
Disorder and interactions in high-temperature superconductors
Sulangi, M.A.

Citation
Sulangi, M. A. (2018, July 5). Disorder and interactions in high-temperature superconductors.
Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/63332
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/63332
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/63332


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/63332 holds various files of this Leiden University 
dissertation. 
 
Author: Sulangi, M.A. 
Title: Disorder and interactions in high-temperature superconductors 
Issue Date: 2018-07-05 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/63332
https://openaccess.leidenuniv.nl/handle/1887/1�


2

P H E N O M E N O L O G Y O F T H E C U P R AT E S

In this chapter we provide a fairly extensive summary of the basic facts
known about the electronic excitations of the cuprate high-temperature
superconductors. As this field is driven primarily by experiment, this
chapter will feature mainly experimental results. A particular empha-
sis is placed on angle-resolved photoemission spectroscopy and scan-
ning tunneling spectroscopy measurements, as these two experimen-
tal probes have been responsible for much of what we know about
the momentum- and real-space structure of the electronic excitations
in the cuprates. These experiments in fact provide much of the impe-
tus for the theoretical work described in this thesis. Some discussion
on the theories used to account for these experimental results is also
included. Because of the vast amount of research performed using
either probe, we will highlight only a fairly small number of results
which illustrate how the cuprates deviate from and challenge both the
BCS and Fermi-liquid paradigms [84]. It should be noted that the full
phase diagram of the cuprates is very complex—by way of illustration,
a phase diagram largely agreed upon by the high-Tc community is
shown in Fig. 2.1—and we caution the reader right away that this re-
view will not do justice to the remarkably diverse array of phenomena
seen in the cuprate family.
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phenomenology of the cuprates

Figure 2.1: Phase diagram of the copper-oxide high-temperature supercon-
ductors. The x- and y-axes correspond to the hole-doping level
and the temperature, respectively. The antiferromagnetic Mott-
insulating state (blue region, labeled “AF”) at low dopings tran-
sitions into d-wave superconductivity (green region, labeled “d-
SC”) when hole-doping is increased. The pseudogap (yellow re-
gion) and strange metal (pink region) both appear at higher tem-
peratures, with the onset of the pseudogap marked by the tem-
perature T∗. The areas with green and red stripes show where
spin-density-wave order and charge-density-wave order, respec-
tively, have been detected. The dashed green and red lines demar-
cate where fluctuations corresponding to spin and charge order,
respectively, first become apparent. Reprinted from Ref. [84].

We first provide a “theorist’s introduction” to ARPES and STS—
more specifically, we discuss how these experiments are performed
and what the quantities measured by either experiment are. Finally
the numerous insights from either experiment are discussed, in order
of increasing inscrutability: the d-wave superconductor, the pseudo-
gap, and, finally, the strange metal.
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2.1 angle-resolved photoemission spectroscopy

Figure 2.2: The layered, quasi-two-dimensional crystal structure of the
cuprate high-temperature superconductors. The metallic CuO2
planes are separated by insulating layers. The dx2−y2 copper or-
bitals hybridize with the px and py oxygen orbitals, giving rise to
the square-lattice structure of the CuO2 planes. Reprinted from
Ref. [84].

2.1 angle-resolved photoemission spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) is a particularly
revealing probe of the electronic structure of the cuprates. In a nut-
shell, this method takes advantage of the photoelectric effect to allow
a direct look at the dispersion of the electronic excitations inside the
cuprates. Much of what we now know about the cuprates—e.g., the
d-wave nature of the superconducting order parameter, the presence
of so-called “Fermi arcs” inside the pseudogap, and marginal-Fermi-
liquid-like behavior in the strange metal—can be traced back to pio-
neering ARPES experiments on a variety of cuprate materials. Perhaps
the best-studied of these materials is Bi2Sr2CaCu2O8+δ (Bi-2212), ow-
ing to the fact that it cleaves easily between layers and thus allows the
physics occuring within its copper-oxide planes to be probed directly.
The copper-oxide superconductors are known to have a quasi-two-
dimensional layered structure, with the metallic CuO2 planes sand-
wiched between insulating buffer layers—for an illustration, see Fig. 2.2.
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phenomenology of the cuprates

Most phenomena of interest occur directly within the CuO2 planes.
ARPES is a particularly apt probe for understanding these phenom-
ena, as it works best when used to study two-dimensional electron
systems.

ARPES owes its existence to the photoelectric effect—the famous
phenomenon wherein light incident on a material imparts energy to
an electron, allowing it to escape [65, 41]. The quantum nature of light
implies that the energy of a single photon is h f . Upon absorption
of this energy, the electron can be dislodged from the material with
kinetic energy Ek = hν− φ− |Eb|, where φ is the work function of the
surface of the material and Eb is the binding energy inside the solid.
The absolute value of the momentum of the electron can in turn be
calculated from the measured kinetic energy as p =

√
2mEk, where

m is the mass of the electron, and because the emission angles can be
measured, the components of p can also be obtained as well.

An ARPES experiment measures a quantity I(k, ω), called the pho-
toemission intensity, which on a crude level is simply the combined
probability that an electron is excited by the photon; that the electron
travels to the surface; and that the electron is finally liberated from
the surface. (k and ω here are the momentum parallel to the surface
and the energy, respectively, of the electron.) The second and third
steps in this process are surface-dependent, while the first step is sen-
sitive to the electronic structure of the material, and thus contributes
electronic-structure-dependent contributions to I(k, ω). A discussion
of how I(k, ω) is calculated from the relevant transition probabilities
is subtle and is discussed in thorough detail in a number of reviews
[34, 33]. For our purposes it suffices to say that in the sudden approx-
imation—in which the liberated electron does not interact with what

18



2.1 angle-resolved photoemission spectroscopy

remains of the material upon escaping—the photoemission intensity
I(k, ω) can be written in the following way:

I(k, ω, T) = I0(k, ν, A) f (ω, T)A(k, ω)⊗ R(δk, δω) (2.1)

In this expression I0 is proportional to matrix elements associated with
the photon-absorption process; f (ω, T) is the Fermi function, given by

f (ω, T) =
1

e
ω

kBT + 1
; (2.2)

and A(k, ω) is the spectral function, which is defined as

A(k, ω) = − 1
π

Im G(k, ω), (2.3)

where G(k, ω) is the translationally-invariant many-body retarded Green’s
function. I(k, ω, T) is simply the product of these three factors con-
volved with R(δk, δω), which is a function describing the experimen-
tal resolution available. The Fermi function means that ARPES probes
only the occupied states at temperature T. The main object of inter-
est is A(k, ω), which is simply the density of electronic excitations
at energy ω and momentum k and as such reveals much about the
momentum-space structure of the electronic excitations of these mate-
rials.

In the ARPES literature, it is common to speak of “energy-distribution
curves” (EDCs) and “momentum-distribution curves” (MDCs). EDCs
are simply plots of the spectral function with binding energy at a fixed
k (for example, a momentum at the Fermi surface). MDCs on the other
hand show the spectral function along a line in momentum space (for
instance, along kx = ky) while holding the binding energy fixed.
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phenomenology of the cuprates

2.2 scanning tunneling spectroscopy

Scanning tunneling spectroscopy (STS) is particularly advantageous as
a probe for the cuprates because it enables the direct real-space visual-
ization of the electronic structure of these materials, and because, un-
like ARPES, both states below and above the Fermi level are accessible.
In addition, it is also possible to examine the momentum-space de-
tails of these materials by employing the Fourier transform. A diverse
panoply of phenomena has been visualized using STS such as inhomo-
geneous gaps, quasiparticle scattering interference, and static stripe
phases—all phenomena whose real-space structure would have been
less accessible to most other conventional probes. Like ARPES, STS
is particularly optimized for layered two-dimensional systems such as
the cuprates (see Fig. 2.2) and has studied Bi-2212 extensively thanks
to the ease with which it can be cleaved.

STS relies on tunneling of electrons from a scanning tunneling mi-
croscope (STM) to probe the real-space structure of materials. An STM
has a metallic tip which is put in proximity to the surface of the ma-
terial of interest. A potential difference V is then applied between the
tip and the material, and a tunneling current I is generated, the main
quantity measured by these experiments. Assuming that the density of
states of the metal in the tip is approximately constant, one can arrive
at the following expression for I [51]:

I(r, V) = m(r)
∫ eV

0
ρ(r, E)dE. (2.4)

Here m is a position-dependent matrix element and ρ(r, E) is the local
density of states at position r and energy E. In terms of the many-
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2.3 superconductor

body retarded Green’s function G(r, ω)—here written in a real-space
basis—ρ(r, E) is simply given by

ρ(r, E) = − 1
π

Im G(r, E). (2.5)

Note that this definition is almost exactly the same as that for the spec-
tral function A(k, ω) in Eq. 2.3—only this time, instead of momentum
space, one deals with real space instead.

At this moment the LDOS is hidden within the integral, but it can
be obtained by taking the derivative of I with respect to V—the differ-
ential conductance g:

g(r, E) = dI/dV|E=eV ∝ ρ(r, E). (2.6)

In real systems, however, the proportionality seen in the above expres-
sion is muddied by factors intrinsic to the experimental setup. To elim-
inate these factors, occasionally “Z-maps” are used instead. Here the
proportionality factors are removed by taking the ratio of differential
conductances taken at positive and negative bias voltages:

Z(r, E) =
g(r, E)

g(r,−E)
=

ρ(r, E)
ρ(r,−E)

. (2.7)

In any case, because STS probes the real-space density of states, it is
particularly useful for visualizing phenomena arising from the break-
ing of translation symmetry due to, say, disorder or coexisting order.

2.3 superconductor

As we mentioned in the introduction, the superconducting state of the
cuprates is the most well-understood of the many phases of these ma-
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phenomenology of the cuprates

Node

Antinode

ky

kx

Figure 2.3: Left: Plot of the large Fermi surface seen in the normal state of
the cuprates. The first Brillouin zone is shown. Because of the
square-lattice structure of the copper-oxide planes, the BZ is a
square. Shown here are the locations of the “nodes” and “antin-
odes.” Right: Plot of the absolute value of the d-wave gap function
(thick blue line) along the Fermi surface (dashed red line) in the
upper right-hand quadrant of the first Brillouin zone. The gap
vanishes at the nodes and is largest at the antinodes.

terials. However, many aspects of this state remain unusual, which is
not surprising as the phases to which it is proximate are even stranger.
To begin with, the superconductor is an unconventional one, due to its d-
wave pairing symmetry: the order parameter undergoes a sign change
upon rotations by π/2. (For comparison, in a conventional s-wave su-
perconductor, such as that predicted by BCS theory, the order param-
eter has the same symmetries as the underlying lattice.) The unusual
symmetry of the order parameter can be seen in the momentum-space
form of the gap function, which can be expressed as follows:

∆(k) = 2∆0(cos kx − cos ky). (2.8)

The gap vanishes along the kx = ky and kx = −ky lines, and has
its maximum absolute value near (0,±π) and (±π, 0). (This is il-
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2.3 superconductor

lustrated in Fig. 2.3.) This form of the order parameter implies that
gapless quasiparticles exist at the “nodes,” which are the four points
where the Fermi surface intersects the two lines along which the gap
vanishes. At these points there are zero-energy quasiparticles with a
linear Dirac-like dispersion at low energies. Already this implies that
the thermodynamic signatures of the d-wave superconducting state
are very different from those of an s-wave one, as in the latter case
the quasiparticle spectrum is fully gapped and thus does not feature
any low-energy excitations that can be seen in thermodynamic probes
such as the specific heat. On the other hand, the quasiparticles near
the antinodes—the regions in the vicinity of (0,±π) and (±π, 0)—are
maximally gapped.

Nowadays the d-wave nature of the order parameter is a firmly es-
tablished fact about the cuprates, but it is telling that in the early days
of high-Tc superconductivity, the precise nature of the symmetry was
a hotly debated topic. Here ARPES provides an unambiguous answer
which has been confirmed again and again with increasing instrument
precision. How would one detect this order-parameter symmetry?
The dispersion of d-wave Bogoliubov quasiparticles is such that the
excitations near the nodes live at the Fermi energy, while those at the
antinodes are gapped. From measurements of spectral function within
the nodal and antinodal regions, it was seen that the nodal spectrum
shows no gap, while EDCs taken near the antinodes show a gap—the
peaks of the EDCs are shifted relative to the Fermi level, suggesting the
formation of a gap [157, 36]. Furthermore, ARPES finds that these su-
perconducting quasiparticles are well-defined excitations—their peaks
in the spectral function are very easily discerned [82, 46, 163, 102, 176].
One surprising aspect of these quasiparticles is that these become
sharp as temperature is lowered past Tc. The normal-state spectrum
features far less sharpness and no coherent quasiparticles can be seen
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in the EDCs near optimal doping [82]. The precise mechanism under-
lying the manner in which sharp quasiparticles form below Tc is not
known.

This picture, in which Bogoliubov quasiparticles with a d-wave dis-
persion propagate as coherent excitations within the superconductor,
was bolstered by a number of complementary results obtained from
STS. The first such result was the observation of very prominent reso-
nances near the Fermi energy in zinc-doped Bi-2212 [129]. Zinc substi-
tutes for copper within the copper-oxide planes, creating a very strong
local scattering center. Such resonance states close to the Fermi level
are consistent with theoretical predictions for d-wave superconductors
featuring strong unitary scatterers [16, 17].

The second and perhaps far more consequential result is the ob-
servation of quasiparticle scattering interference (QPI) in the cuprates
[70, 112, 61, 90, 50]. As mentioned in the introduction, differential con-
ductance maps taken on the cuprates reveal energy-dependent mod-
ulations which are incommensurate. Taking the Fourier transform of
these dI/dV maps shows an array of well-defined peaks whose po-
sition in “q-space” changes as bias voltage is altered. This suggests
that these peaks do not originate from static charge or spin order, but
arise instead from Friedel oscillations due to disorder intrinsic to the
cuprates. But why peaks? It was realized that because the cuprates
are d-wave superconductors, the scattering processes that give rise to
these LDOS modulations are strongly influenced by the very unusual
dispersion of d-wave Bogoliubov quasiparticles. When the energy is
shifted away from the Fermi level, the contours of constant energy
(CCEs) acquire a banana-like shape. Scattering occurs from a state
lying on these contours to another, and when two points on these
CCEs have a large joint density of states between them, the scattering
wavevector connecting these has a strong intensity in the power spec-
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2.3 superconductor

trum of the differential conductance map. As it happens, any pair of
the tips of these “bananas” has a large joint DOS, and it was seen that
the peaks in the experimental power spectrum correspond perfectly
with the scattering wavevectors describing tip-to-tip scattering. This is
the simplest picture of the physics underlying the phenomenological
“octet model” used to analyze differential conductance data from STS
[182, 25].

QPI is important for two reasons. First, it acts as a momentum-space
probe, allowing one to obtain information about the Fermi surface and
the band structure of the cuprates. By tracking the position of the
peaks in q-space as a function of energy, the underlying band structure
and momentum-dependent behavior of the Bogoliubov quasiparticles
can be reconstructed. The remarkably sharp peaks and their particular
dependence on energy confirm the d-wave nature of the superconduct-
ing state. Second, it confirms one key aspect of the superconductor
which was already seen in ARPES: that the quasiparticles deep inside
the superconducting state are coherent, well-defined excitations [189].
On a heuristic level, QPI can be understood simply as the interference
of the quantum-mechanical waves corresponding to the Bogoliubov
quasiparticles as they encounter quenched disorder. This description
necessitates the coherence of these excitations, for otherwise they can-
not propagate long enough to interfere with each other and produce
modulations in the LDOS.

Having mentioned all the aspects in which the superconducting
state of the cuprates behaves similarly to a d-wave BCS superconduc-
tor as seen by ARPES and STS, we now turn to some of its anomalous
features. The first of these is the observation from STS experiments
that the underdoped superconductor is quite spatially inhomogeneous
[130, 95, 111, 9], inspiring the metaphor of “quantum mayonnaise” to
describe the microscopic phase separation appearing in these materials
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phenomenology of the cuprates

[188]. To be more specific, STS experiments suggest that two energy
scales are at play here. Below the first, lower energy scale, the elec-
tronic structure is by and large spatially featureless, but above that
scale there is an onset of heterogeneous features that are prominent
at small hole doping. A second, higher energy scale is seen from the
tunneling spectra, and the extracted values of the gap associated with
this higher scale vary in space, forming domains at which a single gap
value dominates. The disorder in the gap has been shown to be cor-
related with the positions of the off-plane dopants, and there is good
reason to suspect that the latter causes the former, although the precise
reason for this remains to be seen.

The second is the mysterious and hotly contested phenomenon of
“QPI extinction” [90, 50], to which we had already alluded in the intro-
duction. STS experiments on underdoped cuprates observe that many
of the octet-model QPI peaks suddenly disappear once the bias voltage
is raised past the point where the tips of the “bananas” intersect with
the antiferromagnetic zone boundary—that is, the diagonal lines con-
necting the four points (0,±π) and (±π, 0). The octet-model peaks
that do remain suddenly become dispersionless, with their positions
in q-space not varying appreciably once the bias voltage is increased
further. This, in conjunction with the earlier observation of spatial in-
homogeneity in the underdoped cuprates, has led to the interpretation
that two classes of excitations are present—one class being delocalized,
freely propagating excitations corresponding to the low-energy Bogoli-
ubov quasiparticles, and another class being localized excitations that
become more prominent as hole-doping decreases, and which are as-
sociated with the pseudogap phase emerging at higher temperatures.
As will be clearer in the discussion on the pseudogap, this behavior
well within the superconducting phase is also seen in the pseudogap,
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2.3 superconductor

and the results suggest that these high-energy antinodal excitations
associated with the pseudogap do indeed persist below Tc.

The reason that this phenomenon remains the subject of much de-
bate a decade after its discovery is due to how it directly conflicts
with ARPES results. As mentioned earlier, ARPES sees coherent quasi-
particles across the entire Fermi surface in the d-wave supercoducting
state, even at the antinodal regions [82, 46, 163, 102, 176]. According to
ARPES, incoherent antinodal quasiparticles are characteristic only of
above-Tc phases—the strange metal and the pseudogap—whereas no
such “nodal-antinodal dichotomy” appears to be seen deep in the su-
perconducting state. A curious fact also is that QPI extinction is seen
even at moderate overdoping (p ≈ 0.19), where any possible mag-
netic correlations due to the antiferromagnetic Mott insulator should
be minimal at best. A number of proposals have been made to recon-
cile these two wildly different results. One line of reasoning argues
that the QPI peaks are sensitive to the nature of disorder causing it,
and that a proper accounting of the precise momentum-dependence of
the T-matrix due to general forms of disorder could partially explain
the extinction of the peaks [176]. While plausible, this does not appear
to explain the onset of dispersionless peaks at higher energies, and it
does not convincingly explain why some of the peaks are suddenly
quenched at that particular energy. Another proposal puts forth that
spin-density wave order coexisting with the d-wave superconductor
can explain the partial extinction of these QPI peak [11]. In a nutshell,
SDW order reconstructs the CCEs; thus, at the point where the tips of
these “bananas” cross these lines, the CCEs undergo a change of topol-
ogy, with a “banana” and its mirror joining together to form a closed
pocket and leading to the diminshing of some of the octet-model peak
intensities. However, no signatures of static or slowly fluctuating spin
order have been detected in Bi-2212, making this explanation highly
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phenomenology of the cuprates

limited. In any case, these STS results seem to suggest that physics
beyond a mean-field-like d-wave superconductor plays a role in the
cuprates as hole-doping is decreased, and that the superconducting
and pseudogap phases are inextricably linked to each other.

The final anomalous observation in the superconducting state that
we will discuss at length is the “filling” of the superconducting gap
as temperature is increased towards Tc. This comes by way of fairly
recent ARPES experiments on Bi-2212 over a wide doping range [141,
140, 138, 139]. It was found using near-nodal measurements of ARPES
spectra that as T is increased towards Tc, the superconducting gap ∆0

decreases, but at Tc, the gap is still nonzero—the gap closes at a higher
temperature. In parallel with this, the quasiparticle scattering rate Γ
rapidly increases as Tc is approached. It appears that Tc is set by the
temperature at which the plots of ∆0 and Γ as a function of tempera-
ture cross each other, with Tc being found to be near the point where
∆0 ≈ 3Γ—the origin of the numerical factor 3 is not understood. This
gap-filling phenomenology is seen throughout a wide range of hole
dopings, and is in stark contrast to what one expects from BCS theory,
according to which the gap should fully close at Tc. These results are
suggestive of the possibility that pairs indeed form at some tempera-
ture Tp > Tc, but with phase coherence of these pairs inhibited by the
presence of strong pair-breaking at high temperatures (quantified by
the quasiparticle scattering rate Γ) [44]. In this picture it is only when
these pairs become sufficiently long-lived that they acquire phase co-
herence at Tc. The observed crossover of the two scales ∆0 and Γ near
Tc lends experimental support to the idea that phase fluctuations play
an important role in the physics of the superconductor and the pseu-
dogap, with preformed pairs existing above Tc which contribute to su-
perconductivity only upon becoming phase-coherent as temperature
is lowered past Tc.
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2.4 pseudogap

2.4 pseudogap

The pseudogap is perhaps the most complex phase of the cuprates,
mainly for the sheer number of phenomena present—coexisting stripe
order, Fermi arcs, and superconducting fluctuations—whose relation-
ships with each other are not clear or understood with any certainty,
and a definition that encompasses the phase in all its complexity is elu-
sive. Contributing to the confusion surrounding this phase is the lack
of any certainty as to whether the pseudogap can be understood via a
conventional mean-field theory, or whether a very different, possibly
exotic paradigm is necessary. A generally accepted, if rather anodyne,
definition of the pseudogap regime is the following: it is the phase
above Tc from the underdoped superconducting state which is charac-
terized by a prominent suppression of the electronic spectral weight in
the vicinity of the Fermi energy [164, 121].

Even this definition fails to encompass the highly unusual way in
which this suppression of the DOS is organized in momentum space.
The pseudogap can be best understood by looking at ARPES spectra
across the Fermi surface, as one of the key aspects of this state is the
rather severe degree to which the spectra seen in momentum space
differ from what one would expect for a d-wave superconductor and
a normal metal. In the pseudogap, the spectral weight at and near
the antinodal regions show a pronounced gap. The common proce-
dure is to symmetrize the EDCs, under the rather plausible condition
of particle-hole symmetry, and what one sees from symmetrized spec-
tra is that there are two peaks in the antinodal spectra located some
distance away from the Fermi energy. These peaks in the antinodal
EDCs of the pseudogap are unlike those of the d-wave superconductor
in that they are relatively smoother and more suppressed in intensity.
Once one moves from the antinodes to the nodes along the Fermi sur-
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face, what one finds is that the gap shrinks and disappears suddenly at
some point near the nodes, signaling the onset of “Fermi arcs”—finite
sections of momentum space where electronic excitations at the Fermi
energy can be found [119, 83].

It has to be emphasized that this behavior deviates very strongly
from that of either a d-wave superconductor or a Fermi liquid. In the
d-wave superconducting state below Tc, the symmetrized antinodal
EDCs show sharp peaks about the Fermi energy, which get closer to
each as one moves towards the nodes, remaining well-defined until
these collapse into a single peak at the node (where the gap is zero).
For a Fermi liquid, the Fermi surface separates the occupied states
from unoccupied ones and as a matter of principle is necessarily a
closed manifold—it cannot have endpoints!

The Fermi arcs are a particularly tricky challenge for theorists to
explain. A set of explanations has centered around the possibility that
Fermi-surface reconstruction due to coexisting density-wave order is
responsible for these arcs. In this scenario the large hole-like Fermi
surface becomes replaced by a set of smaller pockets—but with the
caveat that these pockets still remain closed. If one takes this seriously
as an explanation, the Fermi arcs can only come from one side of these
putative pockets [27]. It has been argued from models with coexisting
density wave order that coherence factors could be responsible for the
absence of spectral weight on the other, “invisible” side of the pocket,
but no trace of this pocket has been seen in experiments to date.

A second explanation is that these Fermi arcs are simply d-wave
nodes that are broadened by a large scattering rate [123, 120, 28]. In
the pseudogap regime, a wide range of evidence has accumulated sug-
gesting that the quasiparticle scattering rate is in fact fairly large in the
pseudogap regime, and that pairing exists well above Tc. The origin
of this large temperature-dependent scattering rate is not fully under-
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2.4 pseudogap

stood, but once it is sufficiently large the d-wave gap starts to be filled
in, generating a nonzero density of states at the Fermi energy. Be-
cause the d-wave gap is smallest near the nodes, the near-nodal region
quickly fills as the scattering rate is increased, and the gaps seen in
near-nodal EDCs disappear. Under this scenario the gapless region
identified by ARPES is simply due to the induced low-energy states
that arise from a large scattering rate. It is in fact not difficult to see
how symmetrized EDC analyses may have misidentified a broadened
d-wave node as a Fermi arc, as the gap is defined by the distance in
energy from one peak to its mirror image across the Fermi energy,
and increasing broadening smoothens out these peaks near the nodes
to the point of incoherence once the scattering rate is large (e.g., of
the same order of magnitude as the superconducting gap) [175]. This
explanation is consistent with the picture of the pseudogap as a phase-
disordered d-wave superconductor [44], with pairs existing at high
temperatures (the pseudogap) which then become phase-coherent be-
low Tc.

Nevertheless, it appears that this preformed-pairing picture does not
fully account for a plethora of other observations about the nature of
the gaps in the pseudogap as a function of momentum and tempera-
ture. ARPES experiments see that the gap at the nodes has a different
temperature dependence from that at the antinodes. Near the nodes,
the gap shrinks fairly rapidly as temperature is raised, and while it
remains finite at Tc it fully closes at a temperature not far off from Tc.
In contrast, it appears that the gap near the antinodes shrinks with
increasing temperature far more slowly: the antinodal gap is by and
large unchanged as Tc is crossed, and only shrinks appreciably upon
nearing a much higher temperature scale T∗ [64, 175]. An instance of
this is data on UD92 Bi-2212, which has Tc = 92 K. For these sam-
ples the near-nodal gap closes at T ≈ 97 K, but the antinodal gap
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goes to zero only when T ≈ 190 K. It appears, on the face of these
experimental results, that some strange sort of phase separation—but
in momentum space—occurs for the electronic excitations of the pseu-
dogap.

STS provides evidence supporting the phase-fluctuation picture, and
in addition gives additional insight into the energy scales at play in
this phase. In deeply underdoped cuprates, it was found that the octet-
model peaks characteristic of QPI remain at temperatures above Tc—in
fact they appear to persist to temperatures as high as 1.5Tc [99]. This
suggests that in the pseudogap, d-wave pairing is still present. It is
rather striking that the peaks do not appear to be sensitive to Tc; these
evolve smoothly as T is increased past Tc. The second is the observa-
tion, already seen in the superconducting phase, that at high energies,
some of these octet-model peaks are suddenly quenched and replaced
by nondispersive modulations. This result, if taken at face value, sug-
gests that the excitations in the pseudogap living in the antinodes do
not contribute to the scattering processes giving rise to QPI, and the
lack of any dispersiveness is a sign that these are localized, as opposed
to extended, states. Importantly, it is found that the energy at which
some of these peaks disappear happens to coincide with the energy
where the spatially homogeneous nature of the material is lost and
where the inhomogeneities present in the “gap maps” become much
more prominent. More to the point, low-gap regions—where the size
of the gap is below the QPI extinction energy—exhibit sharp coher-
ence peaks characteristic of the superconductor, while high-gap re-
gions show gap-like features but do not have any prominent coherence
peaks and have more of a pseudogap-like character. Finally, the pres-
ence of these high-energy nondispersive modulations is highly sugges-
tive of charge order, and at these high energies STS finds signatures of
broken spatial symmetries [96].
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Taken together, these suggest that the states truly characteristic of
the pseudogap—as opposed to the remnant Bogoliubov quasiparti-
cles of the d-wave superconductor—are spatially localized, reside at
a higher energy scale, and are associated with the antinodes. It is
not altogether clear however how this real-space phase separation of
the pseudogap-like and superconductor-like excitations relates to the
momentum-space phase separation seen separately in ARPES and STS.
In addition, many questions about the pseudogap remain. Two ver-
sions of the phase diagram of the cuprates circulate: one has the pseu-
dogap crossover line at T∗ entering the superconducting dome, termi-
nating at T → 0 near optimal doping. The other phase diagram fea-
tures the pseudogap crossover line intersecting with the termination
point of the superconducting dome as T → 0. ARPES generally finds
that a gap still persists above Tc even at optimal doping, supporting
the latter picture [177, 141, 140]. Nevertheless this has been the subject
of much debate, and a final resolution is still not within sight.

2.5 strange metal

We now come to the strange metal, which remains, without any doubt,
the most perplexing of all the phases of the cuprates. It was recognized
soon after the discovery of high-Tc superconductivity in these materi-
als that the transport properties of the normal state are highly anoma-
lous, at least as understood within the framework of Fermi-liquid the-
ory. Perhaps the foremost marker of this anomalous strange metal is
the behavior of the resistivity ρ as a function of temperature. For a nor-
mal metal described by Fermi-liquid theory, ρ ∼ T2. Instead what is
seen in the cuprates is that ρ ∼ T [59]. In addition, this linear-in-T be-
havior persists up to very high temperatures, in striking contrast to the
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behavior seen in a normal metal, for which the resistivity should sat-
urate at such large temperatures. Other unusual transport signatures
of the strange metal include the following: a mostly featureless (i.e.,
temperature- and frequency-independent) Raman scattering intensity
[160]; a constant thermal conductivity κ(T) [55]; and a nuclear relax-
ation rate 1/T1 which has a temperature-independent component such
that 1/T1 ∼ αT + β (a normal metal would only have the T-linear part
in the nuclear relaxation rate) [183, 180].

Despite these mysterious transport properties which hint at the fun-
damentally non-Fermi-liquid character of the normal state, it was rec-
ognized that one could formulate, under reasonable assumptions, an
entirely phenomenological theory of this phase of matter [173]. Such
a theory was developed early on by Varma and coworkers and was
dubbed the “marginal Fermi liquid”—“marginal” for reasons we will
explain in a short while. The basic assumption underlying the MFL
is that the ordinary Fermi liquid is coupled to some set of excitations
whose existence is taken as a given, and whose contribution to the
density fluctuation spectrum has the following form:

Im χ(q, ω, T) ∼

−ω/T if |ω| < T

−sgn(ω) if |ω| > T.
(2.9)

Note that Im χ is assumed to be momentum-independent. It can be
shown from Eq. 2.9 that the self-energy Σ becomes

Σ(ω, T) = λ

(
ω ln

x
ωc
− i

π

2
x
)

. (2.10)

Here x = max(|ω|, T)—note that this could be represented by x =√
ω2 + π2T2, for ease of computation—ωc is a cutoff frequency, and λ

is a coupling constant.
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Eq. 2.10, despite its rather compact form, contains a tremendous
amount of information. First, the single-particle scattering rate, which
is proportional to Im Σ, is momentum-independent, implying that the
scattering rate as inferred from transport measurements such as op-
tical conductivity should be the same as the single-particle scattering
rate [1]. Second, the single-particle scattering rate is proportional to
x, rather than to x2 (which is the case for an ordinary Fermi liquid).
Third, the quasiparticle weight Z, which is defined as

Z =

(
1− ∂ Re Σ

∂ω

)−1

, (2.11)

goes to zero logarithmically as ω → 0 (that is, as one scales towards
the Fermi surface) at T = 0. This means that quasiparticles do not exist
even at T = 0 for a marginal Fermi liquid. Fourth, Im Σ is linear in
ω at T = 0. This linearity implies that the quasiparticle width does
not vanish faster than ω—a necessary criterion for the existence of
quasiparticles—and Im Σ ∝ ω in fact is the highest power for which the
quasiparticle picture fails. Thus, Im Σ ∼ ω is a “marginal” case. The
logarithmic singularity in Z−1 is in fact the weakest such singularity
possible.

How are transport measurements explained by this MFL self-energy?
Much of the transport phenomenology is easy to explain because of the
aforementioned momentum-independence of the self-energy, which
leads to the equality of the single-particle scattering rate—which can
actually be measured in ARPES—to the transport scattering rate. The
linear-in-T resistivity can be explained by noting that ρ = Γt

ω2
p
, where

Γt is the transport scattering rate and ωp is the plasma frequency. Ac-
cording to Eq. 2.10 Γt ∼ T at ω = 0; this thus implies that ρ ∼ T. The
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constant thermal conductivity? The Wiedemann-Franz law implies
that

κ(T) ∝ Tσ(T), (2.12)

and, recalling that σ(T) = 1/ρ(T) ∼ 1/T, leads to κ(T) ∼ const. For
Raman scattering, the form of Eq. 2.9 directly leads to a featureless
signal. Other transport anomalies can similarly be accounted for by
Eqs. 2.9 and 2.10.

ARPES measurements taken in the strange-metal phase of the cuprates
find considerable support for the MFL hypothesis. From Eqs. 2.3 and
2.10, a number of predictions could be made from MFL theory for
momentum-distribution curves. (To remind the reader, MDCs are
simply linecuts of the spectral function along a direction in momen-
tum space at fixed frequency.) As the MFL self-energy is momentum-
independent, the MDC profiles along cuts perpendicular to the Fermi
surface should be of Lorentzian form. In particular its full width at half
maximum should be − Im Σ(kcut, ω), where kcut are momenta along
the chosen cut in momentum space. This implies that when one has
ω → 0 and momenta along any cut perpendicular to the Fermi surface,
the FWHM of the MDC should be proportional to T. Conversely, at
fixed temperature, the MDC widths should scale linearly with x, with
x ≈ ω.

These expectations were confirmed rather spectacularly by ARPES
results from the Brookhaven and Argonne groups [169, 2, 168, 81].
However it was observed that the self-energies were anisotropic: the
MDCs along antinodal directions were found to be broader than those
taken along the nodal ones. Another feature was that the frequency-
and temperature-dependence of the widths was found to be largely
uniform across the Fermi surface, while the offset characterizing the
momentum-space anisotropy in the self-energy was found to be frequency-
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and temperature-independent. These groups primarily used MDC
analysis to obtain fits of the extracted self-energy to the following form:

Im Σ(k, ω, T) = Γ(k)− λ
π

2
x. (2.13)

The momentum-dependent term Γ(k) is free of any frequency- and
temperature-dependence, and is largest at the antinodes and smallest
near the nodal region. Its temperature-independence has allowed its
identification as an elastic scattering rate, with the highly anisotropic
form argued to arise from small-angle scattering from impurities lo-
cated between the copper-oxide planes. Importantly, the fits taken
from the MDCs data were also found to describe the EDCs reasonably
well, with the antinodal EDCs being much broader than the nodal
ones.

Before moving on to other aspects of the strange metal, a few things
should be noted. First, the antinodal EDCs at and near optimal dop-
ing are often so incoherent that a peak is not discernable [82]. These
should be contrasted with the antinodal EDCs in the normal state of
the overdoped cuprates, which are generally seen to be fairly coherent,
and with EDCs across the entire Fermi surface in the superconduct-
ing phase, which exhibit sharp quasiparticle peaks. As mentioned
earlier, how these quasiparticles acquire coherence and become well-
defined as temperature is lowered past Tc is still unsettled. Second,
while peaks in the MDCs may be suggestive of quasiparticles, it is
only when looking at EDCs that the truly non-quasiparticle nature
of the strange metal becomes apparent. The MFL self-energy leads
to the generation of a considerable amount of spectral weight away
from the Fermi energy even at T = 0. This broadened spectral weight
is seen clearly in EDCs even at low energy resolutions, but is how-
ever something to which an MDC analysis (for which the frequency is
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held constant) would not see unless many such analyses are performed
at different frequencies in order to ascertain the precise momentum-
dependence of the widths. In fact this observed incoherence in the
antinodal EDCs—in conjunction with the sharpness of the MDCs—
has been put forth as evidence for spin-charge separation in the nor-
mal state, with a dimensional crossover from quasi-one-dimensional,
Luttinger-liquid-like physics above Tc to two-dimensional physics be-
low Tc proposed to occur [127, 26]. Third, while the differences be-
tween single-particle properties of the marginal Fermi liquid and those
of the ordinary Fermi liquid are very sharp at T = 0—e.g., the non-
analyticity of the self-energy, the broad spectral function EDCs, and
the absence of quasiparticles—these differences become blurred at fi-
nite temperature, and the effects are subtle enough that one needs to
take special care in attempting to distinguish these two phases from
each other. These differences require that quantities such as the MDC
widths be measured across a wide range of temperatures and frequen-
cies in order to obtain the correct scaling.

One can only go so far with the marginal Fermi liquid, however. The
microscopic origin of the strange metal is not definitively settled and
remains an area of active research. Nevertheless one popular paradigm
which has been used to explain the strange metal is quantum criticality
[158, 146]. At T = 0, one can speak of distinct quantum phases which
are accessed by manipulating some tuning parameter P. A quantum
phase transition is simply a continuous transition between two proxi-
mate quantum phases occuring at a special value P0. A generic feature
of quantum critical points is that, at finite temperature and frequency,
correlation functions have the scaling form ω/T—a feature already
built into the marginal Fermi liquid, as attested to by Eq. 2.9.

Further evidence for quantum criticality comes courtesy of the ob-
servation by Homes et al. that Tc is proportional to the product of

38



2.5 strange metal

the superfluid density ρs and the normal-state resistivity ρ(Tc) for a
vast array of cuprates with varying doping levels and crystal struc-
ture [72]. By a simple argument using mainly dimensional analysis, it
can be shown that this seemingly universal relation—dubbed “Homes’
law”—implies that the characteristic dissipation time in the strange
metal appears to saturate the lowest possible bound for thermal fluctua-
tions set by the uncertainty principle [190]. That is, in the strange metal
the relaxation time τ ≈ h̄

kBT , suggesting that in this finite-temperature
regime the strange metal appears to be controlled by the physics of a
putative critical point located close to optimal doping.

Despite compelling evidence pointing to a quantum-critical origin
of the strange metal, the nature of this quantum critical point—if it
exists—remains shrouded in mystery, perhaps almost literally so by
the superconducting dome. One version of the cuprate phase dia-
gram has it that the psedogap crossover line, set by T∗, terminates well
within the superconducting dome. The quantum-critical point—which
in this picture would lead to the pseudogap as a finite-temperature
phase crossing over to the strange metal—is thus hidden by the super-
conducting state, perhaps suggesting that the T = 0 quantum-critical
point is unstable to perturbations that lead superconducting order to
develop. However, it is not known which of the many orders char-
acterizing the pseudogap is responsible for this T = 0 critical point.
One way of perhaps probing the physics of the strange metal is by
quenching the superconductivity by means of an applied magnetic
field. However, what is seen in experiments is a more conventional
Fermi-liquid-like state with a reconstructed Fermi surface, instead of
the large hole-like one seen in ARPES [37, 154, 153]. The relationship
between this Fermi-liquid-like state in a magnetic field and the strange
metal is not clear.
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A theoretical understanding of the strange metal is complicated by
the fact that there appears to be no way of imposing theoretical control
over the physics of a Fermi liquid coupled to quantum-critical fluctua-
tions [101, 113]. On an even more philosophical level, one is left ques-
tioning whether a Fermi liquid is even a valid starting point for the con-
struction of a theory of the strange metal, considering the presence of
strong correlations which preclude any means of understanding these
highly anomalous finite-temperature regimes perturbatively. Unfortu-
nately there are not many alternative theoretical paradigms available.
The best-understood non-Fermi liquid is the Luttinger liquid, which is
the theory of an interacting electron gas in one spatial dimension [60].
The one-dimensional nature of the problem allows exact solutions to
be obtained by means of bosonization [165, 105, 110]. In addition, the
Luttinger liquid is a quantum-critical phase—it needs no fine-tuning to
reach criticality—and spin-charge separation occurs, with collective ex-
citations forming which carry separately the charge and spin degrees
of freedom. It has been shown that the ARPES and STS spectra of the
Luttinger liquid behave very differently from that of a weakly-coupled
Fermi liquid: two sets of dispersing features are present in these spec-
tra which correspond to the spin- and charge-carrying excitations—
not the underlying electrons—and which propagate at two different
velocities, demonstrating explicitly spin-charge separation [87]. These
are all specific to one dimension, of course. Extensions to two and
three dimensions have been cooked up by coupling Luttinger liquids
together along one or two transverse directions, but these still rely
on the physics of the foundational one-dimensional electron gas from
which these non-Fermi liquids are made [179, 43, 117]. Nevertheless,
the Luttinger liquid remains an interesting metaphor for the higher-
dimensional non-Fermi liquids of relevance to the cuprates, insofar as
its very existence shows how collective excitations radically different
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from the underlying electrons could emerge naturally from strong in-
teractions, and a higher-dimensional generalization, if found, could
prove to be of much use in explaining the strange metal.

Other recent approaches have included the use of holographic du-
ality to describe strongly-interacting finite-density phases of matter
[191, 63]. This method relies on the existence of a duality between a
conformal field theory in d spacetime dimensions and a gravitational
theory living in d+ 1-dimensional anti-de Sitter space [108, 185, 56]. As
this is a weak-strong duality, difficult quantum field theory problems
are mapped onto relatively tractable classical gravitational problems—
under some special circumstances. This has been exploited to extract
insights that would otherwise have been very difficult to obtain using
a more conventional perturbative approach. One example of this is
the use of holography to study finite-density fermionic systems that
appear to be quantum-critical phases, such as “semi-local quantum
liquids”—states of matter with an infinite correlation time but a fi-
nite correlation length—which are seen to emerge fairly naturally from
holography [79, 78]. These mimic the features of the marginal Fermi
liquid, which has manifest “local quantum criticality”—that is, the cor-
relation functions have no momentum-dependence, but have a nontriv-
ial dependence on the frequency. Similarly, insights from holography
have led to an understanding that the anomalous transport properties
in the strange metal could be explained by hydrodynamic considera-
tions. Simply put, quantum-critical states of matter without quasipar-
ticles at finite density have a small viscosity, and dissipation of mo-
mentum due to quenched disorder can be shown to directly lead to a
resistivity that is linear in temperature [35]. These insights are far re-
moved from the realm of well-defined quasiparticles; the nonperturba-
tive nature of holographic methods allows these non-quasiparticle-like
excitations to be tractably handled.
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Complementary to this is the recent explosion of work on sign-free
quantum Monte Carlo simulations of strongly interacting fermionic
systems. One recent study takes as its starting point a simple lat-
tice Hamiltonian with Ising degrees of freedom which can be tuned
through a nematic phase transition [97]. Despite the simple features
of the model, the Hamiltonian was found to lead to a surprisingly
rich phase diagram. First, a superconducting dome forms above the
quantum-critical point, with the point at which Tc is highest almost
coincident with the Ising nematic critical point. Second, non-Fermi-
liquid behavior is seen in the vicinity of the quantum-critical point—
the spectral function becomes broader at certain portions of the Fermi
surface. Perhaps more strikingly, there is an especially pronounced
“nodal-antinodal dichotomy”—the imaginary part of the self-energy is
much broader at the antinodes than at the nodes. It is surprising to
see this feature emerge from an admittedly simple model of interacting
electrons.

These two newfangled approaches highlight the necessity of fresh
perspectives and stripped-down but nonperturbative models to illumi-
nate the still-befuddling nature of the strange metal, and show their
potential to lead to unexpected insights into even the much more
well-understood neighboring phases. While these caricature the real
cuprates to a rather severe degree, these can only help in provid-
ing paths towards understanding where a traditional perturbative ap-
proach fails.
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