely
examine the consequences when the self-energy in the normal state
depends on frequency, temperature, and momentum. Our main focus
will be on the marginal Fermi liquid phenomenology in the optimally-
doped cuprates, and we will obtain concrete experimental predictions
for STS which are indicative of marginal Fermi liquid behavior. We
will in turn contrast the results for the marginal Fermi liquid from that
of the ordinary Fermi liquid, which is argued to be the normal state of
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Figure 5.10: Plots of the self-energies for the Fermi liquid (red line) and
marginal Fermi liquid (blue line) at T = 100 K. Here λ = 0.5,
Γ0 = 0, and ωc = 1.

overdoped cuprates. Finally, to faithfully represent real-world ARPES
data, we add at the end momentum-space anisotropy in the self-energy
in order to reproduce the observation that the spectra at the antinodes
are considerably more incoherent that those found in the nodal region
of the Fermi surface. As with the superconducting cases considered
earlier, we will evaluate the LDOS power spectrum both for a single
isolated impurity without thermal smearing and for a macroscopically
disordered sample with thermal smearing to incorporate effects likely
to be seen in STS experiments.

We will assume that the self-energy has the “power-law liquid” form
suggested by Reber et al. from ARPES data on Bi-2212 across a wide
range of dopings. This is simply given by

Σ
′′
(ω, T) = λ

(ω2 + π2T2)α

ω2α−1
c

+ Γ0, (5.18)

where ω is the frequency, T the temperature, Γ0 a temperature- and
frequency-independent impurity scattering rate, ωc a frequency cut-
off, and α a doping-dependent exponent which is argued from ARPES
data to be equal to 0.5 at optimal doping and near 1 at extreme over-
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doping [142]. This parametrization conveniently captures both the
marginal Fermi liquid (α = 0.5) at optimal doping [173] and the ordi-
nary Fermi liquid (α = 1.0) at the overdoped side of the phase diagram.
Plots of the self-energy for both the marginal Fermi liquid and the or-
dinary Fermi liquid at 100 K are shown in Fig. 5.10. In our numerics
the parameters are chosen to hew closely to the phenomenological
fits found by Reber et al. We will first neglect any momentum-space
anisotropy in the self-energy; we will consider these effects later. We
will set λ = 0.5, Γ0 = 0, and ωc = 1 in our computations.

As an instructive case we first discuss the spectra of an ordinary
Fermi liquid. Plots of A(k, ω = 0) and P(q, ω = 0) for this case are
shown in Fig. 5.11. Because of the isotropic nature of the self-energy,
the spectral weight at Fermi surface is uniform at all temperatures
considered. The spectral function here is narrow at the Fermi en-
ergy due to the small value of the imaginary part of the self-energy.
Consequently the single-impurity LDOS power spectrum has sharp
and well-defined features which broaden as temperature is increased.
The main feature of P(q, ω = 0) are caustics which indicate scatter-
ing wavevectors from one part of part of the Fermi surface to another,
as expected from a metal. With randomly distributed impurities and
thermal smearing, the LDOS spectra still manages to be visible at rea-
sonably high temperatures, even without deconvoluting.

The situation for a marginal Fermi liquid is largely similar. In Fig. 5.12

we have plotted both A(k, ω = 0) and P(q, ω = 0)for a marginal
Fermi liquid (α = 0.5) at the Fermi energy for various temperatures.
As the self-energy scales goes as ∝ T at the Fermi energy, the width of
the spectrum at the Fermi surface also increases as T increases. Like
the spectral function, the LDOS power spectrum shows progressively
more broadening as temperature is increased. When distributed disor-
der and thermal broadening are both present, the LDOS power spec-
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Figure 5.11: Ordinary Fermi liquid phenomenology at various temperatures.
Left to right: The spectral function A(k, ω); the Fourier trans-
form of the LDOS P(q, ω); linecuts of P(q, ω) in the nodal
and antinodal directions; P(q, ω) in the presence of multiple
weak impurities and finite-temperature smearing; and linecuts
of P(q, ω) in the presence of multiple weak impurities and finite-
temperature smearing. All plots are taken at E = 0.000.
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Figure 5.12: Marginal Fermi liquid phenomenology at various temperatures.
Left to right: The spectral function A(k, ω); the Fourier trans-
form of the LDOS P(q, ω); linecuts of P(q, ω) in the nodal
and antinodal directions; P(q, ω) in the presence of multiple
weak impurities and finite-temperature smearing; and linecuts
of P(q, ω) in the presence of multiple weak impurities and finite-
temperature smearing. All plots are taken at E = 0.000.
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tra are broadened and feature speckle, but retain most of the structure
present in the single-impurity case—caustics can still be observed at
100 K, but much of the spectrum becomes overwhelmed by noise at
higher temperatures, rendering it difficult to extract these patterns at
high temperatures without deconvoluting the data.

It has to be noted that at fixed frequency and temperature the re-
sults for the ordinary and marginal Fermi liquid cases are not drasti-
cally different from each other, except for the amount of broadening
present—the marginal Fermi liquid has much more intrinsic broaden-
ing than the ordinary Fermi liquid. Thus one key signature that one
may look for in ARPES and STS experiments is that, assuming that
the overdoped cuprates have a Fermi-liquid normal state, the spectral
widths at fixed T and ω become larger as doping is decreased towards
optimal doping. This is of course assuming that the normal state of the
optimally-doped cuprates is in fact well-described by electrons dressed
with a marginal Fermi liquid self-energy. While a marginal Fermi liq-
uid features no quasiparticles at T = 0—unlike an ordinary Fermi
liquid—it is clear that this description of the normal state should pro-
duce results that resemble those arising from a much more broadened
version of the ordinary Fermi liquid at finite temperature. The unusual
frequency- and temperature-dependence of the marginal Fermi liquid
can also be measured using both ARPES and STS, and one should see
a change in the scaling of the broadening of the spectra with temper-
ature and frequency as doping is changed. If one sees these caustics
in the STS spectra in the normal state of the optimally-doped cuprates,
then the “dressed Fermi liquid” description of the normal state is valid.
However, if these are not present, then a much more different theory
involving exotic hidden excitations may be found to be necessary.

The frequency-dependence of the spectral function and the LDOS
power spectra are plotted in Figs. 5.13 and 5.14 for the ordinary Fermi

204



5.5 self-energies in the normal state

E = -0.300, T = 100 K

0 5 10 15 20 25

E = -0.200, T = 100 K

0 5 10 15 20 25

E = -0.100, T = 100 K

0 5 10 15 20 25

E = 0.100, T = 100 K

0 5 10 15 20 25

E = 0.200, T = 100 K

0 5 10 15 20 25

E = 0.300, T = 100 K

0 5 10 15 20 25

E = -0.300, T = 100 K

0 0.1 0.2 0.3 0.4 0.5

E = -0.200, T = 100 K

0 0.1 0.2 0.3 0.4 0.5

E = -0.100, T = 100 K

0 0.1 0.2 0.3 0.4 0.5

E = 0.100, T = 100 K

0 0.1 0.2 0.3 0.4 0.5

E = 0.200, T = 100 K

0 0.1 0.2 0.3 0.4 0.5

E = 0.300, T = 100 K

0 0.1 0.2 0.3 0.4 0.5

E = -0.300, T = 100 K

0 0.5 1.0 1.5 2.0

E = -0.200, T = 100 K

0 0.5 1.0 1.5 2.0

E = -0.100, T = 100 K

0 0.5 1.0 1.5 2.0

E = 0.100, T = 100 K

0 0.5 1.0 1.5 2.0

E = 0.200, T = 100 K

0 0.5 1.0 1.5 2.0

E = 0.300, T = 100 K

0 0.5 1.0 1.5 2.0

Figure 5.13: Frequency-dependence at T = 100 K of the spectra of an ordinary
Fermi liquid. Shown are plots of the spectral function A(k, ω)
(upper row); the LDOS power spectrum with a single pointlike
scatterer without thermal smearing (middle row); and the LDOS
power spectrum with both a 0.5% concentration of pointlike scat-
terers and thermal smearing (bottom row). Note that the scales
used for plotting the LDOS power spectra are the same for all
frequencies.
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Figure 5.14: Frequency-dependence at T = 100 K of the spectra of a marginal
Fermi liquid. Shown are plots of the spectral function A(k, ω)
(upper row); the LDOS power spectrum with a single pointlike
scatterer without thermal smearing (middle row); and the LDOS
power spectrum with both a 0.5% concentration of pointlike scat-
terers and thermal smearing (bottom row). Note that the scales
used for plotting the LDOS power spectra are the same for all
frequencies.
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Figure 5.15: The widths of the spectral function (left) and the single-impurity
LDOS power spectrum (middle) versus the imaginary part of
the self-energy for the marginal Fermi liquid and the ordinary
Fermi liquid, both with momentum-independent self-energies, at
a variety of temperatures and frequencies. These are evaluated
from the widths of the momentum-distribution curves along the
nodal directions for the spectral function and from the widths of
caustics along the antinodal direction for the LDOS power spec-
trum. The rightmost graphic illustrates how the spectral widths,
as defined in the text, are extracted from linecuts of A(k, ω) and
P(q, ω). In this example the self-energy is of marginal-Fermi-
liquid form, and T = 100 K and E = 0.

liquid and the marginal Fermi liquid, respectively, at 100 K. Note
that for both these models both the spectral function and the LDOS
power spectra broaden as frequency is increased at fixed temperature.
The spectra do differ at high energies due to the renormalization of
the band structure due to the real part of the self energy, which is
different for both cases. It can be seen at negative frequencies the
marginal Fermi liquid hits a van Hove singularity at a lower (negative)
frequency than the ordinary Fermi liquid does owing to this renormal-
ization. However this effect is quite troublesome to detect in practice,
as disentangling this effect requires detailed knowledge of the bare
band structure, and it is relatively unimportant compared to the scale
set by the imaginary part of the self-energy. As such we will not direct
any more focus on this phenomenon in this chapter.

207



self-energies and quasiparticle scattering interference

We next examine the precise dependence of the broadening of the
spectral function and the LDOS power spectrum on the self-energy;
plots of these are shown in Fig. 5.15. Here, the self-energies used cover
a wide range of frequencies and temperatures for both the marginal
Fermi liquid and the ordinary Fermi liquid. The widths of the momentum-
distribution curves along the nodal directions are proportional to the
imaginary part of the self-energy. We can see this directly by obtaining
the full width at half maximum of these MDCs; these widths scale lin-
early with Σ′′. As for the single-impurity LDOS power spectrum, the
widths of the caustics broaden in a different manner from that of the
spectral function. Quantifying this broadening is a bit trickier than for
the spectral function, because the power spectrum features consider-
ably more structure within the Brillouin zone due to backfolding. We
define one measure of this broadening in the following manner. Along
the (0, 0)→ (0, π) direction, there is a peak which corresponds to scat-
tering between the antinodal portions of the Fermi surface. We define
the width of the caustic as the distance between the midpoint between
the peak and the minimum along the linecut at the central plateau near
(0, 0) and the midpoint between the peak and the global minimum of
this linecut. While our resolution in q-space is very limited, it can be
seen that the widths of these caustics scale roughly as the square root
of Σ′′, regardless of whether the self-energy is of marginal Fermi liq-
uid or ordinary Fermi liquid form. Furthermore, the extracted widths
of the spectra of the marginal Fermi liquid are parametrically much
larger than those of the spectra of the ordinary Fermi liquid.

We show in Fig. 5.16 the widths of the spectral function and the
LDOS power spectrum for both the marginal Fermi liquid and the ordi-
nary Fermi liquid as a function of frequency (for positive frequencies)
for a variety of temperatures as extracted from our simulations, in ad-
dition to one-parameter fits of the form Wsc = AΣ′′(ω, T) and Wps =

208



5.5 self-energies in the normal state

0.05 0.10 0.15 0.20 0.25 0.30 0.35
ω

0.05

0.10

0.15

0.20

0.25

0.30
SF Width

Marginal Fermi Liquid Spectral Function Widths

100 K 150 K 200 K 250 K 300 K

0.05 0.10 0.15 0.20 0.25 0.30 0.35
ω

0.05

0.10

0.15

0.20

0.25

0.30
SF Width

Fermi Liquid Spectral Function Widths

100 K 150 K 200 K 250 K 300 K

0.05 0.10 0.15 0.20 0.25 0.30 0.35
ω0.0

0.2

0.4

0.6

0.8

1.0
PS Width

Marginal Fermi Liquid LDOS Power Spectrum Widths

100 K 150 K 200 K 250 K 300 K

0.05 0.10 0.15 0.20 0.25 0.30 0.35
ω0.0

0.2

0.4

0.6

0.8

1.0
PS Width

Fermi Liquid LDOS Power Spectrum Widths

100 K 150 K 200 K 250 K 300 K

Figure 5.16: The widths of the spectral function (top row) and the single-
impurity LDOS power spectrum (bottom row) versus frequency
for the marginal Fermi liquid (left column) and the ordinary
Fermi liquid (right column), evaluated at various temperatures.
The fits used are taken from the complete data plotted in Fig. 5.15.
The limited resolution available in the LDOS power spectrum re-
sults in the relatively jagged behavior of the plots compared to
that seen in plots of the spectral function.
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Figure 5.17: Energy-distribution curves taken at the nodal and antinodal
points on the Fermi surface for an anisotropic marginal Fermi
liquid. Here T = 100 K and β = 0.2 (see Eq. 5.20 for the func-
tional form of the self-energy).

B
√

Σ′′(ω, T) for the widths of the spectral function and the LDOS
power spectrum, respectively. Here Σ′′(ω, T) is of either marginal
Fermi liquid or ordinary Fermi liquid form, and the parameters A and
B are obtained from the data shown in Fig. 5.15. It should be noted that
at the energy ranges we have considered, the widths of the caustics in
the LDOS spectra grow more slowly with frequency compared to the
widths of the MDCs; this reflects the rough square-root dependence of
the caustic widths on the imaginary part of the self-energy.

Finally, we end this section by considering a marginal Fermi liq-
uid with a realistic amount of momentum-space anisotropy in the
self-energy. A variety of ARPES measurements on optimally-doped
Bi-2212 have shown that the spectral function at the antinodal region
of the Brillouin zone is much less coherent than at the near-nodal re-
gion [169, 2, 168, 127, 81]. The degree to which the spectral function is
incoherent is most visible in energy-distribution curves taken at nodal
and antinodal points along the Fermi surface; the nodal EDCs show
a more prominent peak at the Fermi energy compared to the nodal
ones. This suggests that the full self-energy is anisotropic in momen-
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tum space. Abrahams and Varma [2] argue that a good form of the
self-energy is given by the following expression:

Σ
′′
(k, ω, T) = Γa(k) + λ

√
ω2 + π2T2. (5.19)

In this equation, the first term is the scattering rate due to disor-
der and is momentum-dependent and temperature- and frequency-
independent. The second term contains the marginal Fermi liquid
self-energy and is momentum-independent. The anisotropic elastic
scattering rate is argued to arise from impurities located away from
the copper-oxide planes, which induce only small-momentum scatter-
ing. To model this anisotropic scattering rate, we take it to have the
following functional form:

Γa(k) = β

(
2 + cos 2kx + cos 2ky

4

)
. (5.20)

This form of the scattering rate ensures that it is small near the nodes—
it is zero at (±π

2 ,±π
2 ), in fact—and that it has maxima at (0,±π) and

(±π, 0). Importantly, this form preserves all the symmetries of the
square lattice. The choice β = 0.2 gives rise to EDCs which show
large anisotropy between the nodal and antinodal points on the Fermi
surface, as seen in Fig. 5.17.

Plots of A(k, ω = 0) and P(q, ω = 0) for this anisotropic marginal
Fermi liquid at a variety of temperatures are shown in Fig. 5.18. Note
first that the spectral function at the near-nodal region is fairly sharp,
while moving towards the antinodes we see that much more broaden-
ing becomes present, with considerable spectral weight being present
in the regions between the Fermi surface at the antinodal regions. In
the isotropic cases we considered earlier, there is zero spectral weight
in these regions, as these parts of the Brillouin zone lie far beyond the
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Figure 5.18: The spectra of an anisotropic marginal Fermi liquid at various
temperatures. Left to right: The spectral function A(k, ω); the
Fourier transform of the LDOS P(q, ω); linecuts of P(q, ω) in the
nodal and antinodal directions; P(q, ω) with finite-temperature
smearing; and P(q, ω) in the presence of many weak impurities.
All plots are taken at E = 0.000. For ease of visualization, the
scale used here is smaller than that used in the Fermi liquid and
isotropic marginal Fermi liquid plots.
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Figure 5.19: Momentum-distribution curves taken along nodal ((0, 0) →
(π, π)) and antinodal ((0, 0) → (0, π)) cuts in the Brillouin zone
at the Fermi energy (E = 0) for an anisotropic marginal Fermi liq-
uid. Here T = 100 K and β = 0.2 (see Eq. 5.20 for the functional
form of the self-energy).

bare Fermi surface, but with considerable nodal-antinodal anisotropy
the antinodal regions become blurred and nonzero spectral weight re-
sults. This is even more apparent if we take momentum-distribution
curves along the nodal and antinodal directions, as plotted in Fig. 5.19:
the MDCs along the nodal direction are quite sharp, while those along
the antinodal directions are far more incoherent, although traces of
peaks remain—in good agreement with ARPES experiments, which
still find these antinodal peaks present in MDCs, albeit in a far weaker
state compared to those at the nodes.

The LDOS power spectrum in Fig. 5.18 has a number of interesting
features worth commenting upon. First, there is a very fuzzy square-
shaped central plateau which is formed from small-momenta scatter-
ing processes between antinodal portions of the Fermi surface. Be-
cause the broadening is very large at the antinodal points, the scatter-
ing wavevectors appearing in P(q, ω) consequently are severely broad-
ened as well. Second, there is a set of very sharp features near (±π,±π)

which arise from internodal scattering. Recall that the spectral func-
tion remains sharp and well-defined near the nodes. As such, scatter-
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ing wavevectors between near-nodal regions remain sharp in P(q, ω),
unlike those from antinodal-antinodal scattering. If one traces the caus-
tics extending beyond the central plateau carefully, accounting for the
backfolding of the spectra, one can make out that they decrease in
width as one moves from the antinodal scattering wavevectors to the
nodal ones. Linecuts along the nodal and antinodal directions are
perhaps even more illuminating. The linecuts along the antinodal di-
rections are featureless, save for the aforementioned plateau region,
while the nodal linecuts show a sharp peak near the Brillouin zone
boundary corresponding to nodal-nodal scattering. The contrast with
the isotropic marginal Fermi liquid is quite striking, as the isotropic
case (Fig. 5.12) features a central plateau which is still fairly sharply
defined, while the caustics which appear beyond the plateau are of
uniform width. With random disorder and thermal smearing, the re-
sulting spectra appear very noisy—owing in part to the large intrinsic
broadening at the antinodes. The central plateau visible in the single-
impurity results is no longer easily seen, but there do remain sharp
peaks near the zone diagonals corresponding to nodal-nodal scatter-
ing wavevectors, visible even when finite-temperature smearing is in-
cluded.

Finally we note that because the frequency-dependence of the self-
energy in this case is similar to the isotropic marginal Fermi liquid case
considered earlier, the widths of the LDOS power spectra here should
behave in the same way. This can be seen in plots of the spectral
function and the LDOS power spectra at 100 K as frequency is varied,
as seen in Fig. 5.20. As frequency is increased, the spectral function
broadens throughout momentum space, and the resulting caustics in
the LDOS power spectrum similarly broaden as well. This increased
broadening at large frequencies contributes to the loss of signal in the
disordered and thermally broadened data.
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Figure 5.20: Frequency-dependence at T = 100 K of the spectra of an
anisotropic marginal Fermi liquid. Shown are plots of the spec-
tral function A(k, ω) (upper row); the LDOS power spectrum
with a single pointlike scatterer without thermal smearing (mid-
dle row); and the LDOS power spectrum with both a 0.5% con-
centration of pointlike scatterers and thermal smearing (bottom
row). Note that the scales used for plotting the LDOS power
spectra are the same for all frequencies. For ease of visualization,
the scale used here is smaller than that used in the Fermi liquid
and isotropic marginal Fermi liquid plots.
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We caution the reader that because the anisotropic part of the self-
energy here is presumably due to elastic scattering off of off-plane
impurities, there is the danger that unless disorder is carefully taken
into account, “double-counting” may ensue. As QPI is an intrinsically
disorder-driven effect, one has to take care in these simulations that the
same disorder producing QPI does not contribute additionally to the
anisotropic elastic self-energy. We have taken care to use only point-
like impurities in our simulations of QPI, and the effect of the off-plane
impurities is incorporated in the anisotropic elastic scattering rate. A
single weak pointlike impurity represents a very small perturbation to
the system whose overall effect is negligible, while a dilute ensemble
of pointlike scatterers would presumably contribute to an isotropic scat-
tering rate, adding only a momentum-independent constant into the
full self-energy upon disorder averaging.

5.6 discussion and conclusion

We have provided in this chapter a comprehensive overview of the ef-
fects of self-energies on quasiparticle scattering interference, and have
applied much of this insight to situations of relevance to the copper-
oxide superconductors. While self-energies have been well-understood
from the perspective of ARPES experiments, their effects on STS ex-
periments have not been as similarly understood and are largely unex-
plored. A consistent result seen in the many scenarios we considered
in this chapter is the destruction of the QPI signal as broadening is in-
creased, even when thermal smearing is ignored. In many ways, this
is not an unexpected result. The physics underlying the phenomeno-
logical octet model of QPI in the superconducting state of the cuprates
relies on the existence of coherent quantum-mechanical waves, which
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scatter elastically against impurities present in these materials. If these
quasiparticles have a short lifetime—as seen in ARPES experiments in
the strange metal, or even at the superconducting state near Tc—then
the rather simple picture suggested by the octet model becomes com-
plicated by “off-shell” contributions to the full, disordered Green’s
function. That is, in the presence of large broadening, states living
away from the contours of constant energy do contribute towards the
scattering processes which determine the structure of the LDOS and
its power spectrum. These effects are in fact already visible in the spec-
tral function itself. We have seen that the contours of constant energy
in both the normal and superconducting states turn from sharp, well-
defined structures in momentum space into broad, incoherent entities.
The effects of this broadening are particularly dramatic in the d-wave
superconducting state, where we see that the sharp banana-shaped
contours seen in the spectral function turn into incoherent arc-like
streaks once the quasiparticle scattering rate is of the same order of
magnitude as the superconducting gap. The loss of the sharpness in
the contours of constant energy translates directly into the smearing
and progressive destruction of the octet-model peaks as the scattering
rate is increased.

The normal-state LDOS spectra feature no such peak-like structures,
and instead what appears is a set of caustics which are continuous and
whose broadening as a function of position on the caustics directly re-
flects the degree of coherence of the quasiparticles of the underlying
Fermi surface. As such, in the normal state the LDOS power spectrum
is far less sensitive to broadening than in the superconducting state.
One can see that the main feature differentiating the marginal Fermi
liquid from the ordinary Fermi liquid is the amount of broadening
present in both the spectral function and the LDOS power spectrum—
the marginal Fermi liquid, by virtue of the fact that the imaginary
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part of its self-energy is much larger than that of the ordinary Fermi
liquid at the same temperature and frequency, shows much more in-
trinsic smearing in its spectra—and how this broadening depends on
temperature and frequency. Another measurable effect is the renormal-
ization of the dispersions, due to the Kramers-Kronig relations, which
can in principle be measured directly. Nevertheless this is a rather
subtle effect—the bare band structure needs to be known in order for
this renormalization to be detected— and given the difficulty experi-
mentalists are sure to face in attempting to observe this effect in STS
experiments, the main signal of interest is the width of the measured
power spectra.

It is worth explaining further in this section the limitations of our
explicitly phenomenological approach. Our starting point consists of
mean-field models of the normal and superconducting states, which
are then “dressed” by self-energies which have a nontrivial depen-
dence on temperature, frequency, momentum, or some combination of
these. The predictions we make in this chapter for STS—and, for that
matter, ARPES as well—are sensible only if the actual strongly corre-
lated phases seen in the cuprates can be adequately described by these
dressed mean-field models. Much work on the two-dimensional Hub-
bard model, using dynamical mean-field theory, has shown that this
“dressed” picture, involving a single-particle propagator augmented
by a nontrivial self-energy, provides a reasonably accurate picture of
the physics in some phases of relevance to the cuprates [29, 57, 147].
If such a picture were to hold, then QPI will exist in some form or an-
other. For instance, a model of the pseudogap involving a broadened
d-wave superconductor will show QPI with the octet-model peaks de-
cohering; nevertheless, despite the absence of sharp peaks, the power
spectrum should still consist of wavevectors describing the relevant
scattering processes. As another example, the marginal Fermi liquid is

218



5.6 discussion and conclusion

an exotic phase of matter without any low-temperature quasiparticle-
like excitations—we remind the reader that its quasiparticle weight
vanishes at the Fermi surface at T = 0—but still features ARPES and
STS spectra that, at face value, are similar to those of an ordinary Fermi
liquid.

Having said all of this, if the phase of matter is not describable at
all by this dressed mean-field picture, there is no sense in which any
of our predictions should hold. In particular, if STS were to show no
evidence of these caustics in the strange-metal phase of the cuprates,
then that would be one extremely convincing piece of evidence to sug-
gest that the strange metal phase is beyond even the marginal-Fermi-
liquid description. Hints of this have in fact been seen in STS studies
deep inside the superconducting state: at energies larger than the su-
perconducting gap, no well-defined caustics are seen, and instead the
most dominant features are peaks corresponding to charge ordering
[90, 99, 50]. In such a scenario, the appropriate theory is a strongly in-
teracting phase of matter whose low-energy excitations are very unlike
the Landau quasiparticles of the Fermi liquid. A paradigmatic exam-
ple of this is the Luttinger liquid in one spatial dimension [60], whose
decidedly non-quasiparticle-like excitations result in ARPES and STS
spectra considerably different from those of an ordinary Fermi liquid
[127, 87]. In addition, numerous examples of these phases have been
constructed using holographic methods, and are known to result in
physics very different from that of the ordinary Fermi liquid [79, 35].
We end by noting that what high-temperature STS experiments can
eventually find in the strange metal phase and in the transition to
the superconducting state at optimal doping will undoubtedly be very
interesting. The insights that can be gleaned from such future experi-
ments will no doubt go a long way in illuminating the strange physics
of the cuprate superconductors.
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