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4

Q U A S I PA RT I C L E D E N S I T Y O F S TAT E S ,
L O C A L I Z AT I O N , A N D D I S T R I B U T E D D I S O R D E R I N
T H E C U P R AT E S U P E R C O N D U C T O R S

4.1 introduction

Disorder in the high-Tc superconductors has motivated many key ex-
perimental and theoretical advances in the field. Scanning tunneling
spectroscopy (STS) has made wide use of the phenomenon of quasi-
particle interference, which results from the presence of disorder, to
provide a real-space probe of the underlying electronic nature of the
cuprates [70, 112, 90, 99, 182, 25, 196, 125, 176, 93, 161]. On the the-
ory side, the d-wave nature of the cuprate superconductors provided
the impetus for various theoretical treatments of disorder which led
to a number of differing and often contradictory predictions. Early
theoretical work utilized a self-consistent treatment of disorder, which
was found to result in a finite quasiparticle density of states (DOS)
at the Fermi energy [54, 68, 100, 39]. Later work has shown within
a similar diagrammatic approach that the DOS, in the most generic
case, is suppressed [187, 67]. Other field-theoretical treatments of dis-
order in d-wave superconductivity found a vanishing DOS at E = 0
[118, 156, 155, 10]. The manner in which the DOS vanishes as E → 0
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varies from approach to approach, with exponents found to be either
universal or disorder-dependent.

Meanwhile, experiments performed on YBa2Cu3O6+δ consistently
show a T-linear term in the specific heat at zero magnetic field, which
points to a nonvanishing DOS at E = 0 [115, 116, 144]. How this
nonzero DOS arises has been the subject of much speculation. Accord-
ing to standard self-consistent T-matrix theory, which assumes that
impurities are located within the copper-oxide planes, this contribu-
tion is expected. It is interesting to note, however, that this T-linear
term in YBCO persists even with very clean samples, prompting a
number of exotic explanations, such as loop-current order coexisting
with d-wave superconductivity [21, 4, 88, 181], which give rise to a fi-
nite DOS without invoking disorder. For Bi2Sr2CaCu2O8+δ, the story
is a bit more complicated: it appears that no definitive evidence in fa-
vor of or against a zero T-linear coefficient exists, and what is present
instead is considerable variation in the measured values of this coeffi-
cient . For BSCCO-2212 at low temperatures, it was found that that the
coefficient is small but finite and measurable [30, 80]. However, other
experiments, performed at higher temperatures, find no discernible ev-
idence in BSCCO-2212 for a coefficient on the same order as found in
YBCO [167]. The results for the BSCCO family suggest that the cleaner
the sample is, the smaller the T-linear coefficient becomes, with a large
degree of variation present.

Given such a wide array of evidence suggesting that high-temperature
superconductors do display a finite zero-energy quasiparticle DOS and
the lack of any confirmation of alternative explanations, it is worth re-
visiting the effect of disorder, especially when incorporating inhomo-
geneities in the cuprates that do not fall under the random-site-energy
or multiple-point-impurity categories. Previous numerical work has
extensively focused on pointlike impurities and random on-site ener-
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gies. In particular, Atkinson et al. found that for realistic models (i.e.,
without a particle-hole symmetric band) with these two forms of disor-
der, the quasiparticle DOS becomes suppressed near E = 0 [14]. They
point out that a constant DOS, as seen in experiment, cannot arise from
either of these two disorder models.

In any case, what is known about the cuprates makes it difficult to
argue that pointlike disorder is a possible origin of the finite DOS at
the Fermi energy. The consensus regarding the CuO2 planes is that
they are generally clean. Pointlike disorder necessarily takes the form
of dopants within the CuO2 plane. Such substitutions will give rise
to strong pointlike potentials. The most dramatic case of this is zinc-
doped Bi2Sr2CaCu2O8+δ, in which a small number of zinc atoms take
the place of copper ones; STS studies of Zn-doped BSCCO show that
the zinc impurities show behavior consistent with that of unitary scat-
terers [129]. In contrast, STS studies of clean cuprates do not show
such strong local impurities, and the conductance maps obtained from
such materials are more consistent with far weaker forms of disorder
[70, 111, 150]. More reasonable is the expectation that impurities lie in
the buffer layers adjacent to the CuO2 planes [42, 124, 126]. As they
are located in an insulating layer some distance from the CuO2 plane,
they act as a source of an electrostatic potential which, in contrast to
local pointlike potentials, is smooth. These smooth potentials lead to
small-momentum scattering processes. It is then worth examining the
imprint of such smooth forms of disorder on the DOS.

In this chapter, we obtain the quasiparticle DOS of a two-dimensional
d-wave superconductor subject to various kinds of disorder: pointlike
disorder, random on-site disorder, and smooth disorder. We utilize an
exact real-space numerical method that allows for the evaluation of the
local density of states of a disordered system with very large system
sizes (a typical calculation involves 100,000 sites). The same geome-
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try of the system also enables the direct calculation of the localization
length, which is a quantity that is difficult to extract from the exact
diagonalization of small systems, given the large length scales over
which localization occurs. An important feature of this work is its
use of realistic band-structure and pairing parameters. As our method
faces no difficulties with large system sizes, we do not need to resort to
making the d-wave gap articially large in order to sidestep finite-size
effects in related methods like exact diagonalization, and we can thus
make the parameters of our lattice d-wave superconductor as close as
possible to the real-world properties of the cuprates. Before proceed-
ing, however, we warn the reader that our numerical results apply
strictly to purely two-dimensional systems, as any interlayer coupling
affects the ensuing DOS at the Fermi energy [67].

For pointlike and random-site-energy models, we find that weak
disorder—whether in the form of a low concentration of strong scat-
terers or a narrow distribution of on-site energies—leads to a vanishing
DOS at the Fermi energy. It is only when unrealistic levels of disorder
are reached that a finite DOS is generated, and even then there is an
observed suppression at E = 0. We observe that the manner in which
the d-wave gap “fills” differs depending on whether one has random-
potential or unitary-scatterer disorder. With smooth disorder, however,
a finite DOS at the Fermi energy is generated at fairly realistic concen-
trations (around 10-20%) and, strikingly, the overall structure of the
d-wave DOS is preserved for all energies even at high dopings.

We also perform an exact calculation of the localization length λ and
its dependence on the strength of disorder for the three different kinds
of disorder we consider. We find that states near the Fermi energy are
strongly localized for all three models—even for weak disorder—and
that at intermediate and high energies within the d-wave gap the local-
ization length is generally found to be very large for low disorder. It is

100



4.1 introduction

worth noting that even with a high concentration of smooth scatterers,
the localization length at intermediate and high energies is still very
large and comparable to that seen in much lower levels of disorder in
the random-potential and unitary-scatterer case, indicating that local-
ization effects due to smooth disorder are far weaker than in the case
of pointlike disorder. Unitary scatterers in turn have a weaker effect
on the localization length than random-potential disorder does.

Finally, we comment on the nature of disorder in the cuprates based
on what is known from specific heat experiments, scanning tunneling
spectroscopy, and numerical simulations. We caution the reader that
a major limitation of our study is that the gap is not computed self-
consistently, so we cannot ascertain with any definiteness whether the
effects of disorder that we detail here are preempted by the destruction
of d-wave superconductivity once some level of disorder is reached.
Incorporating full self-consistency in the real-space numerical method
we use is technically difficult, especially when the system size is large.
This difficulty is a part of a tradeoff we make in order to access large
system sizes. That said, exact-diagonalization studies on d-wave su-
perconductors with unitary scatterers, using small system sizes, find
that the superfluid density of the uniform-gap case and that of the self-
consistent-gap case behave very similarly to each other, except when
the concentration is sufficiently large [48]. Tc in turn was found to be
much less suppressed in the self-consistent case than in the uniform-
gap case. It was found that while in the uniform-gap case p ≈ 8.0%
almost completely suppresses Tc, in the self-consistent case such sup-
pression occurs at nearly twice that level of disorder. This means that
the uniform-gap picture in fact overstates the impact of disorder on the
suppression of Tc and the superfluid density. This is augmented by
the fact that, in other exact diagonalization studies, self-consistency
does not fundamentally alter the structure of the DOS of the random-
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potential and unitary-scatterer cases [13, 14, 194]. For certain param-
eter regimes it appears that the DOS for self-consistent and non-self-
consistent order parameters are identical. In other regimes, the DOS is
smoother and features more pronounced suppression near the Fermi
energy in the self-consistent case than in the non-self-consistent one,
while remaining similar to each other in other energy ranges. All of
this suggests that what we find from our uniform-gap systems pro-
vides a good baseline for ascertaining the effects of site disorder on
the cuprates, and very likely overestimates the pair-breaking effects of
disorder. We defer a fully self-consistent treatment of these three kinds
of disorder and their pair-breaking effects to a future publication.

4.2 methods

We start with a tight-binding Hamiltonian describing electrons hop-
ping on a square lattice with d-wave pairing:

H = −∑
〈i,j〉

∑
σ

tijc†
iσcjσ + ∑

〈i,j〉
∆∗ijci↑cj↓ + ∑

〈i,j〉
∆ijc†

i↑c
†
j↓. (4.1)

Nearest-neighbor and next-nearest-neighbor hoppings are both present,
as is d-wave pairing, implemented by choosing the pairing amplitude
to have the form ∆ij = ±∆0, where the positive (negative) value applies
to pairs of nearest-neighbor sites along the x- (y-) direction. From the
Hamiltonian, the Green’s function takes the following expression:

G−1(ω) = ω1− H. (4.2)

Note that H and G are 2Nx Ny × 2Nx Ny matrices written in Nambu-
space form, where Nx and Ny are the number of lattice sites in the x-
and y-directions, respectively. From G(ω), various quantities can be
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obtained. We will focus on the quasiparticle density of states and the
localization length.

4.2.1 Quasiparticle Density of States

The quasiparticle DOS at energy E is

ρ(E) = − 1
πNx Ny

ImTrG(E + i0+). (4.3)

Periodic and open boundary conditions are implemented in the y- and
x-directions, respectively. To compute G, we first rewrite G−1 in the
following block tridiagonal form:

G−1 =



P1 Q1 . . . 0
Q†

1 P2 Q2
. . . . . . . . .

... Q†
j−1 Pj Qj

...
. . . . . . . . .

Q†
Nx−2 PNx−1 QNx−1

0 . . . Q†
Nx−1 PNx


. (4.4)

The Pi blocks are 2Ny × 2Ny submatrices and contain in their diagonal
elements the frequency ω and the on-site energies at sites located on
the ith slice of the system, where i runs from 1 to Nx, in addition to
hopping and pairing amplitudes between sites within the ith slice. The
Qi blocks—also 2Ny × 2Ny submatrices—meanwhile contain hopping
and pairing amplitudes from the ith slice to its nearest-neighbor slices.
Note that the Nambu-space structure of the Green’s function has been
transferred to the Pi and Qi blocks.
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Because all we need is the trace of G to obtain the DOS, it suffices
to obtain the diagonal blocks of G. For this purpose we use a block-
by-block matrix-inversion algorithm that applies to block tridiagonal
matrices [52, 69, 143]. We first define auxilliary matrices Ri and Si in
the following way:

Ri =

Qi(Pi+1 −Ri+1)
−1Q†

i if 1 ≤ i < Nx

0 if i = Nx

(4.5)

and

Si =

0 if i = 1

Q†
i−1(Pi−1 − Si−1)

−1Qi−1 if 1 < i ≤ Nx.
(4.6)

Once Ri and Si have been computed, the ith diagonal block of G can
be obtained straightforwardly from the following expression:

Gii = (Pi −Ri − Si)
−1. (4.7)

We note that this procedure is exact and relies on no approximations.
We set Nx = 1000 and Ny = 100 in all calculations.

To ensure the applicability of our numerical results to the cuprates,
we use a band structure that is consistent with the details known
about the normal-state Fermi surface of such materials: t = 1, t′ =
−0.3, and µ = −0.8, where t, t′, and µ are the nearest-neighbor hop-
ping, next-nearest-neighbor hopping, and the chemical potential, re-
spectively. We note that our parametrization of the Fermi surface is
limited as higher-order hopping amplitudes are not included, but this
simple form of the band structure still captures the important general
features of the Fermi surface of the cuprates. We choose the pairing
amplitude to be ∆0 = 0.08; this choice gives vF/v∆ ≈ 11, in good
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agreement with experiment [178]. (All energies are expressed in units
where t = 1.) An inverse quasiparticle lifetime given by η = 0.001 is
used throughout this work. This smears out the Dirac delta function
peaks δ(E − En), where En is an eigenvalue of H, into a Lorentzian,
1
π

η
(E−En)2+η2 , whose full width at half maximum is 2η. Because the

DOS of a clean d-wave superconductor with this particular band struc-
ture is nonzero up to energies E ≈ ±6t, this choice of broadening
roughly corresponds to introducing O(103) bins for the entire energy
range. As there are 2× 105 eigenvalues of the Hamiltonian, this pro-
vides more than adequate resolution for the examination of the DOS
as a function of energy. Note that this value of η is parametrically
much smaller than the energy resolution seen in scanning tunneling
experiments (which are typically found to be 2 meV) [196]. Such val-
ues of the broadening already incorporate the effects of disorder, so in
order to tease out the impact of disorder on the DOS we need to pick
a much smaller value of η than seen in experiment.

The advantage of this particular method of obtaining the exact DOS,
as opposed to similar methods such as the exact diagonalization of the
Bogoliubov-de Gennes Hamiltonian, is threefold. First, this method
is much faster in obtaining the DOS than exact diagonalization. As
the DOS involves taking the trace of the Green’s function, only the
diagonal elements of G are needed, which are precisely the quantities
outputted by the algorithm in use here. Second, this method can be
extended to very large system sizes. The computational complexity
depends only linearly on Nx, and consequently the size of that dimen-
sion can increased without much trouble. Importantly, the large sizes
that are accessible mean that the need to average over different disor-
der configurations is largely obviated—a single realization of disorder
results in 105 values of the local density of states to be averaged over—
and hence for the most part we will focus only on a single realization
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of disorder for each of the cases we will consider. This makes much
sense from a modeling viewpoint, especially as in experiment only one
realization of disorder is present for a measurement. Finally, as finite-
size effects are minimal, we are free to set the hopping and pairing
parameters to correspond closely to those known from experiment. In
exact diagonalization, the smallness of the system sizes typically used
means that in order to visualize the spectrum fully one is occasionally
faced with the need to make ∆0 artificially large, so that within-gap
physics are seen with the energy resolution available. In the method
we use no such workarounds are necessary.

The only disadvantage of this method is that self-consistency is very
difficult to implement in an efficient manner. In a fully self-consistent
treatment the order parameter is iteratively determined via an integral
of the anomalous Green’s function over a range of energies. Conse-
quently, in energy space the Green’s function needs to be evaluated
over a finely spaced array of points over the full bandwidth for the nu-
merical integral to be accurate, and this process has to be repeated for
an unspecified number of times until self-consistency is achieved. The
full bandwidth is several times larger than the d-wave gap; hence the
amount of computational effort required to perform this self-consistent
calculation for even one realization of disorder becomes very large and
uncontrollable. (This has to be contrasted with exact diagonalization,
from which one obtains all the eigenvalues and eigenvectors of the
Hamiltonian at once. The gap can then be computed in terms of the
eigenvectors once one diagonalization has been completed. While this
method is restricted to very small geometries, it is nonlocal in energy
space, and thus implementing self-consistency is much easier.) As
we have noted in the Introduction, evidence from previous numerical
studies of lattice d-wave superconductors with strongly pair-breaking
unitary scatterers suggests that self-consistent and non-self-consistent
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results are not drastically different from one another. We will thus
take the results from our uniform-gap systems to provide a reasonable
account of the effects of disorder on the various quantities of interest
to us.

It is also easy to obtain the local quasiparticle density of states (LDOS)
from G. Because G is written in a real-space basis, the LDOS ρ(r, E) is
simply

ρ(r, E) =− 1
π

Im
(
G11(r, r, E + i0+)

+ G22(r, r, E + i0+)
)
,

(4.8)

where G11 and G22 are the particle and hole parts, respectively, of the
Nambu-space Green’s function. At this point it is worth emphasizing
the fact that, from the way we have defined them, these maps are not
the same as the local density of states maps obtained from STS studies.
The conductance maps obtained in STS experiments are proportional
to the local electron density of states, which are taken solely from the
electron part of the Green’s function: ρtunn(r, E) = − 1

π ImG11(r, r, E +

i0+). In contrast, the quasiparticle DOS at energy E, as defined in
Eq. 4.8, includes contributions from both the electron and hole Green’s
function. We will frequently show these maps to visualize the extent to
which disorder affects the degree of inhomogeneity in the quasiparticle
wavefunctions at a particular energy E.

We also calculate, for completeness, the quasiparticle DOS of a clean
d-wave superconductor in order to provide a baseline from which one
can examine the impact of disorder. Unlike the disordered case, we
perform this calculation in momentum space. We use the formula

ρ(E) = ∑
k∈BZ

δ(E− Ek), (4.9)
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where Ek are the eigenvalues of the clean Hamiltonian, given for posi-
tive energies by

Ek =
√

ε2
k + ∆2

k. (4.10)

Here εk = −2t(cos kx + cos ky)− 4t′ cos kx cos ky−µ and ∆k = 2∆0(cos kx−
cos ky) are the normal-state dispersion and the gap function in momen-
tum space, respectively. Only positive energies need to be considered
because of particle-hole symmetry. For consistency with the real-space
calculations of the disordered cases, we also broaden the delta func-
tions that enter Eq. 4.9 into a Lorentzian with broadening η = 0.001. In
our momentum-space calculations we discretize the first Brillouin zone
into a grid with 4000× 4000 points. This choice results in a smooth
DOS as a function of E which is free from finite-size effects.

4.2.2 Specific Heat

The quasiparticle contribution to the specific heat C is easily derived
from the density of states by means of the following equation [68],

C = 2× ∂

∂T

∫ ∞

0
dEρ(E)E

1
eE/kBT + 1

, (4.11)

where the factor of two arises from the two spin species present. We
are interested in C in the low-temperature regime, so we can neglect
the dependence of ρ(E) on T, and because T � 4∆0 (the d-wave gap
edge, which itself is much bigger than Tc) we can impose a cutoff
Ec ≈ 4∆0 so that only energies within the d-wave gap are integrated
over. As such, Eq. 4.11 becomes

C = 2× 1
kBT2

∫ Ec

0
dEρ(E)E2 eE/kBT

(eE/kBT + 1)2 . (4.12)
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It can further be shown that the contribution of ρ(E = 0) to the specific
heat is

C0 = γ0T =
1
3

π2ρ(E = 0)k2
BT. (4.13)

When C0/T is plotted versus T, the plot is flat, and the y-intercept of
this plot is equal to γ0. In our numerical results we will typically set
kB = 1 and measure the temperature T in units of the hopping energy
t (t ≈ 0.150 eV ≈ 1700 K).

Note that the scaling of C with T is dependent on how ρ scales with
E. At low energies the DOS of a clean d-wave superconductor is a
linear function of E; thus the quasiparticles of a clean d-wave super-
conductor contribute a T2-dependent term to C. When this coexists
with a finite quasiparticle DOS at E = 0, the most general scaling of C
due to the d-wave quasiparticles is

C ≈ γ0T + αT2, (4.14)

and a C/T-versus-T plot would have a slope equal to α and a y-
intercept equal to γ0. In the most general disordered case we should
not expect this form of scaling to arise, as disorder can lead to a non-
linear dependence of ρ on E. However, a finite value of γ0 is a feature
that unambiguously suggests the presence of a finite DOS at the Fermi
energy.

4.2.3 Localization Length

The geometry of our system is particularly amenable to exact calcu-
lations of the localization length λ, owing to the fact that Nx can be
made very large relative to Ny, allowing us to measure the localization
length even when it is much bigger than the transverse dimension.
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This calculation is all but impossible using exact diagonalization, as
that method is restricted to fairly small system sizes whose linear di-
mension is much smaller than typical localization lengths.

We will use the following definition of λ [106, 23, 92, 186]:

λ−1 = − 1
2(Nx − 1)

ln
∑ijσσ′ |GNx1

ijσσ′(E)|2

∑ijσσ′ |G11
ijσσ′(E)|2

. (4.15)

The
∑ijσσ′ |G

Nx1
ijσσ′ (E)|2

∑ijσσ′ |G11
ijσσ′ (E)|2 factor measures the transmission probability from

the left end of the system (the 1st slice) to the right end (the Nxth
slice); the denominator in the aforementioned factor is for normaliza-
tion. The sums are performed over all sites and spin indices within
the relevant block. The off-diagonal block GNx1(E) can be recursively
computed from the diagonal block G11(E) by an algorithm that ap-
plies to block tridiagonal matrices [52, 69, 143]. Using the Pi, Qi, Ri, Si,
and Gii matrices obtained earlier, any off-diagonal blocks of G can be
computed using this formula:

Gij =

−(Pi −Ri)
−1Q†

i−1Gi−1,j if i > j,

−(Pi − Si)
−1QiGi+1,j if i < j.

(4.16)

We calculate the localization length only for fixed values of Nx and
Ny. We do not extract the actual localization length via finite-size anal-
ysis. We thus provide the necessary caveat that the values of λ that we
cite here are meaningful only in comparison with systems with identi-
cal system sizes. That is, a direct comparison is possible between λ’s
computed with the same Nx and Ny but for different disorder types
and strengths, but not so when these system-size parameters are al-
tered relative to one another.
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4.3 models of disorder

4.3 models of disorder

In this chapter we will focus on three distinct models of disorder.
Many of these forms of disorder have been discussed in the older lit-
erature on the subject, and in particular some of them can be treated,
on some level, analytically in either the Born approximation or the
T-matrix approximation. Here we will make use of the ability to sim-
ulate systems with very large system sizes to cover regimes where the
approximations that enable analytical treatments of disorder fail. Be-
low we will enumerate these models of disorder, their properties, and
the degree to which these describe the actual disorder present in the
cuprates.

4.3.1 Random-Potential Disorder

The first model is random and spatially uncorrelated on-site energies.
We assume that the potential at each lattice site consists of two parts:
the uniform chemical potential and a normally distributed random
component V with zero mean and variance σ2:

〈V(r)〉 = 0, (4.17)

〈V(r1)V(r2)〉 = σ2δr1r2 . (4.18)

From the perspective of diagrammatic perturbation theory, this is a
particularly tractable model of disorder: given the above conditions,
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the Fourier transform of the two-point averaged correlation function of
the disorder potential is a constant in momentum space:

W(k) = ∑
r
〈V(r)V(0)〉e−ik·r

= ∑
r

σ2δr0e−ik·r

= σ2.

(4.19)

This property of the model allows one to analytically obtain the self-
energy easily using the Born approximation in the limit that σ is small
[100]. Physically this model can be obtained from the multiple point-
impurity model when one takes the strength of these impurities to be
very weak and the spacing between impurities very small.

A related version of this disorder potential was studied numerically
by Atkinson et al.; however they utilized box disorder instead of Gaus-
sian distributions [14]. We on the other hand will focus exclusively on
normally-distributed on-site energies. This form of disorder is phys-
ically realistic, as recent work has shown that narrowly-distributed
Gaussian disorder of this sort could give rise to quasiparticle scatter-
ing interference (QPI) patterns in d-wave superconductors that are in
reasonably good agreement with those seen in experiments on BSCCO
[161].

4.3.2 Multiple Unitary Scatterers

The second model we will discuss is another paradigmatic form of
disorder in the cuprates: unitary pointlike scatterers situated within
the copper-oxide plane. Unitary scatterers in d-wave superconductors
have been extensively studied experimentally and theoretically. Zinc
dopants within the CuO2 planes of BSCCO are the most well-known
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studied form of unitary scatterers in the cuprates, and in fact their res-
onances have been directly imaged in STS experiments [129]. Unitary
scatterers also arise in the cuprates in the form of vacancies within
the CuO2 plane. Like the Gaussian random-disorder case discussed
earlier, unitary scatterers, which induce scattering phase shifts equal
to δ0 = π/2, are quite tractable to model in practice: the T-matrix
for a single pointlike impurity is momentum-independent, allowing
one to obtain the full Green’s function, including the impurity and its
effects, in an exact manner. This can then be extended to the many-
impurity case in the dilute limit (i.e., at low concentrations p) in the
form of a multiple-scattering T-matrix [68]. (Note that if one takes the
strength of the impurities to be small, the phase shift is δ0 ≈ 0, and
the corresponding T-matrix problem becomes identical to the Born-
scattering limit of the Gaussian random-potential case discussed pre-
viously [68, 100].)

We will eschew the T-matrix approach and instead obtain the full
Green’s function and the DOS exactly using the methods described
in Section 4.2. This will allow us to examine cases where the concen-
tration p is large enough that the system enters the strong-disorder
regime. We will vary p to cover small, intermediate, and large concen-
trations; the strength of the impurity is fixed at Vu = 10, and we will
make this potential attractive, to mimic the effect of zinc impurities,
which are attractive potential scatterers [109, 93]. These impurities are
distributed randomly over the entire system, with each lattice site hav-
ing a p chance of hosting a unitary impurity and a 1− p probability
of not having one. Our choice of Vu = 10 gives a resonance energy at
around E ≈ −0.06—the negative-bias peak in the bare electron LDOS
at the sites adjacent to an isolated impurity is far more prominent than
the positive-bias one—which is near, but not at, the Fermi energy. (To
perform a sanity check, we checked the case of an isolated impurity
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with Vu = 100, which yielded a resonance energy of E ≈ −0.045. In-
creasing the impurity potential tenfold indeed pushed the resonance
closer to the Fermi energy, but only by a small amount. In fact, if
we do a single-impurity (i.e., non-self-consistent) T-matrix calculation
[195], assuming unitary scatterers with Vu → ∞ and using the same
band-structure and pairing details as in our exact numerical calcula-
tions, we find that the resonance is at E ≈ −0.04. For generic band
structures and arbitrary but strong Vu the resonance due to a strong,
attractive scatterer is located close to, but not at, the Fermi energy, al-
though for the purposes of this chapter its precise location is not very
important.) Note that the effect of unitary scatterers on the DOS of
d-wave superconductors has been studied by Atkinson et al. [13, 14],
but we will go beyond their work by varying p such that both dilute
and strong-disorder limits are covered, and by delving deep into the
statistics of the DOS at the Fermi energy in considerable detail.

4.3.3 Smooth Disorder

The third and final form of disorder that we will discuss is off-plane
disorder. As we have noted earlier, for the cuprates, disorder due to
doping is generally due to dopants that are located some distance away
from the CuO2 planes. Doping in the cuprates is accomplished using
oxygen atoms, and these oxygens are in general not found within the
conducting planes. For BSCCO, the BiO planes host the excess oxy-
gens arising from doping. In the case of YBCO, the doped oxygens are
found in the one-dimensional CuO chains some distance away from
the CuO2 planes. YBCO is a particularly interesting case to consider
because the amount of doping, and hence disorder, can be controlled
rather precisely: very clean samples have been synthesized. Thermal
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conductivity experiments on clean YBCO find that transport does not
resemble either Born or unitary scattering (i.e., the previous two mod-
els at low levels of disorder) [66]. Thus it is an interesting theoretical
puzzle as to why precisely a finite DOS at the chemical potential is
consistently found in specific heat studies of YBCO, even with clean
samples.

We will attempt to revisit the effects of off-plane disorder on the
quasiparticle DOS of a d-wave superconductor. Off-plane dopants will
produce a screened Coulomb potential which affects the electrons on
the CuO2 plane in the form of a smooth disorder potential [130, 42, 22].
In the absence of a more microscopic model of disorder, we will take
the disorder potential from one off-plane dopant located on the a-b
plane at rn to have the following reasonably general form:

Vn(r) = V0
e−

s(r,rn)
L

s(r, rn)
. (4.20)

For brevity we have defined s(r, rn) as

s(r, rn) =
√
(r− rn)2 + l2

z , (4.21)

and L is the screening length of the Coulomb potential, lz is the dis-
tance along the c-axis from the dopant to the CuO2 plane, and V0

quantifies the “strength” of the potential. For our calculations we take
L = 4, lz = 2, and V0 = 0.5. Because we do not exactly know the
details of this disorder potential, we will assume two different scenar-
ios for how this form of disorder is spatially distributed. For the first
scenario, we will take the general disorder potential to have the same
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sign, such that the net potential, expressed as a function of the doping
concentration p, takes the following form:

Vs(r) =
pNx Ny

∑
n=1

Vn(r). (4.22)

The second scenario assumes that there is an equal number of positive-
and negative-strength potentials,

Vz(r) =
pNx Ny

∑
n=1

(−1)a(n)Vn(r), (4.23)

where a(n) is a random integer. This leads to a potential whose spatial
average is zero, and whose average over disorder configurations (i.e.,
positions of the dopants, with the number of dopants held fixed) is
also zero:

〈Vz(r)〉 = 0. (4.24)

The second scenario relies on a finely-tuned equality between the
number of positive- and negative-strength dopants, and as such we do
not claim that it necessarily corresponds to a realistic disorder poten-
tial. Nevertheless, from a theoretical standpoint Vz is a particularly in-
teresting form of disorder because, like the Gaussian random-potential
disorder case discussed earlier, its spatial and configuration average is
zero. However Vz(r) differs from the Gaussian case because it is not
spatially uncorrelated: its disorder-averaged two-point correlator is
not a delta function. Rather, this correlator decays much more slowly
than a delta function. The length scales associated with this disor-
der potential drastically affect the allowed scattering processes. Recall
that a d-wave superconductor has four nodes where gapless Bogoli-
ubov quasiparticles exist at E = 0, which then morph into banana-
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shaped contours of constant energy (CCEs) once energy is increased
from zero. When one has elastic scattering off of pointlike impurities,
there is no restriction on scattering processes aside from phase-space
considerations: scattering has to occur between states lying on CCEs
[182, 25, 93, 161]. With smooth disorder, however, the matrix elements
of the potential vanish very quickly as momentum is increased, lead-
ing to a suppression of large-momentum scattering processes [126].
For this form of disorder, the dominant scattering processes occur only
within one node, and to a first approximation scattering between states
on different nodes can be neglected. This has been studied from the
perspective of quasiparticle scattering interference, and smooth disor-
der potentials have been found to result in the marked suppression of
large-momentum peaks in the Fourier-transformed LDOS [125, 161].

The distinction between pointlike disorder (e.g., random normally-
distributed on-site potentials and multiple unitary impurities) and smooth
disorder is rarely discussed on a theoretical level. Prominent excep-
tions are the pioneering and extensive work by Nunner et al. on
Coulomb-potential disorder [124, 126, 125], by Durst and Lee on ex-
tended linear scatterers [40], and field-theoretical work motivated by
the possibility that scattering in the cuprate superconductors is primar-
ily forward (i.e., small-momenta) in nature [118]. It has been argued
that, from the standpoint of effective field theory, the microscopics of
the disorder determine the symmetry class of the effective theory of
the disordered system, and consequently pointlike and smooth disor-
der belong to different universality classes [10]. While this does make
sense from this particular viewpoint, from a more microscopic per-
spective such as ours such a distinction is not as clear-cut: one can, at
least in principle, continuously tune the length scales of the disorder
potential to come close to the pointlike limit, so it is difficult to argue
that the lattice tight-binding Hamiltonian exhibits such a sharp dis-
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tinction between two different universality classes. There is also a dif-
ficulty in extending these field-theoretical results to the intermediate-
and strong-disorder regimes, as these take as a starting point the pres-
ence of weak disorder. Nevertheless, as we shall see with our numerics,
smooth disorder does lead to effects that differ dramatically from ei-
ther random Gaussian disorder or multiple-impurity models.

The main variable we use to manipulate the amount of disorder in
the superconductor is the concentration p of off-plane dopants. To be
more specific, p here is the number of off-plane dopants per copper
site at the CuO2 plane. From what is known about LSCO, BSCCO,
and YBCO, p is generally a large fraction which is usually of the order
of p ≈ 0.1-0.2. The precise doping level of YBCO is a complicated
quantity to determine because it is not at all obvious how many of
the oxygen dopants go to the chains and to the planes; we will not
incorporate these subtleties in our calculations, but we do note that
microwave conductivity measurements on YBCO are generally found
to be consistent with a concentration of defects on the CuO chains
given by p ≈ 0.1 [22]. We will cover this regime of doping, as this
is the most physically relevant one, although we will cover low and
high concentrations as well. It is not clear a priori whether a density
of p ≈ 0.1-0.2 corresponds to weak or strong disorder, so we will scan
through p to see precisely what regimes are covered by these impurity
concentrations.

4.4 quasiparticle density of states : an overview

We now discuss our numerical results for the quasiparticle density of
states. We first focus on random-potental disorder. Fig. 4.1 shows
the quasiparticle DOS as a function of energy for various values of σ.
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Figure 4.1: Plots of the quasiparticle DOS as a function of energy E for the
Gaussian random-potential model, for various values of σ.

There are a number of interesting features in these plots that are worth
mentioning. We focus first on the DOS near E = 0. For small values of
σ (i.e., σ = 0.125 and σ = 0.25), the DOS vanishes markedly at E = 0.
For these cases the DOS scales roughly linearly with E near E = 0. The
weakest disorder distribution we consider (σ = 0.125) has a DOS curve
that is concave upward between E = 0 and the coherence peaks. This
changes for σ = 0.25, for which the DOS is almost perfectly linear from
zero energy up to the coherence peaks, and from σ = 0.35 upwards
the DOS curves are all concave downward. At σ = 0.35 and σ = 0.50, a
finite DOS at E = 0 is generated, but despite this offset the DOS still
scales approximately linearly with E. For higher values of σ, the DOS
at the Fermi energy is still finite, but there is a very visible dip around
E = 0 relative to nearby energies. In the strong-disorder regime, the
DOS scales linearly with E only within a small neighborhood of E = 0,
then becomes dramatically concave downward as energies increase.
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Figure 4.2: Snapshots of the real-space quasiparticle density of states for ran-
dom Gaussian disorder with increasing standard deviation σ (top
to bottom) and energy E (left to right), extracted from the mid-
dlemost 80× 80 subset of the full system. The leftmost column
shows plots of the DOS as a function of energy for a particular
σ, along with plots of the clean case for comparison. The same
disorder realizations as in Fig. 4.1 are used here. The color scale
is the same for all plots.
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Figure 4.3: Plots of the quasiparticle DOS as a function of energy E for the
multiple unitary-scatterer model, for various impurity concentra-
tions.

At E ≈ 0.3, one can see the coherence peaks becoming more rounded
and decreasing in height with increasing σ. With relatively weak dis-
order, the peaks retain their prominence, but as disorder becomes
stronger these peaks flatten. In fact, for the strongest disorder cases
we consider (σ = 1.41 and σ = 2.00) the DOS near (but not at) E = 0
barely differs from the DOS at E ≈ 0.3. For energies between E = 0
and E ≈ 0.3, the slope of the DOS decreases with increasing σ. The
overall effect of increasing disorder of this kind is to shift spectral
weight away from the coherence peaks towards a broad range of low
and intermediate energies, consequently filling in the d-wave gap.

Qualitatively there are three distinct regimes that are encountered
as random on-site disorder is increased. At low values of σ, the super-
conductor is only weakly disordered: the DOS vanishes at E = 0 and
coherence peaks are prominent. At intermediate values of σ, a finite
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Figure 4.4: Snapshots of the real-space quasiparticle density of states for an
ensemble of unitary pointlike scatterers (VU = 10) with increasing
impurity concentration p (top to bottom) and energy E (left to
right), extracted from the middlemost 80× 80 subset of the full
system. The leftmost column shows plots of the DOS as a function
of energy for a particular p, along with plots of the clean case for
comparison. The same disorder realizations as in Fig. 4.3 are used
here. The color scale is the same for all plots.
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Figure 4.5: Plots of the quasiparticle DOS as a function of energy E for the
multiple smooth-scatterer model with positive net potential, for
various impurity concentrations.

value of the DOS forms at the Fermi energy, but the DOS still varies
linearly with E over a broad energy range, and traces of the coherence
peaks (now rounded and diminished in height) still remain. Finally,
when σ is large, we enter the strong-disorder regime, where the DOS
is linear only within a small neighborhood of E = 0 and saturates very
quickly to a constant value (albeit with considerable random fluctua-
tions about that value). The DOS is suppressed at E = 0 relative to the
value to which it eventually saturates, and in fact tends toward zero
once more as disorder is increased. In this regime almost no trace of
the structure of the DOS of the clean d-wave superconductor remains.

To closely examine the origins of both the generation of a finite DOS
at E = 0 and the smoothening of the coherence peaks, we extract
real-space maps of the quasiparticle local DOS (LDOS) for various dis-
order strengths and energies. We take these samples from the middle
80× 80 section of the full system. These maps are shown in Fig. 4.2.
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Figure 4.6: Snapshots of the real-space quasiparticle density of states for
smooth disorder (with positive net potential) with increasing im-
purity concentration p (top to bottom) and energy E (left to right),
extracted from the middlemost 80× 80 subset of the full system.
The energy at the rightmost column corresponds to the location at
which the coherence peaks can be found, while the energy at the
middle column is half the coherence-peak energy. The leftmost
column shows plots of the DOS as a function of energy for a par-
ticular p, along with plots of the clean case for comparison. The
same disorder realizations as in Fig. 4.5 are used here. The color
scale is the same for all plots.
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Figure 4.7: Histogram of the values of the disorder potential for smooth dis-
order with positive net potential for three values of p. The width
of each bin is 0.01. Notice that the mean of the disorder potential
is nonzero, leading to a shift in the average chemical potential of
the overall system.

At E = 0, the weak-disorder (σ = 0.25) LDOS is almost zero and is
spatially featureless. When disorder is increased, regions where the
LDOS is nonvanishing form even at E = 0. At moderate levels of dis-
order (σ = 0.50) these regions tend to be isolated, surrounded by a
sea of vanishing DOS. These are sufficient however to produce a finite
DOS when averaged over the entire system. When disorder is tuned
to be strong (σ = 1.00), the LDOS map at E = 0 displays considerable
randomness: patches where the LDOS vanishes coexist with regions
where the DOS is visibly nonzero, thereby resulting in a nonzero aver-
age DOS.

As energies are increased the σ = 0.25 maps start exhibiting modula-
tions in the LDOS that arise from quasiparticle interference in the pres-
ence of weak disorder. As disorder is increased, this structure becomes
less and less visible: the σ = 1.00 maps at E = 0.150 and E = 0.300
show randomness that is not much different than the maps obtained
at E = 0. The strong-disorder maps show at higher energies similar
structures as the zero-energy case, with regions where the LDOS is
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Figure 4.8: Plots of the quasiparticle DOS as a function of energy E for the
multiple smooth-scatterer model with zero net potential, for vari-
ous impurity concentrations.

heavily suppressed existing alongside areas with nonzero DOS. The
presence of these patches where the LDOS is almost zero at large σ is
responsible for the overall suppression of the averaged DOS relative to
less disordered cases.

We repeat this analysis for the unitary-scatterer disorder model. For
this form of disorder we show the quasiparticle DOS as a function of
energy E in Fig. 4.3. When a small number of impurities are present
(e.g., p = 0.125%), the DOS is barely altered from the clean case: the
DOS tends toward zero at E = 0, increases linearly for a broad energy
range, and displays sharp coherence peaks at E ≈ 0.300. The same
behavior holds for higher concentration of levels such as p = 0.25%
and p = 0.50%. We can see that the coherence peaks become slightly
lower for these cases.

A major feature of these plots for a broad range of p is the rounding
off of the DOS at an energy scale that appears to be dependent on the
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Figure 4.9: Snapshots of the real-space quasiparticle density of states for
smooth disorder (with zero net potential) with increasing impu-
rity concentration p (top to bottom) and energy E (left to right),
extracted from the middlemost 80× 80 subset of the full system.
The leftmost column shows plots of the DOS as a function of en-
ergy for a particular p, along with plots of the clean case for com-
parison. The same disorder realizations as in Fig. 4.8 are used
here. The color scale is the same for all plots.
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Figure 4.10: Histogram of the values of the disorder potential for smooth dis-
order with zero net potential for three values of p. The width of
each bin is 0.01. The mean of the disorder potential is zero, and
the average chemical potential of the system as a whole is not
shifted.

concentration. Near E = 0, the DOS scales linearly. As p is increased,
the d-wave gap fills in a particular manner: more spectral weight ac-
cumulates at a characteristic energy scale, so that instead of a linear
DOS as in the clean case, one sees the DOS encountering a “hump”
that becomes more pronounced when p is increased. With increasing
p the DOS surrounding E = 0 starts accumulating larger values of
DOS, all while the coherence peaks become shorter and flatten, show-
ing a transfer of spectral weight from the coherence peaks towards the
region around the Fermi energy. It is interesting to note that the way
the gap is filled is different for the case of unitary scatterers than for
random on-site disorder: for small p, spectral weight is moved from
the coherence peaks towards the neighborhood of the Fermi energy,
with a width roughly set by the impurity concentration, whereas for
random Gaussian disorder the spectral weight is transfered to a far
broader range of energies, with strong deviations from the clean case
occuring even at energies away from E = 0. For higher values of p,
the DOS resembles the large-σ random-disorder cases discussed ear-
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Figure 4.11: Plot of the density of states at and near E = 0 for the multiple-
smooth-scatterer case for various impurity concentrations p. For
the p = 20% and p = 40% the resonance is seen to have a width
of approximately 0.006.

lier. One feature that is consistently present—even at high values of
p, with coherence peaks completely flattened and the DOS near the
Fermi energy finite—is a visible dip at E = 0.

Real-space maps of the LDOS for a d-wave superconductor subject to
a variety of unitary-impurity concentrations are shown in Fig. 4.4. At
p = 1.0%, the E = 0 LDOS map is largely almost zero, save for small ar-
eas that show large, nonzero values of the LDOS. A closer examination
shows that these arise from interference effects from the presence of a
few impurities bunched up together within a small area, arranged to-
gether such that a resonance forms. These resonances are very rare—in
the 80× 80 map we take, only one particular group of closely-spaced
impurities generates such nonzero LDOS values at E = 0, whereas
groups of a few impurities near one another do appear quite frequently.
Despite their relative rarity, the presence of such regions with large av-
erage LDOS is enough to produce a small but nonzero average DOS
for the entire sample. When the concentration is increased, we see
behavior in the E = 0 maps that is strongly reminiscent of that seen
in the maps from the Gaussian random disorder case. At p = 4.0%,

129



quasiparticle density of states , localization. . .

● ●
●

●
●

●
●

●

■
■

■

■

■

■
■

■

◆

◆

◆

◆

◆

◆

◆

◆

2 4 6 8
L0.0

0.1

0.2

0.3

0.4

0.5
ρ(E = 0)

● p = 10% ■ p = 20% ◆ p = 40%

Figure 4.12: Plot of the density of states at E = 0 for the multiple-smooth-
scatterer case as a function of screening length L. For a given
p, the positions of the smooth scatterers are fixed, with only the
screening length and the amplitude of the disorder potential ad-
justed as discussed in the text. At fixed p the zero-energy DOS
increases monotonically with L. In addition, at fixed L the DOS
at E = 0 increases with increasing p.

regions where the LDOS is nonzero appear more frequently, but they
are isolated and are largely surrounded by areas where the LDOS is
suppressed. The p = 16.0% case shows a remarkably large number of
lattice sites with large values of the LDOS. Clearly in this case the large
impurity concentration means that there is a large probability that an
impurity is placed in close proximity to another impurity, resulting in
a nonzero LDOS.

At higher energies the p = 1.0% and p = 4.0% cases show modu-
lations that are due to quasiparticle scattering interference (QPI) from
multiple impurities. In particular the p = 1.0% map at E = 0.300
shows strikingly prominent modulations in the LDOS due to the pres-
ence of disorder; the p = 4.0% map at the same energy also shows
visible modulations, but the larger number of impurities results in an
average DOS that is lower than the p = 1.0% case. The p = 16.0% case,
on the other hand, shows almost no visible traces of patterns arising
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Figure 4.13: Smooth disorder potentials used in Fig. 4.12, with concentration
p = 10%, evaluated at various screening lengths L. Shown are
L = 1, L = 2, L = 4, and L = 8. The color scale is the same
for all plots. Notice that as L is increased the disorder potential
becomes smoother and more spatially correlated.

from QPI. Instead what one sees is a very inhomogeneous map featur-
ing both sites with very strong suppression of the LDOS and sites at
which the LDOS is large. For this particular concentration, the degree
of inhomogeneity does not change markedly upon increasing E.

The suppression of the DOS at E = 0 for both random-potential and
unitary-scatterer disorder has been discussed at length by Senthil and
Fisher with field-theoretic methods [155] and by Yashenkin et al. using
diagrammatic techniques incorporating weak-localization corrections
to the T-matrix results [187, 67]. This suppression—found to be loga-
rithmic in both approaches—can understood as being due to the inclu-
sion of diffusive modes that, in the absence of symmetries other than
spin rotation invariance, lead to an overall suppression of the DOS.
Yashenkin et al. also find that the addition of artificial nesting sym-
metries (e.g., a particle-hole-symmetric normal-state band structure in
the presence of unitary scatterers ) can lead rise to additional diffusive
modes that enhance the DOS at the Fermi energy. It is interesting to
note that even in strong-disorder regimes where these approximations
do not hold—diagrammatic and field-theoretical treatments both im-
plicitly rely on a relatively narrow distribution of disorder for them to
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be sensible—this logarithmic suppression at the Fermi energy is still
very much evident for both random-potential and unitary-scatterer dis-
order.

We finally discuss the case of smooth disorder. We first focus on the
case where the dopants have the same sign of the impurity strength—
i.e., the full potential is given by Eq. 4.22. Fig. 4.5 shows the quasipar-
ticle DOS for a d-wave superconductor with such disorder, for various
doping concentrations p. The behavior of the DOS near E = 0 has a
number of interesting features when p is increased. First, at low p, the
DOS is close to zero. As p is increased, the DOS gradually acquires a
finite value, and at higher concentrations (p = 20% and p = 40%) the
DOS has a small bump at E = 0 relative to the value of the clean DOS.
The neighborhood of the Fermi energy shows a gradual roundening
of the DOS from a sharp V-shape in the clean and mildly disordered
cases to a smooth U-shape for higher impurity concentrations. For
all p, coherence peaks are present and quite prominent, but these
shorten and move towards the Fermi energy as p is increased. This
can be attributed to the fact that for this particular form of disorder,
the mean of the disorder potential is nonzero, and the chemical poten-
tial is shifted away—only slightly for lower p, and considerably more
strongly for larger and larger p, as seen in Fig. 4.7. It is interesting
to note that despite the fact that this form of potential seemingly rep-
resents a strong modification to the d-wave superconductor, the effect
is mainly to transfer spectral weight from the coherence peaks to the
Fermi energy, with a corresponding rounding of the DOS, without im-
pacting the DOS that much in the intermediate-energy regimes. There
is also no visible suppression at E = 0, as was the case in the pointlike
disorder models we discussed earlier. It seems that the overall effect
of this particular form of disorder, at least as the quasiparticle DOS
is concerned, is qualitatively much weaker than the random Gaussian
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on-site energy and the multiple unitary-scatterer models at roughly
similar disorder widths or impurity concentrations.

Real-space plots are shown in Fig. 4.6. The plots at E = 0 show
how a nonzero DOS is generated in the neighborhood of the Fermi
energy. At p = 10%, the effect is only mild, as the LDOS is almost
spatially uniform. With increasing concentration visible patterns start
to show up in the LDOS maps. These patterns are interesting because
they correspond to only a small portion of the entire system, but do
generate, upon averaging over space, an overall nonzero DOS centered
around E = 0. Unlike similar maps for the pointlike disorder cases, the
patterns—which manifest themselves as streaks of nonzero DOS amid
a featureless, almost-zero background—display a smoothness that is
not present in the highly disordered pointlike cases. While displaying
patchiness, it exhibits spatial variations that are much more ragged
than in the smooth case. Meanwhile the maps taken at higher energies
show crisscrossing patterns which arise naturally from quasiparticle
intereference due to scattering off of a highly random smooth disorder
potential. Unlike the maps showing pointlike disorder, the modula-
tions here are much smoother, owing to the fact that these arise from
small-momenta scattering processes.

We next turn to the case where there is an equal number of positive-
and negative-strength dopants—i.e., the disorder potential shown in
Eq. 4.23. This will prove to be a much more interesting case than the
smooth-disorder scenario we had just discussed. We show plots of the
DOS for this disorder potential in Fig. 4.8. A number of remarkable
features are present in these plots which we will now discuss in detail.
We focus first on the region around E = 0. At low p, the DOS vanishes,
but at p = 10% the DOS acquires a value that is appreciably larger
than that of the clean or low-doping cases. At this doping the DOS at
E = 0 has a slight upward hump, and the DOS surrounding the Fermi
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energy has a U-shape and is considerably rounded off compared to the
shape of the clean DOS. At higher dopings, a very prominent spike in
the DOS at E = 0 start to form: this spike is localized at E = 0, and
falls off quickly towards the base of a “valley.” It can be seen that the
area around the Fermi energy hosts a considerable amount of spectral
weight relative to the clean case as p is increased.

These effects near the Fermi energy are far more pronounced be-
cause elsewhere there are no significant deviations from the clean DOS.
Even for very large dopings (e.g., p = 40%), the DOS at intermediate
and high energies are almost unchanged from that of the clean case.
The main significant change at these energy ranges happens at the co-
herence peaks (E ≈ 0.3), which become shorter and more rounded
with increasing disorder. However the rounding and shortening are
nowhere near as pronounced or as strong as those in the random-
potential or unitary-scatterer cases. Recall that in these other cases, the
coherence peaks are destroyed at some level of disorder (σ ≈ 0.5 for
random potential disorder, and p ≈ 8% for unitary scatterers). How-
ever, even at p = 40% doping, smooth disorder preserves coherence
peaks. More emphatically, the global structure of the d-wave DOS is
preserved even for very large dopings.

This is remarkable given how randomly distributed the disorder po-
tential is. This can be seen in histograms of the disorder potential
values for this particular form of smooth disorder, which we show
in Fig. 4.10. One can see that they are almost normally distributed,
with widths not far off from the weaker incarnations of the random-
potential case we discussed earlier. The difference of course lies in
the presence of spatial correlations in the smooth disorder potential,
which are completely absent for pointlike disorder. Evidently, unlike
random-potential or unitary-scatterer disorder, which show dramatic
spectral-weight transfers from the coherence peaks to a broad range
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of energies, for this particular form of smooth disorder only moderate
spectral weight transfer occurs, with the bulk accumulating near the
Fermi energy and almost none in intermediate-energy regimes.

The E = 0 maps in Fig. 4.9 show how a spike in the average DOS
is generated. At low p, few if any streaks are visible, and these faint
streaks occur against a background where the LDOS is heavily sup-
pressed. As p increases, more of these streaks are visible, and in the
p = 40% case these streaks are strong enough that averaging over the
LDOS yields a finite value. The E = 0.150 maps show, as in the other
smooth-disorder case we studied, diagonal crisscrossing patterns that
can be attributed to quasiparticle scattering interference. Note that the
modulations in real space are slowly varying, which as before can be
attributed to the fact that, in this disorder scenario, nearly all scatter-
ing is forward. The fact that mostly diagonal streaks can be seen is due
to the fact that scattering occurs heavily within one node only, and the
only q-vector corresponding to such intranodal scattering is q7, which
is diagonal and small. At the coherence-peak energies (E = 0.300),
the diagonal streaks are now mainly replaced by moduations in the
vertical and horizontal directions—a reflection of the fact that these
LDOS maps are still heavily determined by quasiparticle scattering in-
terference. At this energy regime the vertical/horizontal momentum
q1 becomes most dominant, leading to the prominent modulations in
the horizontal and vertical directions. The maps at higher energies
show a remarkable degree of similarity with each other, despite vastly
different amounts of doping, indicating that the transfer of spectral
weight away from these energies is largely muted. This is very differ-
ent from what we have seen for random-potential or unitary-scatterer
disorder.

The origin of the sharply enhanced DOS at E = 0 is unknown, but
we will try to characterize this effect as fully as possible numerically.
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First of all, the resonances are sharply located at E = 0, and are very
narrow. Fig. 4.11 shows a close-up view of the DOS within a small win-
dow of the Fermi energy. We find that the resonances, which are most
visible at p = 20% and p = 40%, have a width of ∆E ≈ 0.006 centered
about E = 0, and that these subsequently plateau into a flat profile
a short distance away from the Fermi energy. From our numerical
results it appears that these zero-energy resonances are uncorrelated
with the underlying smooth disorder potential. It is an intrinsically
many-impurity effect, since results from single-impurity simulations
do not show a sharp spike in the local DOS at zero energy. It also
depends rather sensitively on the length scales associated with the
smooth disorder potential. In Fig. 4.12 we plot the DOS at E = 0 ver-
sus the screening length L for three different impurity concentrations
p, keeping the positions of the impurities at a given p fixed. In these
plots we change V0 as L is varied in Eq. 4.20 so that V(r = 0) remains
the same for all values of L we consider. This choice ensures that the
resulting smooth disorder potentials feature the same degree of spa-
tial variations, even as L is varied. As we have seen in the L = 4 case
heavily discussed earlier, at fixed L the E = 0 DOS depends on p, with
the DOS increasing as p is increased. More remarkably, however, we
can see that at fixed p, the zero-energy DOS increases monotonically
as L is increased. This is interesting because at face value the smooth-
disorder potentials at various L appear to be very similar to each other.
This is seen in Fig. 4.13, which shows the different smooth disorder
potentials used at fixed p = 10%. These are similar in appearance, but
evidently lead to considerable differences in the values of ρ(E = 0).
This suggests that the range of the potential plays an important role in
the emergence of these resonances at zero energy.

We note that a mechanism for the enhancement of the DOS at E = 0
was discussed by Yashenkin et al., who point out that diffusion modes
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due to additional symmetries could lead to an increase in the DOS
at E = 0 [187, 67]. It is not clear at all if this mechanism has any
relation with the real-space streaks which generate the spike at the
Fermi energy in our numerics. It was argued that symmetries such as
particle-hole symmetry in the normal state lead to this enhancement;
however, the normal-state band structure we use does not have any
special symmetries, so this cannot explain this phenomenon. It should
be noted too that Yashenkin et al.’s analysis relies on pointlike scat-
terers treated within a self-consistent T-matrix approximation, which
does not describe the smooth disorder potentials which generate the
enhanced DOS at E = 0. It is thus an interesting, if possibly very diffi-
cult, problem to apply the analysis of Yashenkin et al. to smooth impu-
rity potentials. Treating smooth disorder analytically is a formidable
challenge, unlike random-potential and unitary-scatterer disorder, and
tractability is generally possible only in the nodal approximation, at
which the Born or T-matrix approximations can be used. We will thus
leave an explanation of these strong zero-energy enhancements of the
DOS due to smooth disorder as an open problem.

4.5 correlation between the ldos and the disorder po-
tential

As discussed earlier, the behavior of the real-space LDOS varies as the
amount of disorder is increased, with low-disorder cases exhibiting
more visible modulations in the LDOS that are due to QPI. At high
energies these modulations follow closely the details of the disorder
potential. As disorder is increased, these modulations become less
prominent. We can get some insight into how “strong” the disorder in
the system is by computing the coefficient of correlation R(E) between
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Figure 4.14: Plot of the correlation coefficient R between the local density of
states in the middlemost 80 × 80 patch of the system and the
disorder potential in that region for different types of disorder,
for varying disorder strength, as a function of energy. For all
three plots the correlation coefficient is negative—that is, there
is an overall anticorrelation between the LDOS and the disorder
potential.
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the local density of states at energy E and the disorder potential. R(E)
is defined in the following manner:

R(E) =
∑ij(V(i, j)−V)(ρ(i, j, E)− ρ(E))√

(∑ij(V(i, j)−V)2)(∑ij(ρ(i, j, E)− ρ(E))2)
. (4.25)

Here V(i, j) is the disorder potential at site (i, j), ρ(i, j, E) is the quasi-
particle DOS at site (i, j) and energy E, and V and ρ(E) are the av-
erage values of the disorder potential and the DOS, respectively, over
the area where we perform the calculation. We compute R between
the middlemost 80× 80 LDOS patch of the system at energy E and the
disorder potential in that same patch of the system. Plots of R(E) are
shown in Fig. 4.14. This is motivated by a similar analysis performed
by McElroy et al. on experimentally-obtained LDOS data from BSCCO;
they find that there is moderate anticorrelation between the locations of
the dopant defects and LDOS minima [111]. Our analysis differs from
theirs in that we know the details of the disorder potential directly,
and the cross-correlation is between the potential and the LDOS, not
between the impurity location and the LDOS.

In the case of random-potential disorder, what we find is that the
LDOS is only moderately anticorrelated with the disorder potential,
even for weak disorder. When σ = 0.25, R decreases from a small value
(R ≈ −0.2) until it saturates at R ≈ −0.5 at E ≈ 0.25, indicating that
the high-energy LDOS displays more similarity with the underlying
disorder potential than the low-energy LDOS. As σ is increased, the
LDOS and the disorder potential become even less anticorrelated. R(E)
at σ = 0.5 shows only a moderate degree of dependence on energy,
and at σ = 1.00 R(E) is almost energy-independent and has a small
value, indicating that the two variables are only weakly anticorrelated.
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For multiple unitary scatterers the situation becomes markedly dif-
ferent. The R(E) obtained for the p = 1.0% case exhibits a very visi-
ble dependence on energy. At low energies the LDOS is very weakly
anticorrelated with the disorder potential, but this anticorrelation in-
creases sharply as energy is increased, a sign that higher-energy LDOS
maps match the features of the disorder potential more than the lower-
energy maps do; for instance, R ≈ −0.6 at E ≈ 0.25. This trend is even
noticeable once E is increased past the d-wave gap edge, where it can
be seen that R continues to be more and more anticorrelated with in-
creasing E. This behavior can be seen to a good extent in the p = 4.0%
case, for which R shows a similar degree of energy-dependence in the
intermediate- and high-energy ranges as in the p = 1.0% case. The
p = 16.0% case is interesting, as in that case R is much less energy-
dependent than in the cases involving lower concentrations, similar to
the strong-disorder (σ = 1.00) case of the random-potential model, but
the overall coefficient indicates that stronger anticorrelation is present
between the two variables. This can be explained by the fact that
unitary pointlike scatterers suppress the LDOS at the impurity sites,
which contributes to the overall anticorrelation between the LDOS and
the disorder potential.

The smooth-disorder cases feature behavior that is starkly different
from the random-potential or unitary-scatterer models. For one, we ob-
tain strongly energy-dependent R(E) at all concentrations we consider
(10%, 20%, and 40%). In addition, the behavior of R does not appear to
vary as p is altered. At low energies, there is almost no anticorrelation
between the LDOS and the disorder potential, but the anticorrelation
sharply increases as E is increased. R reaches very large values at high
energies—for instance, R ≈ −0.7 at E ≈ 0.3—and in these regimes the
LDOS maps bear a remarkable resemblance to plots of the smooth dis-
order potential, with regions where the LDOS is suppressed coinciding
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with patches at which the disorder potential is positive and vice versa.
Another interesting aspect is that strong fluctuations in R exist, inde-
pendently of p. This is unlike random-potential or unitary-scatterer
disorder, for which we saw that the fluctuations in R are minimal. It is
important to note from these plots that the resonances in the DOS at
E = 0 are almost completely uncorrelated with the disorder potential—
the origin of these resonance streaks at zero energy appears not to
originate from local features of the disorder potential.

4.6 properties of the density of states near E = 0

As a considerable number of properties of the cuprate superconductors
rely on the physics of the low-energy quasiparticles near the Fermi en-
ergy, we will examine more closely the behavior of the DOS near E = 0
as disorder is increased. We have seen that, in the random-potential
and unitary-scatterer models of disorder, when the amount of disor-
der is increased, ρ(E = 0) acquires a finite value, then drops once
more towards zero after a certain disorder strength is reached. To see
if this behavior is robust, we show in Fig. 4.15 plots of the mean and
standard deviation of ρ(E = 0) as the amount of disorder is increased
for each of the four models of disorder we use, with five realizations
used per value of the disorder strength parameter. All in all, a total of
500,000 LDOS values for each value of the disorder strength parameter
are used to generate this plot. A similar if considerably more detailed
analysis of LDOS distributions on the Anderson model was performed
by Schubert et al. in order to obtain critera for Anderson localization
using finite-size scaling [152]. We will not repeat their finite-size analy-
sis here. It should be noted that, under certain conditions, information
about the distribution of the LDOS at E = 0 can be extracted by ob-

141



quasiparticle density of states , localization. . .

● ● ●
●

●

●
●

●

■ ■ ■
■

■

■

■

■

0.125 0.25 0.5 1.
σ

0.1

0.2

0.3

0.4

0.5
DOS

Random Potential

● Mean DOS at E = 0.0 ■ STDEV of DOS at E = 0.0

● ● ●
●

●

●

●

●

●

■ ■ ■

■

■

■

■

■

■

0.125 0.25 0.5 1. 2. 4. 8. 16. 32.
p%

0.1

0.2

0.3

0.4

0.5
DOS

Unitary Scatterers

● Mean DOS at E = 0.0 ■ STDEV of DOS at E = 0.0

● ● ●
●

●

●

■ ■
■

■

■

■

2.5 5. 10. 20. 40. 80.
p%

0.1

0.2

0.3

0.4

0.5
DOS

Smooth Potential, Positive Net Potential

● Mean DOS at E = 0.0 ■ STDEV of DOS at E = 0.0

● ●
●

●

●

●

■ ■

■

■

■

■

2.5 5. 10. 20. 40. 80.
p%

0.1

0.2

0.3

0.4

0.5
DOS

Smooth Disorder, Zero Net Potential

● Mean DOS at E = 0.0 ■ STDEV of DOS at E = 0.0

Figure 4.15: Plots of the mean and standard deviation of the quasiparticle lo-
cal DOS at E = 0 for different types of disorder. Five realizations
are utilized for each value of the disorder strength parameter for
each type of disorder; an average over 5× 105 values of the local
DOS is taken.
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Figure 4.16: Histogram of the local DOS at E = 0 for different types of disor-
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are used per value of disorder strength parameter for each type
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for a particular value of disorder strength is offset from the pre-
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taining the 17O Knight shift values from nuclear magnetic resonance
experiments [128, 192, 193]. In particular, Zhou et al. find an asym-
metric distribution of Knight shifts in YBCO with charge order, which
suggests that the LDOS at the Fermi energy is distributed similarly,
and argue that a likely explanation of this is quasiparticle scattering
off of defects [192].

Let us discuss first the random-potential model. In the weak-disorder
regime, the mean and standard deviation of the DOS are both close to
zero and exhibit almost no dependence on σ. Starting at approximately
σ = 0.35 the mean DOS becomes finite, increasing as σ is increased,
and, more interestingly, the standard deviation of ρ(E = 0) depends
strongly on the value of σ. This trend continues until σ = 1.00: as disor-
der is increased past that point, the mean DOS starts to decrease, while
the standard deviation continues to increase until σ = 1.4 is reached.
In these strong-disorder regimes, the way that ρ(E = 0) → 0 is of a
fundamentally different nature than the way the weak-disorder DOS
tends toward zero: the distribution of the strong-disorder DOS, while
heavily weighted towards zero, exhibits very large spatial variations.
The weak-disorder case on the other hand is almost fully concentrated
at zero, with almost negligible variations in space.

Surprisingly similar behavior can be seen in the unitary-scatterer
model. One can see that in the low-concentration regime (i.e., up to
p ≈ 0.5%), both the mean and the standard deviation of the LDOS are
almost zero. Then at around p = 1.0% both the mean and standard de-
viation display a strong dependence on p, with both increasing as the
impurity concentrations are increased. This behavior stops at around
p = 16.0%, at which point the mean LDOS reaches the largest value
(out of the values of p we consider), and the mean starts to decrease
once p is increased. The standard deviation continues to increase past
p = 16.0% up until p = 32.0%, signaling that despite the decrease in
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the mean LDOS, the spatial variations remain considerable. It is inter-
esting to note that both the mean and standard deviation of the DOS
at E = 0 in this case depend on p very similarly to the way the same
two quantities depend on σ in the Gaussian random-potential case
discussed before, despite the considerable differences present between
the two disorder scenarios.

Despite the huge difference in the effects seen in the quasiparticle
DOS and local DOS maps between smooth and pointlike disorder, the
DOS at E = 0 for the smooth-disorder case does display a similar de-
pendence on the disorder strength as for pointlike disorder. For the
positive-net-potential case, low doping concentrations show a mean
LDOS close to zero, with a corresponding small standard deviation in-
dicating small spatial variations in the LDOS. Both the mean and stan-
dard deviation exhibit a dependence on p up to the (quite unphysical)
doping p = 40%. At that point the mean LDOS becomes a maximum,
but the standard deviation continues to increase past that point. The
zero-net-potential case meanwhile shows much more spatial variation
than the positive-net-potential case. Low dopings show small mean
and standard deviations, and as p is increased these two quantities de-
pend strongly on p. Interestingly, at p = 10% the standard deviation
starts to depend more strongly on p; consequently, at intermediate and
high dopings the LDOS at E = 0 has a considerable amount of spatial
variation. The mean LDOS also has a strong dependence on p.

The extent to which the LDOS at the Fermi energy varies over space
can be visualized neatly by taking histograms of these LDOS values for
various values of the disorder strength parameter. These histograms
are shown in Fig. 4.16. To facilitate comparisons between LDOS dis-
tributions corresponding to different disorder strengths, we use the
same bin width for each histogram. For random-potential disorder,
it can be seen that the weak-disorder cases feature very narrowly dis-
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tributed LDOS values. When disorder is increased until σ = 1.00 the
distributions start to broaden, and as a consequence the peaks of the
distributions shift rightwards, becoming lower, with the mean moving
away from zero. For values of σ > 1.00 the distribution starts to nar-
row, with much of the distribution being concentrated near zero, but
there remains a large amount of spatial variation. Because of the large
weight at and near zero, ρ(E = 0) is suppressed in these cases, but
the distribution is much more variable than in the weak-disorder case.
We note in passing that throughout the range of disorder strengths we
consider, ρ(E = 0) is consistently distributed log-normally, which is
remarkable given how dramatically different the overall statistics of
these distributions are as disorder is varied.

Moving on to unitary-scatterer disorder, at small p the distribution
is centered mainly around ρ(E = 0) ≈ 0, but with a small number of
LDOS values with larger values arising from the random interference
effects discussed earlier. These effects become more and more numer-
ous as p is increased, leading to broader and flatter distributions at
intermediate impurity concentrations. The behavior of the LDOS dis-
tributions in the multiple unitary-scatterer case parallels very closely
that of the Gaussian random-potential disorder, with distributions for
both cases widening and then subsequently narrowing once more as
p or σ is increased. The main difference here is that the distribution
of the LDOS for unitary scatterers is bimodal for moderate and large
values of p: as the LDOS is suppressed almost completely at impurity
sites, these represent a considerable number of LDOS values that are
zero, and these peaks in the distributions are present independently
of the variations arising from the very presence of these impurities.
When one takes these impurity-site LDOS values out of consideration,
the LDOS distribution is log-normal, similar to the case of random
Gaussian disorder (which, unlike the unitary-scatterer model, does not
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exhibit a special subset of lattice sites at which the LDOS is maximally
suppressed).

In the case of smooth disorder with positive net potential, one can
see that the generation of a finite DOS is achieved by an increase in
the spatial variation, resulting in the broadening of the distribution.
Similarly, when we consider smooth disorder with zero net potential,
as p is increased, the LDOS distributions at E = 0 become very broad.
While this effect is also seen in the other pointlike forms of disorder
we looked at earlier, here the broadening is more pronounced, and
much more so compared to the positive-net-potential case. We also
do not hit the strong-disorder regime where these LDOS distributions
start to narrow while still exhibiting strong spatial variations, which
we encountered in the random-potential and unitary-scatterer disorder
models.

We end this section by noting that our results for weak disorder
match closely with what field-theoretic treatments of disorder find,
which is that the DOS at E = 0 vanishes [118, 155, 10]. A crucial
assumption made in the construction of these field theories is that the
distribution of the disorder is narrow [10]. Indeed, we find that weak
disorder of whatever form leads to a very small DOS at the Fermi
energy. What our numerical results suggest however is that the DOS
is not vanishing only up to some threshold value of disorder which
invalidates the construction of these field-theoretic models. Instead
what we find is that the DOS at E = 0 varies smoothly as the amount
of disorder is increased, suggesting that crossovers, rather than sharp
transitions, occur as one moves from weak to intermediate disorder
and from intermediate to strong disorder.
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Figure 4.17: Plots of C/T as a function of temperature T for different types
of disorder. Gray dotted lines indicate fits of the C/T curves
to the form C/T = γ0 + αT, the scaling expected from d-wave
quasiparticles with a nonzero DOS at E = 0. The numerically-
obtained C/T exhibits visible deviations from this scaling.

4.7 low-temperature specific heat

The next quantity we will consider is the low-temperature specific heat.
We will examine the contributions of the d-wave quasiparticles to the
specific heat, neglecting the effect of phonons which arise at higher
temperatures. As mentioned earlier, a clean d-wave superconductor
has a DOS which vanishes at E = 0 linearly, and this gives rise to
a T2-dependent term in the specific heat C. Interestingly, in specific
heat experiments, it is found that this T2-dependent term is difficult
to disentangle from the signal [144]. Instead the most prominent con-
tributions to the specific heat are the phonon contribution (scaling as
T3) and the contribution due to a finite density of states at zero energy,
which scales as T, similar to a normal metal. We thus begin our dis-
cussion of specific heat with the necessary warning that it is difficult
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to match the dependence on temperature of C from our numerical cal-
culations with that found in specific heat experiments. What can be
unambiguously compared between simulation and experiment, how-
ever, is the magnitude of γ0, the coefficient of the linear-in-T term in
C which is proportional to the DOS at E = 0.

Shown in Fig. 4.17 are plots of C/T versus T for various types of
disorder. We first discuss random-potential disorder. It can be seen
that when σ is small, the specific heat scales as C ∝ γ0T + αT2, with γ0

very small, reflecting the fact that the DOS at the Fermi energy at weak
random-potential disorder is suppressed. The behavior of γ0 closely
follows that of the DOS at E = 0, as a large jump in γ0 is found at
σ ≈ 0.35. Even at moderately strong disorder, the specific heat is still
found to scale as C ∝ γ0T + αT2, at least up to T ≈ 0.03 (approximately
50 K). When disorder is strong enough, the scaling finally starts to
deviate considerably from that found in the weak-disorder cases. For
instance, when σ ≈ 1.00, C/T becomes concave downward. The large
value of C/T as T → 0 seen in that case is a reflection of the very large
DOS at E = 0.

For the case of multiple unitary scatterers, the specific heat results
are by and large similar to the random-potential case. Low concen-
trations of unitary scatterers show a very small value of γ0, and with
large values of γ0 reached only until p ≈ 2.0% is reached. It bears
noting that at low temperatures the specific heat roughly scales as
C ∝ γ0T + αT2 at low and moderate concentrations of unitary scat-
terers. The unitary-scatterer cases however feature mild kinks in the
C/T-versus-T plots at low temperatures which are not present in the
random-potential cases. These kinks arise from the particular form
of the DOS profiles in the unitary-scatterer cases, which show both a
rounding of the DOS at energy scales set by the scattering rate, and ul-
timately its suppression at E = 0. The kink in the C/T profile becomes
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more prominent with increasing p, and in the strong-disorder regime
the plot becomes, as in the random-potential case, concave downward.

Finally, smooth-potential disorder gives rise to specific heat behavior
that is rather demonstrably different from that arising from random-
potential or unitary-scatterer disorder. Low concentrations of smooth
scatterers (e.g., p ≈ 2.5% or p ≈ 5.0%) show C ∝ γ0T + αT2 scaling of
the specific heat, with correspondingly small values of γ0, reflecting
the relatively small DOS at the Fermi energy due to these levels of
smooth disorder. However, the unusual behavor of the DOS at E = 0 at
higher concentrations p manifests itself in a strange kink in the plot of
C/T versus T, showing strong deviations from the scaling one would
expect from both d-wave dispersion and a finite DOS at the Fermi
energy. The large value of C/T as T → 0 results naturally from the
enhancement of the DOS at E = 0, and as T is increased C/T dips, then
rises linearly once more past a certain temperature. It is worth noting
that the deviations from the expected scaling are fairly localized within
a small region near T = 0, with the specific heat returning to quadratic
scaling C ∝ αT2 once temperature is raised past some threshold value.

Given the aforementioned difficulty of measuring precisely α from
experiment, we cannot say much about how consistent with experi-
ment our numerically-obtained scaling for C is. However, what we
obtain for γ0 can be compared with that found from experiment with
definiteness. We will return to a comparison with results from specific
heat experiments at the conclusion of this chapter.

4.8 quasiparticle localization

The final quantity of interest to us is the localization length λ. Unlike
the DOS and the specific heat, the localization length is not an experi-
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Figure 4.18: Plots of the localization length λ (in units where the lattice con-
stant a = 1) for different types of disorder, taken at three differ-
ent energies E. The x-axis shows the disorder strength parameter,
given by σ for random-potential disorder (leftmost plot) and the
impurity concentration p for unitary-scatterer and smooth disor-
der (middle and rightmost plots).
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Figure 4.19: Plot of the localization length λ as a function of energy E for
different types of disorder.

mental observable; no experiment exists which measures the quantity
described by Eq. 4.15. However it is a very important quantity in that it
gives information as to how localized the states at a particular energy
are. It is a rather difficult quantity to measure in finite-size simulations
of lattice systems because more often than not λ is much bigger than
the system size. The numerical method we use however circumvents
this difficulty by allowing one dimension of the system to be much
longer than the other. Thus we can use one definition of the localiza-
tion length which involves the transmission probability between two
ends of an elongated two-dimensional system [106, 23, 92, 186]. This
enables us to directly and exactly calculate the localization length for
the full disordered system. As a first exercise we calculate the localiza-
tion length λ using Eq. 4.15 on the same set of disorder configurations
as used in Figs. 4.15 and 4.16. In Fig. 4.18 we show λ for three differ-
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ent values of E: E = 0 (corresponding to states at and near the Fermi
energy), E = 0.15 (for states far from either the Fermi energy or the
coherence peaks, but still within the d-wave gap), and E = 0.3 (states
at and near the coherence peaks). We also plot in Fig. 4.19 the localiza-
tion length as a function of energy for various forms of disorder using
the same configurations used in Figs. 4.1, 4.3, 4.5, and 4.8.

Let us discuss localization in the random-potential model first. We
begin with the states at and near the Fermi energy. The dependence
of λ at E = 0 on σ appears to be unusual: it is approximately constant
from σ = 0.13 to σ = 0.25, then hits a peak at around σ = 0.35 before
decreasing with increasing disorder. The localization lengths for these
states are small at weak disorder (λ ≈ 170), and the strong-disorder λ

is even smaller—λ ≈ 50 at σ = 1.00, smaller in fact than the transverse
dimension of the system.

The localization lengths at intermediate and high energies show
more consistent behavior than the low-energy case. These decrease
monotonically as disorder is increased. It is worth noting that while
these states are quasi-extended at low disorder, with a larger localiza-
tion length than for the E = 0 states, there is a range of σ where these
higher-energy states have a smaller λ than states near the Fermi en-
ergy, which coincides at the range where λ(E = 0) peaks. We will
later show that the contrast in behavior seen here between the E = 0
case and that for higher energies is also seen in other forms of disorder.
However a remarkable fact about random-potential disorder is that, of
the various types of disorder we consider, this has the most dramatic
impact on the behavior of the localization length. For one, it can be
seen from the results that λ(E = 0.15) > λ(E = 0.3) for all values of
σ we use, implying that the intermediate-energy states are less local-
ized than the higher-energy ones—a feature that is not seen in other
forms of disorder we consider. Also, the closeness of the values of λ at
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different E for all σ is much less pronounced in the unitary- or smooth-
scatterer cases. These cases exhibit a more visible and rigid separation
of λ as a function of energy for a wide range of disorder strengths—
i.e., λ(E = 0) < λ(E = 0.15) < λ(E = 0.3) for these cases, which
the random-potential case clearly does not show. There is a disorder
strength—σ ≈ 1.00—at which the localization lengths for the three dif-
ferent energies are approximately the same number; this corresponds
to the onset of the strong-disorder regime.

We can see these effects more clearly when the localization length
is plotted versus energy. Notice that for all disorder strengths we con-
sider, the states near the Fermi energy are strongly localized, and their
localization lengths at E = 0 are close in value to one another even as
the amount of disorder is varied. For weak disorder (σ = 0.125 and
σ = 0.25) the localization length rises from a small value at E = 0 into
a prominent peak at some small energy (E ≈ 0.02 for σ = 0.125 and
E ≈ 0.01 for σ = 0.25 ), after which it decreases as energy is increased.
It bears noting that the localization lengths at intermediate and high
energies at these disorder levels are still quite large, at around 200-600

lattice constants. At E ≈ 0.3 (the coherence-peak energy), the local-
ization length for the σ = 0.125 case starts to increase; this effect is
not visible when disorder is stronger. When disorder is increased, the
localization length stops exhibiting these energy-dependent features:
when σ = 0.50, λ is almost energy-independent, and this is even more
the case for σ = 1.00, indicating that the states are strongly localized
at all energies.

We next discuss unitary-scatterer disorder. Focusing first on the E =

0 case, we see that it exhibits the same unusual dependence on p as the
random-potential case at the same energy does on σ. At low impurity
concentrations λ(E = 0) increases slightly with increasing p, reaching
a peak at p = 1.0% before decreasing monotonically as a function of
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p. This is in stark contrast with the behavior of λ at higher energies,
which monotonically decrease with increasing p for all p we consider.
It is worth comparing these plots to the ones derived for the random-
potential case. Here we can see that, in the unitary-scatterer model, the
low-disorder cases at intermediate and high energies have a far larger
localization length than in the random-potential model. The impact of
unitary scatterers is less pronouced than Gaussian random-potential
disorder at low disorder, but with stronger disorder the behavior of the
localization length for this case starts to become similar to that of the
random-potential case. At higher impurity concentrations, the values
of λ for different E approach each other as p is increased, with λ(E =

0) ≈ λ(E = 0.15) ≈ λ(E = 0.3) at p = 16.0%, which corresponds to
the strong-disorder regime of this particular form of disorder.

The localization length for the unitary-scatterer model exhibits a
very different dependence on energy from the Gaussian random-potential
case, at least for small amounts of disorder. Near the Fermi energy, the
states are strongly localized, and as with the previous disorder model
we discussed the localization lengths at E = 0 are close in value to
each other. At low concentrations, the localization length increases
from E = 0 up to some energy, then after that point it increases once
more with increasing energy, but at a decreased rate. This is seen in
the p = 0.25% and p = 1.0% cases. Evidently, past a certain threshold
energy the states become far less localized, with very large localiza-
tion lengths at intermediate and high energies (around 300-700 lattice
constants), and states at higher energies are less localized than those
at intermediate energies—in stark contrast to the Gaussian random-
potential case. When p is increased, however, these energy-dependent
features become far less noticeable, as can be seen when p = 4.0%, in-
dicating that when disorder is large enough, the effects of localization
become visible at all energies, and not just at small energies. At these
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large-p regimes the behavior of the localization length with increas-
ing energy becomes very similar to that seen in the strong-disorder
random-potential case in that little, if any, dependence on energy can
be discerned, and in that all states are localized, even at high energies.

We finally consider the localization due to smooth disorder. Here
we will consider smooth disorder potentials whose spatial average is
zero—i.e., disorder potentials described by Eq. 4.23. Here the smooth-
ness of the disorder potential makes itself particularly manifest. First,
for the states near the Fermi energy, it can be seen that λ(E = 0) does
not exhibit a sharp peak at some disorder strength, unlike what is seen
for random-potential or unitary-scatterer disorder. Instead its profile
is flat at low p, and it then smoothly decreases as p increases. It is in-
teresting to note that λ(E = 0) manages to be fairly large even at high
impurity concentrations. Notably, when one has unphysically high p
(e.g., p = 40% or p = 80%), the localization length at the Fermi energy
is still λ(E = 0) ≈ 80-100. For comparison’s sake, that point is reached
with random-potential disorder at σ ≈ 0.50 and with unitary-scatterer
disorder at p ≈ 8.0%—levels of disorder which are strong enough to
destroy coherence peaks. From just the consideration of states near the
chemical potential, the impact of smooth disorder on λ is much less
pronounced than either of these other cases.

The absence of any strong impact on the localization lengths is even
visible at higher energies. Here it can be seen that the localization
lengths for E = 0.15 and E = 0.3 are very large—λ ≈ 500 for low
p. Even at p = 20.0% we find that λ ≈ 300. Such large values of λ

are seen only at low levels of disorder for the random-potential model
(σ ≈ 0.18) and the unitary-scatterer model (p ≈ 1.0%). Even at very
high smooth-impurity concentrations such as p = 40% and p = 80%,
we find that λ ≈ 150-200; these localization lengths correspond to low
disorder levels in the random-potential and unitary-scatterer models
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of disorder. Another notable observation is the fact that λ(E = 0.15)
and λ(E = 0.3) are quite close to each other for all p. We never reach
the onset of the strong-disorder regime that we observe in the other
pointlike models of disorder—that is, the disorder strength at which
λ(E = 0) ≈ λ(E = 0.15) ≈ λ(E = 0.3). We find that at the absurdly
unphysical p = 80% concentration λ(E = 0.15) ≈ λ(E = 0.3), but
λ(E = 0) remains parametrically much smaller than either. This is a
clear sign that, even with very large off-plane impurity concentrations,
the impact of this form of disorder on the localization of states at all
energies is much more muted than in random-potential or unitary-
scatterer disorder—especially at intermediate or high energies.

The plots of λ versus E for the smooth-disorder case exhibit a num-
ber of differences from the other two forms of disorder we have consid-
ered. First, the states near the Fermi energy are strongly localized, but
as the energy is increased the localization length increases sharply for
all p we consider until some value of E is encountered, at which point
the localization length exhibits a far less pronounced dependence on
E. At low concentrations (e.g., p = 5%), the localization length by
and large increases as energy is increased, but with considerable ran-
dom fluctuations. When the concentration is increased, the localiza-
tion length grows more slowly with E. It is interesting to note that
the localization length trends upward past E ≈ 0.3, the energy where
coherence peaks are found, indicating that states at energies higher
than the coherence-peak positions are quite extended in space. These
behaviors are different from those seen in unitary-scatterer or random-
potential disorder, although there are similarities—at low energies λ

for smooth disorder behaves similarly as in unitary-scatterer disorder,
while at higher energies there is a noticeable increase in λ starting at
E ≈ 0.3, similar to what is seen in weak random-potential disorder.
Even at very large values of p the behavior of the localization length is
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still similar to that at low concentrations; at p = 40% λ is still visibly
energy-dependent, suggesting once more that even in these regimes
disorder of this form has a far weaker effect than the other two types
of disorder we have considered. It is instructive to compare smooth
disorder at p = 20% to, say, unitary-scatterer disorder at p = 1.0%
or random-potential disorder at σ = 0.25—the localization lengths for
these three cases occupy a similar range to each other.

Our numerical results for the localization length are in good quali-
tative agreement with the analytical results obtained by Lee, who per-
formed self-consistent calculations for weak Gaussian random-potential
and dilute unitary-scatterer disorder in the d-wave superconducting
state [100]. Some caveats need to be mentioned, however, as our nu-
merics exhibit more detail and structure about the localization prop-
erties of these disorder models. Lee argued that the states near the
Fermi energy are localized, although the extent to which these states
are localized away from E = 0 (instead of being quasi-extended) was
found to depend on whether the scattering is in the Born limit or the
unitary limit. In the Born-scattering limit of Gaussian random disorder
it was found that localization is negligible away from E = 0, whereas
for unitary scatterers localization can be observed at energies E < Γ0,
where Γ0 is the scattering rate in the superconducting state as E → 0.
In our numerical results we find that the states within the vicinity of
E = 0 are special in being much more localized than their neighbors
in energy space for all weak-disorder models we consider. We find
that the dip in the localization length at E = 0 for the unitary-scatter
case is narrower than Lee’s calculations suggest—that is, the energy
range over which the quasiparticles are sharply localized is consider-
ably narrower than Lee’s estimate of the scattering rate Γ0. Away from
E = 0 the behavior of the localization length is in much more quanti-
tative agreement with Lee’s predictions: λ(ω) ≈ vF/Γ(ω) ≈ 1/ω for

158



4.8 quasiparticle localization

random-potential disorder in the Born limit and λ(ω) ≈ ω for uni-
tary scatterers, which are behaviors similar to what we can observe in
the weak-disorder cases we discussed earlier. Our numerical results
are also in good agreement with earlier numerical work on random-
potential and unitary-scatterer models of disorder [186, 47, 194].

The behavior of the localization length as a function of E at weak dis-
order resembles that predicted by Senthil and Fisher from field theory
[155]. Their inclusion of diffusive modes—as elucidated in the comple-
mentary diagrammatic approach by Yashenkin et al. [187, 67]—implies
that additional behavior due to these modes, not captured by self-
consistent diagrammatic theory, should account for the differences be-
tween these approaches [10]. Senthil and Fisher argue that, at least in
the case of unitary scatterers in the dilute limit, there are three regimes:
the ballistic regime, the diffusive regime (at E ≈ Γ0), and finally the
localized regime near E = 0. The distinction between the ballistic and
diffusive regimes cannot be clearly delineated from our numerics, but
the crossover from the ballistic/diffisive regimes to the sharply local-
ized regime can be seen very clearly in the weak-disorder cases we
consider. Also, we find, in agreement with Senthil and Fisher’s re-
sults, that the localization length as E → 0 in fact approaches a finite
constant—in striking contrast to the predictions by Nersesyan et al.,
who find a diverging localization length as E → 0 [118]. Our calcula-
tions find that this constant localization length at the Fermi energy is
independent of the disorder strength in the weak-disorder regime, and
stands in contrast to the behavior of the localization length at higher
energies, which is found to be dependent on the disorder strength.
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4.9 discussion and conclusion

We have revisited the effects of disorder in high-temperature supercon-
ductors using exact real-space methods which allow large system sizes
to be studied, and have ensured that the parameters we have used in
our models hew closely to what is known about the cuprates from
experiment. We have focused primarily on the density of states and
the localization length, two quantities that are of central importance
in the study of disordered systems, and made use of various models
of site-energy disorder—random Gaussian potentials, multiple unitary
scatterers, and off-plane dopants—which are found to result in vastly
different behavior depending on which particular model is used.

Our main motivation for looking at the density of states of disor-
dered d-wave superconductors once more is the observation—seen
consistently in experiments as disparate as specific heat measurements,
ARPES, and STS—that there appears to be a nonzero density of states
in the cuprate superconductors, even those for which the samples can
be made very clean, such as YBCO. The persistent appearance of such
a signal has prompted a number of explanations that do not invoke
disorder, and at the very least suggests the possiblity that physics be-
yond the usual paradigm of d-wave superconductivity has to explain
this. We reconsider the possibility that disorder is responsible for this
nonzero density of states, and find that disorder of a form rarely con-
sidered in the older literature on the subject can in fact be a plausible
explanation for this phenomenon.

The idea that the cuprates host different variants of disorder is not
strange or even new, as STS experiments can directly visualize the dis-
order present in these materials and find that throughout the phase
diagram of BSCCO, the signatures of disorder are present—whether
in the form of quasiparticle interference in the superconducting state,
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or the real-space inhomogeneities in the DOS and pairing gaps in the
pseudogap regime. However, the very chemistry of the cuprates natu-
rally precludes the possiblity that disorder is present within the CuO2

planes. The most natural form of disorder, at least from a chemical
standpoint, appears to be dopants located some distance from the con-
ducting planes. Doped cuprates host a nonzero number of oxygens
at off-plane sites, and they exert an effect on the physics within the
CuO2 planes by means of a screened Coulomb potential that modifies
the chemical potential at sites located within the conducting planes.
The longer-ranged nature of these potentials makes them trickier to
model than unitary scatterers or random-potential disorder, but the
numerical methods presented here allow the effects of these forms of
disorder to be simulated with great efficiency. We have also been able
to obtain the localization length, a quantity that, thanks to its large size,
is unable to be extracted from exact diagonalization studies of small
systems, and closely examine its behavior as a function of disorder
strength and energy for different models of disorder used.

Examining first random-potential disorder, we find that its effect on
the DOS is to flatten the coherence peaks at the edge of the d-wave gap,
and that the dominant spectral-weight transfer processes appear to be
from the coherence peaks to intermediate energies, with not much
spectral weight transferred to the region near the Fermi energy. A
large finite DOS at E = 0 is not generated until fairly strong levels of
disorder are reached. We consistently see that the DOS at the Fermi
energy is suppressed relative to that at nearby energies; that the DOS
profile at that region is V-shaped, in stark contrast to what is seen in
STS experiments; and that coherence peaks are considerably flattened,
even when disorder is weak. For this form of disorder the localiza-
tion length exhibits an interesting dependence on energy and disorder
strength: states near E = 0 are localized, but the localization length
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sharply increases moving away from the Fermi energy, until it starts
decreasing monotonically as energy is increased.

Multiple unitary scatterers are found to exhibit spectral-weight trans-
fers from the coherence peaks to a particular energy scale, resulting in
the presence of a hump-like feature in the DOS at small energies, with
otherwise small deviations from the clean case at small impurity con-
centrations. The DOS consistently exhibits suppression at E = 0, and
manages to acquire a large finite value only when fairly large concen-
trations are reached. As the concentration is increased the d-wave gap
gets filled and the coherence peaks become more and more flattened.
The behavior of the localization length for this form of disorder is
drastically different from the random-potential case, especially at low
levels of disorder. The localization length is small for states near the
Fermi energy, then increases sharply until some energy is reached, and
subsequently increases once more, but at a far slower rate.

Off-plane scatterers are the most interesting case, insofar as even
a large concentration of such dopants turns out not to destroy the
d-wave profile of the DOS—spectral weight transfers are minimal at
best—while generating a finite DOS at E = 0 at levels of disorder that
are not far off from what is seen in experiment. For the parameters we
have used in our disorder potential, concentrations around 10-20% re-
sult a small but visibly finite DOS at the Fermi energy and a U-shaped
DOS profile for small energies, which are consistent with experiment.
At higher concentrations, an unusual resonance forms at E = 0; this
appears to be an intrinsically many-impurity effect, as there is no ob-
vious correlation between the disorder potential and the resulting res-
onant DOS. The localization length is found to be much bigger than
that seen in the previous two disorder models used. While the states
near E = 0 have a short localization length, away from that region the
localization lengths are very large, even when the concentrations are
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sizable—for comparison’s sake we have found that a concentration of
20% off-plane scatters has roughly the same effect on the localization
length for a broad energy range as an ensemble of unitary scatterers
with concentration 1.0%, or random-potential disorder with σ = 0.25.
These results all point to the fact that smooth scatterers have far less of
an effect on the DOS and the localization properties of a d-wave super-
conductor than the other two disorder models, even when the amount
of smooth disorder is large.

It is worth asking whether we can make any definitive conclusions
regarding the nature of disorder in the cuprates from our results. Dis-
order makes itself felt in a panoply of effects seen in various experi-
ments, but isolating its effect with any definiteness is difficult given the
vast array of strongly correlated phenomena present in the cuprates.
We have focused mostly on single-particle properties in the form of
the DOS, and and it bears noting that many of the effects due to disor-
der we have described could be due to other effects as well. Disorder
broadens the DOS, but so do interactions (in the form of self-energies)
and finite temperatures. We work in the T → 0 limit, so the latter
alternative is ruled out, but even then we cannot rule out the possibil-
ity that nontrivial physics beyond the mean-field model of a d-wave
superconductor we work with can explain the bulk of what is seen in
experiment. The best we could do in the meantime is to look at the ex-
tent to which disorder—and disorder alone—reproduces experiment.

How does one square the presence of a finite DOS at E = 0 with
the amount of disorder present in the cuprates, assuming that disor-
der alone is responsible for the broadening? Zero-field specific heat
measurements on YBCO find a residual T-linear term in the specific
heat whose coefficient is γ ≈ 2 mJ·mol−1·K−2 [115, 116, 144]. Using
Eq. 4.13, we find that ρ(E = 0) ≈ 0.1. Interestingly, angle-resolved
photoemission spectroscopy provides a similar value for the residual
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DOS at E = 0. The widths of energy distribution curves taken from
ARPES experiments on clean BSCCO suggest that the scattering rate
in the superconducting state is around Γ ≈ 15 meV near zero binding
energy [82, 170, 91]. Using the formula

ρ(E = 0) = ∑
k

Γ
ε2

k + ∆2
k + Γ2

, (4.26)

this too leads to ρ(E = 0) ≈ 0.1. These provide constraints in the
amount of disorder in the cuprates, assuming that this finite value of
the DOS is due purely to disorder.

Unitary scatterers can be safely ruled out. STS experiments show
few, if any, signals of unitary scatterers in real-space conductance maps
of clean BSCCO. They do not show the resonances one sees in zinc-
doped BSCCO. The presence of vacancies however could be one source
of unitary-scatterer disorder in the cuprates. How numerous would
they have to be to produce a finite density of states consistent with ex-
periment? From our numerics it appears that p = 2.0% and p = 4.0%
are the closest matches to this, but these concentrations of unitary scat-
terers appear to be too high to describe clean BSCCO. In fact, these are
too large to describe even zinc-doped BSCCO—the STS experiments
on these doped materials use a zinc-dopant concentration of p = 0.6%
[129], and conductance maps from these studies show very prominent
resonances that are not present in clean BSCCO.

Weak random-potential disorder can also be ruled out as a primary
source of the finite DOS ultimately for two reasons. First, by the argu-
ment we used above for unitary-scatterer disorder, the level of Gaus-
sian disorder needed to reproduce ρ(E = 0) ≈ 0.1 is around σ = 0.50.
At this level of disorder, the coherence peaks are completely flattened
and smeared out. This is in contrast to what is seen in STS experiments,
which consistently find a spatially-averaged LDOS with prominent co-
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herence peaks in the superconducting state of BSCCO. Second, at this
level disorder is strong enough that the usual telltale signatures of QPI
are no longer present. As discussed before, this form of disorder is con-
sistent with QPI when σ is very small [161]. When disorder of this sort
is weak, peaks in the power spectrum of the LDOS corresponding to
what the octet model predicts are visible and prominent, and the real-
space maps show crisscrossing patterns consistent with experiment.
However this is destroyed when disorder is increased, and STS studies
of BSCCO show that disorder is never strong enough to prevent the
formation of modulations governed by QPI—disorder has to be weak
enough that QPI is preserved. The strong levels of disorder that would
produce a finite DOS at E = 0 consistent with the large self-energies
found in ARPES would on the other hand not result in QPI. This sug-
gests that QPI due to weak random-potential disorder occurs on top of
other effects that are primarily responsible for the finite DOS at E = 0.

This leaves us with smooth disorder due to off-plane dopants. Many
aspects of these dopants remain mysterious, and important properties—
the screening length, the strength of the potential, and even the exact
placement of these dopants—are not known with any degree of ac-
curacy. Nevertheless, in our treatment of these dopants we have at-
tempted to be consistent with a number of crucial facts. First, the
dopant concentration is generally large, and second, the dopants are
located some distance away from the CuO2 planes, which leads to
small-angle scattering. We find that the effects of smooth disorder on
the DOS are much more muted than in the other two disorder cases,
with minimal impact on the heights of the coherence peaks and only
small spectral-weight transfers to the region near the Fermi energy.
This is seen too in our calculations of the localization length in the
presence of this form of disorder, which is found to remain quite large
for a wide energy range even for large impurity concentrations p. We
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find that ρ(E = 0) acquires a value within the range [0.05, 0.10] for a
rather wide range of p—this would correspond to p ≈ 10-20%, depend-
ing on which disorder scenario one has. The more realistic scenario,
in which the impurity strengths of the scatterers all have the same
sign, features considerably more suppression of the DOS at the Fermi
energy than the case where the spatially-averaged disorder potential
is zero. The zero-average scenario has a number of very interesting
features at large concentrations (p ≈ 20%, for instance), such as res-
onances at E = 0 whose origins appear to be unrelated to the exact
details of the disorder potential. While these prominent resonances
are not seen in experiment, lower impurity concentrations show much
more muted LDOS patterns at E = 0, which, while yielding a nonzero
DOS at the Fermi energy when averaged, are far less observable than
at higher concentrations, and the value of the DOS appears to be fairly
consistent with experiment.

Having said this, studies of quasiparticle scattering interference in
BSCCO do consistently demonstrate that small- and large-momenta
scattering processes occur in BSCCO, which is something that purely
smooth disorder cannot take into account on its own. Purely smooth
disorder such as what we discussed in this section has been shown to
give rise to Fourier-transformed maps where large-momenta peaks are
missing [125, 161]. Because so much of the chemistry of the cuprates is
consistent with off-plane disorder, and because strong, pointlike poten-
tials are rarely encountered in BSCCO, it is a bit of a mystery why the
observed QPI exhibits large-momenta peaks. It is of course entirely
possible that these effects occur in tandem with each other—smooth
potentials cause the finite DOS, while relatively weak pointlike disor-
der causes QPI—but a full resolution still awaits, and possibly requires
a much more microscopic modeling of the tunneling process [93].
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4.9 discussion and conclusion

We additionally caution the reader that our work has focused on
strictly two-dimensional d-wave superconductors, and as such we have
neglected the effects of coupling to the third dimension. The suppres-
sion of the DOS in the presence of in-plane pointlike disorder has been
shown in field-theoretical work to occur strictly in 2D, and the logarith-
mic divergences responsible for this effect are cut off when interlayer
coupling is included [118]. The observed dips we see in the in-plane
disorder cases would be lost the more three-dimensional the system
becomes, and this leaves open the possibility that, in the presence of
interlayer coupling, this finite DOS could be due in part to the pres-
ence of pointlike forms of disorder. We thus stress that our results
do not by any means suggest that smooth disorder is the be-all and
end-all cause of the finite DOS at the Fermi energy. However, as noted
earlier, YBCO is noted to have clean CuO2 planes, so any influence of
in-plane disorder on the DOS is likely to be very weak, regardless of
the presence of interlayer coupling.

The possibility that the finite DOS at the Fermi energy in the su-
perconducting state of the cuprates is due to disorder—smooth disor-
der, in particular—does not leave other explanations wanting, however,
and one should not rule these out completely. It is possible that dis-
order is present alongside other, more exotic effects involving strong
interactions (quantum criticality, for instance). In such a scenario there
would be even more broadening involved. When the self-energies in-
corporating both disorder and interactions contain a nontrivial depen-
dence on frequence or temperature, numerous interesting effects could
conceivably occur. It would be interesting to see if alternative expla-
nations invoking, say, quantum criticality or coexisting order result in
the preservation of crucial aspects of the d-wave state, as the smooth-
disorder scenario does.
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On a completely different note, our results suggest a number of av-
enues for future work. First, the incorporation of full self-consistency
is one possibility, albeit a very technically challenging one, at least
from the point of view of our methods. While self-consistency may
not be completely necessary—it might very well be that the supercon-
ductivity in the cuprates is decidedly non-BCS-like—it would be very
interesting to see how smooth disorder affects the superconducting
order parameter. The non-self-consistent results in this chapter sug-
gest that smooth disorder has a far more muted effect on the single-
particle properties of the d-wave superconductor than unitary-scatterer
or random-potential disorder, so it is reasonable to guess that a fully
self-consistent treatment would result in the preservation of d-wave
superconductivity up to very high off-plane impurity concentrations,
and consequently a large Tc even when the superconductor is disor-
dered. A second possibility is to revisit the exact calculation of the
superfluid stiffness, Tc, and optical conductivity in the superconduct-
ing state [149, 148] in the presence of off-plane disorder, and to ex-
amine if superconductivity is ever destroyed by smooth disorder. Our
results suggest that even something as relatively anodyne as disorder—
especially a relatively overlooked form of disorder like off-plane dopants—
can produce surprisingly rich physics that accounts for many observed
experimental properties of the cuprate high-temperature superconduc-
tors.

168


