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1

I N T R O D U C T I O N

Ever since their discovery over thirty years ago [18], the cuprate high-
Tc superconductors have provided a unceasing torrent of mysteries
that have bedeviled generations of physicists. The initial astonishment
at the very high transition temperatures found for these materials—
several times larger than the largest Tc hitherto known—was soon
augmented by bewilderment about the fundamental nature of these
materials. The very presence of superconductivity in these materials
was itself surprising: the ground state of the parent compounds of
these materials is known to be an antiferromagnetic Mott insulator,
which disappears fairly quickly upon hole-doping and from which
superconductivity emerges. The close proximity of the superconduct-
ing and magnetically-ordered phases to each other was a clear hint
that strong correlations among the electrons in these materials play a
central role, as conventional wisdom suggests that magnetism and su-
perconductivity arise from different electron-electron interactions and
are therefore unlikely to be found near each other in materials. The
necessity of a strongly-interacting description of these materials be-
came clearer upon further exploration of their phase diagram. At tem-
peratures close to zero, with increasing doping one encounters the
antiferromagnetic Mott insulator, a d-wave superconductor, and, even-
tually, a normal phase which appears to be well-described by Fermi-
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introduction

liquid theory. On the underdoped side there are various charge- and
spin-ordered phases which appear to coexist—or compete—with the
d-wave superconductivity.

When temperature is raised, a veritable Pandora’s box of problems
is unleashed. It is in fact at this finite-temperature regime where much
of the most persistently confusing aspects of the cuprates are found. At
low dopings, antiferromagnetic order persists at finite T. The d-wave
superconducting state at low doping transitions, at Tc, into a myste-
rious phase called the “pseudogap,” which, unlike a normal metal,
features an extremely pronounced depletion of electronic excitations
near the Fermi energy. The superconducting state reaches its highest
Tc at a special value of the doping—“optimal doping”—and, at temper-
atures higher than Tc near optimal doping, the superconductor gives
way to an extremely unusual metal whose anomalous properties defy
any description in terms of Fermi-liquid theory. This “strange metal”
is seen to have a linear-in-T resistivity, unlike that of a conventional
metal, for which the resistivity scales with a higher power. The pseu-
dogap in turn is found to cross over to the strange metal even at very
high temperatures, with the crossover scale set by a doping-dependent
temperature T∗. The strange metal occupies a fan-shaped segment of
the doping-temperature phase diagram; on the overdoped side of this
fan a return to more conventional Fermi-liquid-like behavior occurs.

A consistent and unified description of all of these phases of the
cuprates is at the moment not known. Even the superconductor, per-
haps the most well-understood phase of the cuprates, is still unusual.
For one, it is more stable against disorder than Bardeen-Cooper-Schrieffer
theory suggests. The d-wave symmetry of the order parameter means
that Anderson’s theorem [12] does not apply to this situation, and
quenched disorder should rapidly kill the superconductivity. How-
ever, the inhomogeneities present in the cuprate materials happen to
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coexist with a stable d-wave superconducting state, thus suggesting
that some decidedly beyond-BCS mechanism ensures its survival in
this disordered setting. Another instance in which the cuprate super-
conductors deviate from the BCS expectation is in how the superfluid
density ρs—which quantifies the stiffness of the superconducting con-
densate against twists in the phase of the order parameter—behaves.
The underdoped cuprates have a very small superfluid density which
is found to scale with Tc [166]. This suggests that fluctuations of the
phase of the superconducting order parameter acquire an outsize im-
portance in the underdoped cuprates, even inside the superconduct-
ing state, with the possibility that a “preformed-pairing” picture—i.e.,
pairs form below T∗, but acquire phase coherence only upon reach-
ing Tc—may explain the pseudogap phase above Tc [44]. This is in
stark contrast to the BCS picture, where the characteristic tempera-
ture scale of the phase fluctuations is much larger than Tc, leading
to the relative unimportance of these fluctutations within the super-
conducting state. Finally, angle-resolved photoemission spectroscopy
(ARPES) experiments suggest that the gap does not close at Tc, as BCS
theory predicts; instead, it fills [140]. Tc appears to be set by the tem-
perature at which the gap and the quasiparticle scattering rate energy
scales cross over into each other, and the temperature at which the gap
ultimately closes is higher than Tc. Nevertheless, despite these non-
BCS-like features, the d-wave superconducting state is known to host
coherent excitations which, as seen in ARPES [82, 176] and scanning
tunneling spectroscopy (STS) experiments [70, 112], behave exactly as
d-wave Bogoliubov quasiparticles do.

The contrast between the comparatively well-understood supercon-
ducting state and the proximate strange metal near optimal doping
cannot be any more stark. Because the strange metal is not a Fermi
liquid, there is no sense in which the normal-superconducting transi-
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tion is describable by anything resembling BCS theory. However, it
is possible to understand many features of this anomalous state via
the marginal Fermi liquid theory proposed by Varma et al. [173]. In
this phenomenological model, the plain-vanilla Fermi liquid is aug-
mented by a momentum-independent but frequency-dependent self-
energy whose imaginary part depends as T when the temperature
is greater than the frequency. This has rather drastic consequences:
long-lived quasiparticles, the backbone of Fermi-liquid theory, cease
to exist, as the quasiparticle weight Z → 0 at the Fermi surface as
T → 0. While the microscopic origin of this behavior is not known, on
an effective-field-theory level this succeeds in reproducing the strange
transport anomalies present in the cuprates. In addition, ARPES exper-
iments find that the strange metal features a very incoherent spectrum
whose behavior could be reasonably fit into the marginal-Fermi-liquid
description [2]. However, it remains an open problem how coherent
quasiparticles in the superconducting state form upon moving from
the strange metal, where the excitations are incoherent, and how the
pseudogap transitions into both the strange metal and the supercon-
ductor.

The landscape of the phases of the cuprates, as outlined above, is
rich, complex, and, four decades on, still incredibly confusing. De-
spite this rather daunting state of affairs, this thesis will try to describe
portions of the phase diagram of these materials. Given the immense
difficulty of constructing a global theory of the cuprates, a more bare-
bones and phenomenologically-minded approach can help illuminate
which bits of physics are important and which are only of secondary
importance. Much insight can be derived by considering fairly simple
but well-understood models of these phases which can nevertheless be
augmented by bells and whistles that account for deviations from the
models we started out with. The marginal Fermi liquid theory of the
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strange metal is perhaps the paradigmatic example of this approach:
the Fermi-liquid starting point of the model is weakly coupled, but the
addition of the self-energy incorporates the nontrivial effects of inter-
actions, leading to the destruction of long-lived quasiparticles in the
theory. Also, the evidence from spectroscopy suggesting that coherent
quasiparticles are present in the superconductor allows considerable
leeway in treating the superconducting state as a mean-field BCS su-
perconductor with d-wave symmetry.

It is in this spirit that this thesis will examine both the supercon-
ducting and the normal state of the cuprates. A dominant theme un-
derlying the work presented here is the nontrivial effect of disorder on
various electronic properties of these materials. Disorder plays two dis-
tinct, almost antithetical roles in the cuprates, but it is often taken for
granted how interrelated these two are. First, in the limit of weak disor-
der, it acts as a probe of the underlying electronic structure of these ma-
terials. In a normal metal, the presence of an impurity induces Friedel
oscillations—which are simply modulations in the local density of
states—whose spatial structure reveals details about the Fermi surface
[31, 159, 71, 137]. The situation in the cuprates is no different. These
Friedel oscillations have been observed in the superconducting state
of the cuprates using STS, leading to the phenomenon dubbed “quasi-
particle scattering interference” (QPI) [70, 112, 61, 90, 50]. The modula-
tions found in the real-space differential conductance maps from STS
can be Fourier-transformed, revealing a rich set of dispersive peaks
in the power spectrum whose behavior can be used to reconstruct
the band-structure details of the cuprates [182, 25]. Importantly, the
quantum-mechanical-wave interference underlying this phenomenon
illustrates how the Bogoliubov quasiparticles are well-defined and co-
herent excitations [189]. Second, under some circumstances it gener-
ates low-energy electronic states in the superconducting state, in the
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process irrevocably altering the electronic spectrum of the clean case
[68, 100]. The presence of a finite density of states at the Fermi energy
deep in the superconducting phase has long been known throughout
the cuprate family from specific heat experiments, and standard lore
has it that these are generated by disorder [115, 116, 144]. In addition,
doping these materials by zinc—a strong local scatterer—leads to im-
purity resonances being generated near the Fermi energy, seen vividly
also by STS [129, 16, 17]. .

Given that we know with definiteness that the cuprates are macro-
scopically disordered materials, it becomes imperative to consider dis-
order both as a probe of electronic structure and as an orgin of low-
energy excitations seen in specific heat. The situation is complicated
even further by subtleties present in the very nature of disorder in
the cuprates. In particular, the copper-oxide planes—which host the
physics of most relevance to experiments—are clean. Aside from rare
defects which are thought to be Cu vacancies, no strong impurities
are seen within the copper-oxide planes using STS, due to the strong
copper-oxygen bonding present. It is possible to induce these strong
impurities via chemical substitution of zinc or nickel atoms, but these
would necessarily result in resonances near the Fermi energy which
are not seen in cuprates without Zn or Ni dopants. What appears
to be the case instead is that dopants located in the insulating layers
adjacent to the copper-oxide planes are the source of disorder—but
unlike the aforementioned Zn or Ni dopants, which act as pointlike
scatterers, these would generate a smoother and longer-ranged disor-
der potential which affects the electrons in the copper-oxide planes
[2, 126, 124, 125, 161]. However, unlike pointlike forms of disorder,
these smoother disorder potentials are far less amenable to analytical
treatment, and are accessible only with large-scale numerical methods.
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It cannot be emphasized enough that the aspects of disorder consid-
ered in this thesis remain central to some staggeringly persistent mys-
teries about the cuprates. One example of this is “QPI extinction” [90,
50]. STS experiments on underdoped cuprates in the superconducting
state, across a fairly wide doping range, show the usual signatures
of QPI—modulations in the differential conductance maps, prominent
peaks in the power spectrum—right until the bias voltage is such that
the tips of the contours of constant energy cross the antiferromagnetic
zone boundary—i.e., the portion of the Brillouin zone enclosed by the
four lines connecting (0,±π) and (±π, 0). Beyond that voltage, most
of the dispersing peaks seen in the power spectrum vanish, and what
do remain are seen not to disperse as the voltage is further changed.
Why this happens is not presently known, and numerous explanations
using a mean-field free-fermion description—e.g., unusual impurities
[176], coexisting spin-density wave order [11]—appear unsatisfactory,
or are simply infeasible, due to the lack of supporting experimental
evidence for them. If one takes the results at face value, this phe-
nomenon is a remarkably lucid demonstration of the breakdown of
the quasiparticle description as one nears the antinodes—the famous
“nodal-antinodal dichotomy” in action—but to bolster that interpreta-
tion, it first has to be understood what precisely is happening at the
point where these peaks are extinguished, and here STS finds itself in
disagreement with results from ARPES, for reasons that are not com-
pletely understood. Many aspects of this problem remain unclear even
to this day.

Another example of this is a recent set of specific heat measurements
on underdoped cuprates in the presence of magnetic fields [144]. The
cuprate samples used in these experiments are some of the cleanest
known—far more orderly than most other members of the cuprate fam-
ily. Despite this, a residual linear-in-temperature term in the specific
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heat at zero field is seen in the data, which is indicative of a nonzero
density of states at the Fermi energy. It is not trivial to attribute this
simply to disorder, as the coefficient of this T-linear term—which is
proportional to the density of states at E = 0—is larger than that seen
in ostensibly dirtier cuprates. It has almost been taken for granted
since the early years of the cuprates that disorder generates these low-
lying excitations detected in specific heat. So, what is happening here?
There is as yet no definitive answer, as the cuprates in question are
not especially amenable to surface probes such as ARPES and STS,
and thus one cannot examine the copper-oxide planes directly to see
what the underlying source of the low-energy electronic excitations
is. (NMR is a local probe which could in principle measure various
local quantities directly, but one has to note the fact that a magnetic
field is present in these experiments, and thus the decidedly nontrivial
effects of this field on the superconducting state have to be carefully
taken into account.) One idea that has been proposed is intra-unit-
cell loop-current order which coexists with the d-wave superconduct-
ing state [21, 4, 88, 181], but this idea appears to run into difficulties
when one tries to constrain the parameters of the model from the ob-
served data. Disorder due to dopants within the buffer layers may
be another way out—and as a matter of fact this is discussed in great
detail in this thesis—as the dopants present in these cuprates could
remain away from the copper-oxide planes while still disordering the
electrons within the plane via a random screened Coulomb potential
[162]. However, as we have only indirect means of probing disorder
and any putative coexisting order, it is safe to say that there is still no
firm resolution to this problem.

One admittedly heuristic takeaway from these two examples is that
whenever disorder is involved in the cuprates, there is more than meets
the eye. In the first case, QPI is Friedel oscillations, but it also is much
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more than that. For one, the system is macroscopically disordered:
there is no single isolated impurity, but rather the disorder—wherever
it may come from—is of a distributed nature. Second, the tunneling
process between the STM tip and the copper-oxide plane is highly
nontrivial [109, 93]. Third, despite these two considerations, the peaks
seen in experiment are somehow well-defined—almost miraculously
so. In the second case, specific heat experiments provide a very beau-
tiful probe of all low-energy excitations, but are blind to the precise
mechanism through which these excitations are generated. In addi-
tion, in the case of the cuprates, what constitues “disorder” can be
ambiguous, thanks to the complex layered structure of these materials.
The dopants reside off the plane, but for some cuprates the question
of where exactly these reside is difficult to resolve. There are also non-
stoichiometric alterations to the structure of the compounds, unrelated
to hole doping, which induce further off-plane disorder [42]. All of
these complicating factors mean that disorder is not a simple matter
at all. There is only so much one can understand about its impact on
the electronic properties of the cuprates without taking into accout all
these tricky caveats. One thus sees the need to thoroughly revisit dis-
order and to see the extent to which its effects manifest themselves on
experimentally-measurable quantities.

These considerations motivate Chapters 3 and 4 of this thesis, which
reexamine respectively the imprint of disorder on the local density of
states (as seen by STS) and the quasiparticle density of states at the
Fermi energy (as seen by specific heat experiments) in the d-wave
superconducting state. For the first case, the vast majority of prior
theoretical work on QPI has centered on the case of a single isolated
pointlike impurity [182, 25, 125, 176, 93]. The extent to which the exper-
imental evidence for QPI can be reproduced using distributed models
of disorder is in general not clear. For the second case, the prevail-
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ing explanation for the finite DOS at the Fermi energy in the cuprates
is the so-called “dirty d-wave” theory, which implicitly assumes both
a dirty copper-oxide plane and a local, pointlike model of disorder
[54, 68, 100, 39, 14, 13], and as such fails to describe the realistic situa-
tion in which the copper-oxide planes are clean and a smooth disorder
potential sourced by off-plane dopants is present.

Chapter 2 contains a review of the various phenomena seen in ARPES
and STS, in addition to a brief overview of the basics of these two
methods. We consider three phases of the cuprates individually—the
superconductor, the pseudogap, and the strange metal—and exhaus-
tively describe much of their known phenomenology. We will also
discuss in detail some of the theories that have been put forth to ex-
plain these various phenomena, and point out regimes where these
proposed theories fail.

In Chapter 3 we revisit quasiparticle interference in the cuprates
and try to see if the strikingly sharp peaks seen in the experimen-
tal power spectra can be reproduced by an exhaustive array of mod-
els of distributed disorder—examples include an ensemble of weak
pointlike scatterers, random chemical potential disorder, and smooth
disorder—and the incorporation of a model of the STM tunneling
process. What is found is that weak pointlike disorder and random
chemical potential disorder best reproduce both the real-space and the
Fourier-transformed spectra seen in experiment; that smooth disorder
fails to fully reproduce the experimental power spectrum, as large-
momentum scattering is suppressed in that particular case; and that
the peaks in experiment are sharper than any of our simulations see, in
a surprising reversal of what we usually expect.

Chapter 4 is devoted to a very thorough examination of various
kinds of disorder and their impact on the quasiparticle density of
states near the Fermi energy as the amount of disorder is increased.
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While strong pointlike scatterers and random chemical-potential dis-
order do lead to a finite DOS, agreement with experiment is achieved
only when the amount of disorder is unphysically large. Meanwhile,
disorder due to off-plane dopants is found to lead to a realistic value of
the DOS at the Fermi energy while leaving much of the d-wave state in
intermediate and higher energies largely unaffected, and in addition
sharp resonances at the Fermi energy are seen when the concentra-
tion of these smooth scatterers is very large. The localization length is
also studied for various models of disorder, finding that for all three
models of disorder the quasiparticles at the Fermi energy are localized,
and that the dependence of the localization length on energy depends
sensitively on the type of disorder present.

Chapter 5 spotlights QPI once more, this time focusing on the effects
of self-energies on the LDOS power spectrum, with the advantage of
knowing, from Chapter 2, that the single weak pointlike scatterer does
lead to a phenomenologically accurate power spectrum. After dis-
cussing the effect of self-energies on the spectral function and the DOS,
we proceed to analyze cases of interest to the cuprates. In the super-
conducting case, we study the “gap-closing/filling” phenomenology
seen in ARPES experiments and attempt to analyze the extent to which
STS measurements can also see this phenomenon, and contrast these
with the BCS case, wherein the gap closes but does not simultaneously
fill. The peaks seen in the superconducting power spectra are found
to be rather sensitive to the amount of broadening present, with the
peaks smearing and becoming incoherent at large self-energies. We
also study the normal-state LDOS power spectra, assuming that the
strange metal is well-described by a marginal Fermi liquid, and find
that a key signature of this state is the presence of broad caustics in
the power spectrum describing scattering wavevectors between points
along the Fermi surface. The main difference between the marginal
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Fermi liquid and the ordinary Fermi liquid is found to be simply in
the amount of broadening present in these caustics: the LDOS power
spectra of a marginal Fermi liquid has much more broadening than
that of the ordinary Fermi liquid.

Finally, a summary of our results is shown in Chapter 6, along with
a lengthy discussion of potential future directions, both experimental
and theoretical, in the study of the cuprates.
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2

P H E N O M E N O L O G Y O F T H E C U P R AT E S

In this chapter we provide a fairly extensive summary of the basic facts
known about the electronic excitations of the cuprate high-temperature
superconductors. As this field is driven primarily by experiment, this
chapter will feature mainly experimental results. A particular empha-
sis is placed on angle-resolved photoemission spectroscopy and scan-
ning tunneling spectroscopy measurements, as these two experimen-
tal probes have been responsible for much of what we know about
the momentum- and real-space structure of the electronic excitations
in the cuprates. These experiments in fact provide much of the impe-
tus for the theoretical work described in this thesis. Some discussion
on the theories used to account for these experimental results is also
included. Because of the vast amount of research performed using
either probe, we will highlight only a fairly small number of results
which illustrate how the cuprates deviate from and challenge both the
BCS and Fermi-liquid paradigms [84]. It should be noted that the full
phase diagram of the cuprates is very complex—by way of illustration,
a phase diagram largely agreed upon by the high-Tc community is
shown in Fig. 2.1—and we caution the reader right away that this re-
view will not do justice to the remarkably diverse array of phenomena
seen in the cuprate family.
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phenomenology of the cuprates

Figure 2.1: Phase diagram of the copper-oxide high-temperature supercon-
ductors. The x- and y-axes correspond to the hole-doping level
and the temperature, respectively. The antiferromagnetic Mott-
insulating state (blue region, labeled “AF”) at low dopings tran-
sitions into d-wave superconductivity (green region, labeled “d-
SC”) when hole-doping is increased. The pseudogap (yellow re-
gion) and strange metal (pink region) both appear at higher tem-
peratures, with the onset of the pseudogap marked by the tem-
perature T∗. The areas with green and red stripes show where
spin-density-wave order and charge-density-wave order, respec-
tively, have been detected. The dashed green and red lines demar-
cate where fluctuations corresponding to spin and charge order,
respectively, first become apparent. Reprinted from Ref. [84].

We first provide a “theorist’s introduction” to ARPES and STS—
more specifically, we discuss how these experiments are performed
and what the quantities measured by either experiment are. Finally
the numerous insights from either experiment are discussed, in order
of increasing inscrutability: the d-wave superconductor, the pseudo-
gap, and, finally, the strange metal.
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2.1 angle-resolved photoemission spectroscopy

Figure 2.2: The layered, quasi-two-dimensional crystal structure of the
cuprate high-temperature superconductors. The metallic CuO2
planes are separated by insulating layers. The dx2−y2 copper or-
bitals hybridize with the px and py oxygen orbitals, giving rise to
the square-lattice structure of the CuO2 planes. Reprinted from
Ref. [84].

2.1 angle-resolved photoemission spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) is a particularly
revealing probe of the electronic structure of the cuprates. In a nut-
shell, this method takes advantage of the photoelectric effect to allow
a direct look at the dispersion of the electronic excitations inside the
cuprates. Much of what we now know about the cuprates—e.g., the
d-wave nature of the superconducting order parameter, the presence
of so-called “Fermi arcs” inside the pseudogap, and marginal-Fermi-
liquid-like behavior in the strange metal—can be traced back to pio-
neering ARPES experiments on a variety of cuprate materials. Perhaps
the best-studied of these materials is Bi2Sr2CaCu2O8+δ (Bi-2212), ow-
ing to the fact that it cleaves easily between layers and thus allows the
physics occuring within its copper-oxide planes to be probed directly.
The copper-oxide superconductors are known to have a quasi-two-
dimensional layered structure, with the metallic CuO2 planes sand-
wiched between insulating buffer layers—for an illustration, see Fig. 2.2.
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phenomenology of the cuprates

Most phenomena of interest occur directly within the CuO2 planes.
ARPES is a particularly apt probe for understanding these phenom-
ena, as it works best when used to study two-dimensional electron
systems.

ARPES owes its existence to the photoelectric effect—the famous
phenomenon wherein light incident on a material imparts energy to
an electron, allowing it to escape [65, 41]. The quantum nature of light
implies that the energy of a single photon is h f . Upon absorption
of this energy, the electron can be dislodged from the material with
kinetic energy Ek = hν− φ− |Eb|, where φ is the work function of the
surface of the material and Eb is the binding energy inside the solid.
The absolute value of the momentum of the electron can in turn be
calculated from the measured kinetic energy as p =

√
2mEk, where

m is the mass of the electron, and because the emission angles can be
measured, the components of p can also be obtained as well.

An ARPES experiment measures a quantity I(k, ω), called the pho-
toemission intensity, which on a crude level is simply the combined
probability that an electron is excited by the photon; that the electron
travels to the surface; and that the electron is finally liberated from
the surface. (k and ω here are the momentum parallel to the surface
and the energy, respectively, of the electron.) The second and third
steps in this process are surface-dependent, while the first step is sen-
sitive to the electronic structure of the material, and thus contributes
electronic-structure-dependent contributions to I(k, ω). A discussion
of how I(k, ω) is calculated from the relevant transition probabilities
is subtle and is discussed in thorough detail in a number of reviews
[34, 33]. For our purposes it suffices to say that in the sudden approx-
imation—in which the liberated electron does not interact with what
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2.1 angle-resolved photoemission spectroscopy

remains of the material upon escaping—the photoemission intensity
I(k, ω) can be written in the following way:

I(k, ω, T) = I0(k, ν, A) f (ω, T)A(k, ω)⊗ R(δk, δω) (2.1)

In this expression I0 is proportional to matrix elements associated with
the photon-absorption process; f (ω, T) is the Fermi function, given by

f (ω, T) =
1

e
ω

kBT + 1
; (2.2)

and A(k, ω) is the spectral function, which is defined as

A(k, ω) = − 1
π

Im G(k, ω), (2.3)

where G(k, ω) is the translationally-invariant many-body retarded Green’s
function. I(k, ω, T) is simply the product of these three factors con-
volved with R(δk, δω), which is a function describing the experimen-
tal resolution available. The Fermi function means that ARPES probes
only the occupied states at temperature T. The main object of inter-
est is A(k, ω), which is simply the density of electronic excitations
at energy ω and momentum k and as such reveals much about the
momentum-space structure of the electronic excitations of these mate-
rials.

In the ARPES literature, it is common to speak of “energy-distribution
curves” (EDCs) and “momentum-distribution curves” (MDCs). EDCs
are simply plots of the spectral function with binding energy at a fixed
k (for example, a momentum at the Fermi surface). MDCs on the other
hand show the spectral function along a line in momentum space (for
instance, along kx = ky) while holding the binding energy fixed.
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2.2 scanning tunneling spectroscopy

Scanning tunneling spectroscopy (STS) is particularly advantageous as
a probe for the cuprates because it enables the direct real-space visual-
ization of the electronic structure of these materials, and because, un-
like ARPES, both states below and above the Fermi level are accessible.
In addition, it is also possible to examine the momentum-space de-
tails of these materials by employing the Fourier transform. A diverse
panoply of phenomena has been visualized using STS such as inhomo-
geneous gaps, quasiparticle scattering interference, and static stripe
phases—all phenomena whose real-space structure would have been
less accessible to most other conventional probes. Like ARPES, STS
is particularly optimized for layered two-dimensional systems such as
the cuprates (see Fig. 2.2) and has studied Bi-2212 extensively thanks
to the ease with which it can be cleaved.

STS relies on tunneling of electrons from a scanning tunneling mi-
croscope (STM) to probe the real-space structure of materials. An STM
has a metallic tip which is put in proximity to the surface of the ma-
terial of interest. A potential difference V is then applied between the
tip and the material, and a tunneling current I is generated, the main
quantity measured by these experiments. Assuming that the density of
states of the metal in the tip is approximately constant, one can arrive
at the following expression for I [51]:

I(r, V) = m(r)
∫ eV

0
ρ(r, E)dE. (2.4)

Here m is a position-dependent matrix element and ρ(r, E) is the local
density of states at position r and energy E. In terms of the many-
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2.3 superconductor

body retarded Green’s function G(r, ω)—here written in a real-space
basis—ρ(r, E) is simply given by

ρ(r, E) = − 1
π

Im G(r, E). (2.5)

Note that this definition is almost exactly the same as that for the spec-
tral function A(k, ω) in Eq. 2.3—only this time, instead of momentum
space, one deals with real space instead.

At this moment the LDOS is hidden within the integral, but it can
be obtained by taking the derivative of I with respect to V—the differ-
ential conductance g:

g(r, E) = dI/dV|E=eV ∝ ρ(r, E). (2.6)

In real systems, however, the proportionality seen in the above expres-
sion is muddied by factors intrinsic to the experimental setup. To elim-
inate these factors, occasionally “Z-maps” are used instead. Here the
proportionality factors are removed by taking the ratio of differential
conductances taken at positive and negative bias voltages:

Z(r, E) =
g(r, E)

g(r,−E)
=

ρ(r, E)
ρ(r,−E)

. (2.7)

In any case, because STS probes the real-space density of states, it is
particularly useful for visualizing phenomena arising from the break-
ing of translation symmetry due to, say, disorder or coexisting order.

2.3 superconductor

As we mentioned in the introduction, the superconducting state of the
cuprates is the most well-understood of the many phases of these ma-
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Node

Antinode

ky

kx

Figure 2.3: Left: Plot of the large Fermi surface seen in the normal state of
the cuprates. The first Brillouin zone is shown. Because of the
square-lattice structure of the copper-oxide planes, the BZ is a
square. Shown here are the locations of the “nodes” and “antin-
odes.” Right: Plot of the absolute value of the d-wave gap function
(thick blue line) along the Fermi surface (dashed red line) in the
upper right-hand quadrant of the first Brillouin zone. The gap
vanishes at the nodes and is largest at the antinodes.

terials. However, many aspects of this state remain unusual, which is
not surprising as the phases to which it is proximate are even stranger.
To begin with, the superconductor is an unconventional one, due to its d-
wave pairing symmetry: the order parameter undergoes a sign change
upon rotations by π/2. (For comparison, in a conventional s-wave su-
perconductor, such as that predicted by BCS theory, the order param-
eter has the same symmetries as the underlying lattice.) The unusual
symmetry of the order parameter can be seen in the momentum-space
form of the gap function, which can be expressed as follows:

∆(k) = 2∆0(cos kx − cos ky). (2.8)

The gap vanishes along the kx = ky and kx = −ky lines, and has
its maximum absolute value near (0,±π) and (±π, 0). (This is il-
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lustrated in Fig. 2.3.) This form of the order parameter implies that
gapless quasiparticles exist at the “nodes,” which are the four points
where the Fermi surface intersects the two lines along which the gap
vanishes. At these points there are zero-energy quasiparticles with a
linear Dirac-like dispersion at low energies. Already this implies that
the thermodynamic signatures of the d-wave superconducting state
are very different from those of an s-wave one, as in the latter case
the quasiparticle spectrum is fully gapped and thus does not feature
any low-energy excitations that can be seen in thermodynamic probes
such as the specific heat. On the other hand, the quasiparticles near
the antinodes—the regions in the vicinity of (0,±π) and (±π, 0)—are
maximally gapped.

Nowadays the d-wave nature of the order parameter is a firmly es-
tablished fact about the cuprates, but it is telling that in the early days
of high-Tc superconductivity, the precise nature of the symmetry was
a hotly debated topic. Here ARPES provides an unambiguous answer
which has been confirmed again and again with increasing instrument
precision. How would one detect this order-parameter symmetry?
The dispersion of d-wave Bogoliubov quasiparticles is such that the
excitations near the nodes live at the Fermi energy, while those at the
antinodes are gapped. From measurements of spectral function within
the nodal and antinodal regions, it was seen that the nodal spectrum
shows no gap, while EDCs taken near the antinodes show a gap—the
peaks of the EDCs are shifted relative to the Fermi level, suggesting the
formation of a gap [157, 36]. Furthermore, ARPES finds that these su-
perconducting quasiparticles are well-defined excitations—their peaks
in the spectral function are very easily discerned [82, 46, 163, 102, 176].
One surprising aspect of these quasiparticles is that these become
sharp as temperature is lowered past Tc. The normal-state spectrum
features far less sharpness and no coherent quasiparticles can be seen

23



phenomenology of the cuprates

in the EDCs near optimal doping [82]. The precise mechanism under-
lying the manner in which sharp quasiparticles form below Tc is not
known.

This picture, in which Bogoliubov quasiparticles with a d-wave dis-
persion propagate as coherent excitations within the superconductor,
was bolstered by a number of complementary results obtained from
STS. The first such result was the observation of very prominent reso-
nances near the Fermi energy in zinc-doped Bi-2212 [129]. Zinc substi-
tutes for copper within the copper-oxide planes, creating a very strong
local scattering center. Such resonance states close to the Fermi level
are consistent with theoretical predictions for d-wave superconductors
featuring strong unitary scatterers [16, 17].

The second and perhaps far more consequential result is the ob-
servation of quasiparticle scattering interference (QPI) in the cuprates
[70, 112, 61, 90, 50]. As mentioned in the introduction, differential con-
ductance maps taken on the cuprates reveal energy-dependent mod-
ulations which are incommensurate. Taking the Fourier transform of
these dI/dV maps shows an array of well-defined peaks whose po-
sition in “q-space” changes as bias voltage is altered. This suggests
that these peaks do not originate from static charge or spin order, but
arise instead from Friedel oscillations due to disorder intrinsic to the
cuprates. But why peaks? It was realized that because the cuprates
are d-wave superconductors, the scattering processes that give rise to
these LDOS modulations are strongly influenced by the very unusual
dispersion of d-wave Bogoliubov quasiparticles. When the energy is
shifted away from the Fermi level, the contours of constant energy
(CCEs) acquire a banana-like shape. Scattering occurs from a state
lying on these contours to another, and when two points on these
CCEs have a large joint density of states between them, the scattering
wavevector connecting these has a strong intensity in the power spec-
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trum of the differential conductance map. As it happens, any pair of
the tips of these “bananas” has a large joint DOS, and it was seen that
the peaks in the experimental power spectrum correspond perfectly
with the scattering wavevectors describing tip-to-tip scattering. This is
the simplest picture of the physics underlying the phenomenological
“octet model” used to analyze differential conductance data from STS
[182, 25].

QPI is important for two reasons. First, it acts as a momentum-space
probe, allowing one to obtain information about the Fermi surface and
the band structure of the cuprates. By tracking the position of the
peaks in q-space as a function of energy, the underlying band structure
and momentum-dependent behavior of the Bogoliubov quasiparticles
can be reconstructed. The remarkably sharp peaks and their particular
dependence on energy confirm the d-wave nature of the superconduct-
ing state. Second, it confirms one key aspect of the superconductor
which was already seen in ARPES: that the quasiparticles deep inside
the superconducting state are coherent, well-defined excitations [189].
On a heuristic level, QPI can be understood simply as the interference
of the quantum-mechanical waves corresponding to the Bogoliubov
quasiparticles as they encounter quenched disorder. This description
necessitates the coherence of these excitations, for otherwise they can-
not propagate long enough to interfere with each other and produce
modulations in the LDOS.

Having mentioned all the aspects in which the superconducting
state of the cuprates behaves similarly to a d-wave BCS superconduc-
tor as seen by ARPES and STS, we now turn to some of its anomalous
features. The first of these is the observation from STS experiments
that the underdoped superconductor is quite spatially inhomogeneous
[130, 95, 111, 9], inspiring the metaphor of “quantum mayonnaise” to
describe the microscopic phase separation appearing in these materials
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[188]. To be more specific, STS experiments suggest that two energy
scales are at play here. Below the first, lower energy scale, the elec-
tronic structure is by and large spatially featureless, but above that
scale there is an onset of heterogeneous features that are prominent
at small hole doping. A second, higher energy scale is seen from the
tunneling spectra, and the extracted values of the gap associated with
this higher scale vary in space, forming domains at which a single gap
value dominates. The disorder in the gap has been shown to be cor-
related with the positions of the off-plane dopants, and there is good
reason to suspect that the latter causes the former, although the precise
reason for this remains to be seen.

The second is the mysterious and hotly contested phenomenon of
“QPI extinction” [90, 50], to which we had already alluded in the intro-
duction. STS experiments on underdoped cuprates observe that many
of the octet-model QPI peaks suddenly disappear once the bias voltage
is raised past the point where the tips of the “bananas” intersect with
the antiferromagnetic zone boundary—that is, the diagonal lines con-
necting the four points (0,±π) and (±π, 0). The octet-model peaks
that do remain suddenly become dispersionless, with their positions
in q-space not varying appreciably once the bias voltage is increased
further. This, in conjunction with the earlier observation of spatial in-
homogeneity in the underdoped cuprates, has led to the interpretation
that two classes of excitations are present—one class being delocalized,
freely propagating excitations corresponding to the low-energy Bogoli-
ubov quasiparticles, and another class being localized excitations that
become more prominent as hole-doping decreases, and which are as-
sociated with the pseudogap phase emerging at higher temperatures.
As will be clearer in the discussion on the pseudogap, this behavior
well within the superconducting phase is also seen in the pseudogap,

26



2.3 superconductor

and the results suggest that these high-energy antinodal excitations
associated with the pseudogap do indeed persist below Tc.

The reason that this phenomenon remains the subject of much de-
bate a decade after its discovery is due to how it directly conflicts
with ARPES results. As mentioned earlier, ARPES sees coherent quasi-
particles across the entire Fermi surface in the d-wave supercoducting
state, even at the antinodal regions [82, 46, 163, 102, 176]. According to
ARPES, incoherent antinodal quasiparticles are characteristic only of
above-Tc phases—the strange metal and the pseudogap—whereas no
such “nodal-antinodal dichotomy” appears to be seen deep in the su-
perconducting state. A curious fact also is that QPI extinction is seen
even at moderate overdoping (p ≈ 0.19), where any possible mag-
netic correlations due to the antiferromagnetic Mott insulator should
be minimal at best. A number of proposals have been made to recon-
cile these two wildly different results. One line of reasoning argues
that the QPI peaks are sensitive to the nature of disorder causing it,
and that a proper accounting of the precise momentum-dependence of
the T-matrix due to general forms of disorder could partially explain
the extinction of the peaks [176]. While plausible, this does not appear
to explain the onset of dispersionless peaks at higher energies, and it
does not convincingly explain why some of the peaks are suddenly
quenched at that particular energy. Another proposal puts forth that
spin-density wave order coexisting with the d-wave superconductor
can explain the partial extinction of these QPI peak [11]. In a nutshell,
SDW order reconstructs the CCEs; thus, at the point where the tips of
these “bananas” cross these lines, the CCEs undergo a change of topol-
ogy, with a “banana” and its mirror joining together to form a closed
pocket and leading to the diminshing of some of the octet-model peak
intensities. However, no signatures of static or slowly fluctuating spin
order have been detected in Bi-2212, making this explanation highly
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limited. In any case, these STS results seem to suggest that physics
beyond a mean-field-like d-wave superconductor plays a role in the
cuprates as hole-doping is decreased, and that the superconducting
and pseudogap phases are inextricably linked to each other.

The final anomalous observation in the superconducting state that
we will discuss at length is the “filling” of the superconducting gap
as temperature is increased towards Tc. This comes by way of fairly
recent ARPES experiments on Bi-2212 over a wide doping range [141,
140, 138, 139]. It was found using near-nodal measurements of ARPES
spectra that as T is increased towards Tc, the superconducting gap ∆0

decreases, but at Tc, the gap is still nonzero—the gap closes at a higher
temperature. In parallel with this, the quasiparticle scattering rate Γ
rapidly increases as Tc is approached. It appears that Tc is set by the
temperature at which the plots of ∆0 and Γ as a function of tempera-
ture cross each other, with Tc being found to be near the point where
∆0 ≈ 3Γ—the origin of the numerical factor 3 is not understood. This
gap-filling phenomenology is seen throughout a wide range of hole
dopings, and is in stark contrast to what one expects from BCS theory,
according to which the gap should fully close at Tc. These results are
suggestive of the possibility that pairs indeed form at some tempera-
ture Tp > Tc, but with phase coherence of these pairs inhibited by the
presence of strong pair-breaking at high temperatures (quantified by
the quasiparticle scattering rate Γ) [44]. In this picture it is only when
these pairs become sufficiently long-lived that they acquire phase co-
herence at Tc. The observed crossover of the two scales ∆0 and Γ near
Tc lends experimental support to the idea that phase fluctuations play
an important role in the physics of the superconductor and the pseu-
dogap, with preformed pairs existing above Tc which contribute to su-
perconductivity only upon becoming phase-coherent as temperature
is lowered past Tc.
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2.4 pseudogap

The pseudogap is perhaps the most complex phase of the cuprates,
mainly for the sheer number of phenomena present—coexisting stripe
order, Fermi arcs, and superconducting fluctuations—whose relation-
ships with each other are not clear or understood with any certainty,
and a definition that encompasses the phase in all its complexity is elu-
sive. Contributing to the confusion surrounding this phase is the lack
of any certainty as to whether the pseudogap can be understood via a
conventional mean-field theory, or whether a very different, possibly
exotic paradigm is necessary. A generally accepted, if rather anodyne,
definition of the pseudogap regime is the following: it is the phase
above Tc from the underdoped superconducting state which is charac-
terized by a prominent suppression of the electronic spectral weight in
the vicinity of the Fermi energy [164, 121].

Even this definition fails to encompass the highly unusual way in
which this suppression of the DOS is organized in momentum space.
The pseudogap can be best understood by looking at ARPES spectra
across the Fermi surface, as one of the key aspects of this state is the
rather severe degree to which the spectra seen in momentum space
differ from what one would expect for a d-wave superconductor and
a normal metal. In the pseudogap, the spectral weight at and near
the antinodal regions show a pronounced gap. The common proce-
dure is to symmetrize the EDCs, under the rather plausible condition
of particle-hole symmetry, and what one sees from symmetrized spec-
tra is that there are two peaks in the antinodal spectra located some
distance away from the Fermi energy. These peaks in the antinodal
EDCs of the pseudogap are unlike those of the d-wave superconductor
in that they are relatively smoother and more suppressed in intensity.
Once one moves from the antinodes to the nodes along the Fermi sur-
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face, what one finds is that the gap shrinks and disappears suddenly at
some point near the nodes, signaling the onset of “Fermi arcs”—finite
sections of momentum space where electronic excitations at the Fermi
energy can be found [119, 83].

It has to be emphasized that this behavior deviates very strongly
from that of either a d-wave superconductor or a Fermi liquid. In the
d-wave superconducting state below Tc, the symmetrized antinodal
EDCs show sharp peaks about the Fermi energy, which get closer to
each as one moves towards the nodes, remaining well-defined until
these collapse into a single peak at the node (where the gap is zero).
For a Fermi liquid, the Fermi surface separates the occupied states
from unoccupied ones and as a matter of principle is necessarily a
closed manifold—it cannot have endpoints!

The Fermi arcs are a particularly tricky challenge for theorists to
explain. A set of explanations has centered around the possibility that
Fermi-surface reconstruction due to coexisting density-wave order is
responsible for these arcs. In this scenario the large hole-like Fermi
surface becomes replaced by a set of smaller pockets—but with the
caveat that these pockets still remain closed. If one takes this seriously
as an explanation, the Fermi arcs can only come from one side of these
putative pockets [27]. It has been argued from models with coexisting
density wave order that coherence factors could be responsible for the
absence of spectral weight on the other, “invisible” side of the pocket,
but no trace of this pocket has been seen in experiments to date.

A second explanation is that these Fermi arcs are simply d-wave
nodes that are broadened by a large scattering rate [123, 120, 28]. In
the pseudogap regime, a wide range of evidence has accumulated sug-
gesting that the quasiparticle scattering rate is in fact fairly large in the
pseudogap regime, and that pairing exists well above Tc. The origin
of this large temperature-dependent scattering rate is not fully under-
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stood, but once it is sufficiently large the d-wave gap starts to be filled
in, generating a nonzero density of states at the Fermi energy. Be-
cause the d-wave gap is smallest near the nodes, the near-nodal region
quickly fills as the scattering rate is increased, and the gaps seen in
near-nodal EDCs disappear. Under this scenario the gapless region
identified by ARPES is simply due to the induced low-energy states
that arise from a large scattering rate. It is in fact not difficult to see
how symmetrized EDC analyses may have misidentified a broadened
d-wave node as a Fermi arc, as the gap is defined by the distance in
energy from one peak to its mirror image across the Fermi energy,
and increasing broadening smoothens out these peaks near the nodes
to the point of incoherence once the scattering rate is large (e.g., of
the same order of magnitude as the superconducting gap) [175]. This
explanation is consistent with the picture of the pseudogap as a phase-
disordered d-wave superconductor [44], with pairs existing at high
temperatures (the pseudogap) which then become phase-coherent be-
low Tc.

Nevertheless, it appears that this preformed-pairing picture does not
fully account for a plethora of other observations about the nature of
the gaps in the pseudogap as a function of momentum and tempera-
ture. ARPES experiments see that the gap at the nodes has a different
temperature dependence from that at the antinodes. Near the nodes,
the gap shrinks fairly rapidly as temperature is raised, and while it
remains finite at Tc it fully closes at a temperature not far off from Tc.
In contrast, it appears that the gap near the antinodes shrinks with
increasing temperature far more slowly: the antinodal gap is by and
large unchanged as Tc is crossed, and only shrinks appreciably upon
nearing a much higher temperature scale T∗ [64, 175]. An instance of
this is data on UD92 Bi-2212, which has Tc = 92 K. For these sam-
ples the near-nodal gap closes at T ≈ 97 K, but the antinodal gap
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goes to zero only when T ≈ 190 K. It appears, on the face of these
experimental results, that some strange sort of phase separation—but
in momentum space—occurs for the electronic excitations of the pseu-
dogap.

STS provides evidence supporting the phase-fluctuation picture, and
in addition gives additional insight into the energy scales at play in
this phase. In deeply underdoped cuprates, it was found that the octet-
model peaks characteristic of QPI remain at temperatures above Tc—in
fact they appear to persist to temperatures as high as 1.5Tc [99]. This
suggests that in the pseudogap, d-wave pairing is still present. It is
rather striking that the peaks do not appear to be sensitive to Tc; these
evolve smoothly as T is increased past Tc. The second is the observa-
tion, already seen in the superconducting phase, that at high energies,
some of these octet-model peaks are suddenly quenched and replaced
by nondispersive modulations. This result, if taken at face value, sug-
gests that the excitations in the pseudogap living in the antinodes do
not contribute to the scattering processes giving rise to QPI, and the
lack of any dispersiveness is a sign that these are localized, as opposed
to extended, states. Importantly, it is found that the energy at which
some of these peaks disappear happens to coincide with the energy
where the spatially homogeneous nature of the material is lost and
where the inhomogeneities present in the “gap maps” become much
more prominent. More to the point, low-gap regions—where the size
of the gap is below the QPI extinction energy—exhibit sharp coher-
ence peaks characteristic of the superconductor, while high-gap re-
gions show gap-like features but do not have any prominent coherence
peaks and have more of a pseudogap-like character. Finally, the pres-
ence of these high-energy nondispersive modulations is highly sugges-
tive of charge order, and at these high energies STS finds signatures of
broken spatial symmetries [96].
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Taken together, these suggest that the states truly characteristic of
the pseudogap—as opposed to the remnant Bogoliubov quasiparti-
cles of the d-wave superconductor—are spatially localized, reside at
a higher energy scale, and are associated with the antinodes. It is
not altogether clear however how this real-space phase separation of
the pseudogap-like and superconductor-like excitations relates to the
momentum-space phase separation seen separately in ARPES and STS.
In addition, many questions about the pseudogap remain. Two ver-
sions of the phase diagram of the cuprates circulate: one has the pseu-
dogap crossover line at T∗ entering the superconducting dome, termi-
nating at T → 0 near optimal doping. The other phase diagram fea-
tures the pseudogap crossover line intersecting with the termination
point of the superconducting dome as T → 0. ARPES generally finds
that a gap still persists above Tc even at optimal doping, supporting
the latter picture [177, 141, 140]. Nevertheless this has been the subject
of much debate, and a final resolution is still not within sight.

2.5 strange metal

We now come to the strange metal, which remains, without any doubt,
the most perplexing of all the phases of the cuprates. It was recognized
soon after the discovery of high-Tc superconductivity in these materi-
als that the transport properties of the normal state are highly anoma-
lous, at least as understood within the framework of Fermi-liquid the-
ory. Perhaps the foremost marker of this anomalous strange metal is
the behavior of the resistivity ρ as a function of temperature. For a nor-
mal metal described by Fermi-liquid theory, ρ ∼ T2. Instead what is
seen in the cuprates is that ρ ∼ T [59]. In addition, this linear-in-T be-
havior persists up to very high temperatures, in striking contrast to the
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behavior seen in a normal metal, for which the resistivity should sat-
urate at such large temperatures. Other unusual transport signatures
of the strange metal include the following: a mostly featureless (i.e.,
temperature- and frequency-independent) Raman scattering intensity
[160]; a constant thermal conductivity κ(T) [55]; and a nuclear relax-
ation rate 1/T1 which has a temperature-independent component such
that 1/T1 ∼ αT + β (a normal metal would only have the T-linear part
in the nuclear relaxation rate) [183, 180].

Despite these mysterious transport properties which hint at the fun-
damentally non-Fermi-liquid character of the normal state, it was rec-
ognized that one could formulate, under reasonable assumptions, an
entirely phenomenological theory of this phase of matter [173]. Such
a theory was developed early on by Varma and coworkers and was
dubbed the “marginal Fermi liquid”—“marginal” for reasons we will
explain in a short while. The basic assumption underlying the MFL
is that the ordinary Fermi liquid is coupled to some set of excitations
whose existence is taken as a given, and whose contribution to the
density fluctuation spectrum has the following form:

Im χ(q, ω, T) ∼

−ω/T if |ω| < T

−sgn(ω) if |ω| > T.
(2.9)

Note that Im χ is assumed to be momentum-independent. It can be
shown from Eq. 2.9 that the self-energy Σ becomes

Σ(ω, T) = λ

(
ω ln

x
ωc
− i

π

2
x
)

. (2.10)

Here x = max(|ω|, T)—note that this could be represented by x =√
ω2 + π2T2, for ease of computation—ωc is a cutoff frequency, and λ

is a coupling constant.
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Eq. 2.10, despite its rather compact form, contains a tremendous
amount of information. First, the single-particle scattering rate, which
is proportional to Im Σ, is momentum-independent, implying that the
scattering rate as inferred from transport measurements such as op-
tical conductivity should be the same as the single-particle scattering
rate [1]. Second, the single-particle scattering rate is proportional to
x, rather than to x2 (which is the case for an ordinary Fermi liquid).
Third, the quasiparticle weight Z, which is defined as

Z =

(
1− ∂ Re Σ

∂ω

)−1

, (2.11)

goes to zero logarithmically as ω → 0 (that is, as one scales towards
the Fermi surface) at T = 0. This means that quasiparticles do not exist
even at T = 0 for a marginal Fermi liquid. Fourth, Im Σ is linear in
ω at T = 0. This linearity implies that the quasiparticle width does
not vanish faster than ω—a necessary criterion for the existence of
quasiparticles—and Im Σ ∝ ω in fact is the highest power for which the
quasiparticle picture fails. Thus, Im Σ ∼ ω is a “marginal” case. The
logarithmic singularity in Z−1 is in fact the weakest such singularity
possible.

How are transport measurements explained by this MFL self-energy?
Much of the transport phenomenology is easy to explain because of the
aforementioned momentum-independence of the self-energy, which
leads to the equality of the single-particle scattering rate—which can
actually be measured in ARPES—to the transport scattering rate. The
linear-in-T resistivity can be explained by noting that ρ = Γt

ω2
p
, where

Γt is the transport scattering rate and ωp is the plasma frequency. Ac-
cording to Eq. 2.10 Γt ∼ T at ω = 0; this thus implies that ρ ∼ T. The
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constant thermal conductivity? The Wiedemann-Franz law implies
that

κ(T) ∝ Tσ(T), (2.12)

and, recalling that σ(T) = 1/ρ(T) ∼ 1/T, leads to κ(T) ∼ const. For
Raman scattering, the form of Eq. 2.9 directly leads to a featureless
signal. Other transport anomalies can similarly be accounted for by
Eqs. 2.9 and 2.10.

ARPES measurements taken in the strange-metal phase of the cuprates
find considerable support for the MFL hypothesis. From Eqs. 2.3 and
2.10, a number of predictions could be made from MFL theory for
momentum-distribution curves. (To remind the reader, MDCs are
simply linecuts of the spectral function along a direction in momen-
tum space at fixed frequency.) As the MFL self-energy is momentum-
independent, the MDC profiles along cuts perpendicular to the Fermi
surface should be of Lorentzian form. In particular its full width at half
maximum should be − Im Σ(kcut, ω), where kcut are momenta along
the chosen cut in momentum space. This implies that when one has
ω → 0 and momenta along any cut perpendicular to the Fermi surface,
the FWHM of the MDC should be proportional to T. Conversely, at
fixed temperature, the MDC widths should scale linearly with x, with
x ≈ ω.

These expectations were confirmed rather spectacularly by ARPES
results from the Brookhaven and Argonne groups [169, 2, 168, 81].
However it was observed that the self-energies were anisotropic: the
MDCs along antinodal directions were found to be broader than those
taken along the nodal ones. Another feature was that the frequency-
and temperature-dependence of the widths was found to be largely
uniform across the Fermi surface, while the offset characterizing the
momentum-space anisotropy in the self-energy was found to be frequency-

36
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and temperature-independent. These groups primarily used MDC
analysis to obtain fits of the extracted self-energy to the following form:

Im Σ(k, ω, T) = Γ(k)− λ
π

2
x. (2.13)

The momentum-dependent term Γ(k) is free of any frequency- and
temperature-dependence, and is largest at the antinodes and smallest
near the nodal region. Its temperature-independence has allowed its
identification as an elastic scattering rate, with the highly anisotropic
form argued to arise from small-angle scattering from impurities lo-
cated between the copper-oxide planes. Importantly, the fits taken
from the MDCs data were also found to describe the EDCs reasonably
well, with the antinodal EDCs being much broader than the nodal
ones.

Before moving on to other aspects of the strange metal, a few things
should be noted. First, the antinodal EDCs at and near optimal dop-
ing are often so incoherent that a peak is not discernable [82]. These
should be contrasted with the antinodal EDCs in the normal state of
the overdoped cuprates, which are generally seen to be fairly coherent,
and with EDCs across the entire Fermi surface in the superconduct-
ing phase, which exhibit sharp quasiparticle peaks. As mentioned
earlier, how these quasiparticles acquire coherence and become well-
defined as temperature is lowered past Tc is still unsettled. Second,
while peaks in the MDCs may be suggestive of quasiparticles, it is
only when looking at EDCs that the truly non-quasiparticle nature
of the strange metal becomes apparent. The MFL self-energy leads
to the generation of a considerable amount of spectral weight away
from the Fermi energy even at T = 0. This broadened spectral weight
is seen clearly in EDCs even at low energy resolutions, but is how-
ever something to which an MDC analysis (for which the frequency is
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held constant) would not see unless many such analyses are performed
at different frequencies in order to ascertain the precise momentum-
dependence of the widths. In fact this observed incoherence in the
antinodal EDCs—in conjunction with the sharpness of the MDCs—
has been put forth as evidence for spin-charge separation in the nor-
mal state, with a dimensional crossover from quasi-one-dimensional,
Luttinger-liquid-like physics above Tc to two-dimensional physics be-
low Tc proposed to occur [127, 26]. Third, while the differences be-
tween single-particle properties of the marginal Fermi liquid and those
of the ordinary Fermi liquid are very sharp at T = 0—e.g., the non-
analyticity of the self-energy, the broad spectral function EDCs, and
the absence of quasiparticles—these differences become blurred at fi-
nite temperature, and the effects are subtle enough that one needs to
take special care in attempting to distinguish these two phases from
each other. These differences require that quantities such as the MDC
widths be measured across a wide range of temperatures and frequen-
cies in order to obtain the correct scaling.

One can only go so far with the marginal Fermi liquid, however. The
microscopic origin of the strange metal is not definitively settled and
remains an area of active research. Nevertheless one popular paradigm
which has been used to explain the strange metal is quantum criticality
[158, 146]. At T = 0, one can speak of distinct quantum phases which
are accessed by manipulating some tuning parameter P. A quantum
phase transition is simply a continuous transition between two proxi-
mate quantum phases occuring at a special value P0. A generic feature
of quantum critical points is that, at finite temperature and frequency,
correlation functions have the scaling form ω/T—a feature already
built into the marginal Fermi liquid, as attested to by Eq. 2.9.

Further evidence for quantum criticality comes courtesy of the ob-
servation by Homes et al. that Tc is proportional to the product of
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the superfluid density ρs and the normal-state resistivity ρ(Tc) for a
vast array of cuprates with varying doping levels and crystal struc-
ture [72]. By a simple argument using mainly dimensional analysis, it
can be shown that this seemingly universal relation—dubbed “Homes’
law”—implies that the characteristic dissipation time in the strange
metal appears to saturate the lowest possible bound for thermal fluctua-
tions set by the uncertainty principle [190]. That is, in the strange metal
the relaxation time τ ≈ h̄

kBT , suggesting that in this finite-temperature
regime the strange metal appears to be controlled by the physics of a
putative critical point located close to optimal doping.

Despite compelling evidence pointing to a quantum-critical origin
of the strange metal, the nature of this quantum critical point—if it
exists—remains shrouded in mystery, perhaps almost literally so by
the superconducting dome. One version of the cuprate phase dia-
gram has it that the psedogap crossover line, set by T∗, terminates well
within the superconducting dome. The quantum-critical point—which
in this picture would lead to the pseudogap as a finite-temperature
phase crossing over to the strange metal—is thus hidden by the super-
conducting state, perhaps suggesting that the T = 0 quantum-critical
point is unstable to perturbations that lead superconducting order to
develop. However, it is not known which of the many orders char-
acterizing the pseudogap is responsible for this T = 0 critical point.
One way of perhaps probing the physics of the strange metal is by
quenching the superconductivity by means of an applied magnetic
field. However, what is seen in experiments is a more conventional
Fermi-liquid-like state with a reconstructed Fermi surface, instead of
the large hole-like one seen in ARPES [37, 154, 153]. The relationship
between this Fermi-liquid-like state in a magnetic field and the strange
metal is not clear.
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A theoretical understanding of the strange metal is complicated by
the fact that there appears to be no way of imposing theoretical control
over the physics of a Fermi liquid coupled to quantum-critical fluctua-
tions [101, 113]. On an even more philosophical level, one is left ques-
tioning whether a Fermi liquid is even a valid starting point for the con-
struction of a theory of the strange metal, considering the presence of
strong correlations which preclude any means of understanding these
highly anomalous finite-temperature regimes perturbatively. Unfortu-
nately there are not many alternative theoretical paradigms available.
The best-understood non-Fermi liquid is the Luttinger liquid, which is
the theory of an interacting electron gas in one spatial dimension [60].
The one-dimensional nature of the problem allows exact solutions to
be obtained by means of bosonization [165, 105, 110]. In addition, the
Luttinger liquid is a quantum-critical phase—it needs no fine-tuning to
reach criticality—and spin-charge separation occurs, with collective ex-
citations forming which carry separately the charge and spin degrees
of freedom. It has been shown that the ARPES and STS spectra of the
Luttinger liquid behave very differently from that of a weakly-coupled
Fermi liquid: two sets of dispersing features are present in these spec-
tra which correspond to the spin- and charge-carrying excitations—
not the underlying electrons—and which propagate at two different
velocities, demonstrating explicitly spin-charge separation [87]. These
are all specific to one dimension, of course. Extensions to two and
three dimensions have been cooked up by coupling Luttinger liquids
together along one or two transverse directions, but these still rely
on the physics of the foundational one-dimensional electron gas from
which these non-Fermi liquids are made [179, 43, 117]. Nevertheless,
the Luttinger liquid remains an interesting metaphor for the higher-
dimensional non-Fermi liquids of relevance to the cuprates, insofar as
its very existence shows how collective excitations radically different
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from the underlying electrons could emerge naturally from strong in-
teractions, and a higher-dimensional generalization, if found, could
prove to be of much use in explaining the strange metal.

Other recent approaches have included the use of holographic du-
ality to describe strongly-interacting finite-density phases of matter
[191, 63]. This method relies on the existence of a duality between a
conformal field theory in d spacetime dimensions and a gravitational
theory living in d+ 1-dimensional anti-de Sitter space [108, 185, 56]. As
this is a weak-strong duality, difficult quantum field theory problems
are mapped onto relatively tractable classical gravitational problems—
under some special circumstances. This has been exploited to extract
insights that would otherwise have been very difficult to obtain using
a more conventional perturbative approach. One example of this is
the use of holography to study finite-density fermionic systems that
appear to be quantum-critical phases, such as “semi-local quantum
liquids”—states of matter with an infinite correlation time but a fi-
nite correlation length—which are seen to emerge fairly naturally from
holography [79, 78]. These mimic the features of the marginal Fermi
liquid, which has manifest “local quantum criticality”—that is, the cor-
relation functions have no momentum-dependence, but have a nontriv-
ial dependence on the frequency. Similarly, insights from holography
have led to an understanding that the anomalous transport properties
in the strange metal could be explained by hydrodynamic considera-
tions. Simply put, quantum-critical states of matter without quasipar-
ticles at finite density have a small viscosity, and dissipation of mo-
mentum due to quenched disorder can be shown to directly lead to a
resistivity that is linear in temperature [35]. These insights are far re-
moved from the realm of well-defined quasiparticles; the nonperturba-
tive nature of holographic methods allows these non-quasiparticle-like
excitations to be tractably handled.
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Complementary to this is the recent explosion of work on sign-free
quantum Monte Carlo simulations of strongly interacting fermionic
systems. One recent study takes as its starting point a simple lat-
tice Hamiltonian with Ising degrees of freedom which can be tuned
through a nematic phase transition [97]. Despite the simple features
of the model, the Hamiltonian was found to lead to a surprisingly
rich phase diagram. First, a superconducting dome forms above the
quantum-critical point, with the point at which Tc is highest almost
coincident with the Ising nematic critical point. Second, non-Fermi-
liquid behavior is seen in the vicinity of the quantum-critical point—
the spectral function becomes broader at certain portions of the Fermi
surface. Perhaps more strikingly, there is an especially pronounced
“nodal-antinodal dichotomy”—the imaginary part of the self-energy is
much broader at the antinodes than at the nodes. It is surprising to
see this feature emerge from an admittedly simple model of interacting
electrons.

These two newfangled approaches highlight the necessity of fresh
perspectives and stripped-down but nonperturbative models to illumi-
nate the still-befuddling nature of the strange metal, and show their
potential to lead to unexpected insights into even the much more
well-understood neighboring phases. While these caricature the real
cuprates to a rather severe degree, these can only help in provid-
ing paths towards understanding where a traditional perturbative ap-
proach fails.
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R E V I S I T I N G Q U A S I PA RT I C L E S C AT T E R I N G
I N T E R F E R E N C E I N H I G H - T E M P E R AT U R E
S U P E R C O N D U C T O R S : T H E P R O B L E M O F N A R R O W
P E A K S

3.1 introduction

Scanning tunneling spectroscopy (STS) has matured into one of the
most powerful techniques for studying complex electron systems. It
has been most successful in the study of high-Tc superconductors,
where it has revealed a spectacular array of new phenomena to be
present in the cuprates [150]. Prominent examples of such phenomena
include ordering in the pseudogap [174, 62, 89, 96], inhomogeneities
in the superconducting gap and pseudogap [95, 45, 111], and quasipar-
ticle interference (QPI) [70, 112].

Here we wish to revisit the interpretation of the QPI phenomenon.
This was first observed in the cuprates when STS measurements done
on superconducting Bi2Sr2CaCu2O8+δ found that spatial modulations
in the local density of states (LDOS) were present in the real-space
maps. A particular category of these modulations is found to be in-
commensurate and, more importantly, dispersive—that is, the wavevector
peaks in the Fourier power spectrum corresponding to these modula-
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tions are found to be energy-dependent [70, 112, 90]. In the under-
doped regime, these coexist with peaks which are non-dispersing and
are attributed to the presence of “stripy” charge-density-wave order
[74, 73] or an electronic glass [89]. In a remarkable advance, these
were explained in a series of papers laying out the theory as under-
stood for a single pointlike scatterer [70, 182, 25]. In essence, the
effect can be understood in terms of interference fringes associated
with the coherent Bogoliubov quasiparticles of the d-wave supercon-
ductor, which behave like quantum-mechanical waves that diffract in
the presence of quenched disorder [189]. Given their quasi-relativistic
dispersion, this scattering is strongly enhanced at wavevectors associ-
ated with the extrema of the dispersions at a given energy. This is
illustrated in Figs. 3.1 and 3.2. With increasing energy, the contours
of constant energy (CCEs) of the Bogoliubov excitations in momen-
tum space change shape (Fig. 3.1). The scattering is strongly enhanced
at the tips of the banana-shaped contours (Fig. 3.2), defining an octet
of characteristic momenta. Upon Fourier-transforming the real-space
STS maps, one finds peaks at these momenta, which disperse as func-
tion of energy (Figs. 3.3 and 3.4). This forms a set of data that allows
one to reconstruct the dispersion relations of the Bogoliubov quasipar-
ticles. These are strikingly consistent with results from ARPES, where
these single-particle dispersions are measured directly in momentum
space. It is beyond doubt that this “octet model” interpretation is cor-
rect for the cuprates, especially as additional evidence for QPI has also
been obtained from Ca2−xNaxCuO2Cl2 [61]. The effect has also been
observed in iron-based superconductors [8, 5, 6] and heavy-fermion
materials [98, 151, 7, 171]. The success of the octet model has spurred
a considerable amount of theoretical work on the signatures of QPI in
related states of matter such as the pseudogap phase of the cuprates
[133, 134, 114, 19], as well as in systems without a gap, such as graphite
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Figure 3.1: Contours of constant energy for a d-wave superconductor for dif-
ferent energies E, in units where t = 1. Observe that energies from
E = 0.050 to E = 0.300 feature closed, banana-shaped CCEs, while
for higher energies such as E = 0.350 the CCE changes topology
and becomes open.

[20] and the surface states of three-dimensional topological insulators
[49, 145, 58]. The ubiquity of QPI in gapless systems is not surpris-
ing, as its signatures were in fact first imaged in conventional metals
[31, 159, 71, 137].

The octet model is simply a kinematical picture describing the scat-
tering of quasiparticles in the presence of disorder. It is another matter
to explain how well-defined patterns of QPIs can arise under realistic
conditions. This was intensely studied theoretically, at first starting
from models describing d-wave fermions scattering from a single iso-
lated impurity potential [182, 25, 196, 125, 176, 93]. In Section 3.3,
we will reproduce a typical result involving a single point scatterer.
One infers from the results that there is an overall similarity between
these theoretical results and the experimental data. However, even
on a qualitative level it is not completely satisfactory. In our numeri-
cally obtained Fourier-space maps, the “peaks” are actually associated
with intensity enhancements of intersecting diffuse streaks and blurry
regions. In contrast, the experimental QPI signals are remarkably well-
defined peaks.
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Figure 3.2: The octet model in k-space. Shown are the seven wavevectors
connecting one tip of a “banana” to another when E = 0.200.
Dashed arrows denote wavevectors connecting states where the
superconducting gap has the same sign, while undashed ones con-
nect states where the gap changes sign.

A caveat is that microscopic details do matter when taking into ac-
count the actual measurement process involved in STS experiments.
This was anticipated early on by the observation that the mismatch
between the s-wave orbital emanating from the tunneling tip and the
microscopic dx2−y2 copper-centred orbitals in the perovskite planes im-
plies that the tunneling current enters the nearest neighbors of the cop-
per site over which the tip is positioned [109]. This “fork mechanism”
was recently confirmed by an impressive first-principles model of the
tunneling process [93]. We will study the effects of this “fork” on the
QPIs in Section 3.3. We will find that this is actually only a minor
concern for the overall interpretation. Kreisel et al. also find that mod-
ifications coming from a realistic description of the tunneling process
have the potential to resolve the apparent paradox that we will demon-
strate. We will come back to this issue at the end of this chapter.

The serious problem with the pointlike scatterer model lies in its
inconsistency with the actual chemistry of the cuprates. Pointlike im-
purities are naturally explained in terms of substitional defects in the
cuprate planes. However the CuO2 planes are well-established to be

46



3.1 introduction

11

1

1

22

66

2 2

6 6 33

33

44

44

4 4

4 4

55

5

5

77

77

-2π -π 0 π 2π

-2π

-π

0

π

2π

-2π -π 0 π 2π

-2π

-π

0

π

2π

Figure 3.3: Locations of the special qi wavevectors in extended q-space. The
energy is E = 0.200, same as in Fig. 3.2. The octet model predicts
that peaks in the Fourier-transformed LDOS will be present at
these locations. A square demarcating the boundary of the first
Brillouin zone (i.e., −π ≤ qx, qy ≤ π) is shown. Note that certain
wavevectors (in this particular case, q4 and q5) may extend beyond
the first Brillouin zone. In our lattice simulations these peaks will
be folded back into the first Brillouin zone.

very clean with regard to their stoichiometry. In fact, zinc and nickel
can be substituted for copper in the CuO2 planes. Since such chemi-
cal defects correspond to strong potentials, this gives rise to a major
modification of the electronic structure at the impurity core. This is
indeed seen in STS, as the zinc impurities show up very prominently
in the LDOS maps of zinc-doped BSCCO [129, 17]. The details of these
core states were in fact instrumental in identifying the “fork” mech-
anism [109, 93]. Nickel impurities were found to be similarly visible
in the case of nickel-doped BSCCO, the difference in this case being
that nickel impurities are magnetic scatterers [77]. On the other hand,
the STS spectra of pristine cuprates do not show any of these localized
impurity states.

Instead, it appears that disorder in the cuprates should be of a more
distributed and smooth kind. Doping occurs away from the CuO2

planes. These are charged impurities, and given the poor screening
along the c-axis, one then expects smooth, Coulombic disorder, simi-
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lar to what is realized in modulation doping of semiconductors [130].
Such off-plane dopants have indeed been imaged in STS experiments
on BSCCO [111]. Similarly, dopants might modulate the tilting pat-
terns in the CuO2 planes, resulting in a similar form of distributed dis-
order [42]. This involves inherently many-impurity effects that are not
easy to study using the standard single-impurity T-matrix method. We
note that multiple pointlike impurities have indeed been considered
before in the literature [196, 25, 14]. However, the most general many-
impurity problem is technically very demanding, especially when one
tries to consider forms of disorder other than point impurities, or when
one tries to scale up the system size.

Given these difficulties, we take advantage of an alternative numeri-
cal method to directly compute the LDOS, inspired by methods heavily
in use in the quantum transport community. This is outlined in Section
3.2. Our point of departure is a tight-binding Hamiltonian on a square
lattice describing a d-wave superconductor. Instead of diagonalizing
this real-space Hamiltonian, we compute the Green’s function directly
by inverting the Hamiltonian, which can be done efficiently, and from
the Green’s function we obtain the LDOS. Superconducting gap func-
tions and even full self-energies can be straightfowardly incorporated.
Any form of spatial inhomogeneities can be modeled efficiently using
this method, and our system sizes can be made very large—for in-
stance, LDOS maps of systems with size 1000× 120, which we use, can
be obtained in a matter of minutes—the better to approach the same
large field of view as current experiments have. We originally aimed
to use this to study more complex phenomena such as the gap inho-
mogeneities (“quantum mayonnaise”) found in the pseudogap regime,
as well as the effects of the electronic self-energies on STS results [32].
However, we found out that issues arise already on the most funda-
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mental level of the theory of QPI deep in the superconducting state of
the cuprates, which is the subject of this chapter.

Using this method, we can address any conceivable form of spatial
disorder and study its effects on the QPI spectra. We set the stage in
Section 3.3, focusing on the case of a single weak pointlike impurity.
We then insert a large number of such weak pointlike impurities at
random positions and examine QPI with and without the filter effect.
We then examine in detail the related case where many unitary scat-
terers are present. We next turn our attention to a single Coulombic
impurity and subsequently to a densely distributed random ensemble
of such smooth scatterers. Although the real-space patterns appear to
be suggestively similar to the stripe-like textures seen in experiment,
this runs into a very serious problem: the peaks in the power spectra
involving large momenta disappear very rapidly, and this holds even if
the range of the potential is shortened. We consider then the case of a
random on-site potential, similar to Anderson’s model of disorder. Al-
though the effects of quasiparticle scattering interference can indeed be
seen in the real-space and Fourier-transformed maps, this form of dis-
order results in power spectra which show considerable fuzziness, in
contrast to the well-defined peaks seen in experiment. We end by con-
sidering a simple model of superconducting gap disorder. Although
this works quite well for the simplified case we consider, the problem
is that, for more realistic smooth gap inhomogenieties, large-momenta
peaks will be suppressed.

By eyeballing the numerous plots present in this chapter, the reader
may already have convinced himself or herself that there is a serious
problem with the standard explanation of QPIs. By making the model
of disorder more and more realistic, the correspondence with exper-
iment deteriorates. As we will discuss in the final section, it is an
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interesting open challenge to explain the sharpness of the QPI peaks
as seen in STS measurements.

3.2 model and methods

Two important requirements in theoretically reproducing results from
STS experiments are large system sizes and the ability to model gen-
eral forms of inhomogeneities. Modern STS experiments feature a very
large field of view, which allows large-scale inhomogeneities present
in materials to be visualized. Replicating this large field of view nu-
merically is a challenge because simulations with large system sizes
require sizable amounts of computational effort. Most numerical work
on disordered high-temperature superconductors has centered around
two methods: the T-matrix method and exact diagonalization. The
T-matrix approach has the advantage of being exact for the case of
pointlike impurities and requires minimal numerical effort, even for
large system sizes, but is restricted in its applicability—smooth poten-
tial scatterers, for instance, are not accessible in this formalism. On
the other hand, exact diagonalization allows any form of disorder to
be modeled, but at the expense of being restricted to relatively small
system sizes.

In this chapter we utilize a method—a novel one as far as its applica-
tion to both disordered d-wave superconductors and the modeling of
STS experiments is concerned—that is formally exact, allows any form
of disorder to be modeled, gives access to very large system sizes, and
is computationally efficient. In addition, since it is based on Green’s
functions, it is straightforward to include the effects of self-energies;
this will be the subject of Chapter 5 of this thesis. Before introducing
the method, we will first discuss the lattice model of the cuprates that
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we will use in this chapter. Our starting point is the following tight-
binding Hamiltonian for a d-wave superconductor on a square lattice:

H = ∑
〈i,j〉

[
−∑

σ

tijc†
iσcjσ + ∆ijc†

i↑c
†
j↓ + ∆∗ijci↑cj↓

]
. (3.1)

We include nearest-neighbor and next-nearest-neighbor hopping (spec-
ified by the amplitudes t and t′, respectively) and a chemical potential
µ. d-wave pairing is incorporated by ensuring that the gap function
has the form ∆ij = ±∆0, where (i, j) are two nearest-neighbor sites
and the positive and negative values of ∆ij are chosen for pairs of sites
along the x- and y-directions, respectively. This is a mean-field Hamil-
tonian for the d-wave superconducting state of the cuprates. We set
the lattice spacing a = 1 and the nearest-neighbor hopping t = 1—i.e.,
we will thus measure all energies in units of t.

In the clean limit, the Hamiltonian can be diagonalized by going to
momentum space. The quasiparticle energies are given by

E(k) =
√

ε2
k + ∆2

k , (3.2)

where
εk = −2t(cos kx + cos ky)− 4t′ cos kx cos ky − µ (3.3)

and
∆k = 2∆0(cos kx − cos ky). (3.4)

Eq. 3.2 describes the dispersion of the Bogoliubov quasiparticles of a
d-wave superconductor. At E = 0 there are four points in momen-
tum space at which zero-energy excitations exist. For the purposes
of our calculations we take the band-structure and pairing parameters
relative to t = 1 as t′ = −0.3, µ = −0.8, and ∆0 = 0.08 throughout
this chapter. We note that while these band-structure parameters cover
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hoppings only up to the next-nearest-neighbor level, we selected them
to be close to the phenomenological values obtained by Norman et al.
for optimally-doped BSCCO [122]. Our results will turn out not to
depend sensitively on band-structure details.

3.2.1 Green’s Functions and the Local Density of States

The central quantity of interest in our study is the local density of
states (LDOS) of a superconductor in the presence of disorder. The
LDOS at position r and energy E can be expressed as

ρ(r, E) = − 1
π

Im G11(r, r, E + i0+), (3.5)

where G is simply the full Green’s function corresponding to H in
Nambu space, given by

G = (ω1− H)−1, (3.6)

and G11 is the particle Green’s function. One can observe from Eq. 4.8
that to obtain the LDOS we do not need all the elements of G—the bare
LDOS can be obtained from just the diagonal elements of G. (Note
however that when we will come to include nontrivial tunneling pro-
cesses, more elements of G will be needed; this will be described in
detail in the next subsection.) Here we do not determine the gap func-
tion self-consistently.

We proceed by noting that H, in a real-space basis, can be written
as a block tridiagonal matrix—without any approximations—when peri-
odic boundary conditions are imposed along the y-direction and open
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boundary conditions are placed along the x-direction. H exhibits the
following structure:

H =



a1 b1 0 0 . . . 0 0
b†

1 a2 b2 0 . . . 0 0
0 b†

2 a3 b3 . . . 0 0
0 0 b†

3 a4 . . . 0 0
...

...
...

...
. . . bNx−2 0

0 0 0 0 b†
Nx−2 aNx−1 bNx−1

0 0 0 0 0 b†
Nx−1 aNx


. (3.7)

Nx and Ny denote the number of sites in the x- and y-directions, re-
spectively. ai is a 2Ny × 2Ny block containing all hoppings, pairings,
and on-site energies along the y-direction at the ith column. bi mean-
while is a 2Ny × 2Ny block that contains hopping and pairing terms
along the x-direction between the ith and (i + 1)th columns.

By construction the inverse Green’s function G−1 = ω1− H is block
tridiagonal as well. A well-known result states that one can obtain
the diagonal blocks of G, and hence the LDOS, using the following
block-by-block algorithm: [52, 143, 69]

Gii = [ω1− ai −Ci −Di]
−1. (3.8)

Ci and Di are calculated from the following expressions:

Ci =

0 if i = 1

b†
i−1[ω1− ai−1 −Ci−1]

−1bi−1 if 1 < i ≤ Nx

(3.9)
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and

Di =

0 if i = Nx

bi[ω1− ai+1 −Di+1]
−1b†

i if 1 ≤ i < Nx.
(3.10)

This algorithm is very fast compared to full exact diagonalization.
Taking into account the block matrix inversions needed, the compu-
tational complexity of this algorithm is O(Nx N3

y ). This allows us to
make Nx very large without significantly impacting performance, and
this results in reducing finite-size effects in that direction considerably.
In contrast, because the complexity scales as the cube of the length
along the y-direction, Ny is taken to be considerably smaller than Nx.
However, even in that case the scaling of the complexity with Ny is
still very favorable compared to other methods. Ny in turn can be
made much larger than the typical length of the system in exact diag-
onalization studies. We again reiterate that this procedure is exact—
no approximations or truncations have been performed at any stage
of the computation. Recursive techniques such as this, which make
use of the sparsity of the Hamiltonian matrix, are very widely used
in the quantum transport community to compute Green’s functions
[38, 136, 184, 103, 104, 94].

We then obtain the LDOS of the full system from the diagonal blocks
Gii using Eq. 4.8. For our computations we took Nx = 1000 and
Ny = 120. The LDOS maps were then extracted from the middle
100× 100 subsection of the system. We note that this 100× 100 field
of view is similar to what present-day STS measurements are capable
of. While minor artifacts from the open boundary condition along the
x-direction remain, the very large value of Nx and taking the LDOS
maps from the middlemost segment of the system combine to ensure
that these effects are minimized. In obtaining the LDOS we used a
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small finite inverse quasiparticle lifetime given by η = 0.01, expressed
in units of t.

The power spectrum can then be straightfowardly computed by per-
forming a fast Fourier transform on the real-space maps. The quantity
we are interested in is the amplitude of the Fourier-transformed maps,
|ρ(q, E)|.

3.2.2 Modeling the Measurement Process

Our discussion beforehand neglected the specifics of the tunneling
process between the tip and the CuO2 plane. Here we will discuss
how to incorporate the “fork mechanism,” an effective description
of the tunneling process, in our computations. This mechanism was
first proposed as an attempt to account for some inconsistencies be-
tween experimentally- and theoretically-obtained maps for zinc-doped
BSCCO [129]. The motivation was the observation that, for zinc-doped
BSCCO, the LDOS maps show no suppression at the impurity site,
whereas theory predicts that maximal suppression should occur pre-
cisely there. One possibility is that some kind of filtering mechanism
occurs when an electron tunnels from the STM tip to the copper-oxide
plane. Martin et al. argued that the tunneling matrix element is ac-
tually of a d-wave nature [109]. Because the electron would have to
tunnel through an insulating BiO layer before reaching the CuO2 layer,
the most dominant tunneling process involves nearest-neighbor 3dx2−y2

orbitals. The filtered LDOS at a site thus consists of a sum of the
LDOS at the four nearest-neighbor sites and multiple pairwise inter-
ference factors. Such a filtering mechanism has been put on rigorous
footing in recent first-principles work [93].
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Here we adopt the simplest form of the fork mechanism and recast
this into the Green’s function formalism we use in our computations.
We introduce a filter function f (r, r′) which incorporates the tunneling
matrix elements between the STM tip and the the CuO2 plane. The
filtered LDOS, ρ f (r), can therefore be expressed as a generalized con-
volution between the two-point Green’s function G and f :

ρ f (r, E) = − 1
π

Im ∑
r1,r2

f (r− r1, r− r2) (3.11)

×G11(r1, r2, E + i0+). (3.12)

The filtering mechanism can be incorporated by a suitable choice of
f . For instance, to have s-wave filtering (i.e., direct tunneling, which
should result in the bare LDOS), the filter function is simply given by

f (r, r′) = δr,0δr′,0, (3.13)

which would simply result in Eq. 4.8. To have the desired d-wave fork
effect, the following choice of f is needed:

f (r, r′) = (δr,x̂ + δr,−x̂ − δr,ŷ − δr,−ŷ)

×(δr′,x̂ + δr′,−x̂ − δr′,ŷ − δr′,−ŷ). (3.14)

Here x̂ and ŷ are unit vectors in the x- and y-directions, respectively.
Now we discuss how this is implemented in our computations. Ob-

serve that Eq. 3.12 with a d-wave filter has sixteen terms. This presents
a complication in our block-by-block algorithm, because now we will
have to obtain the first and second block diagonals above and below
the main block diagonal. To be more precise, in addition to Gii, we
will need the following eight other blocks to calculate ρ f (r, E): Gi−1,i−1,
Gi−1,i, Gi−1,i+1, Gi,i−1, Gi,i+1, Gi+1,i−1, Gi+1,i, and Gi+1,i+1. Fortunately
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Figure 3.4: Plots of the magnitudes of the various qi wavevectors as a func-
tion of energy E. Lines denote the expected dispersions of the
qi wavevectors as predicted by the octet model. Points show ob-
served peaks for the case of a single weak pointlike impurity with
V = 0.5 at selected energies. Note that the dispersions for the
large-wavevector peaks are shown without backfolding. We do
not show peaks associated with q4 and q5, as these cannot be
discerned clearly from the numerically-obtained power spectrum
for a weak impurity. These dispersions are consistent with the
behavior of peaks as observed in experiment.

all off-diagonal blocks are calculable recursively using the following
expressions: [52, 143]

Gij =

−[ω1− ai −Di]
−1b†

i−1Gi−1,j if i > j,

−[ω1− ai −Ci]
−1biGi+1,j if i < j.

(3.15)

Here, ai, bi, Ci, and Di are defined in the same way as before.

3.3 pointlike scatterers

We first consider QPI arising from pointlike impurities. This is by far
the most comprehensively studied form of disorder in the cuprates.
QPI was first understood theoretically by considering the effect of a
single isolated impurity on the LDOS of the cuprates [182, 25]. We
revisit this single-impurity case first in order to lay down a reference
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template in the form of this well-known case to facilitate comparisons
with new results. We will then turn to the case of many pointlike
impurities distributed randomly on the plane.

The phenomenological octet model is an empirical success—in ex-
periment one can clearly identify a set of seven dispersing peaks in
the Fourier transform of the LDOS maps. Given the knowledge of the
dispersion of the d-wave Bogoliubov quasiparticles, one can construct,
for a given bias voltage, contours of constant energy (CCEs) in the first
Brillouin zone, which are given by solutions to Eq. 3.2 for a given en-
ergy E. These CCEs are closed banana-shaped contours until E is such
that their tips reach the Brillouin zone boundary. Each of these four
“bananas” is centered around a node—i.e., one of four points along the
normal-state Fermi surface where ∆k vanishes. Plots of these CCEs
with the parameters we set are shown in Fig. 3.1. Within the octet
model, scattering processes from one tip of a banana to another be-
come dominant, owing to the large joint density of states between any
two such points. These dominant scattering processes manifest them-
selves in a set of visible peaks at seven characteristic momenta qi, with
i = 1, 2, . . . 7 in the power spectrum. These momenta are shown in
Fig. 3.2.

Because the banana-shaped contours change their shape as E changes,
these qi’s should disperse; |q7|, for instance, should increase with in-
creasing |E|. In Fig. 3.4 we reproduce the dispersions of the various qi

wavevectors as predicted by the octet model and compare them with
peaks obtained from exact numerical calculations involving a single
weak pointlike scatterer. The expected dispersions are easily calcu-
lated from Eq. 3.2, making use of the fact that the density of states at
energy E is strongly enhanced by contributions at points in momen-
tum space where |∇kE| is a minimum, which are precisely at the tips
of the “bananas’ ’[112]. Here it can be seen that most of the peaks
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Figure 3.5: Real-space LDOS maps for the single weak pointlike scatterer case.
Here an isolated pointlike impurity (V = 0.5) is placed in the
middle of the sample. The field of view is 100 × 100. Shown
are maps corresponding to energies E = ±0.100 and E = ±0.250.
Inset: a close-up view of the impurity.

from our numerics match quite well with the predictions of the octet
model. The behavior of the peaks as one varies the energy matches
very closely with what is seen in experiment.

3.3.1 Single Weak Pointlike Impurity

We first start with the best-case scenario as far as reproducing the
phenomenology of the octet model is concerned: the case of a single
pointlike scatterer. To examine this more clearly, we add an on-site
energy of V = 0.5 to a single site in the middle of the field of view. This
is a weak, non-unitary potential, so this would not induce resonances at
zero energy. The LDOS maps results are shown in Fig. 3.5. In the real-
space images, one can see clear, energy-dependent oscillations in the
LDOS which emanate from the impurity core. Despite the weakness
of the potential, these oscillations dominate the signal at all energies,
and the isolated impurity itself can be easily seen. It should be noted
that at the impurity site the LDOS is not suppressed, but instead has a
finite value for the energies we considered.
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Figure 3.6: Fourier-transformed maps for the single weak pointlike scatterer
case, with V = 0.5. Power spectra for both positive and negative
bias voltages are shown for energies ranging from E = ±0.050
to E = ±0.250. Arrows indicate where the peaks corresponding
to the characteristic momenta of the octet model show up in the
upper-right quadrant. The color scaling varies linearly with en-
ergy.

In contrast to the rather limited information conveyed by the real-
space maps, the Fourier-transformed maps, shown in Fig. 3.6, dis-
play considerably more information. These are identical to the Fourier
maps computed using the standard single-impurity T-matrix method—
as it should, since that is a different method of solving the same prob-
lem. These show peaks with positions that are indeed consistent with
the octet model. However, one also sees that these peaks are little more
than enhanced regions in a more diffuse background. Even when the
potential is weak, the spectra are dominated by momenta that connect
different segments of the bananas, giving rise to patterns consisting
of diffuse streaks, blurry regions, and propeller-shaped sections. The
special momenta of the octet model merely correspond to points at
which the spectral weight is enhanced relative to the background. That
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is, these points coexist alongside these background patterns that arise
from other scattering processes. A noteworthy feature of the power
spectra of the case of a weak point potential is that q4 and q5 are not
discernable at all. The most dominant peaks are q2, q3, q6, and q7,
which become even more pronounced at higher energies. It is quite
telling that, even at the idealized single point-impurity level, the cor-
respondence between the full numerics and the expectations from the
octet model is not fully realized—we remind the reader yet again that
experimental Fourier maps show all seven peaks.

As we have emphasized before, impurity cores are not seen in the
data, which excludes the possibility that QPI is caused by strong lo-
cal impurity potentials. However our real-space results suggest that
even a weak impurity gives rise to telltale patterns in the LDOS that
point to its existence, and that these weak impurities can be easily
identified in real space. The Fourier-transformed maps featuring a
single weak impurity also show rather imperfect correspondence with
experiment—power spectra from STS show far sharper peaks than our
theoretically-obtained maps display. As we will subsequently argue,
the addition of any realistic details to this idealized case will have
the effect of further blurring the sharp features in the Fourier spectra.
The presence of these complicating factors compounds the difficulty
of explaining the sharpness of the octet model QPI peaks as seen in
experiments.

3.3.2 Multiple Weak Pointlike Impurities

The many-impurity case is the next case we will consider. This has in
fact been considered before using either a multiple-scattering T-matrix
approach [196] or exact diagonalization of the Bogoliubov-de Gennes
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Figure 3.7: Real-space LDOS maps for a d-wave superconductor with a 0.5%
concentration of weak pointlike scatterers (V = 0.5) distributed
randomly across the CuO2 plane. The field of view is 100× 100,
and the energies shown are E = ±0.100 and E = ±0.250.

Hamiltonian for small system sizes [14]. Here we take advantage of
the flexibility of the numerical method we use and obtain exact results
for large system sizes. We randomly distribute many weak pointlike
scatterers in our system, and to optimize the correspondence with ex-
perimental results, we take the concentration of such weak scatterers
to be low, with only 0.5% of lattice sites possessing such an impurity.
As in the isolated-impurity case, we take the strength of each impurity
to be V = 0.5.

As in the single-impurity case, the impurities are easily visible in the
real-space images, but in addition we also see stripe-like patterns cov-
ering the entire field of view, which are seen to depend on the energy
(Fig. 3.7). At first glance these look strikingly similar to the real-space
patterns due to QPI seen in the raw experimental data. It is worth not-
ing that the original real-space QPI results were initially misidentified
as stripy charge-density waves. On closer inspection, novel multiple-
scattering effects are seen when impurities get close together, as al-
ready discussed in the literature [15, 195, 196]. For instance, when two
impurities line up such that their diagonal streaks overlap each other
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Figure 3.8: Fourier-transformed maps for a system with a 0.5% concentration
of weak pointlike scatterers (V = 0.5). Shown are energies ranging
from E = ±0.050 to E = ±0.250, along with arrows showing
where the octet wavevectors are expected to be found. The color
scaling varies linearly with energy.

neatly, the streaks constructively interfere and have the effect that they
become more intense.

The Fourier-transformed maps are themselves quite illuminating.
The consequence of the randomness of the impurity positions is that
the Fourier maps show speckle patterns, as demonstrated in Fig. 3.8.
This is just in line with our expectations: the familiar speckle patterns
produced by laser light scattering against a random medium have pre-
cisely the same origin. Not surprisingly, one sees very similar speckle
in the experimental Fourier maps. At these low impurity concentrations,
the outcome is a speckled version of the single-impurity results. This
looks much more like the real data, and the special momenta of the
octet model are by and large still discernible in this case. The peaks
that are prominent in the single-impurity case are similarly visible,
with the difference that there is much more fuzziness present in these
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Figure 3.9: Filtered real-space LDOS maps for a d-wave superconductor with
a 0.5% concentration of weak pointlike scatterers (V = 0.5) dis-
tributed randomly across the CuO2 plane. The field of view is
100 × 100, and the energies shown are E = ±0.100 and E =
±0.250.

regions. However, because this is simply a many-impurity version of
the single weak-scatterer case, this inherits the fact that no large spec-
tral weight is associated with the q4 and q5 wavevectors.

To complete the discussion of the multiple weak-impurity case, we
will include the fork effect, discussed earlier in Section 3.2, and see
whether this leads to dramatic differences in the observed real-space
and Fourier-space maps. In Figs. 3.9 and 3.10 we show plots with
the filtered LDOS for the weak-impurity case. It can be seen that the
impurities are considerably more visible in the filtered real-space maps
than in the unfiltered ones. The patterns in the filtered real-space maps
resemble those found in the bare cases. One takeaway from this case
is that for weak impurities the individual impurities remain visible
whether the fork effect is present or not.

The Fourier transforms of the filtered maps have a number of inter-
esting features. Most of the momenta predicted by the octet model
do show up in the power spectrum, and, notably, the locations of the
peaks are not altered relative to the unfiltered case. This is not sur-
prising, as the fork effect does not alter the dispersion of the Bogoli-
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Figure 3.10: Fourier-transformed filtered maps for a system with a 0.5% con-
centration of weak pointlike scatterers (V = 0.5). Shown are
energies ranging from E = ±0.050 to E = ±0.250, along with
arrows showing where the octet wavevectors are expected to be
found. The color scaling varies with energy.

ubov quasiparticles, so the basic physics of the octet model remains in
place. The main qualitative effect of the fork mechanism is the shifting
of spectral weight from one part of momentum space to another, re-
sulting in some differences from the unfiltered case—but nothing that
results in the complete suppression of peaks expected from the octet
model. The fork effect preserves the special momenta of the octet
model. The shifting of the spectral weight however results in fuzzier
peaks than in the unfiltered case.

The overall effect of the fork mechanism, at least in our simple treat-
ment, is to amplify or suppress portions of the power spectrum with-
out altering the presence of peaks that the octet model predicts will
be present. In this sense the fork mechanism, while indeed a crucial
phenomenon that one must ultimately incorporate in any description
of the tunneling process, plays only a minor role in the overall descrip-
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Figure 3.11: Real-space LDOS maps for a d-wave superconductor with a 0.5%
concentration of unitary pointlike scatterers (V = 10) distributed
randomly across the CuO2 plane. The field of view is 100× 100,
and the energies shown are E = ±0.100 and E = ±0.250.

tion of quasiparticle interference in BSCCO. The issues associated with
the pointlike impurity case sans the fork effect—that the impurities are
visible in real space and that the peaks seen in experiment are sharper
than seen in numerical simulations—remain even when the fork effect
is taken into account. In this sense the issues we discussed require
a resolution beyond simply accounting for filter effects, and require
examining whether the form of disorder we had used—namely, weak
pointlike scatterers—is indeed correct.

3.3.3 Multiple Unitary Pointlike Impurities

For completeness we discuss the case where many unitary pointlike
scatterers are present, especially in relation to the weak-potential case
we previously tackled. Plots are shown in Figs. 3.11 and 3.12. In these
plots we took the many-impurity disorder configuration to be the same
as in the weak case, and we set V = 10. This form of disorder provides
a realistic description of zinc-doped BSCCO, as zinc impurities are
known to behave as unitary scatterers [129].
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Figure 3.12: Fourier-transformed maps for a system with a 0.5% concentra-
tion of unitary pointlike scatterers (V = 10). Shown are energies
ranging from E = ±0.050 to E = ±0.250, along with arrows
showing where the octet wavevectors are expected to be found.
The color scale is the same for all energies

It is worth noting the similarities and differences between the weak-
impurity and unitary-impurity cases. The real-space pictures for both
cases are similar in that the individual impurities themselves can be
easily detected. There is a difference, however: in the unitary case,
the LDOS is heavily suppressed at the impurity site, whereas in the
weak-impurity case it is generally not so. Real-space maps from both
weak- and unitary-scatterer cases feature long-ranged diagonal streaks,
but the modulations for the unitary-scatterer case are much more pro-
nounced than in the weak case. The power spectra of the unitary-
impurity case also display considerable differences from those of the
weak case. While peaks at the same locations and with similar disper-
sive behavior can be observed in both cases, the weights of those peaks
are different. In particular, q1, q4, and q5 are much stronger than in
the weak case, and in fact become the most prominent wavevectors in
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Figure 3.13: Plot of the impurity weight s (defined in Eq. 3.16) versus the
the impurity strength V for E = 0.100 and E = 0.250. Here we
consider a single pointlike impurity located in the center of the
sample.

the power spectrum as energies increase. That said, the Fourier maps
are far noisier than in the weak case, and as a consequence of strong
scattering due to the large size of V, the main feature of the power spec-
trum is a series of diffuse streaks originating from scattering between
points on CCEs. In a manner similar to that of the weak-impurity
case, the peaks corresponding to the octet momenta emerge as the spe-
cial points along these streaks with the highest spectral weight. These
streaks in the unitary case are a considerably more prominent feature
of the power spectrum than in the weak-impurity case.

3.3.4 Dependence of the Power Spectrum on the Impurity Strength

While we have restricted ourselves to the case of pointlike impurities,
our results for weak and unitary impurities suggest that even within
the pointlike model of disorder, qualitatively different behavior can be
observed by varying the impurity strength. One could then ask if it
is possible to identify whether the QPI observed in experiment is due
primarily to unitary or weak scatterers. We will attempt to provide a
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measure that quantifies the impact of the impurity strength V on the
power spectrum.

Our main measurable of interest will be a quantity s, which we dub
the impurity weight and define in the following way:

s(V, E) =
∑q∈BZ |ρ(q, V, E)| − |ρ(q = 0, V, E)|

∑q∈BZ |ρ(q, V, E)| . (3.16)

Here ρ(q, V, E) is the Fourier transform of the LDOS map at energy
E of a d-wave superconductor with a single pointlike impurity with
strength V positioned in the middle of the field of view. As Eq. 3.16

shows, the impurity weight is simply the ratio of the integrated power
spectrum without the q = 0 contribution to the total integrated power
spectrum (i.e., with the q = 0 contribution). ρ(q = 0, V, E) is removed
from the numerator because that contribution is what one obtains
when Fourier-transforming an LDOS map of a spatially homogeneous
d-wave superconductor. The numerator of Eq. 3.16 thus describes only
the contributions of the inhomogeneities to the power spectrum. One
then expects that in the limit where the impurity is very weak, the
power spectrum is dominated by the q = 0 contribution and hence the
impurity weight s is very small. We note that because of the under-
lying lattice the power spectrum is backfolded into the first Brillouin
zone. We consider only unfiltered LDOS maps and their Fourier trans-
forms.

We plot s as a function of V for two representative energies in
Fig. 3.13. We let V vary from V = 0.25 to V = 10, covering the
unitary- and weak-scatterer cases discussed in depth earlier, and con-
sider E = 0.100 and E = 0.250. It can be seen that when the impurity
is weak, s is a small quantity that depends approximately linearly on
V. There is a broad crossover region around V ≈ 2 where s begins to
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Figure 3.14: Real-space LDOS maps for a d-wave superconductor with a sin-
gle smooth-potential scatterer (Vsm = 0.5, L = 4, z = 2) located at
the center of the field of view and off the CuO2 plane. The field
of view is 100× 100, and the energies shown are E = ±0.100 and
E = ±0.250.

increase more slowly with V. For larger values of V corresponding to
unitary scatterers, s does not show any dependence on V and saturates
to a fixed value.

As a tool for potentially identifying the nature of pointlike scatterers
in experiment, the impurity weight is admittedly limited, unless one
already knows this for cuprates that are already firmly identified as
hosting unitary scatterers, such as zinc-doped BSCCO. The main take-
away from these results is that for weak scatterers the impurity weight
is less than for unitary ones. In this light it would be interesting to re-
visit data from BSCCO with and without zinc impurities and calculate
the impurity weight for various bias voltages. One identifying signal
that QPI in BSCCO is caused by weak impurities is an s-value that is
less than that obtained from zinc-doped BSCCO.

3.4 smooth disorder

When one takes into account the chemistry of intrinsic disorder in the
cuprates, it is difficult to justify pointlike disorder as a possible source
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Figure 3.15: Fourier-transformed maps for a system with a single smooth-
potential scatterer (Vsm = 0.5, L = 4, z = 2). Shown are energies
ranging from E = ±0.050 to E = ±0.250, along with arrows
showing where the octet wavevectors are expected to be found.
Only q7 is visible at low energies, while both q1 and q7 can be
seen at higher energies. The color scale is the same for all ener-
gies.

of the effects we study. Since the early history of the high-Tc field,
the prevailing understanding is that the doping mechanism is more
closely related to modulation doping. The cuprate planes are widely
assumed to be chemically very clean. The dopants are located in the
ionic/insulating buffer layers some distance away from the metallic
planes. The dopants are charged impurities which act as sources for
poorly screened Coulomb potentials, which in turn affect the physics
on the CuO2 planes. The overall result is a smooth disorder poten-
tial which is characterized by small scattering wavevectors [130]. In a
similar way, these dopants can also affect the tilting patterns inside the
cuprate planes, and the elastic strain will result in a smooth form of dis-
order as well [42]. Smooth disorder potentials have been invoked in ex-
plaining the apparent discrepancy between the magnitude of the trans-
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port and single-particle lifetimes; the former, which depends heavily
on large-momentum scattering, is much smaller than the latter, and
hence any scattering that occurs is argued to be forward (i.e., small-
momentum) scattering due to impurities located off the CuO2 planes
[2, 172, 3].

Previous theoretical treatments of smooth disorder have been mo-
tivated by bulk measurements [76, 10], but there has been a good
amount of work motivated by STS studies as well [196, 124, 125]. In
particular, Nunner et al. provide a comprehensive treatment of the
Fourier spectra of a single isolated weak smooth scatterer [125]. How-
ever, in general, work on this form of disorder has not been as exten-
sive as that on pointlike disorder, especially in the limit where a very
large number of smooth scatterers are present. Following our treat-
ment of pointlike scatterers, we will first revisit the case of a single
smooth scatterer, first studied by Nunner et al., to provide a picture
of which scattering processes dominate. We will then discuss the con-
squences on the LDOS and the power spectrum when one has a large
number of these impurities in the sample. We will also look at the sen-
sitivity of the power spectrum to changes in the screening length of
Coulomb potentials, especially as such details are not microscopically
known.

Smooth potential scatterers in d-wave superconductors are not quite
as easy to model as pointlike scatterers, due to the fact that one cannot
apply the T-matrix formalism to this form of disorder to obtain the
LDOS. The typical method involves extracting the LDOS directly by
diagonalizing the Bogoliubov-de Gennes Hamiltonian. This has the
restriction that only small systems can usually be accessed. However,
smooth scatterers are easily treated by the numerical method that we
use, with the advantage that we can scale up the system size to better
visualize the LDOS. The flexibility of our method allows us to realisti-
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cally model a smooth disorder potential a la modulation doping. We
model smooth disorder using a screened Coulomb potential arising
from a source located outside the copper-oxygen plane:

V(r) = Vsm
e
−
√

(r−ri)
2+z2

L√
(r− ri)2 + z2

(3.17)

Here ri is the location of the impurity projected onto the CuO2 plane,
z is the distance along the z-axis from the CuO2 plane to the impurity,
and L is the screening length. We will take the potential to be weak,
with Vsm = 0.5, and as a typical case we set z = 2 and L = 4 in units
of lattice constants, so the length scales are small relative to the system
size.

3.4.1 Single Smooth Scatterer

At the single-impurity level, there are already rather drastic differences
between the maps for the smooth scatterer and those for the pointlike
one. Fig. 3.14 shows real-space LDOS maps for a smooth scatterer
for various energies. Note the scale that we used to make the image
clearer—the modulations are much smaller than in the pointlike impu-
rity case. The LDOS is not suppressed above the impurity site, but
is reduced from the clean-limit value only by a small amount. There
is a pattern of crisscrossing diagonal streaks with four-fold rotational
symmetry centered about the impurity site. When one uses the same
scale as we used in the pointlike case to visualize this, these patterns
are quite hard to see.

When one takes the Fourier transform of these LDOS maps, the dif-
ferences from the pointlike case are even more pronounced, as one can
see in Fig. 3.15. Unlike in the case of a pointlike scatterer, the Fourier-
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transformed maps show that only small-momenta scattering processes
contribute to the LDOS modulations. Large-momenta processes are
almost completely suppressed. A closer examination reveals that only
intranodal scattering processes occur in the presence of smooth poten-
tials at low energies. That is, scattering occurs only between states ly-
ing on the same “banana.” This can be seen by looking at the surviving
peaks. For a broad range of energies, only q7—the peak corresponding
to diagonal tip-to-tip scattering along the same “banana”—survives.

With increasing energy, even q7 becomes suppressed. A faint peak
corresponding to q1 begins to appear in the power spectrum, but it is
much less visible than q7 was at lower energies. The spectrum shows
mostly streaks corresponding to small-momenta intranodal processes,
as well as peaks in the horizonal and vertical directions where these
streaks overlap. The mostly incoherent momenta seen in the power
spectrum and the absence of any prominent peaks explain why the
real-space picture is largely featureless. There are no longer any pro-
cesses corresponding to q7 that will give rise to periodic modulations
along the diagonal directions. As in the previous real-space picture,
there is no suppression of the LDOS above the impurity; instead there
is only a small reduction of the LDOS.

The takeaway from the single-impurity case is that impurity-induced
modulations in the LDOS do occur for smooth scatterers, as they do
for pointlike scatterers. The crucial difference is that large-momentum
scattering is absent, thanks to the smoothness of the potential—even
when V(r) is reasonably short-ranged, with a screening length on the
order of a few lattice constants.
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Figure 3.16: Real-space LDOS maps for a d-wave superconductor with a 20%
concentration of smooth scatterers (Vsm = 0.5, L = 4, z = 2)
distributed randomly over the buffer planes adjacent to the CuO2
plane. The field of view is 100× 100, and the energies shown are
E = ±0.100 and E = ±0.250.

3.4.2 Multiple Smooth Scatterers

Now that we have intuition about the single smooth scatterer, we can
discuss the extension to the case with a very large number of such
impurities. We will take the number of smooth scatterers to be 20% of
the total number of lattice sites and randomly place them across the
sample. Real-space and Fourier-transformed plots of one realization
of disorder are plotted in Figs. 3.16 and 3.17.

At low energies the real-space map display stripe-like patterns, fea-
turing modulations in the diagonal directions, which display striking
similiarities to STS measurements of BSCCO. One could form the im-
pression that they look even more akin to the stripy QPI patterns in the
experimental data than what we found for pointlike disorder. More-
over, there is now no discernable sign of the impurity cores. Insofar
as these cores were present (albeit difficult to discern) for the single
smooth-impurity case, they are now washed away by multi-impurity
interference effects at these high concentrations. The absence of clear-
cut indications of the precise locations of the off-plane impurities is
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Figure 3.17: Fourier-transformed maps for a system with a 20% concentration
of smooth scatterers (Vsm = 0.5, L = 4, z = 2). Shown are
energies ranging from E = ±0.050 to E = ±0.250, along with
arrows showing where the octet wavevectors are expected to be
found. Only q7 is visible at low energies, while both q1 and q7
can be seen at higher energies. The color scale is the same for all
energies.

consistent with the experimental results obtained by McElroy et al.,
who find that while the positions of the impurities are indeed corre-
lated with the LDOS in that the areas with LDOS suppression at low
energies (|E| < 60 meV) are likely to be found near the impurities,
this correlation is not by any means perfect [111]. The suppression
of the LDOS does not imply that an interstitial impurity is above that
site; indeed, experiment shows that many regions where the LDOS is
suppressed also occur away from impurity sites.

This similarity to real-space experimental images is deceiving, how-
ever. Like in the case of the single smooth scatterer, the power spec-
trum of the many-impurity map here shows suppression of large-
momentum internodal scattering processes. The main feature of the
power spectrum is a band of wavevectors in the diagonal directions
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Figure 3.18: Plot of the Fourier transforms of smooth potentials (given by
Eq. 3.17) with various screening lengths L, shown for momenta
in the range 0 ≤ |k| ≤ 2π. Inset: semi-log plot of the same quan-
tities. Note that Vsm is adjusted so that V(r = 0) is the same for
all L.

forming a cross in the center of the first Brillouin zone. These arise
from intranodal scattering processes between states on one “banana.”
These diagonal streaks have a length that is set by q7. At low energies,
no peaks in the spectrum arise from internodal scattering.

As in the single-scatterer case, when energies increase, the diagonal
wavevectors become less pronounced in the power spectrum, while
wavevectors in the horizontal and vertical directions become more vis-
ible. It can be seen that instead of a diagonal cross, one now has a
regular cross, with a broad range of wavevectors in the horizontal and
vertical directions now being the dominant characteristic of the power
spectrum. These horizontal and vertical streaks feature a length scale
roughly set by q1. This goes hand-in-hand with the fact that the real-
space map now features vertical and horizontal stripe-like patterns,
instead of diagonal stripes at lower energies. When QPI is the mech-
anism for the appearance of these stripes, it is expected that the ori-
entation of these patterns will change depending on the energy. This
is again different from the case of static stripe order, where stripe pat-
terns remain fixed even when the energy is varied [87].
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3.4.3 Quantifying the Range of the Potential

In hindsight it is clear why the signals for QPI are different for smooth
and pointlike disorder. The observed power spectra are sensitive to
the length scales associated with the disorder potential, since the dis-
tribution of the weight in the Fourier maps is set by the characteristic
wavevectors of the scattering potential. This is seen in Fig. 3.18, which
shows the Fourier transform of the scattering potential V(r) for vari-
ous screening lengths L. In plotting these we varied Vsm in Eq. 3.17 so
that V(r = 0) is the same for different L. It can be seen that for all the
values of L that we consider, the Fourier transform of V(r) features
a very steep dropoff with increasing momentum. The dropoff is most
prominent for bigger values of L, but is also seen for small ones as well.
The Fourier amplitudes at large momenta are larger for small L, but
they still decrease markedly as |k| is increased. As this implies that
the matrix elements of the scattering potential for large momenta are
small, such large-momenta scattering processes will be far less promi-
nent. This explains why, in the power spectra for smooth impurities,
q7 is the only octet-momentum peak visible for low and intermediate
energies—as seen in Fig. 3.4, q7 is the smallest peak for a wide en-
ergy range, and its magnitude falls within the range where the Fourier
transform of the smooth potential is finite. It is interesting to note that
as one moves toward higher energies, q1 becomes small enough for its
magnitude to fall within the aforementioned range of allowed scatter-
ing momenta, and its signals are indeed faintly visible in the power
spectrum. It is however nowhere near as visible at higher energies as
q7 is at lower energies, a fact that can be attributed to coherence fac-
tors that suppress scattering processes between states where the gap
has the same sign. All this is to be contrasted with pointlike disorder,
whose Fourier transform is a constant which depends only on the im-
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purity strength and for which kinematical considerations are the main
determinant of the allowed scattering processes.

By measuring carefully not only the dispersions but also the spec-
tral weights of the peaks in the power spectrum, it should be possible
in principle to get a quantitative estimate of the typical range of the
disorder potential. To the best of our knowledge, this has not been
attempted yet. Here we will attempt to quantify in a simple manner
the dependence of the power spectrum on the screening length of the
Coloumb potential. We introduce a number w that will quantify how
much spectral weight is associated with large-momentum scattering
processes:

w(L, E) =
∑q∈A |ρ(q, L, E)| − |ρ(q = 0, L, E)|
∑q∈BZ |ρ(q, L, E)| − |ρ(q = 0, L, E)| . (3.18)

ρ(q, L, E) is the Fourier map associated with a single smooth scatterer
with screening length L in the center of the field of view, taken at
energy E. As before we will also vary Vsm in Eq. 3.17 so that V(r = 0)
is independent of L. We set z = 2. A in this instance is defined
as the subset of the Brillouin zone centered about the Γ point where
−aπ ≤ qx ≤ aπ and −aπ ≤ qy ≤ aπ, and a < 1. We will set a = 0.4 in
our numerical calculations.

The point of introducing w is that it is simply the ratio of the inte-
grated power spectrum within A (without the q = 0 contribution) to
the integrated power spectrum within the first Brillouin zone (again
without the q = 0 part). If most of the weight in the power spectrum
is associated with small-momentum scattering processes, w should be
close to 1, whereas if more spectral weight is associated with large-
momentum processes, such as in the case of a pointlike scatterer, w
should be small.
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Figure 3.19: Plot of w (defined in Eq. 3.18) versus the screening length L for
E = 0.100 and E = 0.250. Here we consider a single smooth
impurity located in the center of the sample. As discussed in
the text, the value of Vsm is chosen so that V(r = 0) is the same
for all values of L. The two data points at L = 0 correspond to
the values of w obtained for a weak pointlike scatterer (V = 0.5)
and a unitary pointlike scatterer (V = 10) at energy E = 0.100.
The smallness of these values indicates that large-momentum
processes are a prominent part of the power spectra for these
pointlike scatterers.

Fig. 3.19 shows plots of w versus L for energies E = 0.100 and E =

0.250. It can be seen that when L is large (i.e., L > 2), w is large
and saturates to a fixed value with increasing L. This means that in
this regime, the vast majority of the spectral weight is associated with
small-momentum processes. On the other hand, when L is small, w
becomes small as well, implying that the power spectrum hosts more
contributions from large-momentum processes which show up outside
A in the power spectrum. We can see that it is only with very small
values of L that we start to see behavior resembling that of the pointlike
scatterer, in which both small- and large-momentum processes figure
prominently in the power spectrum.

Although a detailed study of weight distributions in experimentally-
obtained Fourier maps has not yet been undertaken, it appears that
the strength of large-momentum scattering, at least as evidenced from
STS experiments, is actually quite large. These experimental results
suggest that disorder is close to the point-scatterer limit. Given what
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Figure 3.20: Real-space LDOS maps for a d-wave superconductor with ran-
dom on-site energies, normally distributed with MV = 0.01. The
field of view is 100× 100, and the energies shown are E = ±0.100
and E = ±0.250.

is commonly believed about the nature of intrinsic disorder in the
cuprates, this is surprising, if not entirely unreasonable. The reason
behind the prominence of the large-momentum peaks in QPI spectra
can be considered alongside the problem of the sharpness of the octet-
model peaks as two of the primary mysteries of the results of QPI.

3.5 spatially random on-site energies

To complete our survey of the effects of various kinds of disorder on
STS results, we now turn to yet one more well-known form of disorder:
a random and uncorrelated distribution of on-site energies throughout
the sample. This is the form of disorder that underlies Anderson lo-
calization in metals. Because we do not have isolated impurities in
this case, with the on-site energies varying from one site to another
and numerous multiple-scattering processes occurring as a result, the
T-matrix method cannot be easily applied to this problem to obtain
the LDOS. In contrast, the numerical method we use here allows us to
obtain LDOS maps directly and efficiently.
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Figure 3.21: Fourier-transformed maps for a system with random on-site en-
ergies, normally distributed with MV = 0.01. Shown are ener-
gies ranging from E = ±0.050 to E = ±0.250, along with arrows
showing where the octet wavevectors are expected to be found.
The color scaling varies linearly with energy.

To be more specific, on each site we have a random perturbation VR

in addition to the spatially uniform mean-field chemical potential µ.
In other words the on-site potential at site r is given by the sum µ +

VR(r). For simplicity we will take VR(r) to be drawn from a Gaussian
distribution with the following properties:

〈VR(r)〉 = 0, (3.19)

〈VR(r)VR(r′)〉 = M2
Vδrr′ . (3.20)

Here the angular brackets denote averaging over disorder realizations.
The width of the distribution is parametrized by the standard devia-
tion MV ; we will use this to characterize the strength of the disorder
potential.
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Why do we pick this form of disorder? From our previous discus-
sion of pointlike and smooth potential disorder, it is clear that in order
to reproduce both the real-space and Fourier-transformed results from
STS measurements, one must have both real-space maps that simu-
lateneously have LDOS modulations and feature no obvious signs of
impurity cores; and power spectra that show peaks arising from in-
ternodal and intranodal scattering. Here the random-potential model
could sidestep the difficulties faced by our previous hypothesized sce-
narios. First, if we pick our distribution to be sufficiently narrow (and
hence weak), there is the possibility that we could have real-space mod-
ulations without having visible impurity cores that arise from isolated
potential perturbations, as was the case in the pointlike case we dis-
cussed earlier. Second, this form of disorder, similar to the pointlike
scatterer, is short-ranged. This would then not have the suppression
of internodal scattering that is a feature of smooth potential disorder
with finite correlation length. As a result it could potentially feature
both small- and large-wavevector peaks in the power spectrum. A sim-
ilar form of random on-site disorder was considered by Atkinson et al
[14].

To check whether these expectations are ultimately borne out, we
numerically obtain real-space and Fourier-transformed maps for one
realization of random on-site disorder. We make disorder weak by
setting the width of the distribution to be narrow. The results are
plotted in Figs. 3.20 and 3.21.

The real-space maps feature as before modulations whose structure
can be discerned, but not to a similar extent as the pointlike- or smooth-
scatterer cases. In this particular scenario one cannot tell whether an
impurity is present or not—the signatures we have come to expect
from the isolated pointlike impurity are not present here at all. In-
stead what we have are modulations, primarily in the diagonal direc-
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tions, with a crisscrossing pattern slightly similar to that found in the
smooth-disorder case. Unlike in the smooth scatterer case, however,
the stripe-like patterns are far more subdued. The maps obtained here
look very similar to those taken from STS experiments.

This is shown even more so by the Fourier-transformed maps. We
see that both small- and large-momentum scattering processes con-
tribute to the observed QPI, as evidenced by peaks at small and large
diagonal wavevectors. Interestingly, the power spectrum is very simi-
lar to that of the multiple-weak-impurity case. In particular, q2, q3, q6,
and q7 are strongly present, whereas signals of the three remaining
q-vectors are quite weak. This can be attributed to the fact that, in
the superconducting state, coherence factors enter into the scattering
amplitude [182, 133]. For scattering off of a weak potential, it turns
out that the matrix element between two states with momenta k1 and
k2 contains a factor

uk1 uk2 − vk1 vk2 , (3.21)

where

uk = sgn(∆k)
√

1
2 (1 +

εk
Ek
), (3.22)

vk =
√

1− u2
k . (3.23)

This implies that if ∆k1 and ∆k2 have the same sign, the k1 → k2 pro-
cess will be suppressed. Conversely, whenever ∆k1 and ∆k2 have the
opposite sign, that process will not be suppressed. This explains why
the q2, q3, q6, and q7 wavevectors—which connect states at which the
values of the order parameter have opposite sign—are not suppressed,
while the remaining ones are.

The possibility that one can have the Fourier-space signatures of QPI
while having some qualitative similarities between the theoretical and
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Figure 3.22: Real-space LDOS maps for a d-wave superconductor with ran-
dom pairing amplitudes, normally distributed with M∆ = 0.01.
The field of view is 100 × 100, and the energies shown are
E = ±0.100 and E = ±0.250.

experimental real-space images suggests that this form of disorder—
weak, narrowly distributed random potential disorder—can be respon-
sible for the physics observed in the STS measurements. Having said
this, the peaks in the power spectrum resulting from this form of
disorder exhibit the same form of fuzziness as in the weak-impurity
scenario. Also, the relative suppression of certain octet-model peaks
suggests that even with this form of disorder, the same questions that
affect the weak-impurity case affect the random site-energy model as
well.

3.6 spatially random superconducting gap

STS measurements have demonstrated that the superconducting order
parameter is in fact inhomogeneous [95, 45, 111]. It is then worthwhile
to ask whether gap disorder could also be responsible for QPI. In this
section we will consider the case of a d-wave superconductor with
disorder only in the gap; we keep all other parameters (hoppings and
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Figure 3.23: Fourier-transformed maps for a system with random pairing am-
plitudes, normally distributed with M∆ = 0.01. Shown are ener-
gies ranging from E = ±0.050 to E = ±0.250, along with arrows
showing where the octet wavevectors are expected to be found.
Note that only three peaks—q1, q4, and q5—are visible. The
color scaling varies linearly with energy.

chemical potential) at their mean-field values. This ensures that we can
identify the defining characteristics of QPI from pure gap disorder.

We will assume the simplest model for disorder in the gap that pre-
serves the purely d-wave nature of the superconductor. Here only the
nearest-neighbor pairing terms are disordered. The pairing amplitude
between nearest-neighbor sites r and r′ is of the form ∆0,rr′ + ∆R,rr′ ,
where ∆0,rr′ is the mean-field pairing amplitude and ∆R,rr′ is a random
variable taken from some distribution. Like the random-potential case
earlier, we assume that ∆R,rr′ is normally distributed, with zero mean
and a standard deviation M∆, and, importantly, we will assume that
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the value of ∆R,rr′ at one link (r, r′) is independent of ∆R,ss′ at any other
link (s, s′). More precisely,

〈∆R,rr′〉 = 0, (3.24)

〈∆R,rr′∆R,ss′〉 = M2
∆(δrsδr′s′ + δrs′δr′s), (3.25)

for any two nearest-neighbor links (r, r′) and (s, s′). This form of
gap disorder is short-ranged and as such should give rise to large-
momentum scattering. It should be noted that gap maps from STS
measurements do show that the gap variations in space obey a bell-
curve-like distribution [45], which justifies to some extent this choice
of distribution.

Plots for this form of gap disorder are shown in Figs. 3.22 and 3.23.
We take M∆ to have a value comparable to that of MV discussed earlier,
so both perturbations are of similar size. The real-space maps exhibit
LDOS modulations that are sharper and more noticeable than in the
random-potential case. There are stripe-like patterns with streaks in
the vertical, horizontal, and diagonal directions. The patterns get far
more pronounced with increasing energy. The maps for this case show
a marked resemblance to that arising from smooth scatterers, but show
considerably more structure in that modulations for more directions
are present here than in the smooth-scatterer scenario. There is no
signature akin to the single pointlike impurity of a localized center
of the LDOS modulations. In this sense the results from pure gap
disorder match closely real-space maps from experiment.

Like the random-potential case, wavevector peaks corresponding to
large-momenta scattering processes are present. It is worth noting that,
unlike the unitary pointlike scatterer and random-potential cases, only
three peaks appear in the power spectrum: q1, q4, and q5. This is be-
cause of the fact that scattering due to weak gap disorder involves only
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processes connecting states at which the order parameter has the same
sign [125, 135, 176]. Out of the seven wavevectors, only the three afore-
mentioned ones correspond to such scattering processes. Curiously,
these three momenta are precisely the same ones that are suppressed
in the random-potential case. At larger energies, these peaks become
more prominent, paralleling the progression in the real-space picture,
where the modulations become more and more apparent with increas-
ing energy.

In attributing QPI partially to gap disorder, however, we stress some
caution. Our model of disorder involves an order parameter that varies
over a length scale of one lattice constant. However, experimentally ob-
tained gap maps show that this is generally not the case. These gap
maps feature domains. The average value of the gap from one domain
to another can change drastically, but the gap varies slowly within a
domain [95]. While the steep change in the gap as one moves from
one domain to another is captured well by our simple model, the near-
constant nature of the gap within one domain is not. Thus the precise
interplay between the smoothness of the gap within a domain and the
sharp shifts in the gap from one domain to another cannot be seen
from our simple model. Smooth gap disorder would have a similar
effect as smooth potential disorder in suppressing large-momentum
scattering, and thus a realistic model would very likely feature power
spectra dominated by small-momentum process. That said, the prob-
lem of modeling the gap inhomogeneities accurately, incorporating
both the inter-domain sharpness and intra-domain smoothness of the
gap, is an interesting problem for future work.
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3.7 discussion and conclusion

By utilizing the powerful real-space Green’s function method intro-
duced earlier, it is possible to study, in a systematic manner and with
large fields of view, the consequences of various forms of distributed
disorder on the physics of quasiparticle scattering interference. We
made use of the standard method of modeling the low-energy elec-
tronic excitations deep in the d-wave superconducting state. In ad-
dition we also looked at the effects of proposed nontrivial tunneling
processes that are potentially of relevance to STS experiments in the
cuprates.

Much of the established intuition regarding the physics of QPI is
based on results for a single impurity. When one considers a random
distribution of such impurities, however, one deals with the problem
of wave interference in a finite-sized random medium. The intuitive
expectation is that speckle patterns are formed in the Fourier maps,
and this is precisely what we find.

In the case of a low concentration of impurities with short-ranged
potentials, the main difference from the single-impurity case is that the
already-diffuse Fourier maps associated with a single impurity turn
into speckle patterns that follow closely the weight distribution of the
former. This underlies the intuition that the observed QPI can mostly
be understood solely on the basis on single-impurity theory. Even
in the case of distributed random disorder, in which there is no clear,
well-defined sense of an isolated impurity, this correspondence with the
single-impurity results can be observed clearly. This can be best seen
in the case of Gaussian on-site potential disorder, whose power spectra
resemble those of the weak single- and multiple-impurity cases.

The real-space patterns exhibit the characteristic energy-dependent
stripe-like interference patterns which are also seen in the raw exper-
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imental data. However, upon examining our results more quantita-
tively, we detect problems that suggest that the present way of inter-
preting STS experiments may have serious deficiencies. The problem
is that the experimental QPI peaks are characterized by a sharpness
in momentum space that cannot be reproduced with standard meth-
ods of modeling STS experiments, including ours. In the experimental
maps, the seven sharp peaks can be discerned and in fact be tracked
over a large range of energies. These seven peaks are found to disperse
in accordance with the predictions of the octet model. The best-case
theoretical scenario is the case of a low concentration of weak pointlike
impurities, but even here matching our numerically obtained Fourier
maps to those obtained from experiment becomes a stretch. The case
of a single weak impurity in fact already demonstrates this problem:
in addition to peaks, one sees continuous streaks arising from scatter-
ing between points on CCEs, whose spectral weight is only enhanced
at momenta at the special “tip-to-tip” processes. In other words, the
peaks in the cases we consider are not observed to be as prominent as
in experiment—they happen to be the points which possess the largest
spectral weight along the streaks corresponding to scattering between
CCEs. When one goes beyond this single-scatterer paradigm and con-
siders other, more general forms of distributed disorder, this sharpness
is further reduced.

This is an exceptional circumstance. One usually expects that ide-
alized models like ours will produce outcomes that are sharper than
experimental data. The incorporation of the most general forms of
disorder, which we implement in this work, should have the effect of
adding fuzziness in the Fourier-space picture. In our models we ig-
nore complicating factors such as frequency-dependent self-energies
that could alter the picture for larger energies. Given the relative lack
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of complications present in our models, this inability to reproduce the
sharpness of experimental data is puzzling.

The outcomes of our simulations for many weak pointlike scatter-
ers are perhaps the closest approach to experiment. However, taking
these as an explanation is problematic since no impurity cores are seen
in experiment. The case of many unitary pointlike scatterers is even
more rife with problems because in this case impurity cores are much
more visible and the strong scattering processes preclude the forma-
tion of prominent peaks in the power spectra, showing instead very
fuzzy streaks corresponding to inter-CCE scattering. As a next case,
there are very good reasons to believe that the intrinsic disorder in
cuprates is of a smooth kind. The CuO2 planes themselves are quite
clean, lacking disorder from doping, while the chemical sources of dis-
order are located in the insulating buffer layers located some distance
away form the superconducting perovskite planes. Our simulations of
smooth disorder show that the large-momentum peaks are suppressed,
owing to the fact that in the Fourier decomposition of the screened
Coulomb potential the large-wavevector components have very small
amplitudes. Our results seem to suggest that in order to reproduce the
overall weight distribution seen in the experimental Fourier maps, one
needs local, pointlike potentials. This is quite puzzling given what is
now known about the chemical composition of the cuprates.

Disorder in the form of randomly distributed on-site energies is an-
other scenario that gives rise to real- and Fourier-space maps that are
very similar to those found in experiment. These are found to result in
modulations in the LDOS without the presence of visible impurities,
and power spectra for this form of disorder show peaks that originate
from large-momentum scattering processes. The caveat with this form
of disorder however is that, like the many-weak-impurity scenario, not
all of the peaks are visible in the Fourier maps. We finally note that
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as compelling an explanation as this is for the patterns seen in exper-
imental data, it is difficult to argue from microscopic considerations
why this form of disorder should exist—unlike pointlike and smooth
disorder, whose possible origin in the cuprates can at least be justified
on the level of chemistry.

We also examined in some detail the influence of gap disorder in the
LDOS maps, using a simple model of gap inhomogeneities. It is well-
established that in the cuprates, especially the underdoped ones, the
gap magnitude is quite inhomogeneous, varying by a large amount in
space. Our calculations show that this form of disorder scatters the Bo-
goliubov quasiparticles efficiently, generating a distinctive power spec-
trum and visible real-space patterns. These results suggest that gap
disorder could potentially generate QPI as well. However, it is also
known from experiment that this form of disorder is characterized by
a short-distance cutoff scale on the order of the coherence length ∼ 3
nm [95, 45, 75]. Gap disorder is therefore a smooth form of disorder,
and its effect should thus be similar to that of smooth potential disor-
der.

What is the origin of this trouble? One possibility is that the physics
underlying QPI in the cuprates is completely different from the stan-
dard explanation, which is centered on the quantum-mechanical scat-
tering of Bogoliubov quasiparticles against quenched disorder. One
could contemplate exotic possibilities involving the formation of real
bound states at the special momenta of the octet model—the most ob-
vious way to obtain sharp quantization in momentum space. However,
we think that this is far-fetched. Direct, independent evidence for the
presence of coherent Bogoliubov quasiparticles with a d-wave disper-
sion exists from angle-resolved photoemission spectroscopy. Moreover,
the octet model is qualitatively highly successful in relating the dis-
persions from QPI to measured dispersions from ARPES. A concrete
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possibility that builds on the scattering picture of QPI is that nematic
quantum-critical fluctuations strongly enhance the amplitudes of the
peaks [86, 85]. We suspect that the culprit is the tunneling process it-
self. On a quantitative level this is sensitive to the details of the micro-
scopic electronic structure. Recent first-principles work demonstrates
this vividly [93]. Kreisel et al. find nontrivial effects arising from micro-
scopic details, such as the enhancement of large-momentum peaks in
the power spectrum. Similarly, it may well be necessary to study dis-
order in a much more microscopic manner in order to capture the way
it affects the microscopic intra-unit cell electronic structure [176]. We
envisage that it may become possible to extract from such precise mod-
eling of the microscopic tunneling process effective, coarse-grained
models which can then be studied in the most general disordered case
using the methods we have used in this work. The overarching mes-
sage is that there is in all likelihood more to the beautiful STS images
than meets the eye.

3.a appendix : single unitary pointlike scatterer

In this section we will briefly discuss the case of a single unitary point-
like scatterer. For reasons discussed in depth in the main text, this is
not physically relevant for the experimental data we wish to revisit.
That said, these are not unphysical—zinc impurities in BSCCO are an
example of non-magnetic unitary scatterers, for instance. While QPI
in clean cuprates is most likely caused by far weaker impurities, the
properties of unitary pointlike scatterers are sufficiently different from
those of weak ones that it is worth spending a few words delineating
some of these differences.
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Figure 3.24: Real-space LDOS maps for the single unitary pointlike scatterer
case. Here an isolated pointlike impurity (V = 10) is placed in
the middle of the sample. The field of view is 100× 100. Shown
are maps corresponding to energies E = ±0.100 and E = ±0.250.
Inset: a close-up view of the impurity.

In Figs. 3.24 and 3.25 we plot real-space and Fourier-transformed
maps for a single strong impurity embedded in the middle of the
sample. We take V = 10, ensuring that the impurity is a unitary
scatterer. The real-space maps are qualitatively similar to those of the
weak-impurity case. In both cases the impurity cores can easily be dis-
cerned. The main difference between the unitary- and weak-scatterer
cases is that the LDOS at the unitary-impurity site is almost completely
suppressed. Recall that in the weak-impurity case, the LDOS at the im-
purity site is finite.

The second noteworthy feature of the unitary scatterer is apparent
in the Fourier-transformed maps. Because the potential is so strong,
scattering between any two points lying on CCEs is allowed, resulting
in very prominent streaks in the power spectrum. Many of the peaks
from the octet model can be seen, similar to the case of the weak scat-
terer. However, the peaks that are most prominent here differ from
those seen in the weak-scatterer case. Observe that when energies be-
come high, q2, q6, and q7 become less visible. Streaks near the corners
of the first Brillouin zone corresponding to internodal scattering re-

94



3.A appendix : single unitary pointlike scatterer

1

2

3

45

6

7

E = -0.250

0 0.5 1.0 1.5 2.0

1

2

3

45

6

7

E = -0.200

0 0.5 1.0 1.5 2.0

1

2

3
45

6

7

E = -0.150

0 0.5 1.0 1.5 2.0

1

2

345 6

7

E = -0.100

0 0.5 1.0 1.5 2.0

1
2

3
45

6

7

E = -0.050

0 0.5 1.0 1.5 2.0

1
2

3
45

6

7

E = 0.050

0 0.5 1.0 1.5 2.0

1

2

345 6

7

E = 0.100

0 0.5 1.0 1.5 2.0

1

2

3
45

6

7

E = 0.150

0 0.5 1.0 1.5 2.0

1

2

3

45

6

7

E = 0.200

0 0.5 1.0 1.5 2.0

1

2

3

45

6

7

E = 0.250

0 0.5 1.0 1.5 2.0

Figure 3.25: Fourier-transformed maps for the single unitary pointlike scat-
terer case, with V = 10. Power spectra for both positive and
negative bias voltages are shown for energies ranging from
E = ±0.050 to E = ±0.250. Arrows indicate where the peaks
corresponding to the characteristic momenta of the octet model
show up in the upper-right quadrant. The color scale is the same
for all energies.

mains very prominent, but a peak at q3 is not as visible as it is in the
weak-impurity case. In contrast, q1, q4, and q5 become far more vis-
ible and in fact become the most dominant wavevectors in the power
spectrum. It is interesting to note that q4 and q5 are barely visible in
the weak-impurity case; this can be attributed to the presence of coher-
ence factors that suppress the amplitudes of these scattering processes
[182, 133].
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Q U A S I PA RT I C L E D E N S I T Y O F S TAT E S ,
L O C A L I Z AT I O N , A N D D I S T R I B U T E D D I S O R D E R I N
T H E C U P R AT E S U P E R C O N D U C T O R S

4.1 introduction

Disorder in the high-Tc superconductors has motivated many key ex-
perimental and theoretical advances in the field. Scanning tunneling
spectroscopy (STS) has made wide use of the phenomenon of quasi-
particle interference, which results from the presence of disorder, to
provide a real-space probe of the underlying electronic nature of the
cuprates [70, 112, 90, 99, 182, 25, 196, 125, 176, 93, 161]. On the the-
ory side, the d-wave nature of the cuprate superconductors provided
the impetus for various theoretical treatments of disorder which led
to a number of differing and often contradictory predictions. Early
theoretical work utilized a self-consistent treatment of disorder, which
was found to result in a finite quasiparticle density of states (DOS)
at the Fermi energy [54, 68, 100, 39]. Later work has shown within
a similar diagrammatic approach that the DOS, in the most generic
case, is suppressed [187, 67]. Other field-theoretical treatments of dis-
order in d-wave superconductivity found a vanishing DOS at E = 0
[118, 156, 155, 10]. The manner in which the DOS vanishes as E → 0
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varies from approach to approach, with exponents found to be either
universal or disorder-dependent.

Meanwhile, experiments performed on YBa2Cu3O6+δ consistently
show a T-linear term in the specific heat at zero magnetic field, which
points to a nonvanishing DOS at E = 0 [115, 116, 144]. How this
nonzero DOS arises has been the subject of much speculation. Accord-
ing to standard self-consistent T-matrix theory, which assumes that
impurities are located within the copper-oxide planes, this contribu-
tion is expected. It is interesting to note, however, that this T-linear
term in YBCO persists even with very clean samples, prompting a
number of exotic explanations, such as loop-current order coexisting
with d-wave superconductivity [21, 4, 88, 181], which give rise to a fi-
nite DOS without invoking disorder. For Bi2Sr2CaCu2O8+δ, the story
is a bit more complicated: it appears that no definitive evidence in fa-
vor of or against a zero T-linear coefficient exists, and what is present
instead is considerable variation in the measured values of this coeffi-
cient . For BSCCO-2212 at low temperatures, it was found that that the
coefficient is small but finite and measurable [30, 80]. However, other
experiments, performed at higher temperatures, find no discernible ev-
idence in BSCCO-2212 for a coefficient on the same order as found in
YBCO [167]. The results for the BSCCO family suggest that the cleaner
the sample is, the smaller the T-linear coefficient becomes, with a large
degree of variation present.

Given such a wide array of evidence suggesting that high-temperature
superconductors do display a finite zero-energy quasiparticle DOS and
the lack of any confirmation of alternative explanations, it is worth re-
visiting the effect of disorder, especially when incorporating inhomo-
geneities in the cuprates that do not fall under the random-site-energy
or multiple-point-impurity categories. Previous numerical work has
extensively focused on pointlike impurities and random on-site ener-
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gies. In particular, Atkinson et al. found that for realistic models (i.e.,
without a particle-hole symmetric band) with these two forms of disor-
der, the quasiparticle DOS becomes suppressed near E = 0 [14]. They
point out that a constant DOS, as seen in experiment, cannot arise from
either of these two disorder models.

In any case, what is known about the cuprates makes it difficult to
argue that pointlike disorder is a possible origin of the finite DOS at
the Fermi energy. The consensus regarding the CuO2 planes is that
they are generally clean. Pointlike disorder necessarily takes the form
of dopants within the CuO2 plane. Such substitutions will give rise
to strong pointlike potentials. The most dramatic case of this is zinc-
doped Bi2Sr2CaCu2O8+δ, in which a small number of zinc atoms take
the place of copper ones; STS studies of Zn-doped BSCCO show that
the zinc impurities show behavior consistent with that of unitary scat-
terers [129]. In contrast, STS studies of clean cuprates do not show
such strong local impurities, and the conductance maps obtained from
such materials are more consistent with far weaker forms of disorder
[70, 111, 150]. More reasonable is the expectation that impurities lie in
the buffer layers adjacent to the CuO2 planes [42, 124, 126]. As they
are located in an insulating layer some distance from the CuO2 plane,
they act as a source of an electrostatic potential which, in contrast to
local pointlike potentials, is smooth. These smooth potentials lead to
small-momentum scattering processes. It is then worth examining the
imprint of such smooth forms of disorder on the DOS.

In this chapter, we obtain the quasiparticle DOS of a two-dimensional
d-wave superconductor subject to various kinds of disorder: pointlike
disorder, random on-site disorder, and smooth disorder. We utilize an
exact real-space numerical method that allows for the evaluation of the
local density of states of a disordered system with very large system
sizes (a typical calculation involves 100,000 sites). The same geome-
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try of the system also enables the direct calculation of the localization
length, which is a quantity that is difficult to extract from the exact
diagonalization of small systems, given the large length scales over
which localization occurs. An important feature of this work is its
use of realistic band-structure and pairing parameters. As our method
faces no difficulties with large system sizes, we do not need to resort to
making the d-wave gap articially large in order to sidestep finite-size
effects in related methods like exact diagonalization, and we can thus
make the parameters of our lattice d-wave superconductor as close as
possible to the real-world properties of the cuprates. Before proceed-
ing, however, we warn the reader that our numerical results apply
strictly to purely two-dimensional systems, as any interlayer coupling
affects the ensuing DOS at the Fermi energy [67].

For pointlike and random-site-energy models, we find that weak
disorder—whether in the form of a low concentration of strong scat-
terers or a narrow distribution of on-site energies—leads to a vanishing
DOS at the Fermi energy. It is only when unrealistic levels of disorder
are reached that a finite DOS is generated, and even then there is an
observed suppression at E = 0. We observe that the manner in which
the d-wave gap “fills” differs depending on whether one has random-
potential or unitary-scatterer disorder. With smooth disorder, however,
a finite DOS at the Fermi energy is generated at fairly realistic concen-
trations (around 10-20%) and, strikingly, the overall structure of the
d-wave DOS is preserved for all energies even at high dopings.

We also perform an exact calculation of the localization length λ and
its dependence on the strength of disorder for the three different kinds
of disorder we consider. We find that states near the Fermi energy are
strongly localized for all three models—even for weak disorder—and
that at intermediate and high energies within the d-wave gap the local-
ization length is generally found to be very large for low disorder. It is
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worth noting that even with a high concentration of smooth scatterers,
the localization length at intermediate and high energies is still very
large and comparable to that seen in much lower levels of disorder in
the random-potential and unitary-scatterer case, indicating that local-
ization effects due to smooth disorder are far weaker than in the case
of pointlike disorder. Unitary scatterers in turn have a weaker effect
on the localization length than random-potential disorder does.

Finally, we comment on the nature of disorder in the cuprates based
on what is known from specific heat experiments, scanning tunneling
spectroscopy, and numerical simulations. We caution the reader that
a major limitation of our study is that the gap is not computed self-
consistently, so we cannot ascertain with any definiteness whether the
effects of disorder that we detail here are preempted by the destruction
of d-wave superconductivity once some level of disorder is reached.
Incorporating full self-consistency in the real-space numerical method
we use is technically difficult, especially when the system size is large.
This difficulty is a part of a tradeoff we make in order to access large
system sizes. That said, exact-diagonalization studies on d-wave su-
perconductors with unitary scatterers, using small system sizes, find
that the superfluid density of the uniform-gap case and that of the self-
consistent-gap case behave very similarly to each other, except when
the concentration is sufficiently large [48]. Tc in turn was found to be
much less suppressed in the self-consistent case than in the uniform-
gap case. It was found that while in the uniform-gap case p ≈ 8.0%
almost completely suppresses Tc, in the self-consistent case such sup-
pression occurs at nearly twice that level of disorder. This means that
the uniform-gap picture in fact overstates the impact of disorder on the
suppression of Tc and the superfluid density. This is augmented by
the fact that, in other exact diagonalization studies, self-consistency
does not fundamentally alter the structure of the DOS of the random-
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potential and unitary-scatterer cases [13, 14, 194]. For certain param-
eter regimes it appears that the DOS for self-consistent and non-self-
consistent order parameters are identical. In other regimes, the DOS is
smoother and features more pronounced suppression near the Fermi
energy in the self-consistent case than in the non-self-consistent one,
while remaining similar to each other in other energy ranges. All of
this suggests that what we find from our uniform-gap systems pro-
vides a good baseline for ascertaining the effects of site disorder on
the cuprates, and very likely overestimates the pair-breaking effects of
disorder. We defer a fully self-consistent treatment of these three kinds
of disorder and their pair-breaking effects to a future publication.

4.2 methods

We start with a tight-binding Hamiltonian describing electrons hop-
ping on a square lattice with d-wave pairing:

H = −∑
〈i,j〉

∑
σ

tijc†
iσcjσ + ∑

〈i,j〉
∆∗ijci↑cj↓ + ∑

〈i,j〉
∆ijc†

i↑c
†
j↓. (4.1)

Nearest-neighbor and next-nearest-neighbor hoppings are both present,
as is d-wave pairing, implemented by choosing the pairing amplitude
to have the form ∆ij = ±∆0, where the positive (negative) value applies
to pairs of nearest-neighbor sites along the x- (y-) direction. From the
Hamiltonian, the Green’s function takes the following expression:

G−1(ω) = ω1− H. (4.2)

Note that H and G are 2Nx Ny × 2Nx Ny matrices written in Nambu-
space form, where Nx and Ny are the number of lattice sites in the x-
and y-directions, respectively. From G(ω), various quantities can be
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obtained. We will focus on the quasiparticle density of states and the
localization length.

4.2.1 Quasiparticle Density of States

The quasiparticle DOS at energy E is

ρ(E) = − 1
πNx Ny

ImTrG(E + i0+). (4.3)

Periodic and open boundary conditions are implemented in the y- and
x-directions, respectively. To compute G, we first rewrite G−1 in the
following block tridiagonal form:

G−1 =



P1 Q1 . . . 0
Q†

1 P2 Q2
. . . . . . . . .

... Q†
j−1 Pj Qj

...
. . . . . . . . .

Q†
Nx−2 PNx−1 QNx−1

0 . . . Q†
Nx−1 PNx


. (4.4)

The Pi blocks are 2Ny × 2Ny submatrices and contain in their diagonal
elements the frequency ω and the on-site energies at sites located on
the ith slice of the system, where i runs from 1 to Nx, in addition to
hopping and pairing amplitudes between sites within the ith slice. The
Qi blocks—also 2Ny × 2Ny submatrices—meanwhile contain hopping
and pairing amplitudes from the ith slice to its nearest-neighbor slices.
Note that the Nambu-space structure of the Green’s function has been
transferred to the Pi and Qi blocks.

103



quasiparticle density of states , localization. . .

Because all we need is the trace of G to obtain the DOS, it suffices
to obtain the diagonal blocks of G. For this purpose we use a block-
by-block matrix-inversion algorithm that applies to block tridiagonal
matrices [52, 69, 143]. We first define auxilliary matrices Ri and Si in
the following way:

Ri =

Qi(Pi+1 −Ri+1)
−1Q†

i if 1 ≤ i < Nx

0 if i = Nx

(4.5)

and

Si =

0 if i = 1

Q†
i−1(Pi−1 − Si−1)

−1Qi−1 if 1 < i ≤ Nx.
(4.6)

Once Ri and Si have been computed, the ith diagonal block of G can
be obtained straightforwardly from the following expression:

Gii = (Pi −Ri − Si)
−1. (4.7)

We note that this procedure is exact and relies on no approximations.
We set Nx = 1000 and Ny = 100 in all calculations.

To ensure the applicability of our numerical results to the cuprates,
we use a band structure that is consistent with the details known
about the normal-state Fermi surface of such materials: t = 1, t′ =
−0.3, and µ = −0.8, where t, t′, and µ are the nearest-neighbor hop-
ping, next-nearest-neighbor hopping, and the chemical potential, re-
spectively. We note that our parametrization of the Fermi surface is
limited as higher-order hopping amplitudes are not included, but this
simple form of the band structure still captures the important general
features of the Fermi surface of the cuprates. We choose the pairing
amplitude to be ∆0 = 0.08; this choice gives vF/v∆ ≈ 11, in good
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agreement with experiment [178]. (All energies are expressed in units
where t = 1.) An inverse quasiparticle lifetime given by η = 0.001 is
used throughout this work. This smears out the Dirac delta function
peaks δ(E − En), where En is an eigenvalue of H, into a Lorentzian,
1
π

η
(E−En)2+η2 , whose full width at half maximum is 2η. Because the

DOS of a clean d-wave superconductor with this particular band struc-
ture is nonzero up to energies E ≈ ±6t, this choice of broadening
roughly corresponds to introducing O(103) bins for the entire energy
range. As there are 2× 105 eigenvalues of the Hamiltonian, this pro-
vides more than adequate resolution for the examination of the DOS
as a function of energy. Note that this value of η is parametrically
much smaller than the energy resolution seen in scanning tunneling
experiments (which are typically found to be 2 meV) [196]. Such val-
ues of the broadening already incorporate the effects of disorder, so in
order to tease out the impact of disorder on the DOS we need to pick
a much smaller value of η than seen in experiment.

The advantage of this particular method of obtaining the exact DOS,
as opposed to similar methods such as the exact diagonalization of the
Bogoliubov-de Gennes Hamiltonian, is threefold. First, this method
is much faster in obtaining the DOS than exact diagonalization. As
the DOS involves taking the trace of the Green’s function, only the
diagonal elements of G are needed, which are precisely the quantities
outputted by the algorithm in use here. Second, this method can be
extended to very large system sizes. The computational complexity
depends only linearly on Nx, and consequently the size of that dimen-
sion can increased without much trouble. Importantly, the large sizes
that are accessible mean that the need to average over different disor-
der configurations is largely obviated—a single realization of disorder
results in 105 values of the local density of states to be averaged over—
and hence for the most part we will focus only on a single realization
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of disorder for each of the cases we will consider. This makes much
sense from a modeling viewpoint, especially as in experiment only one
realization of disorder is present for a measurement. Finally, as finite-
size effects are minimal, we are free to set the hopping and pairing
parameters to correspond closely to those known from experiment. In
exact diagonalization, the smallness of the system sizes typically used
means that in order to visualize the spectrum fully one is occasionally
faced with the need to make ∆0 artificially large, so that within-gap
physics are seen with the energy resolution available. In the method
we use no such workarounds are necessary.

The only disadvantage of this method is that self-consistency is very
difficult to implement in an efficient manner. In a fully self-consistent
treatment the order parameter is iteratively determined via an integral
of the anomalous Green’s function over a range of energies. Conse-
quently, in energy space the Green’s function needs to be evaluated
over a finely spaced array of points over the full bandwidth for the nu-
merical integral to be accurate, and this process has to be repeated for
an unspecified number of times until self-consistency is achieved. The
full bandwidth is several times larger than the d-wave gap; hence the
amount of computational effort required to perform this self-consistent
calculation for even one realization of disorder becomes very large and
uncontrollable. (This has to be contrasted with exact diagonalization,
from which one obtains all the eigenvalues and eigenvectors of the
Hamiltonian at once. The gap can then be computed in terms of the
eigenvectors once one diagonalization has been completed. While this
method is restricted to very small geometries, it is nonlocal in energy
space, and thus implementing self-consistency is much easier.) As
we have noted in the Introduction, evidence from previous numerical
studies of lattice d-wave superconductors with strongly pair-breaking
unitary scatterers suggests that self-consistent and non-self-consistent
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results are not drastically different from one another. We will thus
take the results from our uniform-gap systems to provide a reasonable
account of the effects of disorder on the various quantities of interest
to us.

It is also easy to obtain the local quasiparticle density of states (LDOS)
from G. Because G is written in a real-space basis, the LDOS ρ(r, E) is
simply

ρ(r, E) =− 1
π

Im
(
G11(r, r, E + i0+)

+ G22(r, r, E + i0+)
)
,

(4.8)

where G11 and G22 are the particle and hole parts, respectively, of the
Nambu-space Green’s function. At this point it is worth emphasizing
the fact that, from the way we have defined them, these maps are not
the same as the local density of states maps obtained from STS studies.
The conductance maps obtained in STS experiments are proportional
to the local electron density of states, which are taken solely from the
electron part of the Green’s function: ρtunn(r, E) = − 1

π ImG11(r, r, E +

i0+). In contrast, the quasiparticle DOS at energy E, as defined in
Eq. 4.8, includes contributions from both the electron and hole Green’s
function. We will frequently show these maps to visualize the extent to
which disorder affects the degree of inhomogeneity in the quasiparticle
wavefunctions at a particular energy E.

We also calculate, for completeness, the quasiparticle DOS of a clean
d-wave superconductor in order to provide a baseline from which one
can examine the impact of disorder. Unlike the disordered case, we
perform this calculation in momentum space. We use the formula

ρ(E) = ∑
k∈BZ

δ(E− Ek), (4.9)
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where Ek are the eigenvalues of the clean Hamiltonian, given for posi-
tive energies by

Ek =
√

ε2
k + ∆2

k. (4.10)

Here εk = −2t(cos kx + cos ky)− 4t′ cos kx cos ky−µ and ∆k = 2∆0(cos kx−
cos ky) are the normal-state dispersion and the gap function in momen-
tum space, respectively. Only positive energies need to be considered
because of particle-hole symmetry. For consistency with the real-space
calculations of the disordered cases, we also broaden the delta func-
tions that enter Eq. 4.9 into a Lorentzian with broadening η = 0.001. In
our momentum-space calculations we discretize the first Brillouin zone
into a grid with 4000× 4000 points. This choice results in a smooth
DOS as a function of E which is free from finite-size effects.

4.2.2 Specific Heat

The quasiparticle contribution to the specific heat C is easily derived
from the density of states by means of the following equation [68],

C = 2× ∂

∂T

∫ ∞

0
dEρ(E)E

1
eE/kBT + 1

, (4.11)

where the factor of two arises from the two spin species present. We
are interested in C in the low-temperature regime, so we can neglect
the dependence of ρ(E) on T, and because T � 4∆0 (the d-wave gap
edge, which itself is much bigger than Tc) we can impose a cutoff
Ec ≈ 4∆0 so that only energies within the d-wave gap are integrated
over. As such, Eq. 4.11 becomes

C = 2× 1
kBT2

∫ Ec

0
dEρ(E)E2 eE/kBT

(eE/kBT + 1)2 . (4.12)
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It can further be shown that the contribution of ρ(E = 0) to the specific
heat is

C0 = γ0T =
1
3

π2ρ(E = 0)k2
BT. (4.13)

When C0/T is plotted versus T, the plot is flat, and the y-intercept of
this plot is equal to γ0. In our numerical results we will typically set
kB = 1 and measure the temperature T in units of the hopping energy
t (t ≈ 0.150 eV ≈ 1700 K).

Note that the scaling of C with T is dependent on how ρ scales with
E. At low energies the DOS of a clean d-wave superconductor is a
linear function of E; thus the quasiparticles of a clean d-wave super-
conductor contribute a T2-dependent term to C. When this coexists
with a finite quasiparticle DOS at E = 0, the most general scaling of C
due to the d-wave quasiparticles is

C ≈ γ0T + αT2, (4.14)

and a C/T-versus-T plot would have a slope equal to α and a y-
intercept equal to γ0. In the most general disordered case we should
not expect this form of scaling to arise, as disorder can lead to a non-
linear dependence of ρ on E. However, a finite value of γ0 is a feature
that unambiguously suggests the presence of a finite DOS at the Fermi
energy.

4.2.3 Localization Length

The geometry of our system is particularly amenable to exact calcu-
lations of the localization length λ, owing to the fact that Nx can be
made very large relative to Ny, allowing us to measure the localization
length even when it is much bigger than the transverse dimension.
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This calculation is all but impossible using exact diagonalization, as
that method is restricted to fairly small system sizes whose linear di-
mension is much smaller than typical localization lengths.

We will use the following definition of λ [106, 23, 92, 186]:

λ−1 = − 1
2(Nx − 1)

ln
∑ijσσ′ |GNx1

ijσσ′(E)|2

∑ijσσ′ |G11
ijσσ′(E)|2

. (4.15)

The
∑ijσσ′ |G

Nx1
ijσσ′ (E)|2

∑ijσσ′ |G11
ijσσ′ (E)|2 factor measures the transmission probability from

the left end of the system (the 1st slice) to the right end (the Nxth
slice); the denominator in the aforementioned factor is for normaliza-
tion. The sums are performed over all sites and spin indices within
the relevant block. The off-diagonal block GNx1(E) can be recursively
computed from the diagonal block G11(E) by an algorithm that ap-
plies to block tridiagonal matrices [52, 69, 143]. Using the Pi, Qi, Ri, Si,
and Gii matrices obtained earlier, any off-diagonal blocks of G can be
computed using this formula:

Gij =

−(Pi −Ri)
−1Q†

i−1Gi−1,j if i > j,

−(Pi − Si)
−1QiGi+1,j if i < j.

(4.16)

We calculate the localization length only for fixed values of Nx and
Ny. We do not extract the actual localization length via finite-size anal-
ysis. We thus provide the necessary caveat that the values of λ that we
cite here are meaningful only in comparison with systems with identi-
cal system sizes. That is, a direct comparison is possible between λ’s
computed with the same Nx and Ny but for different disorder types
and strengths, but not so when these system-size parameters are al-
tered relative to one another.
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4.3 models of disorder

In this chapter we will focus on three distinct models of disorder.
Many of these forms of disorder have been discussed in the older lit-
erature on the subject, and in particular some of them can be treated,
on some level, analytically in either the Born approximation or the
T-matrix approximation. Here we will make use of the ability to sim-
ulate systems with very large system sizes to cover regimes where the
approximations that enable analytical treatments of disorder fail. Be-
low we will enumerate these models of disorder, their properties, and
the degree to which these describe the actual disorder present in the
cuprates.

4.3.1 Random-Potential Disorder

The first model is random and spatially uncorrelated on-site energies.
We assume that the potential at each lattice site consists of two parts:
the uniform chemical potential and a normally distributed random
component V with zero mean and variance σ2:

〈V(r)〉 = 0, (4.17)

〈V(r1)V(r2)〉 = σ2δr1r2 . (4.18)

From the perspective of diagrammatic perturbation theory, this is a
particularly tractable model of disorder: given the above conditions,
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the Fourier transform of the two-point averaged correlation function of
the disorder potential is a constant in momentum space:

W(k) = ∑
r
〈V(r)V(0)〉e−ik·r

= ∑
r

σ2δr0e−ik·r

= σ2.

(4.19)

This property of the model allows one to analytically obtain the self-
energy easily using the Born approximation in the limit that σ is small
[100]. Physically this model can be obtained from the multiple point-
impurity model when one takes the strength of these impurities to be
very weak and the spacing between impurities very small.

A related version of this disorder potential was studied numerically
by Atkinson et al.; however they utilized box disorder instead of Gaus-
sian distributions [14]. We on the other hand will focus exclusively on
normally-distributed on-site energies. This form of disorder is phys-
ically realistic, as recent work has shown that narrowly-distributed
Gaussian disorder of this sort could give rise to quasiparticle scatter-
ing interference (QPI) patterns in d-wave superconductors that are in
reasonably good agreement with those seen in experiments on BSCCO
[161].

4.3.2 Multiple Unitary Scatterers

The second model we will discuss is another paradigmatic form of
disorder in the cuprates: unitary pointlike scatterers situated within
the copper-oxide plane. Unitary scatterers in d-wave superconductors
have been extensively studied experimentally and theoretically. Zinc
dopants within the CuO2 planes of BSCCO are the most well-known
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studied form of unitary scatterers in the cuprates, and in fact their res-
onances have been directly imaged in STS experiments [129]. Unitary
scatterers also arise in the cuprates in the form of vacancies within
the CuO2 plane. Like the Gaussian random-disorder case discussed
earlier, unitary scatterers, which induce scattering phase shifts equal
to δ0 = π/2, are quite tractable to model in practice: the T-matrix
for a single pointlike impurity is momentum-independent, allowing
one to obtain the full Green’s function, including the impurity and its
effects, in an exact manner. This can then be extended to the many-
impurity case in the dilute limit (i.e., at low concentrations p) in the
form of a multiple-scattering T-matrix [68]. (Note that if one takes the
strength of the impurities to be small, the phase shift is δ0 ≈ 0, and
the corresponding T-matrix problem becomes identical to the Born-
scattering limit of the Gaussian random-potential case discussed pre-
viously [68, 100].)

We will eschew the T-matrix approach and instead obtain the full
Green’s function and the DOS exactly using the methods described
in Section 4.2. This will allow us to examine cases where the concen-
tration p is large enough that the system enters the strong-disorder
regime. We will vary p to cover small, intermediate, and large concen-
trations; the strength of the impurity is fixed at Vu = 10, and we will
make this potential attractive, to mimic the effect of zinc impurities,
which are attractive potential scatterers [109, 93]. These impurities are
distributed randomly over the entire system, with each lattice site hav-
ing a p chance of hosting a unitary impurity and a 1− p probability
of not having one. Our choice of Vu = 10 gives a resonance energy at
around E ≈ −0.06—the negative-bias peak in the bare electron LDOS
at the sites adjacent to an isolated impurity is far more prominent than
the positive-bias one—which is near, but not at, the Fermi energy. (To
perform a sanity check, we checked the case of an isolated impurity
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with Vu = 100, which yielded a resonance energy of E ≈ −0.045. In-
creasing the impurity potential tenfold indeed pushed the resonance
closer to the Fermi energy, but only by a small amount. In fact, if
we do a single-impurity (i.e., non-self-consistent) T-matrix calculation
[195], assuming unitary scatterers with Vu → ∞ and using the same
band-structure and pairing details as in our exact numerical calcula-
tions, we find that the resonance is at E ≈ −0.04. For generic band
structures and arbitrary but strong Vu the resonance due to a strong,
attractive scatterer is located close to, but not at, the Fermi energy, al-
though for the purposes of this chapter its precise location is not very
important.) Note that the effect of unitary scatterers on the DOS of
d-wave superconductors has been studied by Atkinson et al. [13, 14],
but we will go beyond their work by varying p such that both dilute
and strong-disorder limits are covered, and by delving deep into the
statistics of the DOS at the Fermi energy in considerable detail.

4.3.3 Smooth Disorder

The third and final form of disorder that we will discuss is off-plane
disorder. As we have noted earlier, for the cuprates, disorder due to
doping is generally due to dopants that are located some distance away
from the CuO2 planes. Doping in the cuprates is accomplished using
oxygen atoms, and these oxygens are in general not found within the
conducting planes. For BSCCO, the BiO planes host the excess oxy-
gens arising from doping. In the case of YBCO, the doped oxygens are
found in the one-dimensional CuO chains some distance away from
the CuO2 planes. YBCO is a particularly interesting case to consider
because the amount of doping, and hence disorder, can be controlled
rather precisely: very clean samples have been synthesized. Thermal
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conductivity experiments on clean YBCO find that transport does not
resemble either Born or unitary scattering (i.e., the previous two mod-
els at low levels of disorder) [66]. Thus it is an interesting theoretical
puzzle as to why precisely a finite DOS at the chemical potential is
consistently found in specific heat studies of YBCO, even with clean
samples.

We will attempt to revisit the effects of off-plane disorder on the
quasiparticle DOS of a d-wave superconductor. Off-plane dopants will
produce a screened Coulomb potential which affects the electrons on
the CuO2 plane in the form of a smooth disorder potential [130, 42, 22].
In the absence of a more microscopic model of disorder, we will take
the disorder potential from one off-plane dopant located on the a-b
plane at rn to have the following reasonably general form:

Vn(r) = V0
e−

s(r,rn)
L

s(r, rn)
. (4.20)

For brevity we have defined s(r, rn) as

s(r, rn) =
√
(r− rn)2 + l2

z , (4.21)

and L is the screening length of the Coulomb potential, lz is the dis-
tance along the c-axis from the dopant to the CuO2 plane, and V0

quantifies the “strength” of the potential. For our calculations we take
L = 4, lz = 2, and V0 = 0.5. Because we do not exactly know the
details of this disorder potential, we will assume two different scenar-
ios for how this form of disorder is spatially distributed. For the first
scenario, we will take the general disorder potential to have the same
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sign, such that the net potential, expressed as a function of the doping
concentration p, takes the following form:

Vs(r) =
pNx Ny

∑
n=1

Vn(r). (4.22)

The second scenario assumes that there is an equal number of positive-
and negative-strength potentials,

Vz(r) =
pNx Ny

∑
n=1

(−1)a(n)Vn(r), (4.23)

where a(n) is a random integer. This leads to a potential whose spatial
average is zero, and whose average over disorder configurations (i.e.,
positions of the dopants, with the number of dopants held fixed) is
also zero:

〈Vz(r)〉 = 0. (4.24)

The second scenario relies on a finely-tuned equality between the
number of positive- and negative-strength dopants, and as such we do
not claim that it necessarily corresponds to a realistic disorder poten-
tial. Nevertheless, from a theoretical standpoint Vz is a particularly in-
teresting form of disorder because, like the Gaussian random-potential
disorder case discussed earlier, its spatial and configuration average is
zero. However Vz(r) differs from the Gaussian case because it is not
spatially uncorrelated: its disorder-averaged two-point correlator is
not a delta function. Rather, this correlator decays much more slowly
than a delta function. The length scales associated with this disor-
der potential drastically affect the allowed scattering processes. Recall
that a d-wave superconductor has four nodes where gapless Bogoli-
ubov quasiparticles exist at E = 0, which then morph into banana-
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shaped contours of constant energy (CCEs) once energy is increased
from zero. When one has elastic scattering off of pointlike impurities,
there is no restriction on scattering processes aside from phase-space
considerations: scattering has to occur between states lying on CCEs
[182, 25, 93, 161]. With smooth disorder, however, the matrix elements
of the potential vanish very quickly as momentum is increased, lead-
ing to a suppression of large-momentum scattering processes [126].
For this form of disorder, the dominant scattering processes occur only
within one node, and to a first approximation scattering between states
on different nodes can be neglected. This has been studied from the
perspective of quasiparticle scattering interference, and smooth disor-
der potentials have been found to result in the marked suppression of
large-momentum peaks in the Fourier-transformed LDOS [125, 161].

The distinction between pointlike disorder (e.g., random normally-
distributed on-site potentials and multiple unitary impurities) and smooth
disorder is rarely discussed on a theoretical level. Prominent excep-
tions are the pioneering and extensive work by Nunner et al. on
Coulomb-potential disorder [124, 126, 125], by Durst and Lee on ex-
tended linear scatterers [40], and field-theoretical work motivated by
the possibility that scattering in the cuprate superconductors is primar-
ily forward (i.e., small-momenta) in nature [118]. It has been argued
that, from the standpoint of effective field theory, the microscopics of
the disorder determine the symmetry class of the effective theory of
the disordered system, and consequently pointlike and smooth disor-
der belong to different universality classes [10]. While this does make
sense from this particular viewpoint, from a more microscopic per-
spective such as ours such a distinction is not as clear-cut: one can, at
least in principle, continuously tune the length scales of the disorder
potential to come close to the pointlike limit, so it is difficult to argue
that the lattice tight-binding Hamiltonian exhibits such a sharp dis-
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tinction between two different universality classes. There is also a dif-
ficulty in extending these field-theoretical results to the intermediate-
and strong-disorder regimes, as these take as a starting point the pres-
ence of weak disorder. Nevertheless, as we shall see with our numerics,
smooth disorder does lead to effects that differ dramatically from ei-
ther random Gaussian disorder or multiple-impurity models.

The main variable we use to manipulate the amount of disorder in
the superconductor is the concentration p of off-plane dopants. To be
more specific, p here is the number of off-plane dopants per copper
site at the CuO2 plane. From what is known about LSCO, BSCCO,
and YBCO, p is generally a large fraction which is usually of the order
of p ≈ 0.1-0.2. The precise doping level of YBCO is a complicated
quantity to determine because it is not at all obvious how many of
the oxygen dopants go to the chains and to the planes; we will not
incorporate these subtleties in our calculations, but we do note that
microwave conductivity measurements on YBCO are generally found
to be consistent with a concentration of defects on the CuO chains
given by p ≈ 0.1 [22]. We will cover this regime of doping, as this
is the most physically relevant one, although we will cover low and
high concentrations as well. It is not clear a priori whether a density
of p ≈ 0.1-0.2 corresponds to weak or strong disorder, so we will scan
through p to see precisely what regimes are covered by these impurity
concentrations.

4.4 quasiparticle density of states : an overview

We now discuss our numerical results for the quasiparticle density of
states. We first focus on random-potental disorder. Fig. 4.1 shows
the quasiparticle DOS as a function of energy for various values of σ.
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Figure 4.1: Plots of the quasiparticle DOS as a function of energy E for the
Gaussian random-potential model, for various values of σ.

There are a number of interesting features in these plots that are worth
mentioning. We focus first on the DOS near E = 0. For small values of
σ (i.e., σ = 0.125 and σ = 0.25), the DOS vanishes markedly at E = 0.
For these cases the DOS scales roughly linearly with E near E = 0. The
weakest disorder distribution we consider (σ = 0.125) has a DOS curve
that is concave upward between E = 0 and the coherence peaks. This
changes for σ = 0.25, for which the DOS is almost perfectly linear from
zero energy up to the coherence peaks, and from σ = 0.35 upwards
the DOS curves are all concave downward. At σ = 0.35 and σ = 0.50, a
finite DOS at E = 0 is generated, but despite this offset the DOS still
scales approximately linearly with E. For higher values of σ, the DOS
at the Fermi energy is still finite, but there is a very visible dip around
E = 0 relative to nearby energies. In the strong-disorder regime, the
DOS scales linearly with E only within a small neighborhood of E = 0,
then becomes dramatically concave downward as energies increase.
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Figure 4.2: Snapshots of the real-space quasiparticle density of states for ran-
dom Gaussian disorder with increasing standard deviation σ (top
to bottom) and energy E (left to right), extracted from the mid-
dlemost 80× 80 subset of the full system. The leftmost column
shows plots of the DOS as a function of energy for a particular
σ, along with plots of the clean case for comparison. The same
disorder realizations as in Fig. 4.1 are used here. The color scale
is the same for all plots.

120



4.4 quasiparticle density of states : an overview

●

●

●
●

●

●
●

●●

●
●
●

●
●

●●

●●
●
●●

●●

●●
●●

●●●
●●

●●
●
●●

●●
●●

●
●●

●●

●●
●●

●
●●

●●

●
●

●
●
●

●●

●
●

●

●
●

●

●■

■

■■

■

■

■

■■

■
■

■
■■

■■

■■

■■
■
■■

■■
■■■■■

■■
■■

■
■■

■■
■■

■■
■
■■

■■
■
■■

■■

■■

■■
■

■
■

■■

■

■

■

■■

■

■◆
◆

◆
◆

◆

◆

◆

◆
◆

◆
◆

◆
◆
◆
◆◆

◆◆
◆◆◆◆◆

◆◆◆
◆◆

◆◆◆
◆
◆
◆
◆
◆
◆
◆
◆◆

◆
◆◆

◆◆◆
◆◆

◆◆
◆
◆◆

◆◆
◆
◆
◆

◆
◆

◆
◆

◆

◆

◆

◆
◆

◆
◆▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

▲
▲
▲
▲
▲
▲
▲
▲▲▲▲▲▲▲▲▲▲▲▲▲

▲
▲
▲
▲
▲
▲
▲
▲▲

▲▲
▲▲▲

▲▲
▲▲

▲▲
▲
▲
▲
▲
▲
▲
▲

▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲▼
▼
▼
▼▼

▼

▼

▼

▼

▼

▼
▼
▼
▼
▼
▼▼

▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼

▼
▼▼▼

▼
▼▼

▼▼
▼▼

▼▼▼
▼▼

▼▼
▼▼

▼▼
▼
▼
▼
▼
▼

▼

▼

▼

▼

▼

▼▼
▼
▼
▼

○
○○○

○

○

○

○
○
○
○
○
○
○○○○○

○○○○○○○○○○○○○○○○
○
○○

○○○
○○○○

○○○○
○○○

○○
○○

○
○
○
○
○
○
○

○

○

○
○○○

○

□□
□□

□□
□
□□

□□□□□□
□□□□□□□□□

□□□□□□□□□□
□
□□□□

□□□
□□□

□□□□□
□□□□

□□
□□

□□
□□

□
□□

□□
□□

◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
◇
◇
◇
◇◇◇◇◇◇◇

◇◇◇◇
◇◇◇◇◇◇

◇◇
◇◇◇◇◇

◇◇◇
◇◇

◇◇◇
◇

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
E0.0

0.2

0.4

0.6

0.8

1.0

1.2
ρ(E)

0.00%
● 0.13% ■ 0.25% ◆ 0.50% ▲ 1.0%

▼ 2.0% ○ 4.0% □ 8.0% ◇ 16.0%

Figure 4.3: Plots of the quasiparticle DOS as a function of energy E for the
multiple unitary-scatterer model, for various impurity concentra-
tions.

At E ≈ 0.3, one can see the coherence peaks becoming more rounded
and decreasing in height with increasing σ. With relatively weak dis-
order, the peaks retain their prominence, but as disorder becomes
stronger these peaks flatten. In fact, for the strongest disorder cases
we consider (σ = 1.41 and σ = 2.00) the DOS near (but not at) E = 0
barely differs from the DOS at E ≈ 0.3. For energies between E = 0
and E ≈ 0.3, the slope of the DOS decreases with increasing σ. The
overall effect of increasing disorder of this kind is to shift spectral
weight away from the coherence peaks towards a broad range of low
and intermediate energies, consequently filling in the d-wave gap.

Qualitatively there are three distinct regimes that are encountered
as random on-site disorder is increased. At low values of σ, the super-
conductor is only weakly disordered: the DOS vanishes at E = 0 and
coherence peaks are prominent. At intermediate values of σ, a finite
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Figure 4.4: Snapshots of the real-space quasiparticle density of states for an
ensemble of unitary pointlike scatterers (VU = 10) with increasing
impurity concentration p (top to bottom) and energy E (left to
right), extracted from the middlemost 80× 80 subset of the full
system. The leftmost column shows plots of the DOS as a function
of energy for a particular p, along with plots of the clean case for
comparison. The same disorder realizations as in Fig. 4.3 are used
here. The color scale is the same for all plots.
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Figure 4.5: Plots of the quasiparticle DOS as a function of energy E for the
multiple smooth-scatterer model with positive net potential, for
various impurity concentrations.

value of the DOS forms at the Fermi energy, but the DOS still varies
linearly with E over a broad energy range, and traces of the coherence
peaks (now rounded and diminished in height) still remain. Finally,
when σ is large, we enter the strong-disorder regime, where the DOS
is linear only within a small neighborhood of E = 0 and saturates very
quickly to a constant value (albeit with considerable random fluctua-
tions about that value). The DOS is suppressed at E = 0 relative to the
value to which it eventually saturates, and in fact tends toward zero
once more as disorder is increased. In this regime almost no trace of
the structure of the DOS of the clean d-wave superconductor remains.

To closely examine the origins of both the generation of a finite DOS
at E = 0 and the smoothening of the coherence peaks, we extract
real-space maps of the quasiparticle local DOS (LDOS) for various dis-
order strengths and energies. We take these samples from the middle
80× 80 section of the full system. These maps are shown in Fig. 4.2.
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Figure 4.6: Snapshots of the real-space quasiparticle density of states for
smooth disorder (with positive net potential) with increasing im-
purity concentration p (top to bottom) and energy E (left to right),
extracted from the middlemost 80× 80 subset of the full system.
The energy at the rightmost column corresponds to the location at
which the coherence peaks can be found, while the energy at the
middle column is half the coherence-peak energy. The leftmost
column shows plots of the DOS as a function of energy for a par-
ticular p, along with plots of the clean case for comparison. The
same disorder realizations as in Fig. 4.5 are used here. The color
scale is the same for all plots.
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Figure 4.7: Histogram of the values of the disorder potential for smooth dis-
order with positive net potential for three values of p. The width
of each bin is 0.01. Notice that the mean of the disorder potential
is nonzero, leading to a shift in the average chemical potential of
the overall system.

At E = 0, the weak-disorder (σ = 0.25) LDOS is almost zero and is
spatially featureless. When disorder is increased, regions where the
LDOS is nonvanishing form even at E = 0. At moderate levels of dis-
order (σ = 0.50) these regions tend to be isolated, surrounded by a
sea of vanishing DOS. These are sufficient however to produce a finite
DOS when averaged over the entire system. When disorder is tuned
to be strong (σ = 1.00), the LDOS map at E = 0 displays considerable
randomness: patches where the LDOS vanishes coexist with regions
where the DOS is visibly nonzero, thereby resulting in a nonzero aver-
age DOS.

As energies are increased the σ = 0.25 maps start exhibiting modula-
tions in the LDOS that arise from quasiparticle interference in the pres-
ence of weak disorder. As disorder is increased, this structure becomes
less and less visible: the σ = 1.00 maps at E = 0.150 and E = 0.300
show randomness that is not much different than the maps obtained
at E = 0. The strong-disorder maps show at higher energies similar
structures as the zero-energy case, with regions where the LDOS is
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Figure 4.8: Plots of the quasiparticle DOS as a function of energy E for the
multiple smooth-scatterer model with zero net potential, for vari-
ous impurity concentrations.

heavily suppressed existing alongside areas with nonzero DOS. The
presence of these patches where the LDOS is almost zero at large σ is
responsible for the overall suppression of the averaged DOS relative to
less disordered cases.

We repeat this analysis for the unitary-scatterer disorder model. For
this form of disorder we show the quasiparticle DOS as a function of
energy E in Fig. 4.3. When a small number of impurities are present
(e.g., p = 0.125%), the DOS is barely altered from the clean case: the
DOS tends toward zero at E = 0, increases linearly for a broad energy
range, and displays sharp coherence peaks at E ≈ 0.300. The same
behavior holds for higher concentration of levels such as p = 0.25%
and p = 0.50%. We can see that the coherence peaks become slightly
lower for these cases.

A major feature of these plots for a broad range of p is the rounding
off of the DOS at an energy scale that appears to be dependent on the
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Figure 4.9: Snapshots of the real-space quasiparticle density of states for
smooth disorder (with zero net potential) with increasing impu-
rity concentration p (top to bottom) and energy E (left to right),
extracted from the middlemost 80× 80 subset of the full system.
The leftmost column shows plots of the DOS as a function of en-
ergy for a particular p, along with plots of the clean case for com-
parison. The same disorder realizations as in Fig. 4.8 are used
here. The color scale is the same for all plots.
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Figure 4.10: Histogram of the values of the disorder potential for smooth dis-
order with zero net potential for three values of p. The width of
each bin is 0.01. The mean of the disorder potential is zero, and
the average chemical potential of the system as a whole is not
shifted.

concentration. Near E = 0, the DOS scales linearly. As p is increased,
the d-wave gap fills in a particular manner: more spectral weight ac-
cumulates at a characteristic energy scale, so that instead of a linear
DOS as in the clean case, one sees the DOS encountering a “hump”
that becomes more pronounced when p is increased. With increasing
p the DOS surrounding E = 0 starts accumulating larger values of
DOS, all while the coherence peaks become shorter and flatten, show-
ing a transfer of spectral weight from the coherence peaks towards the
region around the Fermi energy. It is interesting to note that the way
the gap is filled is different for the case of unitary scatterers than for
random on-site disorder: for small p, spectral weight is moved from
the coherence peaks towards the neighborhood of the Fermi energy,
with a width roughly set by the impurity concentration, whereas for
random Gaussian disorder the spectral weight is transfered to a far
broader range of energies, with strong deviations from the clean case
occuring even at energies away from E = 0. For higher values of p,
the DOS resembles the large-σ random-disorder cases discussed ear-
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Figure 4.11: Plot of the density of states at and near E = 0 for the multiple-
smooth-scatterer case for various impurity concentrations p. For
the p = 20% and p = 40% the resonance is seen to have a width
of approximately 0.006.

lier. One feature that is consistently present—even at high values of
p, with coherence peaks completely flattened and the DOS near the
Fermi energy finite—is a visible dip at E = 0.

Real-space maps of the LDOS for a d-wave superconductor subject to
a variety of unitary-impurity concentrations are shown in Fig. 4.4. At
p = 1.0%, the E = 0 LDOS map is largely almost zero, save for small ar-
eas that show large, nonzero values of the LDOS. A closer examination
shows that these arise from interference effects from the presence of a
few impurities bunched up together within a small area, arranged to-
gether such that a resonance forms. These resonances are very rare—in
the 80× 80 map we take, only one particular group of closely-spaced
impurities generates such nonzero LDOS values at E = 0, whereas
groups of a few impurities near one another do appear quite frequently.
Despite their relative rarity, the presence of such regions with large av-
erage LDOS is enough to produce a small but nonzero average DOS
for the entire sample. When the concentration is increased, we see
behavior in the E = 0 maps that is strongly reminiscent of that seen
in the maps from the Gaussian random disorder case. At p = 4.0%,
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Figure 4.12: Plot of the density of states at E = 0 for the multiple-smooth-
scatterer case as a function of screening length L. For a given
p, the positions of the smooth scatterers are fixed, with only the
screening length and the amplitude of the disorder potential ad-
justed as discussed in the text. At fixed p the zero-energy DOS
increases monotonically with L. In addition, at fixed L the DOS
at E = 0 increases with increasing p.

regions where the LDOS is nonzero appear more frequently, but they
are isolated and are largely surrounded by areas where the LDOS is
suppressed. The p = 16.0% case shows a remarkably large number of
lattice sites with large values of the LDOS. Clearly in this case the large
impurity concentration means that there is a large probability that an
impurity is placed in close proximity to another impurity, resulting in
a nonzero LDOS.

At higher energies the p = 1.0% and p = 4.0% cases show modu-
lations that are due to quasiparticle scattering interference (QPI) from
multiple impurities. In particular the p = 1.0% map at E = 0.300
shows strikingly prominent modulations in the LDOS due to the pres-
ence of disorder; the p = 4.0% map at the same energy also shows
visible modulations, but the larger number of impurities results in an
average DOS that is lower than the p = 1.0% case. The p = 16.0% case,
on the other hand, shows almost no visible traces of patterns arising
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Figure 4.13: Smooth disorder potentials used in Fig. 4.12, with concentration
p = 10%, evaluated at various screening lengths L. Shown are
L = 1, L = 2, L = 4, and L = 8. The color scale is the same
for all plots. Notice that as L is increased the disorder potential
becomes smoother and more spatially correlated.

from QPI. Instead what one sees is a very inhomogeneous map featur-
ing both sites with very strong suppression of the LDOS and sites at
which the LDOS is large. For this particular concentration, the degree
of inhomogeneity does not change markedly upon increasing E.

The suppression of the DOS at E = 0 for both random-potential and
unitary-scatterer disorder has been discussed at length by Senthil and
Fisher with field-theoretic methods [155] and by Yashenkin et al. using
diagrammatic techniques incorporating weak-localization corrections
to the T-matrix results [187, 67]. This suppression—found to be loga-
rithmic in both approaches—can understood as being due to the inclu-
sion of diffusive modes that, in the absence of symmetries other than
spin rotation invariance, lead to an overall suppression of the DOS.
Yashenkin et al. also find that the addition of artificial nesting sym-
metries (e.g., a particle-hole-symmetric normal-state band structure in
the presence of unitary scatterers ) can lead rise to additional diffusive
modes that enhance the DOS at the Fermi energy. It is interesting to
note that even in strong-disorder regimes where these approximations
do not hold—diagrammatic and field-theoretical treatments both im-
plicitly rely on a relatively narrow distribution of disorder for them to
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be sensible—this logarithmic suppression at the Fermi energy is still
very much evident for both random-potential and unitary-scatterer dis-
order.

We finally discuss the case of smooth disorder. We first focus on the
case where the dopants have the same sign of the impurity strength—
i.e., the full potential is given by Eq. 4.22. Fig. 4.5 shows the quasipar-
ticle DOS for a d-wave superconductor with such disorder, for various
doping concentrations p. The behavior of the DOS near E = 0 has a
number of interesting features when p is increased. First, at low p, the
DOS is close to zero. As p is increased, the DOS gradually acquires a
finite value, and at higher concentrations (p = 20% and p = 40%) the
DOS has a small bump at E = 0 relative to the value of the clean DOS.
The neighborhood of the Fermi energy shows a gradual roundening
of the DOS from a sharp V-shape in the clean and mildly disordered
cases to a smooth U-shape for higher impurity concentrations. For
all p, coherence peaks are present and quite prominent, but these
shorten and move towards the Fermi energy as p is increased. This
can be attributed to the fact that for this particular form of disorder,
the mean of the disorder potential is nonzero, and the chemical poten-
tial is shifted away—only slightly for lower p, and considerably more
strongly for larger and larger p, as seen in Fig. 4.7. It is interesting
to note that despite the fact that this form of potential seemingly rep-
resents a strong modification to the d-wave superconductor, the effect
is mainly to transfer spectral weight from the coherence peaks to the
Fermi energy, with a corresponding rounding of the DOS, without im-
pacting the DOS that much in the intermediate-energy regimes. There
is also no visible suppression at E = 0, as was the case in the pointlike
disorder models we discussed earlier. It seems that the overall effect
of this particular form of disorder, at least as the quasiparticle DOS
is concerned, is qualitatively much weaker than the random Gaussian
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on-site energy and the multiple unitary-scatterer models at roughly
similar disorder widths or impurity concentrations.

Real-space plots are shown in Fig. 4.6. The plots at E = 0 show
how a nonzero DOS is generated in the neighborhood of the Fermi
energy. At p = 10%, the effect is only mild, as the LDOS is almost
spatially uniform. With increasing concentration visible patterns start
to show up in the LDOS maps. These patterns are interesting because
they correspond to only a small portion of the entire system, but do
generate, upon averaging over space, an overall nonzero DOS centered
around E = 0. Unlike similar maps for the pointlike disorder cases, the
patterns—which manifest themselves as streaks of nonzero DOS amid
a featureless, almost-zero background—display a smoothness that is
not present in the highly disordered pointlike cases. While displaying
patchiness, it exhibits spatial variations that are much more ragged
than in the smooth case. Meanwhile the maps taken at higher energies
show crisscrossing patterns which arise naturally from quasiparticle
intereference due to scattering off of a highly random smooth disorder
potential. Unlike the maps showing pointlike disorder, the modula-
tions here are much smoother, owing to the fact that these arise from
small-momenta scattering processes.

We next turn to the case where there is an equal number of positive-
and negative-strength dopants—i.e., the disorder potential shown in
Eq. 4.23. This will prove to be a much more interesting case than the
smooth-disorder scenario we had just discussed. We show plots of the
DOS for this disorder potential in Fig. 4.8. A number of remarkable
features are present in these plots which we will now discuss in detail.
We focus first on the region around E = 0. At low p, the DOS vanishes,
but at p = 10% the DOS acquires a value that is appreciably larger
than that of the clean or low-doping cases. At this doping the DOS at
E = 0 has a slight upward hump, and the DOS surrounding the Fermi
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energy has a U-shape and is considerably rounded off compared to the
shape of the clean DOS. At higher dopings, a very prominent spike in
the DOS at E = 0 start to form: this spike is localized at E = 0, and
falls off quickly towards the base of a “valley.” It can be seen that the
area around the Fermi energy hosts a considerable amount of spectral
weight relative to the clean case as p is increased.

These effects near the Fermi energy are far more pronounced be-
cause elsewhere there are no significant deviations from the clean DOS.
Even for very large dopings (e.g., p = 40%), the DOS at intermediate
and high energies are almost unchanged from that of the clean case.
The main significant change at these energy ranges happens at the co-
herence peaks (E ≈ 0.3), which become shorter and more rounded
with increasing disorder. However the rounding and shortening are
nowhere near as pronounced or as strong as those in the random-
potential or unitary-scatterer cases. Recall that in these other cases, the
coherence peaks are destroyed at some level of disorder (σ ≈ 0.5 for
random potential disorder, and p ≈ 8% for unitary scatterers). How-
ever, even at p = 40% doping, smooth disorder preserves coherence
peaks. More emphatically, the global structure of the d-wave DOS is
preserved even for very large dopings.

This is remarkable given how randomly distributed the disorder po-
tential is. This can be seen in histograms of the disorder potential
values for this particular form of smooth disorder, which we show
in Fig. 4.10. One can see that they are almost normally distributed,
with widths not far off from the weaker incarnations of the random-
potential case we discussed earlier. The difference of course lies in
the presence of spatial correlations in the smooth disorder potential,
which are completely absent for pointlike disorder. Evidently, unlike
random-potential or unitary-scatterer disorder, which show dramatic
spectral-weight transfers from the coherence peaks to a broad range
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of energies, for this particular form of smooth disorder only moderate
spectral weight transfer occurs, with the bulk accumulating near the
Fermi energy and almost none in intermediate-energy regimes.

The E = 0 maps in Fig. 4.9 show how a spike in the average DOS
is generated. At low p, few if any streaks are visible, and these faint
streaks occur against a background where the LDOS is heavily sup-
pressed. As p increases, more of these streaks are visible, and in the
p = 40% case these streaks are strong enough that averaging over the
LDOS yields a finite value. The E = 0.150 maps show, as in the other
smooth-disorder case we studied, diagonal crisscrossing patterns that
can be attributed to quasiparticle scattering interference. Note that the
modulations in real space are slowly varying, which as before can be
attributed to the fact that, in this disorder scenario, nearly all scatter-
ing is forward. The fact that mostly diagonal streaks can be seen is due
to the fact that scattering occurs heavily within one node only, and the
only q-vector corresponding to such intranodal scattering is q7, which
is diagonal and small. At the coherence-peak energies (E = 0.300),
the diagonal streaks are now mainly replaced by moduations in the
vertical and horizontal directions—a reflection of the fact that these
LDOS maps are still heavily determined by quasiparticle scattering in-
terference. At this energy regime the vertical/horizontal momentum
q1 becomes most dominant, leading to the prominent modulations in
the horizontal and vertical directions. The maps at higher energies
show a remarkable degree of similarity with each other, despite vastly
different amounts of doping, indicating that the transfer of spectral
weight away from these energies is largely muted. This is very differ-
ent from what we have seen for random-potential or unitary-scatterer
disorder.

The origin of the sharply enhanced DOS at E = 0 is unknown, but
we will try to characterize this effect as fully as possible numerically.
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First of all, the resonances are sharply located at E = 0, and are very
narrow. Fig. 4.11 shows a close-up view of the DOS within a small win-
dow of the Fermi energy. We find that the resonances, which are most
visible at p = 20% and p = 40%, have a width of ∆E ≈ 0.006 centered
about E = 0, and that these subsequently plateau into a flat profile
a short distance away from the Fermi energy. From our numerical
results it appears that these zero-energy resonances are uncorrelated
with the underlying smooth disorder potential. It is an intrinsically
many-impurity effect, since results from single-impurity simulations
do not show a sharp spike in the local DOS at zero energy. It also
depends rather sensitively on the length scales associated with the
smooth disorder potential. In Fig. 4.12 we plot the DOS at E = 0 ver-
sus the screening length L for three different impurity concentrations
p, keeping the positions of the impurities at a given p fixed. In these
plots we change V0 as L is varied in Eq. 4.20 so that V(r = 0) remains
the same for all values of L we consider. This choice ensures that the
resulting smooth disorder potentials feature the same degree of spa-
tial variations, even as L is varied. As we have seen in the L = 4 case
heavily discussed earlier, at fixed L the E = 0 DOS depends on p, with
the DOS increasing as p is increased. More remarkably, however, we
can see that at fixed p, the zero-energy DOS increases monotonically
as L is increased. This is interesting because at face value the smooth-
disorder potentials at various L appear to be very similar to each other.
This is seen in Fig. 4.13, which shows the different smooth disorder
potentials used at fixed p = 10%. These are similar in appearance, but
evidently lead to considerable differences in the values of ρ(E = 0).
This suggests that the range of the potential plays an important role in
the emergence of these resonances at zero energy.

We note that a mechanism for the enhancement of the DOS at E = 0
was discussed by Yashenkin et al., who point out that diffusion modes
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due to additional symmetries could lead to an increase in the DOS
at E = 0 [187, 67]. It is not clear at all if this mechanism has any
relation with the real-space streaks which generate the spike at the
Fermi energy in our numerics. It was argued that symmetries such as
particle-hole symmetry in the normal state lead to this enhancement;
however, the normal-state band structure we use does not have any
special symmetries, so this cannot explain this phenomenon. It should
be noted too that Yashenkin et al.’s analysis relies on pointlike scat-
terers treated within a self-consistent T-matrix approximation, which
does not describe the smooth disorder potentials which generate the
enhanced DOS at E = 0. It is thus an interesting, if possibly very diffi-
cult, problem to apply the analysis of Yashenkin et al. to smooth impu-
rity potentials. Treating smooth disorder analytically is a formidable
challenge, unlike random-potential and unitary-scatterer disorder, and
tractability is generally possible only in the nodal approximation, at
which the Born or T-matrix approximations can be used. We will thus
leave an explanation of these strong zero-energy enhancements of the
DOS due to smooth disorder as an open problem.

4.5 correlation between the ldos and the disorder po-
tential

As discussed earlier, the behavior of the real-space LDOS varies as the
amount of disorder is increased, with low-disorder cases exhibiting
more visible modulations in the LDOS that are due to QPI. At high
energies these modulations follow closely the details of the disorder
potential. As disorder is increased, these modulations become less
prominent. We can get some insight into how “strong” the disorder in
the system is by computing the coefficient of correlation R(E) between
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Figure 4.14: Plot of the correlation coefficient R between the local density of
states in the middlemost 80 × 80 patch of the system and the
disorder potential in that region for different types of disorder,
for varying disorder strength, as a function of energy. For all
three plots the correlation coefficient is negative—that is, there
is an overall anticorrelation between the LDOS and the disorder
potential.

138



4.5 correlation between the ldos and the disorder potential

the local density of states at energy E and the disorder potential. R(E)
is defined in the following manner:

R(E) =
∑ij(V(i, j)−V)(ρ(i, j, E)− ρ(E))√

(∑ij(V(i, j)−V)2)(∑ij(ρ(i, j, E)− ρ(E))2)
. (4.25)

Here V(i, j) is the disorder potential at site (i, j), ρ(i, j, E) is the quasi-
particle DOS at site (i, j) and energy E, and V and ρ(E) are the av-
erage values of the disorder potential and the DOS, respectively, over
the area where we perform the calculation. We compute R between
the middlemost 80× 80 LDOS patch of the system at energy E and the
disorder potential in that same patch of the system. Plots of R(E) are
shown in Fig. 4.14. This is motivated by a similar analysis performed
by McElroy et al. on experimentally-obtained LDOS data from BSCCO;
they find that there is moderate anticorrelation between the locations of
the dopant defects and LDOS minima [111]. Our analysis differs from
theirs in that we know the details of the disorder potential directly,
and the cross-correlation is between the potential and the LDOS, not
between the impurity location and the LDOS.

In the case of random-potential disorder, what we find is that the
LDOS is only moderately anticorrelated with the disorder potential,
even for weak disorder. When σ = 0.25, R decreases from a small value
(R ≈ −0.2) until it saturates at R ≈ −0.5 at E ≈ 0.25, indicating that
the high-energy LDOS displays more similarity with the underlying
disorder potential than the low-energy LDOS. As σ is increased, the
LDOS and the disorder potential become even less anticorrelated. R(E)
at σ = 0.5 shows only a moderate degree of dependence on energy,
and at σ = 1.00 R(E) is almost energy-independent and has a small
value, indicating that the two variables are only weakly anticorrelated.
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For multiple unitary scatterers the situation becomes markedly dif-
ferent. The R(E) obtained for the p = 1.0% case exhibits a very visi-
ble dependence on energy. At low energies the LDOS is very weakly
anticorrelated with the disorder potential, but this anticorrelation in-
creases sharply as energy is increased, a sign that higher-energy LDOS
maps match the features of the disorder potential more than the lower-
energy maps do; for instance, R ≈ −0.6 at E ≈ 0.25. This trend is even
noticeable once E is increased past the d-wave gap edge, where it can
be seen that R continues to be more and more anticorrelated with in-
creasing E. This behavior can be seen to a good extent in the p = 4.0%
case, for which R shows a similar degree of energy-dependence in the
intermediate- and high-energy ranges as in the p = 1.0% case. The
p = 16.0% case is interesting, as in that case R is much less energy-
dependent than in the cases involving lower concentrations, similar to
the strong-disorder (σ = 1.00) case of the random-potential model, but
the overall coefficient indicates that stronger anticorrelation is present
between the two variables. This can be explained by the fact that
unitary pointlike scatterers suppress the LDOS at the impurity sites,
which contributes to the overall anticorrelation between the LDOS and
the disorder potential.

The smooth-disorder cases feature behavior that is starkly different
from the random-potential or unitary-scatterer models. For one, we ob-
tain strongly energy-dependent R(E) at all concentrations we consider
(10%, 20%, and 40%). In addition, the behavior of R does not appear to
vary as p is altered. At low energies, there is almost no anticorrelation
between the LDOS and the disorder potential, but the anticorrelation
sharply increases as E is increased. R reaches very large values at high
energies—for instance, R ≈ −0.7 at E ≈ 0.3—and in these regimes the
LDOS maps bear a remarkable resemblance to plots of the smooth dis-
order potential, with regions where the LDOS is suppressed coinciding
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with patches at which the disorder potential is positive and vice versa.
Another interesting aspect is that strong fluctuations in R exist, inde-
pendently of p. This is unlike random-potential or unitary-scatterer
disorder, for which we saw that the fluctuations in R are minimal. It is
important to note from these plots that the resonances in the DOS at
E = 0 are almost completely uncorrelated with the disorder potential—
the origin of these resonance streaks at zero energy appears not to
originate from local features of the disorder potential.

4.6 properties of the density of states near E = 0

As a considerable number of properties of the cuprate superconductors
rely on the physics of the low-energy quasiparticles near the Fermi en-
ergy, we will examine more closely the behavior of the DOS near E = 0
as disorder is increased. We have seen that, in the random-potential
and unitary-scatterer models of disorder, when the amount of disor-
der is increased, ρ(E = 0) acquires a finite value, then drops once
more towards zero after a certain disorder strength is reached. To see
if this behavior is robust, we show in Fig. 4.15 plots of the mean and
standard deviation of ρ(E = 0) as the amount of disorder is increased
for each of the four models of disorder we use, with five realizations
used per value of the disorder strength parameter. All in all, a total of
500,000 LDOS values for each value of the disorder strength parameter
are used to generate this plot. A similar if considerably more detailed
analysis of LDOS distributions on the Anderson model was performed
by Schubert et al. in order to obtain critera for Anderson localization
using finite-size scaling [152]. We will not repeat their finite-size analy-
sis here. It should be noted that, under certain conditions, information
about the distribution of the LDOS at E = 0 can be extracted by ob-
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Figure 4.15: Plots of the mean and standard deviation of the quasiparticle lo-
cal DOS at E = 0 for different types of disorder. Five realizations
are utilized for each value of the disorder strength parameter for
each type of disorder; an average over 5× 105 values of the local
DOS is taken.
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Figure 4.16: Histogram of the local DOS at E = 0 for different types of disor-
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are used per value of disorder strength parameter for each type
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of the distributions for various disorder strengths, the histogram
for a particular value of disorder strength is offset from the pre-
ceeding one. The bin width is 0.01.
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taining the 17O Knight shift values from nuclear magnetic resonance
experiments [128, 192, 193]. In particular, Zhou et al. find an asym-
metric distribution of Knight shifts in YBCO with charge order, which
suggests that the LDOS at the Fermi energy is distributed similarly,
and argue that a likely explanation of this is quasiparticle scattering
off of defects [192].

Let us discuss first the random-potential model. In the weak-disorder
regime, the mean and standard deviation of the DOS are both close to
zero and exhibit almost no dependence on σ. Starting at approximately
σ = 0.35 the mean DOS becomes finite, increasing as σ is increased,
and, more interestingly, the standard deviation of ρ(E = 0) depends
strongly on the value of σ. This trend continues until σ = 1.00: as disor-
der is increased past that point, the mean DOS starts to decrease, while
the standard deviation continues to increase until σ = 1.4 is reached.
In these strong-disorder regimes, the way that ρ(E = 0) → 0 is of a
fundamentally different nature than the way the weak-disorder DOS
tends toward zero: the distribution of the strong-disorder DOS, while
heavily weighted towards zero, exhibits very large spatial variations.
The weak-disorder case on the other hand is almost fully concentrated
at zero, with almost negligible variations in space.

Surprisingly similar behavior can be seen in the unitary-scatterer
model. One can see that in the low-concentration regime (i.e., up to
p ≈ 0.5%), both the mean and the standard deviation of the LDOS are
almost zero. Then at around p = 1.0% both the mean and standard de-
viation display a strong dependence on p, with both increasing as the
impurity concentrations are increased. This behavior stops at around
p = 16.0%, at which point the mean LDOS reaches the largest value
(out of the values of p we consider), and the mean starts to decrease
once p is increased. The standard deviation continues to increase past
p = 16.0% up until p = 32.0%, signaling that despite the decrease in
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the mean LDOS, the spatial variations remain considerable. It is inter-
esting to note that both the mean and standard deviation of the DOS
at E = 0 in this case depend on p very similarly to the way the same
two quantities depend on σ in the Gaussian random-potential case
discussed before, despite the considerable differences present between
the two disorder scenarios.

Despite the huge difference in the effects seen in the quasiparticle
DOS and local DOS maps between smooth and pointlike disorder, the
DOS at E = 0 for the smooth-disorder case does display a similar de-
pendence on the disorder strength as for pointlike disorder. For the
positive-net-potential case, low doping concentrations show a mean
LDOS close to zero, with a corresponding small standard deviation in-
dicating small spatial variations in the LDOS. Both the mean and stan-
dard deviation exhibit a dependence on p up to the (quite unphysical)
doping p = 40%. At that point the mean LDOS becomes a maximum,
but the standard deviation continues to increase past that point. The
zero-net-potential case meanwhile shows much more spatial variation
than the positive-net-potential case. Low dopings show small mean
and standard deviations, and as p is increased these two quantities de-
pend strongly on p. Interestingly, at p = 10% the standard deviation
starts to depend more strongly on p; consequently, at intermediate and
high dopings the LDOS at E = 0 has a considerable amount of spatial
variation. The mean LDOS also has a strong dependence on p.

The extent to which the LDOS at the Fermi energy varies over space
can be visualized neatly by taking histograms of these LDOS values for
various values of the disorder strength parameter. These histograms
are shown in Fig. 4.16. To facilitate comparisons between LDOS dis-
tributions corresponding to different disorder strengths, we use the
same bin width for each histogram. For random-potential disorder,
it can be seen that the weak-disorder cases feature very narrowly dis-
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tributed LDOS values. When disorder is increased until σ = 1.00 the
distributions start to broaden, and as a consequence the peaks of the
distributions shift rightwards, becoming lower, with the mean moving
away from zero. For values of σ > 1.00 the distribution starts to nar-
row, with much of the distribution being concentrated near zero, but
there remains a large amount of spatial variation. Because of the large
weight at and near zero, ρ(E = 0) is suppressed in these cases, but
the distribution is much more variable than in the weak-disorder case.
We note in passing that throughout the range of disorder strengths we
consider, ρ(E = 0) is consistently distributed log-normally, which is
remarkable given how dramatically different the overall statistics of
these distributions are as disorder is varied.

Moving on to unitary-scatterer disorder, at small p the distribution
is centered mainly around ρ(E = 0) ≈ 0, but with a small number of
LDOS values with larger values arising from the random interference
effects discussed earlier. These effects become more and more numer-
ous as p is increased, leading to broader and flatter distributions at
intermediate impurity concentrations. The behavior of the LDOS dis-
tributions in the multiple unitary-scatterer case parallels very closely
that of the Gaussian random-potential disorder, with distributions for
both cases widening and then subsequently narrowing once more as
p or σ is increased. The main difference here is that the distribution
of the LDOS for unitary scatterers is bimodal for moderate and large
values of p: as the LDOS is suppressed almost completely at impurity
sites, these represent a considerable number of LDOS values that are
zero, and these peaks in the distributions are present independently
of the variations arising from the very presence of these impurities.
When one takes these impurity-site LDOS values out of consideration,
the LDOS distribution is log-normal, similar to the case of random
Gaussian disorder (which, unlike the unitary-scatterer model, does not
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exhibit a special subset of lattice sites at which the LDOS is maximally
suppressed).

In the case of smooth disorder with positive net potential, one can
see that the generation of a finite DOS is achieved by an increase in
the spatial variation, resulting in the broadening of the distribution.
Similarly, when we consider smooth disorder with zero net potential,
as p is increased, the LDOS distributions at E = 0 become very broad.
While this effect is also seen in the other pointlike forms of disorder
we looked at earlier, here the broadening is more pronounced, and
much more so compared to the positive-net-potential case. We also
do not hit the strong-disorder regime where these LDOS distributions
start to narrow while still exhibiting strong spatial variations, which
we encountered in the random-potential and unitary-scatterer disorder
models.

We end this section by noting that our results for weak disorder
match closely with what field-theoretic treatments of disorder find,
which is that the DOS at E = 0 vanishes [118, 155, 10]. A crucial
assumption made in the construction of these field theories is that the
distribution of the disorder is narrow [10]. Indeed, we find that weak
disorder of whatever form leads to a very small DOS at the Fermi
energy. What our numerical results suggest however is that the DOS
is not vanishing only up to some threshold value of disorder which
invalidates the construction of these field-theoretic models. Instead
what we find is that the DOS at E = 0 varies smoothly as the amount
of disorder is increased, suggesting that crossovers, rather than sharp
transitions, occur as one moves from weak to intermediate disorder
and from intermediate to strong disorder.
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Figure 4.17: Plots of C/T as a function of temperature T for different types
of disorder. Gray dotted lines indicate fits of the C/T curves
to the form C/T = γ0 + αT, the scaling expected from d-wave
quasiparticles with a nonzero DOS at E = 0. The numerically-
obtained C/T exhibits visible deviations from this scaling.

4.7 low-temperature specific heat

The next quantity we will consider is the low-temperature specific heat.
We will examine the contributions of the d-wave quasiparticles to the
specific heat, neglecting the effect of phonons which arise at higher
temperatures. As mentioned earlier, a clean d-wave superconductor
has a DOS which vanishes at E = 0 linearly, and this gives rise to
a T2-dependent term in the specific heat C. Interestingly, in specific
heat experiments, it is found that this T2-dependent term is difficult
to disentangle from the signal [144]. Instead the most prominent con-
tributions to the specific heat are the phonon contribution (scaling as
T3) and the contribution due to a finite density of states at zero energy,
which scales as T, similar to a normal metal. We thus begin our dis-
cussion of specific heat with the necessary warning that it is difficult
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to match the dependence on temperature of C from our numerical cal-
culations with that found in specific heat experiments. What can be
unambiguously compared between simulation and experiment, how-
ever, is the magnitude of γ0, the coefficient of the linear-in-T term in
C which is proportional to the DOS at E = 0.

Shown in Fig. 4.17 are plots of C/T versus T for various types of
disorder. We first discuss random-potential disorder. It can be seen
that when σ is small, the specific heat scales as C ∝ γ0T + αT2, with γ0

very small, reflecting the fact that the DOS at the Fermi energy at weak
random-potential disorder is suppressed. The behavior of γ0 closely
follows that of the DOS at E = 0, as a large jump in γ0 is found at
σ ≈ 0.35. Even at moderately strong disorder, the specific heat is still
found to scale as C ∝ γ0T + αT2, at least up to T ≈ 0.03 (approximately
50 K). When disorder is strong enough, the scaling finally starts to
deviate considerably from that found in the weak-disorder cases. For
instance, when σ ≈ 1.00, C/T becomes concave downward. The large
value of C/T as T → 0 seen in that case is a reflection of the very large
DOS at E = 0.

For the case of multiple unitary scatterers, the specific heat results
are by and large similar to the random-potential case. Low concen-
trations of unitary scatterers show a very small value of γ0, and with
large values of γ0 reached only until p ≈ 2.0% is reached. It bears
noting that at low temperatures the specific heat roughly scales as
C ∝ γ0T + αT2 at low and moderate concentrations of unitary scat-
terers. The unitary-scatterer cases however feature mild kinks in the
C/T-versus-T plots at low temperatures which are not present in the
random-potential cases. These kinks arise from the particular form
of the DOS profiles in the unitary-scatterer cases, which show both a
rounding of the DOS at energy scales set by the scattering rate, and ul-
timately its suppression at E = 0. The kink in the C/T profile becomes
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more prominent with increasing p, and in the strong-disorder regime
the plot becomes, as in the random-potential case, concave downward.

Finally, smooth-potential disorder gives rise to specific heat behavior
that is rather demonstrably different from that arising from random-
potential or unitary-scatterer disorder. Low concentrations of smooth
scatterers (e.g., p ≈ 2.5% or p ≈ 5.0%) show C ∝ γ0T + αT2 scaling of
the specific heat, with correspondingly small values of γ0, reflecting
the relatively small DOS at the Fermi energy due to these levels of
smooth disorder. However, the unusual behavor of the DOS at E = 0 at
higher concentrations p manifests itself in a strange kink in the plot of
C/T versus T, showing strong deviations from the scaling one would
expect from both d-wave dispersion and a finite DOS at the Fermi
energy. The large value of C/T as T → 0 results naturally from the
enhancement of the DOS at E = 0, and as T is increased C/T dips, then
rises linearly once more past a certain temperature. It is worth noting
that the deviations from the expected scaling are fairly localized within
a small region near T = 0, with the specific heat returning to quadratic
scaling C ∝ αT2 once temperature is raised past some threshold value.

Given the aforementioned difficulty of measuring precisely α from
experiment, we cannot say much about how consistent with experi-
ment our numerically-obtained scaling for C is. However, what we
obtain for γ0 can be compared with that found from experiment with
definiteness. We will return to a comparison with results from specific
heat experiments at the conclusion of this chapter.

4.8 quasiparticle localization

The final quantity of interest to us is the localization length λ. Unlike
the DOS and the specific heat, the localization length is not an experi-
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Figure 4.18: Plots of the localization length λ (in units where the lattice con-
stant a = 1) for different types of disorder, taken at three differ-
ent energies E. The x-axis shows the disorder strength parameter,
given by σ for random-potential disorder (leftmost plot) and the
impurity concentration p for unitary-scatterer and smooth disor-
der (middle and rightmost plots).
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Figure 4.19: Plot of the localization length λ as a function of energy E for
different types of disorder.

mental observable; no experiment exists which measures the quantity
described by Eq. 4.15. However it is a very important quantity in that it
gives information as to how localized the states at a particular energy
are. It is a rather difficult quantity to measure in finite-size simulations
of lattice systems because more often than not λ is much bigger than
the system size. The numerical method we use however circumvents
this difficulty by allowing one dimension of the system to be much
longer than the other. Thus we can use one definition of the localiza-
tion length which involves the transmission probability between two
ends of an elongated two-dimensional system [106, 23, 92, 186]. This
enables us to directly and exactly calculate the localization length for
the full disordered system. As a first exercise we calculate the localiza-
tion length λ using Eq. 4.15 on the same set of disorder configurations
as used in Figs. 4.15 and 4.16. In Fig. 4.18 we show λ for three differ-
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ent values of E: E = 0 (corresponding to states at and near the Fermi
energy), E = 0.15 (for states far from either the Fermi energy or the
coherence peaks, but still within the d-wave gap), and E = 0.3 (states
at and near the coherence peaks). We also plot in Fig. 4.19 the localiza-
tion length as a function of energy for various forms of disorder using
the same configurations used in Figs. 4.1, 4.3, 4.5, and 4.8.

Let us discuss localization in the random-potential model first. We
begin with the states at and near the Fermi energy. The dependence
of λ at E = 0 on σ appears to be unusual: it is approximately constant
from σ = 0.13 to σ = 0.25, then hits a peak at around σ = 0.35 before
decreasing with increasing disorder. The localization lengths for these
states are small at weak disorder (λ ≈ 170), and the strong-disorder λ

is even smaller—λ ≈ 50 at σ = 1.00, smaller in fact than the transverse
dimension of the system.

The localization lengths at intermediate and high energies show
more consistent behavior than the low-energy case. These decrease
monotonically as disorder is increased. It is worth noting that while
these states are quasi-extended at low disorder, with a larger localiza-
tion length than for the E = 0 states, there is a range of σ where these
higher-energy states have a smaller λ than states near the Fermi en-
ergy, which coincides at the range where λ(E = 0) peaks. We will
later show that the contrast in behavior seen here between the E = 0
case and that for higher energies is also seen in other forms of disorder.
However a remarkable fact about random-potential disorder is that, of
the various types of disorder we consider, this has the most dramatic
impact on the behavior of the localization length. For one, it can be
seen from the results that λ(E = 0.15) > λ(E = 0.3) for all values of
σ we use, implying that the intermediate-energy states are less local-
ized than the higher-energy ones—a feature that is not seen in other
forms of disorder we consider. Also, the closeness of the values of λ at

153



quasiparticle density of states , localization. . .

different E for all σ is much less pronounced in the unitary- or smooth-
scatterer cases. These cases exhibit a more visible and rigid separation
of λ as a function of energy for a wide range of disorder strengths—
i.e., λ(E = 0) < λ(E = 0.15) < λ(E = 0.3) for these cases, which
the random-potential case clearly does not show. There is a disorder
strength—σ ≈ 1.00—at which the localization lengths for the three dif-
ferent energies are approximately the same number; this corresponds
to the onset of the strong-disorder regime.

We can see these effects more clearly when the localization length
is plotted versus energy. Notice that for all disorder strengths we con-
sider, the states near the Fermi energy are strongly localized, and their
localization lengths at E = 0 are close in value to one another even as
the amount of disorder is varied. For weak disorder (σ = 0.125 and
σ = 0.25) the localization length rises from a small value at E = 0 into
a prominent peak at some small energy (E ≈ 0.02 for σ = 0.125 and
E ≈ 0.01 for σ = 0.25 ), after which it decreases as energy is increased.
It bears noting that the localization lengths at intermediate and high
energies at these disorder levels are still quite large, at around 200-600

lattice constants. At E ≈ 0.3 (the coherence-peak energy), the local-
ization length for the σ = 0.125 case starts to increase; this effect is
not visible when disorder is stronger. When disorder is increased, the
localization length stops exhibiting these energy-dependent features:
when σ = 0.50, λ is almost energy-independent, and this is even more
the case for σ = 1.00, indicating that the states are strongly localized
at all energies.

We next discuss unitary-scatterer disorder. Focusing first on the E =

0 case, we see that it exhibits the same unusual dependence on p as the
random-potential case at the same energy does on σ. At low impurity
concentrations λ(E = 0) increases slightly with increasing p, reaching
a peak at p = 1.0% before decreasing monotonically as a function of
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p. This is in stark contrast with the behavior of λ at higher energies,
which monotonically decrease with increasing p for all p we consider.
It is worth comparing these plots to the ones derived for the random-
potential case. Here we can see that, in the unitary-scatterer model, the
low-disorder cases at intermediate and high energies have a far larger
localization length than in the random-potential model. The impact of
unitary scatterers is less pronouced than Gaussian random-potential
disorder at low disorder, but with stronger disorder the behavior of the
localization length for this case starts to become similar to that of the
random-potential case. At higher impurity concentrations, the values
of λ for different E approach each other as p is increased, with λ(E =

0) ≈ λ(E = 0.15) ≈ λ(E = 0.3) at p = 16.0%, which corresponds to
the strong-disorder regime of this particular form of disorder.

The localization length for the unitary-scatterer model exhibits a
very different dependence on energy from the Gaussian random-potential
case, at least for small amounts of disorder. Near the Fermi energy, the
states are strongly localized, and as with the previous disorder model
we discussed the localization lengths at E = 0 are close in value to
each other. At low concentrations, the localization length increases
from E = 0 up to some energy, then after that point it increases once
more with increasing energy, but at a decreased rate. This is seen in
the p = 0.25% and p = 1.0% cases. Evidently, past a certain threshold
energy the states become far less localized, with very large localiza-
tion lengths at intermediate and high energies (around 300-700 lattice
constants), and states at higher energies are less localized than those
at intermediate energies—in stark contrast to the Gaussian random-
potential case. When p is increased, however, these energy-dependent
features become far less noticeable, as can be seen when p = 4.0%, in-
dicating that when disorder is large enough, the effects of localization
become visible at all energies, and not just at small energies. At these
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large-p regimes the behavior of the localization length with increas-
ing energy becomes very similar to that seen in the strong-disorder
random-potential case in that little, if any, dependence on energy can
be discerned, and in that all states are localized, even at high energies.

We finally consider the localization due to smooth disorder. Here
we will consider smooth disorder potentials whose spatial average is
zero—i.e., disorder potentials described by Eq. 4.23. Here the smooth-
ness of the disorder potential makes itself particularly manifest. First,
for the states near the Fermi energy, it can be seen that λ(E = 0) does
not exhibit a sharp peak at some disorder strength, unlike what is seen
for random-potential or unitary-scatterer disorder. Instead its profile
is flat at low p, and it then smoothly decreases as p increases. It is in-
teresting to note that λ(E = 0) manages to be fairly large even at high
impurity concentrations. Notably, when one has unphysically high p
(e.g., p = 40% or p = 80%), the localization length at the Fermi energy
is still λ(E = 0) ≈ 80-100. For comparison’s sake, that point is reached
with random-potential disorder at σ ≈ 0.50 and with unitary-scatterer
disorder at p ≈ 8.0%—levels of disorder which are strong enough to
destroy coherence peaks. From just the consideration of states near the
chemical potential, the impact of smooth disorder on λ is much less
pronounced than either of these other cases.

The absence of any strong impact on the localization lengths is even
visible at higher energies. Here it can be seen that the localization
lengths for E = 0.15 and E = 0.3 are very large—λ ≈ 500 for low
p. Even at p = 20.0% we find that λ ≈ 300. Such large values of λ

are seen only at low levels of disorder for the random-potential model
(σ ≈ 0.18) and the unitary-scatterer model (p ≈ 1.0%). Even at very
high smooth-impurity concentrations such as p = 40% and p = 80%,
we find that λ ≈ 150-200; these localization lengths correspond to low
disorder levels in the random-potential and unitary-scatterer models
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of disorder. Another notable observation is the fact that λ(E = 0.15)
and λ(E = 0.3) are quite close to each other for all p. We never reach
the onset of the strong-disorder regime that we observe in the other
pointlike models of disorder—that is, the disorder strength at which
λ(E = 0) ≈ λ(E = 0.15) ≈ λ(E = 0.3). We find that at the absurdly
unphysical p = 80% concentration λ(E = 0.15) ≈ λ(E = 0.3), but
λ(E = 0) remains parametrically much smaller than either. This is a
clear sign that, even with very large off-plane impurity concentrations,
the impact of this form of disorder on the localization of states at all
energies is much more muted than in random-potential or unitary-
scatterer disorder—especially at intermediate or high energies.

The plots of λ versus E for the smooth-disorder case exhibit a num-
ber of differences from the other two forms of disorder we have consid-
ered. First, the states near the Fermi energy are strongly localized, but
as the energy is increased the localization length increases sharply for
all p we consider until some value of E is encountered, at which point
the localization length exhibits a far less pronounced dependence on
E. At low concentrations (e.g., p = 5%), the localization length by
and large increases as energy is increased, but with considerable ran-
dom fluctuations. When the concentration is increased, the localiza-
tion length grows more slowly with E. It is interesting to note that
the localization length trends upward past E ≈ 0.3, the energy where
coherence peaks are found, indicating that states at energies higher
than the coherence-peak positions are quite extended in space. These
behaviors are different from those seen in unitary-scatterer or random-
potential disorder, although there are similarities—at low energies λ

for smooth disorder behaves similarly as in unitary-scatterer disorder,
while at higher energies there is a noticeable increase in λ starting at
E ≈ 0.3, similar to what is seen in weak random-potential disorder.
Even at very large values of p the behavior of the localization length is
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still similar to that at low concentrations; at p = 40% λ is still visibly
energy-dependent, suggesting once more that even in these regimes
disorder of this form has a far weaker effect than the other two types
of disorder we have considered. It is instructive to compare smooth
disorder at p = 20% to, say, unitary-scatterer disorder at p = 1.0%
or random-potential disorder at σ = 0.25—the localization lengths for
these three cases occupy a similar range to each other.

Our numerical results for the localization length are in good quali-
tative agreement with the analytical results obtained by Lee, who per-
formed self-consistent calculations for weak Gaussian random-potential
and dilute unitary-scatterer disorder in the d-wave superconducting
state [100]. Some caveats need to be mentioned, however, as our nu-
merics exhibit more detail and structure about the localization prop-
erties of these disorder models. Lee argued that the states near the
Fermi energy are localized, although the extent to which these states
are localized away from E = 0 (instead of being quasi-extended) was
found to depend on whether the scattering is in the Born limit or the
unitary limit. In the Born-scattering limit of Gaussian random disorder
it was found that localization is negligible away from E = 0, whereas
for unitary scatterers localization can be observed at energies E < Γ0,
where Γ0 is the scattering rate in the superconducting state as E → 0.
In our numerical results we find that the states within the vicinity of
E = 0 are special in being much more localized than their neighbors
in energy space for all weak-disorder models we consider. We find
that the dip in the localization length at E = 0 for the unitary-scatter
case is narrower than Lee’s calculations suggest—that is, the energy
range over which the quasiparticles are sharply localized is consider-
ably narrower than Lee’s estimate of the scattering rate Γ0. Away from
E = 0 the behavior of the localization length is in much more quanti-
tative agreement with Lee’s predictions: λ(ω) ≈ vF/Γ(ω) ≈ 1/ω for
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random-potential disorder in the Born limit and λ(ω) ≈ ω for uni-
tary scatterers, which are behaviors similar to what we can observe in
the weak-disorder cases we discussed earlier. Our numerical results
are also in good agreement with earlier numerical work on random-
potential and unitary-scatterer models of disorder [186, 47, 194].

The behavior of the localization length as a function of E at weak dis-
order resembles that predicted by Senthil and Fisher from field theory
[155]. Their inclusion of diffusive modes—as elucidated in the comple-
mentary diagrammatic approach by Yashenkin et al. [187, 67]—implies
that additional behavior due to these modes, not captured by self-
consistent diagrammatic theory, should account for the differences be-
tween these approaches [10]. Senthil and Fisher argue that, at least in
the case of unitary scatterers in the dilute limit, there are three regimes:
the ballistic regime, the diffusive regime (at E ≈ Γ0), and finally the
localized regime near E = 0. The distinction between the ballistic and
diffusive regimes cannot be clearly delineated from our numerics, but
the crossover from the ballistic/diffisive regimes to the sharply local-
ized regime can be seen very clearly in the weak-disorder cases we
consider. Also, we find, in agreement with Senthil and Fisher’s re-
sults, that the localization length as E → 0 in fact approaches a finite
constant—in striking contrast to the predictions by Nersesyan et al.,
who find a diverging localization length as E → 0 [118]. Our calcula-
tions find that this constant localization length at the Fermi energy is
independent of the disorder strength in the weak-disorder regime, and
stands in contrast to the behavior of the localization length at higher
energies, which is found to be dependent on the disorder strength.
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4.9 discussion and conclusion

We have revisited the effects of disorder in high-temperature supercon-
ductors using exact real-space methods which allow large system sizes
to be studied, and have ensured that the parameters we have used in
our models hew closely to what is known about the cuprates from
experiment. We have focused primarily on the density of states and
the localization length, two quantities that are of central importance
in the study of disordered systems, and made use of various models
of site-energy disorder—random Gaussian potentials, multiple unitary
scatterers, and off-plane dopants—which are found to result in vastly
different behavior depending on which particular model is used.

Our main motivation for looking at the density of states of disor-
dered d-wave superconductors once more is the observation—seen
consistently in experiments as disparate as specific heat measurements,
ARPES, and STS—that there appears to be a nonzero density of states
in the cuprate superconductors, even those for which the samples can
be made very clean, such as YBCO. The persistent appearance of such
a signal has prompted a number of explanations that do not invoke
disorder, and at the very least suggests the possiblity that physics be-
yond the usual paradigm of d-wave superconductivity has to explain
this. We reconsider the possibility that disorder is responsible for this
nonzero density of states, and find that disorder of a form rarely con-
sidered in the older literature on the subject can in fact be a plausible
explanation for this phenomenon.

The idea that the cuprates host different variants of disorder is not
strange or even new, as STS experiments can directly visualize the dis-
order present in these materials and find that throughout the phase
diagram of BSCCO, the signatures of disorder are present—whether
in the form of quasiparticle interference in the superconducting state,
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or the real-space inhomogeneities in the DOS and pairing gaps in the
pseudogap regime. However, the very chemistry of the cuprates natu-
rally precludes the possiblity that disorder is present within the CuO2

planes. The most natural form of disorder, at least from a chemical
standpoint, appears to be dopants located some distance from the con-
ducting planes. Doped cuprates host a nonzero number of oxygens
at off-plane sites, and they exert an effect on the physics within the
CuO2 planes by means of a screened Coulomb potential that modifies
the chemical potential at sites located within the conducting planes.
The longer-ranged nature of these potentials makes them trickier to
model than unitary scatterers or random-potential disorder, but the
numerical methods presented here allow the effects of these forms of
disorder to be simulated with great efficiency. We have also been able
to obtain the localization length, a quantity that, thanks to its large size,
is unable to be extracted from exact diagonalization studies of small
systems, and closely examine its behavior as a function of disorder
strength and energy for different models of disorder used.

Examining first random-potential disorder, we find that its effect on
the DOS is to flatten the coherence peaks at the edge of the d-wave gap,
and that the dominant spectral-weight transfer processes appear to be
from the coherence peaks to intermediate energies, with not much
spectral weight transferred to the region near the Fermi energy. A
large finite DOS at E = 0 is not generated until fairly strong levels of
disorder are reached. We consistently see that the DOS at the Fermi
energy is suppressed relative to that at nearby energies; that the DOS
profile at that region is V-shaped, in stark contrast to what is seen in
STS experiments; and that coherence peaks are considerably flattened,
even when disorder is weak. For this form of disorder the localiza-
tion length exhibits an interesting dependence on energy and disorder
strength: states near E = 0 are localized, but the localization length
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sharply increases moving away from the Fermi energy, until it starts
decreasing monotonically as energy is increased.

Multiple unitary scatterers are found to exhibit spectral-weight trans-
fers from the coherence peaks to a particular energy scale, resulting in
the presence of a hump-like feature in the DOS at small energies, with
otherwise small deviations from the clean case at small impurity con-
centrations. The DOS consistently exhibits suppression at E = 0, and
manages to acquire a large finite value only when fairly large concen-
trations are reached. As the concentration is increased the d-wave gap
gets filled and the coherence peaks become more and more flattened.
The behavior of the localization length for this form of disorder is
drastically different from the random-potential case, especially at low
levels of disorder. The localization length is small for states near the
Fermi energy, then increases sharply until some energy is reached, and
subsequently increases once more, but at a far slower rate.

Off-plane scatterers are the most interesting case, insofar as even
a large concentration of such dopants turns out not to destroy the
d-wave profile of the DOS—spectral weight transfers are minimal at
best—while generating a finite DOS at E = 0 at levels of disorder that
are not far off from what is seen in experiment. For the parameters we
have used in our disorder potential, concentrations around 10-20% re-
sult a small but visibly finite DOS at the Fermi energy and a U-shaped
DOS profile for small energies, which are consistent with experiment.
At higher concentrations, an unusual resonance forms at E = 0; this
appears to be an intrinsically many-impurity effect, as there is no ob-
vious correlation between the disorder potential and the resulting res-
onant DOS. The localization length is found to be much bigger than
that seen in the previous two disorder models used. While the states
near E = 0 have a short localization length, away from that region the
localization lengths are very large, even when the concentrations are
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sizable—for comparison’s sake we have found that a concentration of
20% off-plane scatters has roughly the same effect on the localization
length for a broad energy range as an ensemble of unitary scatterers
with concentration 1.0%, or random-potential disorder with σ = 0.25.
These results all point to the fact that smooth scatterers have far less of
an effect on the DOS and the localization properties of a d-wave super-
conductor than the other two disorder models, even when the amount
of smooth disorder is large.

It is worth asking whether we can make any definitive conclusions
regarding the nature of disorder in the cuprates from our results. Dis-
order makes itself felt in a panoply of effects seen in various experi-
ments, but isolating its effect with any definiteness is difficult given the
vast array of strongly correlated phenomena present in the cuprates.
We have focused mostly on single-particle properties in the form of
the DOS, and and it bears noting that many of the effects due to disor-
der we have described could be due to other effects as well. Disorder
broadens the DOS, but so do interactions (in the form of self-energies)
and finite temperatures. We work in the T → 0 limit, so the latter
alternative is ruled out, but even then we cannot rule out the possibil-
ity that nontrivial physics beyond the mean-field model of a d-wave
superconductor we work with can explain the bulk of what is seen in
experiment. The best we could do in the meantime is to look at the ex-
tent to which disorder—and disorder alone—reproduces experiment.

How does one square the presence of a finite DOS at E = 0 with
the amount of disorder present in the cuprates, assuming that disor-
der alone is responsible for the broadening? Zero-field specific heat
measurements on YBCO find a residual T-linear term in the specific
heat whose coefficient is γ ≈ 2 mJ·mol−1·K−2 [115, 116, 144]. Using
Eq. 4.13, we find that ρ(E = 0) ≈ 0.1. Interestingly, angle-resolved
photoemission spectroscopy provides a similar value for the residual
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DOS at E = 0. The widths of energy distribution curves taken from
ARPES experiments on clean BSCCO suggest that the scattering rate
in the superconducting state is around Γ ≈ 15 meV near zero binding
energy [82, 170, 91]. Using the formula

ρ(E = 0) = ∑
k

Γ
ε2

k + ∆2
k + Γ2

, (4.26)

this too leads to ρ(E = 0) ≈ 0.1. These provide constraints in the
amount of disorder in the cuprates, assuming that this finite value of
the DOS is due purely to disorder.

Unitary scatterers can be safely ruled out. STS experiments show
few, if any, signals of unitary scatterers in real-space conductance maps
of clean BSCCO. They do not show the resonances one sees in zinc-
doped BSCCO. The presence of vacancies however could be one source
of unitary-scatterer disorder in the cuprates. How numerous would
they have to be to produce a finite density of states consistent with ex-
periment? From our numerics it appears that p = 2.0% and p = 4.0%
are the closest matches to this, but these concentrations of unitary scat-
terers appear to be too high to describe clean BSCCO. In fact, these are
too large to describe even zinc-doped BSCCO—the STS experiments
on these doped materials use a zinc-dopant concentration of p = 0.6%
[129], and conductance maps from these studies show very prominent
resonances that are not present in clean BSCCO.

Weak random-potential disorder can also be ruled out as a primary
source of the finite DOS ultimately for two reasons. First, by the argu-
ment we used above for unitary-scatterer disorder, the level of Gaus-
sian disorder needed to reproduce ρ(E = 0) ≈ 0.1 is around σ = 0.50.
At this level of disorder, the coherence peaks are completely flattened
and smeared out. This is in contrast to what is seen in STS experiments,
which consistently find a spatially-averaged LDOS with prominent co-
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herence peaks in the superconducting state of BSCCO. Second, at this
level disorder is strong enough that the usual telltale signatures of QPI
are no longer present. As discussed before, this form of disorder is con-
sistent with QPI when σ is very small [161]. When disorder of this sort
is weak, peaks in the power spectrum of the LDOS corresponding to
what the octet model predicts are visible and prominent, and the real-
space maps show crisscrossing patterns consistent with experiment.
However this is destroyed when disorder is increased, and STS studies
of BSCCO show that disorder is never strong enough to prevent the
formation of modulations governed by QPI—disorder has to be weak
enough that QPI is preserved. The strong levels of disorder that would
produce a finite DOS at E = 0 consistent with the large self-energies
found in ARPES would on the other hand not result in QPI. This sug-
gests that QPI due to weak random-potential disorder occurs on top of
other effects that are primarily responsible for the finite DOS at E = 0.

This leaves us with smooth disorder due to off-plane dopants. Many
aspects of these dopants remain mysterious, and important properties—
the screening length, the strength of the potential, and even the exact
placement of these dopants—are not known with any degree of ac-
curacy. Nevertheless, in our treatment of these dopants we have at-
tempted to be consistent with a number of crucial facts. First, the
dopant concentration is generally large, and second, the dopants are
located some distance away from the CuO2 planes, which leads to
small-angle scattering. We find that the effects of smooth disorder on
the DOS are much more muted than in the other two disorder cases,
with minimal impact on the heights of the coherence peaks and only
small spectral-weight transfers to the region near the Fermi energy.
This is seen too in our calculations of the localization length in the
presence of this form of disorder, which is found to remain quite large
for a wide energy range even for large impurity concentrations p. We
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find that ρ(E = 0) acquires a value within the range [0.05, 0.10] for a
rather wide range of p—this would correspond to p ≈ 10-20%, depend-
ing on which disorder scenario one has. The more realistic scenario,
in which the impurity strengths of the scatterers all have the same
sign, features considerably more suppression of the DOS at the Fermi
energy than the case where the spatially-averaged disorder potential
is zero. The zero-average scenario has a number of very interesting
features at large concentrations (p ≈ 20%, for instance), such as res-
onances at E = 0 whose origins appear to be unrelated to the exact
details of the disorder potential. While these prominent resonances
are not seen in experiment, lower impurity concentrations show much
more muted LDOS patterns at E = 0, which, while yielding a nonzero
DOS at the Fermi energy when averaged, are far less observable than
at higher concentrations, and the value of the DOS appears to be fairly
consistent with experiment.

Having said this, studies of quasiparticle scattering interference in
BSCCO do consistently demonstrate that small- and large-momenta
scattering processes occur in BSCCO, which is something that purely
smooth disorder cannot take into account on its own. Purely smooth
disorder such as what we discussed in this section has been shown to
give rise to Fourier-transformed maps where large-momenta peaks are
missing [125, 161]. Because so much of the chemistry of the cuprates is
consistent with off-plane disorder, and because strong, pointlike poten-
tials are rarely encountered in BSCCO, it is a bit of a mystery why the
observed QPI exhibits large-momenta peaks. It is of course entirely
possible that these effects occur in tandem with each other—smooth
potentials cause the finite DOS, while relatively weak pointlike disor-
der causes QPI—but a full resolution still awaits, and possibly requires
a much more microscopic modeling of the tunneling process [93].
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We additionally caution the reader that our work has focused on
strictly two-dimensional d-wave superconductors, and as such we have
neglected the effects of coupling to the third dimension. The suppres-
sion of the DOS in the presence of in-plane pointlike disorder has been
shown in field-theoretical work to occur strictly in 2D, and the logarith-
mic divergences responsible for this effect are cut off when interlayer
coupling is included [118]. The observed dips we see in the in-plane
disorder cases would be lost the more three-dimensional the system
becomes, and this leaves open the possibility that, in the presence of
interlayer coupling, this finite DOS could be due in part to the pres-
ence of pointlike forms of disorder. We thus stress that our results
do not by any means suggest that smooth disorder is the be-all and
end-all cause of the finite DOS at the Fermi energy. However, as noted
earlier, YBCO is noted to have clean CuO2 planes, so any influence of
in-plane disorder on the DOS is likely to be very weak, regardless of
the presence of interlayer coupling.

The possibility that the finite DOS at the Fermi energy in the su-
perconducting state of the cuprates is due to disorder—smooth disor-
der, in particular—does not leave other explanations wanting, however,
and one should not rule these out completely. It is possible that dis-
order is present alongside other, more exotic effects involving strong
interactions (quantum criticality, for instance). In such a scenario there
would be even more broadening involved. When the self-energies in-
corporating both disorder and interactions contain a nontrivial depen-
dence on frequence or temperature, numerous interesting effects could
conceivably occur. It would be interesting to see if alternative expla-
nations invoking, say, quantum criticality or coexisting order result in
the preservation of crucial aspects of the d-wave state, as the smooth-
disorder scenario does.
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On a completely different note, our results suggest a number of av-
enues for future work. First, the incorporation of full self-consistency
is one possibility, albeit a very technically challenging one, at least
from the point of view of our methods. While self-consistency may
not be completely necessary—it might very well be that the supercon-
ductivity in the cuprates is decidedly non-BCS-like—it would be very
interesting to see how smooth disorder affects the superconducting
order parameter. The non-self-consistent results in this chapter sug-
gest that smooth disorder has a far more muted effect on the single-
particle properties of the d-wave superconductor than unitary-scatterer
or random-potential disorder, so it is reasonable to guess that a fully
self-consistent treatment would result in the preservation of d-wave
superconductivity up to very high off-plane impurity concentrations,
and consequently a large Tc even when the superconductor is disor-
dered. A second possibility is to revisit the exact calculation of the
superfluid stiffness, Tc, and optical conductivity in the superconduct-
ing state [149, 148] in the presence of off-plane disorder, and to ex-
amine if superconductivity is ever destroyed by smooth disorder. Our
results suggest that even something as relatively anodyne as disorder—
especially a relatively overlooked form of disorder like off-plane dopants—
can produce surprisingly rich physics that accounts for many observed
experimental properties of the cuprate high-temperature superconduc-
tors.
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S E L F - E N E R G I E S A N D Q U A S I PA RT I C L E
S C AT T E R I N G I N T E R F E R E N C E

5.1 introduction

The copper-oxide superconductors are well-known to be strongly cor-
related materials. Many phenomena exhibited by the cuprates evade
explanations based on weakly interacting quasiparticles. Perhaps the
most notorious example of this is the “strange metal,” the normal state
of these materials near optimal doping. This shows behavior that, as
probed by transport, is very different from that seen in conventional
metals, which are described well by Fermi-liquid theory [84]. An-
other similarly perplexing phase of these cuprates is the pseudogap, in
which the density of states is prominently suppressed near the Fermi
energy, exhibiting numerous exotic phenomena such as various or-
dered phases, gap inhomogeneities, and “Fermi arcs”— disconnected
segments in momentum space hosting gapless excitations—as seen
in experiments such as scanning tunneling spectroscopy (STS) and
angle-resolved photoemission spectroscopy (ARPES) [164, 121]. Even
the superconducting state, which is comparatively well-understood
among the various phases of these materials, is highly unusual: it
has d-wave pairing, leading to gapless, Dirac-like nodal quasiparticles
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[157, 36]. It appears to be much more stable against disorder than
d-wave mean-field BCS theory predicts, while unusual interaction ef-
fects, as probed by ARPES, are seen to emerge as the temperature ap-
proaches Tc [141, 140, 138, 139], which in turn is much higher than in
conventional superconductors. The T = 0 states at low and high dop-
ing are rather firmly established as an antiferromagnetic Mott insula-
tor and a conventional Fermi liquid, respectively, but the intermediate-
doping states remain to be fully understood. A full microscopic theory
of these materials consistent with all of these phenomena has yet to be
developed.

Much understanding can nevertheless be gained by adopting a phe-
nomenological approach towards modeling these various phases of the
cuprates. Starting from a weakly-interacting picture, interaction or dis-
order effects can be included by putting in the appropriate self-energy,
which “dresses” up the mean-field description one starts out with.
For instance, many of the unusual transport properties of the strange
metal, such as linear-in-T resistivity, can be captured by the marginal
Fermi liquid self-energy first introduced by Varma et al. [173]. While
this self-energy enters the Fermi-liquid propagator in what appears to
be an innocuous manner, it results in the complete absence of quasi-
particles at T = 0: the quasiparticle weight of a marginal Fermi liquid
vanishes at zero temperature. This MFL self-energy has been shown
to account for much of the transport anomalies seen in the cuprates,
although its microscopic origins remain largely unknown. Similarly,
much insight can be derived by treating the d-wave superconducting
state as a mean-field, albeit unconventional, BCS superconductor. This
starting point is largely justified by experiment. In general, ARPES
finds that the Bogoliubov quasiparticles inside the superconducting
state are well-defined excitations [82, 46, 163, 102, 176], while STS sim-
ilarly finds behavior consistent with coherent quasiparticles scattering
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off of disorder, leading to quasiparticle scattering interference (QPI)
[70, 112, 61, 90, 99, 50]. From a purely phenomenological standpoint,
the d-wave superconducting state can be reasonably studied starting
with this mean-field description, with self-energies included to model
phenomena that deviate strikingly from the mean-field expectation.

Recently, a number of ARPES experiments on both normal and su-
perconducting Bi2Sr2CaCu2O8+δ (Bi-2212) across a wide doping range
have provided a more complete picture of the various phenomena in
these materials, with the self-energy playing a crucial role in both
phases. In the superconducting state, it is observed that the super-
conducting gap is not the sole factor determining Tc—contrary to ex-
pectations from BCS theory. Instead, the quasiparticle scattering rate
exhibits a pronounced uptick near Tc. It appears that Tc is set by the
scale at which the gap and the scattering rate cross over into each
other, and the temperature at which the gap closes is larger than Tc

[141, 140, 138, 139]. Meanwhile, in the normal state, experiments af-
firm the validity of the marginal Fermi liquid description at optimal
doping, but in addition find that the ARPES data are well-described by
a self-energy that interpolates smoothly between a Fermi-liquid one at
extreme overdoping and a marginal-Fermi-liquid one at optimal dop-
ing. Such a doping-dependent self-energy has been central to the pro-
posed “power-law liquid” phenomenology first proposed by Reber et
al. [142].

Our goal in this chapter is to provide a detailed theoretical explo-
ration of the effects of these self-energies, in both the normal and
superconducting phases, on the real-space local density of states as
probed by experiments. We will focus on QPI, which has not been
looked at in related high-temperature STS studies on Bi-2212. Very
few experimental studies on the temperature-dependent behavior in
the superconducting state have been performed thus far [53, 132, 131],
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and the effects of self-energies on STS spectra have been largely unex-
plored save for a small number of studies [132, 9]. Given this situa-
tion, we will provide a template demonstrating how STS results might
look like, providing a guide for future experiments. QPI can be used
as a real-space method of probing the momentum-space structure of
the excitations: one takes the power spectrum of the differential con-
ductance maps, and the most prominent wavevectors appearing can
be used to map out the underlying band structure of these materials
[70, 112, 182, 25, 61, 90, 99, 50]. In addition, STS experiments can, in
principle, demonstrate whether the excitation spectra are coherent or
not. The presence of sharp peaks in the power spectrum of the dif-
ferential conductance maps taken from the d-wave superconducting
state at low temperatures is a clear-cut demonstration of the existence
of the Bogoliubov quasiparticles as sharp, phase-coherent excitations
[189]. This fact is corroborated by evidence from ARPES suggesting
that the excitations in the superconducting state at optimal doping
are long-lived, unlike those in the normal state at the same doping
[82, 46, 163, 102, 176]. These peaks in the power spectrum behave
exactly as the heuristic “octet model” suggests. If these Bogoliubov
quasiparticles are no longer long-lived, there is no reason to suspect
that these peaks will continue to be present. These will be broadened
and, if the scattering rate is large enough, will be rendered diffuse
enough that these no longer exist as well-defined peaks. Throughout
this chapter we will examine closely in several case studies the effect
of the quasiparticle scattering rate on the power spectrum of the LDOS
in the superconducting and normal state.

We first study the superconducting state as temperature is varied,
and consider three different possible scenarios and how these can be
seen in ARPES and STS. The first, which we call the “gap-closing”
scenario, is well-known from BCS theory. Here the gap shrinks contin-
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uously as temperature is increased until Tc is reached, at which point
it vanishes. The scattering rate is constant as a function of temper-
ature. The second scenario is “gap-filling/closing” and is argued to
be seen in ARPES experiments. Here the gap shrinks with increasing
T, vanishing at some temperature Tp, but, importantly, Tc 6= Tp. In
addition, additional spectral weight fills in at low energies as T is in-
creased. This can be accounted for by a temperature-dependent imagi-
nary part of the self-energy which takes on a value comparable to that
of the gap at temperatures near Tc. The third scenario is “gap-filling,”
wherein the superconducting gap is temperature-independent, while
the scattering rate is strongly temperature-dependent, as in the second
scenario. We observe the gradual disappearance of the octet-model
peaks as the scattering rate becomes very large. In the two scenarios
where the gap closes, we observe that the octet-model peaks can be
seen to disperse when the energy is fixed and temperature is varied,
but that these peaks lose coherence if the scattering rate becomes very
large.

As for the normal state, three scenarios are also considered. The
first is the ordinary Fermi liquid, the second is the marginal Fermi
liquid, and the third is a realistic marginal Fermi liquid whose spectral
function exhibits considerable momentum-space anisotropy, with the
nodal regions being much more coherent than the antinodal ones. We
see that the power spectrum of the LDOS in the first two cases appears
superficially similar to each other—the main feature for both is a set
of caustics which correspond to the scattering wavevectors between
points along the Fermi surface. The difference between the two sets of
spectra is quite subtle: the caustics in the marginal Fermi liquid power
spectrum are much more broadened than those in the ordinary Fermi
liquid power spectrum, owing to the smaller self-energies present in
the ordinary Fermi liquid compared to those in the marginal Fermi
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liquid. Finally, the momentum-dependence of the self-energy of the
anisotropic marginal Fermi liquid results in a highly anisotropic LDOS
power spectrum as well—scattering between incoherent portions of the
Fermi surface results in very broadened segments of the caustics in the
power spectrum, while the wavevectors corresponding to scattering
between coherent quasiparticles give rise to sharp caustic segments.

We note that STS as a probe is particularly vulnerable to finite-
temperature smearing, which can obscure the features described in
our numerics. We thus augment our single-impurity results with-
out thermal smearing with macroscopically disordered and thermally
smeared simulations to provide guides to experimentalists. It is in
principle possible to deconvolute the thermally smeared STS data to
obtain differential conductances that feature only intrinsic broadening;
this has been performed in a number of STS studies [132]. However it
is nevertheless worthwhile to examine the extent to which the features
described in the single-impurity, thermally unsmeared case survive
when multiple impurities and thermal smearing are included. We find
that the thermally smeared case obscures many of the features seen
in the superconducting state, with the octet model peaks disappear-
ing even when the thermally unsmeared simulations suggest they are
present. In the normal state cases we study, however, the general fea-
tures of the thermally unsmeared results—the caustics—survive even
with thermal smearing included.

5.2 self-energies and broadening

When considered as phenomenological inputs and in the limit of weak
disorder, self-energies do not fundamentally alter any of the funda-
mental physics of quasiparticle scattering interference in both the nor-
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mal and the superconducting state. Their main nontrivial effect is to
broaden the density of states relative to the clean, non-interacting limit.
In what follows we will illustrate these effects in the normal and su-
perconducting states.

Consider a normal metallic system described by a Hamiltonian H
without any self-energies. The density of states ρ at energy E is

ρ(E) = ∑
n

δ(E− εn), (5.1)

where εn is an eigenvalue of H and n is some quantum number. (In
a translationally-invariant system, this quantum number could be the
momentum k, for example, and the sum amounts to integrating over
k.) If one has a finite-sized system, the spectrum of H is discrete, and
the DOS consists of spikes at energies equal to εn. Now we include the
effect of self-energies. In this system, the self-energy is defined as

ΣN(n, ω) = G−1
0 (n, ω)− G−1(n, ω), (5.2)

where G is the Green’s function for the full system (with interactions,
disorder, or both) and G0 is the noninteracting/clean Green’s function,
written in the basis which diagonalizes H (i.e., the set of eigenstates
|n〉) [107]. The self-energy is assumed to incorporate all the effects of
interactions or disorder, so the Green’s function for the full system has
the same symmetries as that of the non-interacting/clean one. The
retarded full Green’s function can be written as

G(n, ω) =
1

ω− εn − ΣN(n, ω)
. (5.3)
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We can define a spectral function A(n, ω) = − 1
π ImG(n, ω). It has the

following form:

A(n, ω) = − 1
π

ΣN
2 (n, ω)

[ω− ΣN
1 (n, ω)− εn]2 + [ΣN

2 (n, ω)]2
. (5.4)

Here ΣN
1 and ΣN

2 are the real and imaginary parts, respectively, of
the self-energy. In the limit ΣN → 0, this reduces to a delta function
describing the noninteracting system:

lim
Σ→0

A(n, ω) = − lim
ΣN→0

1
π

ΣN
2 (n, ω)

[ω− ΣN
1 (n, ω)− εn]2 + [ΣN

2 (n, ω)]2

= δ(ω− En).

(5.5)

The DOS for the full system is

ρ(E) = ∑
n

A(n, ω → E). (5.6)

This means that, in the presence of ΣN , the density of states at an
energy E does not consist merely of states which statisfy εn = E. For
one, ΣN

1 (n, ω) shifts the real parts of the poles of the Green’s function
from ω = εn to ω − ΣN

1 (n, ω) = εn. More importantly, the spectrum
is broadened and ρ(E) now incorporates nonlocal contributions from
states located away from E in energy space. This will be reflected in
the local density of states (LDOS) as well: a map of the LDOS taken
at energy E will include contributions from states at other energies,
weighted by Eq. 5.4.
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None of our discussion fundamentally changes when one considers
the superconducting state. The full Green’s function in Nambu space,
including self-energies, is

G̃−1 =

(
ω− εn − ΣN(n, ω) −ΣA(n, ω)

−ΣA(n, ω) ω + εn + ΣN(n,−ω)∗

)
. (5.7)

εn is the normal-state energy, and ΣN(n, ω) and ΣA(n, ω) are the nor-
mal and anomalous self-energies, respectively [29]. Under this def-
inition, in the superconducting state the real part of the anomalous
self-energy is equal to the pairing gap. In the cases involving d-wave
superconductors that we will discuss, we will focus only on normal-
state self-energies, and we will take the anomalous self-energy to be
frequency-independent, so that in the translationally-invariant case
the gap has the usual noninteracting d-wave form given by ΣA(k) =

∆(k) = 2∆0(cos kx − cos ky).
We start with a normal-state self-energy of the form ΣN(ω) = ΣN

1 (ω)+

iΣN
2 (ω). We assume that the self-energy depends only on ω, and that

ΣN
1 (ω) = −ΣN

1 (−ω) and ΣN
2 (ω) = ΣN

2 (−ω). It can be shown that
the the spectral functions corresponding to the particle and hole parts
of the Green’s functions, A1(n, ω) = − 1

π ImG11(n, ω) and A2(n, ω) =

− 1
π ImG22(n, ω), are

A1(n, ω) = − 1
π

ΣN
2 (ω)

[ω− ΣN
1 (ω)− En]2 + [ΣN

2 (ω)]2
(5.8)

and

A2(n, ω) = − 1
π

ΣN
2 (ω)

[ω− ΣN
1 (ω) + En]2 + [ΣN

2 (ω)]2
, (5.9)

where En =
√

εn + ∆n are the energies of the Bogoliubov quasipar-
ticles. Without self-energies these spectral functions consist of delta

177



self-energies and quasiparticle scattering interference

functions at energies En. As in the normal case, the spectral functions
are broadened by ΣN

2 (ω), and the presence of ΣN
1 (ω) shifts the real

parts of the poles by ΣN
1 (ω). The full spectral function A(n, ω) is

A(n, ω) = u2
n A1(n, ω) + v2

n A2(n, ω), (5.10)

where u2
n and v2

n are coherence factors, given by u2
n = 1

2 (1 + εn
En
) and

v2
n = 1

2 (1−
εn
En
) [24]. Consequently the density of states at energy E

takes the following form:

ρ(E) = ∑
n

[
u2

n A1(n, ω → E) + v2
n A2(n, ω → E)

]
. (5.11)

5.3 methods

Here we will briefly sketch the methods we utilize in the chapter. Both
real- and momentum-space methods are used to ensure that our nu-
merical results can be compared well with STS and ARPES. We first
focus on real-space methods. To obtain quantities such as the local
density of states, we start with the Bogoliubov-de Gennes Hamilto-
nian, written in a site basis:

H = −∑
ijσ

tijc†
iσcjσ + ∑

ij
(∆∗ijci↑cj↓ + h.c.). (5.12)

We will parametrize the normal-state Fermi surface with a minimal
single-band model capturing most of the salient features of the nor-
mal state of optimally-doped BSCCO. We set the nearest-neighbor and
next-nearest neighbor hopping amplitudes to be t = 1 and t′ = −0.3,
respectively. The chemical potential µ is tuned to ensure that the hole
doping concentration is p ≈ 16%. In the superconducting state the
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pairing amplitude is of a d-wave nature; this is ensured by taking
∆ij = ∆0 and ∆ij = −∆0 whenever i and j are nearest-neighbor sites in
the x- and y-directions, respectively.

All real-space information about the spectrum of Eq. 5.12 can be
extracted from the Green’s function G. The bare Green’s function G0—
without disorder or interactions—can be written in terms of the lattice
Hamiltonian H as follows:

G−1
0 (ω) = ω1− H. (5.13)

As we have defined them, G0 and H are 2Nx Ny × 2Nx Ny matrices liv-
ing in Nambu space, as in Eq. 5.7. We will incorporate disorder or
interactions into this mean-field formalism by means of a self-energy
Σ(ω), which is another 2Nx Ny × 2Nx Ny matrix with a similar Nambu-
space substructure as G0. Most generally, Σ(ω) = ΣN(ω) + ΣA(ω) in
the d-wave state; however we will assume that d-wave pairing has al-
ready been incorporated into the bare Green’s function, so only the
normal part of the self-energy enters into consideration. The full
Green’s function becomes

G−1(ω) = G−1
0 (ω)− Σ(ω), (5.14)

and before proceeding we need to input first the needed form of Σ(ω).
Note that in principle, Σ(ω) could be momentum-dependent; this can
be incorporated into a lattice description by putting the appropriate
off-diagonal couplings into Eq. 5.14.

By judiciously choosing the indexing of the sites, G−1 can be written
in block tridiagonal form. We then invert G−1 using an efficient algo-
rithm for block tridiagonal matrices [52, 69, 38, 136, 184, 103, 143, 104,
94]. The details of this method have been worked out in detail in prior
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work, so we will not repeat them here [161, 162]. The advantage of this
method is that it is extremely fast compared to exact diagonalization;
allows general forms of disorder to be included, unlike the T-matrix
method, which is exact only for pointlike impurities; and enables self-
energies to be included explicitly in the Green’s function, allowing the
study of the unusual effects of self-energies on measurable real-space
quantities. We take Nx = 1000 and Ny = 120.

The local density of states ρ(r, E) can be obtained from G using the
following equation:

ρ(r, E) = − 1
π

ImG11(r, ω → E). (5.15)

To study quasiparticle scattering interference, we first introduce a sin-
gle weak (V = 0.5) pointlike scatterer in the middle of the sample. We
obtain the LDOS map of the central 100× 100 region from Eq. 5.15 and
take the absolute value of its Fourier transform to obtain the QPI power
spectrum P(q, ω). The general case of a macroscopically disordered
sample can be modeled by randomly distributing a number of these
weak scatterers across the sample. To provide a guide for experimen-
talists, we also include results in which thermal broadening is present.
It is known that the differential conductance as measured by STS at
temperature T is broadened by a factor Γt ≈ 3.5kBT—this is simply
the width of the first derivative of the Fermi-Dirac distribution func-
tion which enters into the expression for the density of states at tem-
perature T [132]. This can be incorporated into our model by adding
this temperature-dependent thermal smearing factor—note here that
Γt is the full width at half maximum—to the intrinsic broadening due
to disorder and interactions.

Another major quantity we are interested in is the spectral function
A(k, ω). Assuming that we have only normal self-energies entering
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the Green’s function, the spectral function can be computed directly
from the dispersion of the Bogoliubov quasiparticles using Eqs. 5.8, 5.9
and 5.10, with n → k. Here, Ek =

√
εk + ∆k, and εk = −2t(cos kx +

cos ky)− 4t′ cos kx cos ky − µ and ∆k = 2∆0(cos kx − cos ky). To numer-
ically calculate this, the first Brillouin zone is divided into a discrete
1000 × 1000 grid, which is large enough to render finite-size effects
insignificant.

5.4 self-energies in the superconducting state

In this section we will focus our attention on the various effects of
self-energies in the superconducting state which can be seen in STS
and ARPES. The main phenomenon of interest is “gap filling,” which
is seen across a wide range of dopings via ARPES and STS [141, 140,
138, 139, 132]. We will examine the phenomenological consequences
of a nontrivial temperature-dependence of the scattering rate Γ on
the observed spectral function, A(k, ω), and the power spectrum of
the LDOS, P(q, ω), both for the single-impurity case without thermal
smearing (the idealized case) and the case with an dilute array of weak
impurities with thermal smearing (to simulate actual tunneling data).

Recall that STS experiments on the superconducting cuprates show
weak and energy-dependent modulations in the LDOS due to QPI. QPI
results from scattering off of weak impurities, which generate Friedel
oscillations around impurities. Because of the unusual, banana-like
shape of the contours of constant energy (CCEs) of d-wave supercon-
ductors, the most dominant scattering processes are those from states
on one tip of a “banana” to those on another, and these dominant
wavevectors appear as peaks in the power spectrum of the LDOS—this
in a nutshell is the so-called “octet model.” Indeed, the peaks seen in
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Figure 5.1: Plot of the gap and the quasiparticle scattering rate as a function of
temperature in the gap-closing (left), gap-filling and -closing (mid-
dle), and gap-filling (right) scenarios. The behavior seen in the
middle plot—corresponding to the gap-filling/closing scenario—
is seen in ARPES measurements by Reber et al. on optimally-
doped BSCCO. The markers label the values of the gap and scatter-
ing rate at selected temperatures which are used in plots through-
out this section.

experimentally-obtained power spectra behave entirely in accordance
with the predictions of this simple model of d-wave Bogoliubov quasi-
particles scattering off of weak impurities. That said, the vast majority
of STS experiments on the superconducting state of the cuprates have
been performed at temperatures well below Tc, where the quasiparti-
cle scattering rate Γ is fairly small and is only weakly dependent on
temperature. However, various experiments have shown that Γ is not
temperature-independent, as one would expect from elastic scattering
off of impurities—it instead exhibits a very pronounced dependence
on T as temperatures are increased. In fact, recent ARPES results sug-
gest that Γ(T) is roughly of the same size as the superconducting gap
∆0(T) itself as T → Tc [138]. Furthermore, the same ARPES results
show that ∆0(T) does not go to zero at Tc, as one would expect from
BCS theory. Instead, d-wave pairing correlations are seen to exist be-
yond Tc, and persist up to a higher temperature scale which appears
to decrease as doping is increased. We show in Fig. 5.1 plots of the
superconducting gap and the quasiparticle scattering rate as a func-
tion of temperature for three different scenarios: the BCS scenario, in
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5.4 self-energies in the superconducting state

which the gap closes as T is increased, becoming zero at Tc; the gap-
filling and -closing scenario, seen in ARPES experiments by Reber et
al. on optimally-doped BSCCO (Tc ≈ 90 K), in which the gap shrinks
and the quasiparticle scattering rate increases as T is increased, but
the gap remains finite past Tc [138]; and the gap-filling scenario, in
which the gap remains roughly temperature-independent while the
scattering rate increases at T near Tc. We will carry out the exercise
of obtaining results measurable by STS experiments in the cuprates as
temperature is increased, assuming consistency with ARPES results. It
is an interesting experiental question to see if the peaks suggested by
the “octet model” still appear when the quasiparticle scattering rate is
very large, as appears to be the case when T ≈ Tc.

The temperature-dependence of the superconducting gap and the
scattering rate can be parametrized simply as follows. As argued by
Reber et al., the experimentally-measured gap amplitude at optimal
doping can be fit to the following BCS-like functional form,

∆0(T) = ∆0(0)× tanh

(
α

√
Tp

T
− 1

)
, (5.16)

where Tp is the temperature at which the gap fully closes, ∆0(0) is the
value of the gap at T = 0, and α is a dimensionless number of order
unity [139]. In our numerics we will take ∆0(0) = 0.096, Tp = 100 K,
and α = 2.32. We remind the reader that ∆0(T) enters the momentum-
space gap function as ∆(k, T) = 2∆0(T) × (cos kx − cos ky). As for
the scattering rate, we use the form obtained by Chubukov et al. [28],
which we write in the following manner:

Γ(T) = Γ0 + Ωsinh
(

Tb

T

)
. (5.17)
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Here Tb is some very large temperature scale included phenomenolog-
ically in order to provide a good fit with the experimental results and
Γ0 is the elastic scattering rate. Reasonably good fits can be obtained
by using Γ0 = 0.015, Ω = 2350, and Tb = 1100 K. We will neglect any
momentum-dependence of the scattering rate. These two functional
forms in tandem with each other explain very well the phenomenol-
ogy of the closing and the filling of the gap as seen in experiments.

The BCS case features only the closing of the gap, and only elastic
scattering is present; as such we will take Γ(T) = 0.015 in that case.
To allow us to compare the results of the first case with the BCS case,
we take the same functional form for the BCS case as in Eq. 5.16. This
ensures that the values of the superconducting gap are the same at
each temperature, and that the effects of the self-energies in the first
case can be isolated very clearly and contrasted with the trivial effects
seen in the BCS case. It is very important to note that in the case with
both the filling and closing of the gap, Tp is not equal to Tc, whereas
in the BCS case Tp = Tc. Finally, for the gap-filling case, we will
freeze ∆0(T) at its T = 0 value, and let the scattering rate vary with
temperature as in Eq. 5.17.

To illustrate clearly the differences between BCS and gap-filling phe-
nomenology, we first discuss the BCS case with only the closing of
the gap and show in Fig. 5.2 plots of A(k, ω → E = 0.100) and
P(q, ω → E = 0.100) for various temperatures. The main changes
one can observe with increasing temperature at fixed frequency are
due to way the CCEs—as seen directly in A(k, ω)—are altered by the
decreasing size of ∆0 as T is increased. At T = 10 K, the superconduct-
ing gap is large, implying that at the low frequencies (E = 0.100 ≈ 15
meV) at which these plots were taken the banana-shaped contours only
cover a small part of the underlying normal-state Fermi surface. As
∆0 shrinks with increasing temperature, more and more of the un-
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Figure 5.2: Gap-closing phenomenology at various temperatures. Tc here is
100 K. Left to right: The spectral function A(k, ω); the Fourier
transform of the LDOS P(q, ω); linecuts of P(q, ω) in the nodal
and antinodal directions; P(q, ω) in the presence of multiple
weak impurities and finite-temperature smearing; and linecuts of
P(q, ω) in the presence of multiple weak impurities and finite-
temperature smearing. Arrows indicate the locations of the peaks
predicted by the octet model. All plots are taken at E = 0.100.
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derlying Fermi surface becomes covered by the “bananas.” However,
because Γ is constant as a function of temperature, the spectral func-
tions taken at various temperatures remain similarly sharp—the CCEs
maintain their shape without much visible smearing. These imply that
for the power spectrum of the LDOS, the peaks corresponding to the
“octet model” remain very much visible. Because no change in in-
trinsic broadening occurs as temperature is increased, the octet-model
peaks retain their sharpness throughout the temperature ranges we
consider, and even the caustics corresponding to scattering between
the off-tip segments of the “bananas” are still visible and do not get
broadened. The only change that occurs as temperature is changed is
in the positions of the characteristic peaks of the power spectrum. Be-
cause ∆0 decreases in size as T increases at fixed frequency, the CCEs
all increase in size with increasing T, and consequently the seven octet-
model peaks disperse as T is changed at fixed frequency. For instance,
q7—the smallest diagonal scattering wavevector, corresponding to tip-
to-tip scattering within one “banana”—is seen to increase in magni-
tude as T is increased. When the gap finally fully closes, the QPI
power spectrum consists of sharp, well-defined caustics characteristic
of a normal metal. With realistic disorder (i.e., a 0.5% concentration
of weak pointlike scatterers) and finite-temperature smearing, the ex-
pected (unconvoluted) LDOS power spectra is seen to feature the loss
of the octet-model peaks as temperature is increased. In particular,
only at 10 K does the disordered and thermally-smeared power spec-
trum show these peaks. However, a sharp transition in the features
of the power spectrum once the gap fully closes is still visible even at
the high temperatures at which these occur—there is a change from a
highly anisotropic power spectrum in the superconducting state, with
pronounced spectral weight near the corners and suppressed antin-
odal scattering wavevectors, to the caustics seen in the zero-gap case.
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5.4 self-energies in the superconducting state

If deconvolution is carefully applied to the real-space differential con-
ductance data, only the intrinsic (that is, non-thermal) broadening will
affect the LDOS and the octet-model peaks should be recovered.

Dramatically different behavior is seen once a strongly temperature-
dependent but momentum- and frequency-independent quasiparticle
scattering rate is included, as is the case in the gap-filling/closing sce-
nario, the results for which we plot in Fig. 5.3. We used the same
superconducting gap for each temperature as in the BCS case, so all dif-
ferences between the two sets of plots can be attributed to the presence
of a T-dependent Γ. At low temperatures both A(k, ω → E = 0.100)
and P(q, ω → E = 0.100) are identical, as in that particular regime
there is little difference between the two scenarios. However, when
T ≈ Tc, Γ is no longer parametrically smaller than ∆0 but is instead al-
most of similar size, and thus the effects of the intrinsic broadening are
no longer trivial. Consider first the behavior of A(k, ω). At 85 K, the
CCEs are still well-defined, albeit broadened considerably compared
to the BCS case, with more spectral weight found in the streaks emanat-
ing from the ends of the contours which follow the underlying Fermi
surface. At T = Tc = 90 K, even more broadening is present, and yet
more spectral weight moves towards the streaks. At 95 K, Γ ≈ ∆0, and
consequently the spectral function resembles neither that of a d-wave
superconductor nor that of a normal metal. Instead, it shows a quasi-
particle excitation spectrum which resembles Fermi arcs. That is, there
is considerable spectral weight present near the nodes, and one sees
less spectral weight as one moves along the underlying Fermi surface
towards the antinodes. Once the gap fully closes, what is seen is the
expected isotropic normal-state spectrum in which the spectral weight
along the CCE is uniform. In our plots where the gap is fully zero, we
have assumed the value of the scattering rate to be equal to that given
by the marginal Fermi liquid self-energy at T = 100 K.
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Figure 5.3: Gap-filling and -closing phenomenology at various temperatures.
Tc here is 90 K. Left to right: The spectral function A(k, ω); the
Fourier transform of the LDOS P(q, ω); linecuts of P(q, ω) in the
nodal and antinodal directions; P(q, ω) in the presence of multi-
ple weak impurities and finite-temperature smearing; and linecuts
of P(q, ω) in the presence of multiple weak impurities and finite-
temperature smearing. Arrows indicate the locations of the peaks
predicted by the octet model. All plots are taken at E = 0.100.
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The strong temperature-dependence of Γ has an even more pro-
nounced effect on the single-impurity P(q, ω) without thermal smear-
ing. At 85 K, the patterns are the same as in the BCS case, with the
difference that the octet-model peaks that were visible and sharp in
the BCS case are now muted—the intensities of the peaks are quite
weak in the gap-filling scenario. At 90 K even more smearing of the
QPI patterns becomes apparent, and some peaks, such as q7, almost
completely disappear. The points corresponding to certain other octet-
model peaks such as q2 and q6, while still discernible, are so broad-
ened as to be almost undefined at this point, and only streaks corre-
sponding to diagonal internodal scattering remain as the prominent
signal. At 95 K and beyond, all octet-model peaks cease to be well-
defined signals. Instead what remains are caustics which track scatter-
ing along the underlying normal-state Fermi surface, but with variable
weights depending on the location of the initial and final states on
the Fermi surface, resulting in a nonuniform distribution of spectral
weight along the caustics. This is considerably different from the QPI
power spectrum of a normal metal with a momentum-independent
scattering rate, wherein the magnitude of P along the caustics is uni-
form. Finally, at the point where the gap has fully closed, we see a
return to a metallic QPI power spectrum, with uniform weight along
all the caustics, but which is considerably smeared compared to that
seen in the BCS scenario. The addition of thermal broadening and
distributed disorder however results in power spectra which are very
similar to those of the BCS case. This makes it difficult to distinguish
the gap-filling/closing scenario from the BCS one from unconvoluted
data, and one needs to perform a deconvolution of the data to recover
the power spectrum with only intrinsic broadening present.

The change in the behavior of P(q, ω) from a small-gap d-wave su-
perconductor with very large Γ to a normal-state metal with zero gap
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is quite stark—in contrast to what is seen in A(k, ω), where the change
appears to occur smoothly. Compared to the QPI power spectrum for
the normal metal, the spectrum at energies below the gap for a broad-
ened d-wave superconductor is much more suppressed in the antin-
odal directions (i.e., the (0, 0) → (0,±π) and (0, 0) → (±π, 0) direc-
tions in q-space). It also features much more spectral weight near the
corners. All of this can be attributed to the fact that, because the gap is
finite in this regime, the scattering matrix element is affected by coher-
ence factors. In the presence of a weak perturbation in the chemical
potential (as in the case of our numerics), scattering between two states
where the d-wave gap has the same sign is suppressed compared to
that between states where the gap has opposite signs [182, 133]. With
a finite gap, this would explain why the intensities of wavevectors
corresponding to scattering in the antinodal directions (which would
be between states where the gap has the same sign) are weaker com-
pared to those of internodal scattering wavevectors, resulting in the
comparatively strong signal near (±π,±π). This coherence-factor ef-
fect completely disappears upon the closing of the gap. It should be
emphasized that this dramatic change in the spectrum as ∆0 → 0 is
still visible even in the unconvoluted thermally-smeared spectrum.

The third scenario we consider is one in which the superconducting
gap remains finite and temperature-independent, while the quasipar-
ticle scattering rate increases monotonically as temperature is raised.
We plot results for this case in Fig. 5.4. We used the same scattering
rate as in the gap-filling/closing case; note that at higher temperatures
the scattering rate becomes of the same size as the gap. Unlike in
the second case, because the gap remains a constant as T is increased,
there is no change in the position and size of the CCEs as seen in
A(k, ω → E = 0.100). What differs is the sharpness of these con-
tours in momentum space. At T = 85 K, the contours remain sharp,
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Figure 5.4: Gap-filling phenomenology at various temperatures. Left to right:
The spectral function A(k, ω); the Fourier transform of the LDOS
P(q, ω); linecuts of P(q, ω) in the nodal and antinodal directions;
P(q, ω) in the presence of multiple weak impurities and finite-
temperature smearing; and linecuts of P(q, ω) in the presence of
multiple weak impurities and finite-temperature smearing. Ar-
rows indicate the locations of the peaks predicted by the octet
model. All plots are taken at E = 0.100.
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with only a small amount of spectral weight found beyond the ends
of the “banana.” When temperature is increased, the scattering rate
increases, and the contours become less sharp, with more and more
spectral weight found in the tails. At the highest temperatures, what
had once been well-defined banana-shaped contours resemble more
and more the underlying Fermi surface, but with anisotropy in the
spectral weight along the Fermi surface. While most of the spectral
weight remains near the nodes, considerably more weight has shifted
towards the tails, which track the Fermi surface and which now extend
all the way to the antinodes. However, unlike the scenario in which
the gap both closes and fills, here the shape of the contours is largely
preserved even with increasing broadening.

Because no change in the gap occurs with increasing temperature,
the peaks seen in the single-impurity P(q, ω) without thermal smear-
ing do not disperse when frequency is fixed and temperature is varied.
The main change that occurs is in the sharpness of the peaks, which
is affected by how large the quasiparticle scattering rate is. At T = 85
K, the peaks can still be seen, but with more bluriness than at lower
temperatures due to the large Γ at this temperature scale. Increasing
T from this point onwards results in these peaks becoming progres-
sively more broadened and less visible, turning into blurry patches
with nonzero spectral weight. At the highest value of the scattering
rate we considered, no isolated peaks are visible. With distributed dis-
order and thermal smearing, the plots show similar behavior as the
thermally unsmeared single-impurity results, insofar as no shifts in
the spectral weight as T increases appear in the spectra due to the
constancy of the gap, but no peaks can be discerned at these high tem-
peratures, and in experiment one has to deconvolute the dI/dV data
to disentangle the intrisinc broadening from finite-temperature effects.
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Figure 5.5: Frequency-dependence at T = 10 K—a temperature at which all
three scenarios are essentially identical—of the spectral function
A(k, ω) (upper row); the LDOS power spectrum with a single
pointlike scatterer without thermal smearing (middle row); and
the LDOS power spectrum with both a 0.5% concentration of
pointlike scatterers and thermal smearing (bottom row). Arrows
indicate the locations of the peaks predicted by the octet model.
Note that the scales used for plotting the LDOS power spectra
change with frequency.
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Figure 5.6: Frequency-dependence at T = 90 K in the gap-closing scenario of
the spectral function A(k, ω) (upper row); the LDOS power spec-
trum with a single pointlike scatterer without thermal smearing
(middle row); and the LDOS power spectrum with both a 0.5%
concentration of pointlike scatterers and thermal smearing (bot-
tom row). Arrows indicate the locations of the peaks predicted by
the octet model. Note that the scales used for plotting the LDOS
power spectra change with frequency. In this scenario, this tem-
perature is less than Tc.

Further differences between the BCS and the two gap-filling scenar-
ios can be seen by plotting both A(k, ω) and P(q, ω) for various fre-
quencies. At the lowest temperatures, all three scenarios result in the
same behavior, as seen in Fig. 5.5: the small scattering rate results in
both sharp features in the spectral function, and well-defined peaks
in the LDOS power spectrum whose position in q-space changes as ω

is varied, in agreement with the octet model. Because at low tem-
peratures thermal smearing only has a weak effect, the disordered
and thermally-smeared power spectra show octet-model peaks that
are clearly discernable.
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Figure 5.7: Frequency-dependence at T = 90 K in the gap-closing/filling
scenario of the spectral function A(k, ω) (upper row); the LDOS
power spectrum with a single pointlike scatterer without thermal
smearing (middle row); and the LDOS power spectrum with both
a 0.5% concentration of pointlike scatterers and thermal smear-
ing (bottom row). Arrows indicate the locations of the peaks pre-
dicted by the octet model. Note that the scales used for plotting
the LDOS power spectra change with frequency. In this scenario,
this temperature is the same as Tc.
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Figure 5.8: Frequency-dependence at T = 90 K in the gap-filling scenario of
the spectral function A(k, ω) (upper row); the LDOS power spec-
trum with a single pointlike scatterer without thermal smearing
(middle row); and the LDOS power spectrum with both a 0.5%
concentration of pointlike scatterers and thermal smearing (bot-
tom row). Arrows indicate the locations of the peaks predicted by
the octet model. Note that the scales used for plotting the LDOS
power spectra change with frequency.
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At higher temperatures, how these CCEs and QPI peaks appear in
measurements depends on the degree of broadening present. In the
BCS scenario, the CCEs in the spectral function remain sharp as fre-
quency and temperature are changed. In comparison, in the two gap-
filling scenarios the CCEs feature much more smearing, which in turn
affects how prominent the QPI peaks appear in the LDOS power spec-
trum. Fig. 5.6 shows A(k, ω) and P(q, ω) taken for the gap-closing
scenario at T = 90 K, while Fig. 5.7 shows similar quantities with
gap-closing/filling assumed, and Fig. 5.8 shows the case with only the
filling of the gap. At this temperature it is already apparent that in
the gap-closing/filling case the QPI peaks broaden so much that it is
difficult to see them clearly. What had been very visible QPI peaks in
the gap-closing scenario have turned into barely-discernible patches
in the gap-closing/filling scenario, while at higher energies no trace
of the QPI peaks remain. Similarly, in the gap-filling scenario, one
can see that because the gap is temperature-independent, the LDOS
power spectrum resembles that of the low-temperature case, but with
so much more smearing that the octet-model peaks become far less
discernable. In all three cases, the thermal smearing at T = 90 K is so
large that the fine features seen in the single-impurity unsmeared data
are lost in the smeared data, and the plots appear qualitatively similar
to each other.

We note further that in the two scenarios in which the gap closes
(shown in Figs. 5.6 and 5.7), the shrinking of the gap with increasing T
alters the shape of the CCEs as seen in A(k, ω), and consequently the
positions of the QPI peaks in P(q, ω) change as well. The smallness
of the gap ensures that the superconducting coherence peaks, located
at Ec ≈ ±4∆0, are shifted closer to the Fermi level. At energies which
satisfy |E| > |Ec| the spectral function and QPI power spectrum in
the superconducting state are largely similar to those of the normal
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Figure 5.9: Plots of the spectral function A(k, ω) (left), the power spectrum
of the single-impurity LDOS without thermal smearing (middle),
and the power spectrum of the multiple-impurity LDOS with ther-
mal smearing (right) at T = 95 K in the gap-closing/filling sce-
nario, taken at the Fermi energy (E = 0). The spectral function at
this regime bears a marked resemblance to the “Fermi arcs” found
in the pseudogap regime of the underdoped cuprates.

state at E, except for additional features which arise from the presence
of shadow-like streaks in the spectral function, which in turn are an
effect of the coherence factors which enter Eq. 5.10. The similarity to
the normal-state LDOS power spectrum here is such that even in the
BCS case, which has minimal broadening, no traces of the octet-model
peaks appear at these high energies.

We end this section by revisiting our earlier observation that the
combination of small but nonzero d-wave pairing correlations and a
large scattering rate at T > Tc can give rise to Fermi arc-like patterns
in the spectral function. It is interesting to note that this can be seen
right at the Fermi energy itself. In Fig. 5.9 we plot the spectral function
and the LDOS power spectrum at the Fermi energy at T = 95 K for
the gap-filling and -closing scenario. In the absence of broadening, the
d-wave superconducting state would result in zero-energy states being
localized only at the nodes—the four points on the Fermi surface at
which the superconducting gap is zero. With broadening, however,
there is now a finite density of zero-energy states in the neighborhood
of the nodes. When the scattering rate is small, the effect is minor,
and apart from a small arc centered near the nodes the zero-energy
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states disappear a short distance away from the nodes. However, once
Γ ≈ ∆0 the regions about the nodes which support low-energy states
become large: the “arc” along the Fermi surface which supports zero-
energy states becomes longer and broader, and a comparable lack of
spectral weight is found at the antinodes. The QPI power spectrum is
quite pronounced even at the Fermi energy, and is completely differ-
ent from that of a d-wave superconductor or a normal metal. Instead
it shows streaks near the corners due to strong internodal scattering,
and large low-q patches showing strong intranodal scattering. We note
that this particularly simple set of ingredients (nonzero d-wave pairing
past Tc and a large quasiparticle scattering rate) has already been pro-
posed as an explanation for the Fermi arcs found via ARPES in the
underdoped cuprates [123, 120, 28, 175]. It is an interesting experimen-
tal challenge to see if these Fermi arc-like patterns can be seen by STS
in the optimally-doped cuprates above Tc.

5.5 self-energies in the normal state

We next turn our attention to the effects of self-energies on the spectra
in the normal state. We had briefly touched upon aspects of this in
the previous section when we considered the ARPES and STS spectra
at temperatures in which the gap fully closes. We will more closely
examine the consequences when the self-energy in the normal state
depends on frequency, temperature, and momentum. Our main focus
will be on the marginal Fermi liquid phenomenology in the optimally-
doped cuprates, and we will obtain concrete experimental predictions
for STS which are indicative of marginal Fermi liquid behavior. We
will in turn contrast the results for the marginal Fermi liquid from that
of the ordinary Fermi liquid, which is argued to be the normal state of
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Figure 5.10: Plots of the self-energies for the Fermi liquid (red line) and
marginal Fermi liquid (blue line) at T = 100 K. Here λ = 0.5,
Γ0 = 0, and ωc = 1.

overdoped cuprates. Finally, to faithfully represent real-world ARPES
data, we add at the end momentum-space anisotropy in the self-energy
in order to reproduce the observation that the spectra at the antinodes
are considerably more incoherent that those found in the nodal region
of the Fermi surface. As with the superconducting cases considered
earlier, we will evaluate the LDOS power spectrum both for a single
isolated impurity without thermal smearing and for a macroscopically
disordered sample with thermal smearing to incorporate effects likely
to be seen in STS experiments.

We will assume that the self-energy has the “power-law liquid” form
suggested by Reber et al. from ARPES data on Bi-2212 across a wide
range of dopings. This is simply given by

Σ
′′
(ω, T) = λ

(ω2 + π2T2)α

ω2α−1
c

+ Γ0, (5.18)

where ω is the frequency, T the temperature, Γ0 a temperature- and
frequency-independent impurity scattering rate, ωc a frequency cut-
off, and α a doping-dependent exponent which is argued from ARPES
data to be equal to 0.5 at optimal doping and near 1 at extreme over-
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doping [142]. This parametrization conveniently captures both the
marginal Fermi liquid (α = 0.5) at optimal doping [173] and the ordi-
nary Fermi liquid (α = 1.0) at the overdoped side of the phase diagram.
Plots of the self-energy for both the marginal Fermi liquid and the or-
dinary Fermi liquid at 100 K are shown in Fig. 5.10. In our numerics
the parameters are chosen to hew closely to the phenomenological
fits found by Reber et al. We will first neglect any momentum-space
anisotropy in the self-energy; we will consider these effects later. We
will set λ = 0.5, Γ0 = 0, and ωc = 1 in our computations.

As an instructive case we first discuss the spectra of an ordinary
Fermi liquid. Plots of A(k, ω = 0) and P(q, ω = 0) for this case are
shown in Fig. 5.11. Because of the isotropic nature of the self-energy,
the spectral weight at Fermi surface is uniform at all temperatures
considered. The spectral function here is narrow at the Fermi en-
ergy due to the small value of the imaginary part of the self-energy.
Consequently the single-impurity LDOS power spectrum has sharp
and well-defined features which broaden as temperature is increased.
The main feature of P(q, ω = 0) are caustics which indicate scatter-
ing wavevectors from one part of part of the Fermi surface to another,
as expected from a metal. With randomly distributed impurities and
thermal smearing, the LDOS spectra still manages to be visible at rea-
sonably high temperatures, even without deconvoluting.

The situation for a marginal Fermi liquid is largely similar. In Fig. 5.12

we have plotted both A(k, ω = 0) and P(q, ω = 0)for a marginal
Fermi liquid (α = 0.5) at the Fermi energy for various temperatures.
As the self-energy scales goes as ∝ T at the Fermi energy, the width of
the spectrum at the Fermi surface also increases as T increases. Like
the spectral function, the LDOS power spectrum shows progressively
more broadening as temperature is increased. When distributed disor-
der and thermal broadening are both present, the LDOS power spec-
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Figure 5.11: Ordinary Fermi liquid phenomenology at various temperatures.
Left to right: The spectral function A(k, ω); the Fourier trans-
form of the LDOS P(q, ω); linecuts of P(q, ω) in the nodal
and antinodal directions; P(q, ω) in the presence of multiple
weak impurities and finite-temperature smearing; and linecuts
of P(q, ω) in the presence of multiple weak impurities and finite-
temperature smearing. All plots are taken at E = 0.000.
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Figure 5.12: Marginal Fermi liquid phenomenology at various temperatures.
Left to right: The spectral function A(k, ω); the Fourier trans-
form of the LDOS P(q, ω); linecuts of P(q, ω) in the nodal
and antinodal directions; P(q, ω) in the presence of multiple
weak impurities and finite-temperature smearing; and linecuts
of P(q, ω) in the presence of multiple weak impurities and finite-
temperature smearing. All plots are taken at E = 0.000.
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tra are broadened and feature speckle, but retain most of the structure
present in the single-impurity case—caustics can still be observed at
100 K, but much of the spectrum becomes overwhelmed by noise at
higher temperatures, rendering it difficult to extract these patterns at
high temperatures without deconvoluting the data.

It has to be noted that at fixed frequency and temperature the re-
sults for the ordinary and marginal Fermi liquid cases are not drasti-
cally different from each other, except for the amount of broadening
present—the marginal Fermi liquid has much more intrinsic broaden-
ing than the ordinary Fermi liquid. Thus one key signature that one
may look for in ARPES and STS experiments is that, assuming that
the overdoped cuprates have a Fermi-liquid normal state, the spectral
widths at fixed T and ω become larger as doping is decreased towards
optimal doping. This is of course assuming that the normal state of the
optimally-doped cuprates is in fact well-described by electrons dressed
with a marginal Fermi liquid self-energy. While a marginal Fermi liq-
uid features no quasiparticles at T = 0—unlike an ordinary Fermi
liquid—it is clear that this description of the normal state should pro-
duce results that resemble those arising from a much more broadened
version of the ordinary Fermi liquid at finite temperature. The unusual
frequency- and temperature-dependence of the marginal Fermi liquid
can also be measured using both ARPES and STS, and one should see
a change in the scaling of the broadening of the spectra with temper-
ature and frequency as doping is changed. If one sees these caustics
in the STS spectra in the normal state of the optimally-doped cuprates,
then the “dressed Fermi liquid” description of the normal state is valid.
However, if these are not present, then a much more different theory
involving exotic hidden excitations may be found to be necessary.

The frequency-dependence of the spectral function and the LDOS
power spectra are plotted in Figs. 5.13 and 5.14 for the ordinary Fermi
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Figure 5.13: Frequency-dependence at T = 100 K of the spectra of an ordinary
Fermi liquid. Shown are plots of the spectral function A(k, ω)
(upper row); the LDOS power spectrum with a single pointlike
scatterer without thermal smearing (middle row); and the LDOS
power spectrum with both a 0.5% concentration of pointlike scat-
terers and thermal smearing (bottom row). Note that the scales
used for plotting the LDOS power spectra are the same for all
frequencies.
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Figure 5.14: Frequency-dependence at T = 100 K of the spectra of a marginal
Fermi liquid. Shown are plots of the spectral function A(k, ω)
(upper row); the LDOS power spectrum with a single pointlike
scatterer without thermal smearing (middle row); and the LDOS
power spectrum with both a 0.5% concentration of pointlike scat-
terers and thermal smearing (bottom row). Note that the scales
used for plotting the LDOS power spectra are the same for all
frequencies.
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Figure 5.15: The widths of the spectral function (left) and the single-impurity
LDOS power spectrum (middle) versus the imaginary part of
the self-energy for the marginal Fermi liquid and the ordinary
Fermi liquid, both with momentum-independent self-energies, at
a variety of temperatures and frequencies. These are evaluated
from the widths of the momentum-distribution curves along the
nodal directions for the spectral function and from the widths of
caustics along the antinodal direction for the LDOS power spec-
trum. The rightmost graphic illustrates how the spectral widths,
as defined in the text, are extracted from linecuts of A(k, ω) and
P(q, ω). In this example the self-energy is of marginal-Fermi-
liquid form, and T = 100 K and E = 0.

liquid and the marginal Fermi liquid, respectively, at 100 K. Note
that for both these models both the spectral function and the LDOS
power spectra broaden as frequency is increased at fixed temperature.
The spectra do differ at high energies due to the renormalization of
the band structure due to the real part of the self energy, which is
different for both cases. It can be seen at negative frequencies the
marginal Fermi liquid hits a van Hove singularity at a lower (negative)
frequency than the ordinary Fermi liquid does owing to this renormal-
ization. However this effect is quite troublesome to detect in practice,
as disentangling this effect requires detailed knowledge of the bare
band structure, and it is relatively unimportant compared to the scale
set by the imaginary part of the self-energy. As such we will not direct
any more focus on this phenomenon in this chapter.
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We next examine the precise dependence of the broadening of the
spectral function and the LDOS power spectrum on the self-energy;
plots of these are shown in Fig. 5.15. Here, the self-energies used cover
a wide range of frequencies and temperatures for both the marginal
Fermi liquid and the ordinary Fermi liquid. The widths of the momentum-
distribution curves along the nodal directions are proportional to the
imaginary part of the self-energy. We can see this directly by obtaining
the full width at half maximum of these MDCs; these widths scale lin-
early with Σ′′. As for the single-impurity LDOS power spectrum, the
widths of the caustics broaden in a different manner from that of the
spectral function. Quantifying this broadening is a bit trickier than for
the spectral function, because the power spectrum features consider-
ably more structure within the Brillouin zone due to backfolding. We
define one measure of this broadening in the following manner. Along
the (0, 0)→ (0, π) direction, there is a peak which corresponds to scat-
tering between the antinodal portions of the Fermi surface. We define
the width of the caustic as the distance between the midpoint between
the peak and the minimum along the linecut at the central plateau near
(0, 0) and the midpoint between the peak and the global minimum of
this linecut. While our resolution in q-space is very limited, it can be
seen that the widths of these caustics scale roughly as the square root
of Σ′′, regardless of whether the self-energy is of marginal Fermi liq-
uid or ordinary Fermi liquid form. Furthermore, the extracted widths
of the spectra of the marginal Fermi liquid are parametrically much
larger than those of the spectra of the ordinary Fermi liquid.

We show in Fig. 5.16 the widths of the spectral function and the
LDOS power spectrum for both the marginal Fermi liquid and the ordi-
nary Fermi liquid as a function of frequency (for positive frequencies)
for a variety of temperatures as extracted from our simulations, in ad-
dition to one-parameter fits of the form Wsc = AΣ′′(ω, T) and Wps =
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Figure 5.16: The widths of the spectral function (top row) and the single-
impurity LDOS power spectrum (bottom row) versus frequency
for the marginal Fermi liquid (left column) and the ordinary
Fermi liquid (right column), evaluated at various temperatures.
The fits used are taken from the complete data plotted in Fig. 5.15.
The limited resolution available in the LDOS power spectrum re-
sults in the relatively jagged behavior of the plots compared to
that seen in plots of the spectral function.
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Figure 5.17: Energy-distribution curves taken at the nodal and antinodal
points on the Fermi surface for an anisotropic marginal Fermi
liquid. Here T = 100 K and β = 0.2 (see Eq. 5.20 for the func-
tional form of the self-energy).

B
√

Σ′′(ω, T) for the widths of the spectral function and the LDOS
power spectrum, respectively. Here Σ′′(ω, T) is of either marginal
Fermi liquid or ordinary Fermi liquid form, and the parameters A and
B are obtained from the data shown in Fig. 5.15. It should be noted that
at the energy ranges we have considered, the widths of the caustics in
the LDOS spectra grow more slowly with frequency compared to the
widths of the MDCs; this reflects the rough square-root dependence of
the caustic widths on the imaginary part of the self-energy.

Finally, we end this section by considering a marginal Fermi liq-
uid with a realistic amount of momentum-space anisotropy in the
self-energy. A variety of ARPES measurements on optimally-doped
Bi-2212 have shown that the spectral function at the antinodal region
of the Brillouin zone is much less coherent than at the near-nodal re-
gion [169, 2, 168, 127, 81]. The degree to which the spectral function is
incoherent is most visible in energy-distribution curves taken at nodal
and antinodal points along the Fermi surface; the nodal EDCs show
a more prominent peak at the Fermi energy compared to the nodal
ones. This suggests that the full self-energy is anisotropic in momen-
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tum space. Abrahams and Varma [2] argue that a good form of the
self-energy is given by the following expression:

Σ
′′
(k, ω, T) = Γa(k) + λ

√
ω2 + π2T2. (5.19)

In this equation, the first term is the scattering rate due to disor-
der and is momentum-dependent and temperature- and frequency-
independent. The second term contains the marginal Fermi liquid
self-energy and is momentum-independent. The anisotropic elastic
scattering rate is argued to arise from impurities located away from
the copper-oxide planes, which induce only small-momentum scatter-
ing. To model this anisotropic scattering rate, we take it to have the
following functional form:

Γa(k) = β

(
2 + cos 2kx + cos 2ky

4

)
. (5.20)

This form of the scattering rate ensures that it is small near the nodes—
it is zero at (±π

2 ,±π
2 ), in fact—and that it has maxima at (0,±π) and

(±π, 0). Importantly, this form preserves all the symmetries of the
square lattice. The choice β = 0.2 gives rise to EDCs which show
large anisotropy between the nodal and antinodal points on the Fermi
surface, as seen in Fig. 5.17.

Plots of A(k, ω = 0) and P(q, ω = 0) for this anisotropic marginal
Fermi liquid at a variety of temperatures are shown in Fig. 5.18. Note
first that the spectral function at the near-nodal region is fairly sharp,
while moving towards the antinodes we see that much more broaden-
ing becomes present, with considerable spectral weight being present
in the regions between the Fermi surface at the antinodal regions. In
the isotropic cases we considered earlier, there is zero spectral weight
in these regions, as these parts of the Brillouin zone lie far beyond the
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Figure 5.18: The spectra of an anisotropic marginal Fermi liquid at various
temperatures. Left to right: The spectral function A(k, ω); the
Fourier transform of the LDOS P(q, ω); linecuts of P(q, ω) in the
nodal and antinodal directions; P(q, ω) with finite-temperature
smearing; and P(q, ω) in the presence of many weak impurities.
All plots are taken at E = 0.000. For ease of visualization, the
scale used here is smaller than that used in the Fermi liquid and
isotropic marginal Fermi liquid plots.
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Figure 5.19: Momentum-distribution curves taken along nodal ((0, 0) →
(π, π)) and antinodal ((0, 0) → (0, π)) cuts in the Brillouin zone
at the Fermi energy (E = 0) for an anisotropic marginal Fermi liq-
uid. Here T = 100 K and β = 0.2 (see Eq. 5.20 for the functional
form of the self-energy).

bare Fermi surface, but with considerable nodal-antinodal anisotropy
the antinodal regions become blurred and nonzero spectral weight re-
sults. This is even more apparent if we take momentum-distribution
curves along the nodal and antinodal directions, as plotted in Fig. 5.19:
the MDCs along the nodal direction are quite sharp, while those along
the antinodal directions are far more incoherent, although traces of
peaks remain—in good agreement with ARPES experiments, which
still find these antinodal peaks present in MDCs, albeit in a far weaker
state compared to those at the nodes.

The LDOS power spectrum in Fig. 5.18 has a number of interesting
features worth commenting upon. First, there is a very fuzzy square-
shaped central plateau which is formed from small-momenta scatter-
ing processes between antinodal portions of the Fermi surface. Be-
cause the broadening is very large at the antinodal points, the scatter-
ing wavevectors appearing in P(q, ω) consequently are severely broad-
ened as well. Second, there is a set of very sharp features near (±π,±π)

which arise from internodal scattering. Recall that the spectral func-
tion remains sharp and well-defined near the nodes. As such, scatter-
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ing wavevectors between near-nodal regions remain sharp in P(q, ω),
unlike those from antinodal-antinodal scattering. If one traces the caus-
tics extending beyond the central plateau carefully, accounting for the
backfolding of the spectra, one can make out that they decrease in
width as one moves from the antinodal scattering wavevectors to the
nodal ones. Linecuts along the nodal and antinodal directions are
perhaps even more illuminating. The linecuts along the antinodal di-
rections are featureless, save for the aforementioned plateau region,
while the nodal linecuts show a sharp peak near the Brillouin zone
boundary corresponding to nodal-nodal scattering. The contrast with
the isotropic marginal Fermi liquid is quite striking, as the isotropic
case (Fig. 5.12) features a central plateau which is still fairly sharply
defined, while the caustics which appear beyond the plateau are of
uniform width. With random disorder and thermal smearing, the re-
sulting spectra appear very noisy—owing in part to the large intrinsic
broadening at the antinodes. The central plateau visible in the single-
impurity results is no longer easily seen, but there do remain sharp
peaks near the zone diagonals corresponding to nodal-nodal scatter-
ing wavevectors, visible even when finite-temperature smearing is in-
cluded.

Finally we note that because the frequency-dependence of the self-
energy in this case is similar to the isotropic marginal Fermi liquid case
considered earlier, the widths of the LDOS power spectra here should
behave in the same way. This can be seen in plots of the spectral
function and the LDOS power spectra at 100 K as frequency is varied,
as seen in Fig. 5.20. As frequency is increased, the spectral function
broadens throughout momentum space, and the resulting caustics in
the LDOS power spectrum similarly broaden as well. This increased
broadening at large frequencies contributes to the loss of signal in the
disordered and thermally broadened data.
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Figure 5.20: Frequency-dependence at T = 100 K of the spectra of an
anisotropic marginal Fermi liquid. Shown are plots of the spec-
tral function A(k, ω) (upper row); the LDOS power spectrum
with a single pointlike scatterer without thermal smearing (mid-
dle row); and the LDOS power spectrum with both a 0.5% con-
centration of pointlike scatterers and thermal smearing (bottom
row). Note that the scales used for plotting the LDOS power
spectra are the same for all frequencies. For ease of visualization,
the scale used here is smaller than that used in the Fermi liquid
and isotropic marginal Fermi liquid plots.
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We caution the reader that because the anisotropic part of the self-
energy here is presumably due to elastic scattering off of off-plane
impurities, there is the danger that unless disorder is carefully taken
into account, “double-counting” may ensue. As QPI is an intrinsically
disorder-driven effect, one has to take care in these simulations that the
same disorder producing QPI does not contribute additionally to the
anisotropic elastic self-energy. We have taken care to use only point-
like impurities in our simulations of QPI, and the effect of the off-plane
impurities is incorporated in the anisotropic elastic scattering rate. A
single weak pointlike impurity represents a very small perturbation to
the system whose overall effect is negligible, while a dilute ensemble
of pointlike scatterers would presumably contribute to an isotropic scat-
tering rate, adding only a momentum-independent constant into the
full self-energy upon disorder averaging.

5.6 discussion and conclusion

We have provided in this chapter a comprehensive overview of the ef-
fects of self-energies on quasiparticle scattering interference, and have
applied much of this insight to situations of relevance to the copper-
oxide superconductors. While self-energies have been well-understood
from the perspective of ARPES experiments, their effects on STS ex-
periments have not been as similarly understood and are largely unex-
plored. A consistent result seen in the many scenarios we considered
in this chapter is the destruction of the QPI signal as broadening is in-
creased, even when thermal smearing is ignored. In many ways, this
is not an unexpected result. The physics underlying the phenomeno-
logical octet model of QPI in the superconducting state of the cuprates
relies on the existence of coherent quantum-mechanical waves, which
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scatter elastically against impurities present in these materials. If these
quasiparticles have a short lifetime—as seen in ARPES experiments in
the strange metal, or even at the superconducting state near Tc—then
the rather simple picture suggested by the octet model becomes com-
plicated by “off-shell” contributions to the full, disordered Green’s
function. That is, in the presence of large broadening, states living
away from the contours of constant energy do contribute towards the
scattering processes which determine the structure of the LDOS and
its power spectrum. These effects are in fact already visible in the spec-
tral function itself. We have seen that the contours of constant energy
in both the normal and superconducting states turn from sharp, well-
defined structures in momentum space into broad, incoherent entities.
The effects of this broadening are particularly dramatic in the d-wave
superconducting state, where we see that the sharp banana-shaped
contours seen in the spectral function turn into incoherent arc-like
streaks once the quasiparticle scattering rate is of the same order of
magnitude as the superconducting gap. The loss of the sharpness in
the contours of constant energy translates directly into the smearing
and progressive destruction of the octet-model peaks as the scattering
rate is increased.

The normal-state LDOS spectra feature no such peak-like structures,
and instead what appears is a set of caustics which are continuous and
whose broadening as a function of position on the caustics directly re-
flects the degree of coherence of the quasiparticles of the underlying
Fermi surface. As such, in the normal state the LDOS power spectrum
is far less sensitive to broadening than in the superconducting state.
One can see that the main feature differentiating the marginal Fermi
liquid from the ordinary Fermi liquid is the amount of broadening
present in both the spectral function and the LDOS power spectrum—
the marginal Fermi liquid, by virtue of the fact that the imaginary
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part of its self-energy is much larger than that of the ordinary Fermi
liquid at the same temperature and frequency, shows much more in-
trinsic smearing in its spectra—and how this broadening depends on
temperature and frequency. Another measurable effect is the renormal-
ization of the dispersions, due to the Kramers-Kronig relations, which
can in principle be measured directly. Nevertheless this is a rather
subtle effect—the bare band structure needs to be known in order for
this renormalization to be detected— and given the difficulty experi-
mentalists are sure to face in attempting to observe this effect in STS
experiments, the main signal of interest is the width of the measured
power spectra.

It is worth explaining further in this section the limitations of our
explicitly phenomenological approach. Our starting point consists of
mean-field models of the normal and superconducting states, which
are then “dressed” by self-energies which have a nontrivial depen-
dence on temperature, frequency, momentum, or some combination of
these. The predictions we make in this chapter for STS—and, for that
matter, ARPES as well—are sensible only if the actual strongly corre-
lated phases seen in the cuprates can be adequately described by these
dressed mean-field models. Much work on the two-dimensional Hub-
bard model, using dynamical mean-field theory, has shown that this
“dressed” picture, involving a single-particle propagator augmented
by a nontrivial self-energy, provides a reasonably accurate picture of
the physics in some phases of relevance to the cuprates [29, 57, 147].
If such a picture were to hold, then QPI will exist in some form or an-
other. For instance, a model of the pseudogap involving a broadened
d-wave superconductor will show QPI with the octet-model peaks de-
cohering; nevertheless, despite the absence of sharp peaks, the power
spectrum should still consist of wavevectors describing the relevant
scattering processes. As another example, the marginal Fermi liquid is
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an exotic phase of matter without any low-temperature quasiparticle-
like excitations—we remind the reader that its quasiparticle weight
vanishes at the Fermi surface at T = 0—but still features ARPES and
STS spectra that, at face value, are similar to those of an ordinary Fermi
liquid.

Having said all of this, if the phase of matter is not describable at
all by this dressed mean-field picture, there is no sense in which any
of our predictions should hold. In particular, if STS were to show no
evidence of these caustics in the strange-metal phase of the cuprates,
then that would be one extremely convincing piece of evidence to sug-
gest that the strange metal phase is beyond even the marginal-Fermi-
liquid description. Hints of this have in fact been seen in STS studies
deep inside the superconducting state: at energies larger than the su-
perconducting gap, no well-defined caustics are seen, and instead the
most dominant features are peaks corresponding to charge ordering
[90, 99, 50]. In such a scenario, the appropriate theory is a strongly in-
teracting phase of matter whose low-energy excitations are very unlike
the Landau quasiparticles of the Fermi liquid. A paradigmatic exam-
ple of this is the Luttinger liquid in one spatial dimension [60], whose
decidedly non-quasiparticle-like excitations result in ARPES and STS
spectra considerably different from those of an ordinary Fermi liquid
[127, 87]. In addition, numerous examples of these phases have been
constructed using holographic methods, and are known to result in
physics very different from that of the ordinary Fermi liquid [79, 35].
We end by noting that what high-temperature STS experiments can
eventually find in the strange metal phase and in the transition to
the superconducting state at optimal doping will undoubtedly be very
interesting. The insights that can be gleaned from such future experi-
ments will no doubt go a long way in illuminating the strange physics
of the cuprate superconductors.
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C O N C L U S I O N S A N D O U T L O O K

This thesis is devoted to an examination of the various ways in which
disorder impacts the electronic properties of the high-temperature su-
perconductors. It is worth stepping back to collect many of our results
here at one place and to situate them within the broader understand-
ing of the cuprates. As we have noted in the introduction, disorder
is a prominent actor in a number of mysterious phenomena in these
materials. To ensure that one properly interprets experimentally data,
it is essential that all the possible effects of disorder are taken into
account. Our results demonstrate that what is seen in experiment is
in many ways suprising and more subtle than the simplest and most
analytically tractable models can predict.

6.1 the unreasonable effectiveness of qpi

In Chapter 3 we discussed at length how quasiparticle scattering inter-
ference is generated by distributed disorder—taking a massive step be-
yond the simple single-impurity models that have consistently formed
the basis for much of the theoretical work done on QPI. We discover
the seemingly paradoxical result that our simulations of STS, using
various realistic models of disorder, fail to replicate the well-defined
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peaks seen in the experimental STS power spectrum. In addition to
peaks, our simulations show that the streaky patterns characteristic of
the single-impurity spectra should also be seen in the macroscopically-
disordered systems we have studied—and the fact that these streaks
are much less visible in the actual experimental data is highly unusual.
On one hand, the fact that we do see the same dispersing peaks as ex-
periment does means that the physics of QPI as presently understood—
the scattering of coherent d-wave quasiparticles against disorder of
some sort—is fundamentally correct. On the other hand, the fact that
the real-world signals are far sharper than anything we can find in nu-
merics is a sign that more details have to be added to this scattering
picture of QPI. It is not clear at first glance why these peaks should be
the dominant signal.

Perhaps the most sensible explanation is that the tunneling pro-
cess between the STM tip and the CuO2 plane—known to be highly
nontrivial—is responsible for the enhancement of the sharpness of
the peak-like features in the power spectra. We had in fact consid-
ered a simple model of the tunneling process in Chapter 3 and found
no notable enhancement of the peaks over those seen in the trivial-
tunneling case. However there is good reason to suspect that a fuller,
more microscopic model of the tunneling process, derived from first-
principles considerations, could explain some of these anomalies away.
Single-impurity simulations of STS spectra show that the character-
istic real-space pattern of the differential conductance around a zinc
impurity in BSCCO-2212 is reproduced very well if one incorporates
a very accurate model of tip-plane tunneling into the calculation of
the LDOS. An interesting direction for future work along these lines is
the incorporation of this realistic tunneling process in the simulation
of a macroscopically-disordered d-wave superconductor to see if sharp
peaks appear in the speckled many-impurity power spectrum. We had
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seen that random disorder of whatever form results in speckle in the
power spectrum, degrading the sharpness of the signal. As distributed
disorder is an intrinsic feature of the cuprates, it is important to know
if the sharpness of the octet-model peaks can ever be recovered in the
disordered case even with a realistic model of STM tunneling.

Another result we have obtained is that of all the models of dis-
order we have considered, two models in particular—a random ar-
ray of weak pointlike scattering centers and randomly-distributed but
uncorrelated on-site energies—reproduce with the most success the
experimentally-observed QPI power spectrum. This is not entirely un-
expected, as it is known that the cuprates studied by STS generally do
not feature strong in-plane impurities unless doped by zinc or nickel,
so any disorder is necessarily weak. However, what is surprising is
that the most plausible model of disorder, at least from a chemical
standpoint—smooth disorder sourced by off-plane dopants—does not
give rise to the requisite large-momentum octet-model peaks. Rather,
the disorder required to reproduce on a phenomenological level the
octet-model peaks is pointlike in nature, suggesting that QPI as seen
in experiments is likely not due to off-plane disorder. However, the
origin of this weak in-plane disorder is not immediately obvious. The
copper-oxide planes can feature defects whose effect should mimic
that of a local impurity, and deformations of the lattice could also lead
to the large-momentum peaks. Nevertheless these are not clear-cut iso-
lated impurities. This stands in contrast to the impurities which lead
to QPI in many non-cuprate materials such as the surfaces of three-
dimensional topological insulators, which can be visualized clearly
with STS.

Taking these two results together, it seems almost miraculous in
hindsight that QPI has even been seen in the cuprates! The success of
QPI in revealing the details of the momentum-space electronic struc-
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ture of the cuprates notwithstanding, there is much about QPI that still
eludes understanding. There is a shroud of microscopic details sur-
rounding the microscopic tunneling process which prevents one from
naively matching the bare LDOS calculations to experiment without
plenty of caveats. One can only hope that more knowledge of these
microscopic details can resolve the paradoxes present in the theory of
QPI in the cuprates. As we have noted earlier, nothing invalidates the
basic picture of QPI as quantum-mechanical waves forming ripples as
they pass through a disordered medium and interfere with each other,
from which the basis for the octet model can be formed, so QPI as
we know it remains a very good probe of electronic structure in the
cuprates. The fact remains, however, that beyond the scattering pic-
ture (which remains accurate) it is still a black-box-like experimental
method—much of what we can see through STS is affected by nonuni-
versal microscopic details. (Note that we have not even touched on the
issue of QPI extinction—it remains its own distinct can of worms!)

6.2 disorder : old dog , new tricks

Chapter 4 takes a look at disorder and its effect on the low-energy
quasiparticle density of states, a quantity which can be directly mea-
sured by specific heat experiments. As with Chapter 3, we take the
perspective of revisiting this old, ostensibly well-understood problem,
with the advantage that we now can put in realistic forms of disorder
without being constrained by analytical tractability. A key motivation
is to examine the impact of smooth disorder, which, as noted earlier,
should be ubiquitous in the cuprates due to the presence of dopants
within the buffer layers of these materials and whose impact on the
density of states has not been studied in prior theoretical work.
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The most important result we find in that chapter is that, in the pres-
ence of smooth disorder due to off-plane impurities, a finite DOS at
the Fermi energy pops up naturally without fundamentally reshaping
the structure of the DOS at higher energies. This is in stark contrast to
in-plane pointlike disorder, which is seen to affect the higher-energy
DOS far more strongly than smooth disorder (even at high off-plane
dopings) does. The spectral-weight transfer is concentrated within the
Fermi energy to an unusual degree: as the amount of disorder is in-
creased, a sharp resonance forms at E = 0, which quickly dies off with
increasing energy, all while leaving much of the rest of the quasiparti-
cle excitation spectrum unaltered.

It is important to note that smooth disorder has not been typically
considered as an explanation for the finite DOS at the Fermi energy
as seen in specific heat experiments on YBCO. The well-known “dirty
d-wave” model assumes that the disorder potential is pointlike; how-
ever, with smooth disorder, the T-matrix approximation used for point
disorder fails, and one thus has to solve the Bogoliubov-de Gennes
Hamiltonian exactly to obtain the density of states. Some of the ear-
liest works on disordered d-wave superconductors have assumed that
the relatively weak disorder potentials due to off-plane impurities can
be modeled in the Born approximation, but it is clear that the Born ap-
proximation fails to describe the small-angle scattering that is the dom-
inant feature of such smooth potentials, and as such cannot replicate
the gentler spectral-weight transfers due to smooth disorder which are
seen in our numerics.

Given that we have seen that smooth disorder is a plausible expla-
nation for the low-energy excitations seen in specific heat experiments,
it is worth asking if other experimental results which have been ex-
plained in terms of pointlike models of disorder could be retroactively
explained using a smooth-disorder model instead. In this light, per-
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haps the most interesting future direction is the study of transport
proporties in the presence of smooth disorder. The thermal and op-
tical conductivities of the cuprates in the superconducting state have
been studied quite exhaustively in experiment, but a theoretical un-
derstanding of these results based on a smooth-disorder paradigm is
limited at the moment. It is also worth considering just how strong
the pair-breaking effect of smooth disorder is. The single-particle
quantities we have studied in Chapter 4 suggest that smooth disorder
has a much softer imprint than pointlike disorder does—witness just
how well-perserved the coherence peaks are even at large dopings—
which makes it quite likely that off-plane disorder leads to far less
pair-breaking. Finally, it is very interesting to see the extent to which
the NMR Knight shift experiments alluded to in Chapter 4—which
measure the distribution of the DOS at E = 0—can be explained by
off-plane disorder.

We finally end this section by noting that on a semantic level, what
constitutes “disorder” in the cuprates is surprisingly tricky. Many
recently synthesized YBCO samples have been described as “clean.”
However it is generally not appreciated that any dopant situated off
the planes will generate disorder—it just acts on the copper-oxide planes
in an indirect manner by means of a Coulomb potential, and a suffi-
ciently large number of them creates enough smooth disorder in the
plane to perhaps generate the effects discussed in Chapter 4. Even
the ordered phases of YBCO (e.g., ortho-II, where half of the copper-
oxygen chains are filled and half are empty) feature off-plane oxygen
dopants in both chains and buffer layers, and the net effect of all of
these dopants taken together is to create a random but smooth disor-
der potential within the copper-oxygen planes. Our results in Chapter
4 provide an object lesson in the way a seemingly invisible form of
disorder can still generate enough low-lying quasiparticle excitations
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to alter the electronic properties near the Fermi energy, while ensuring
that the d-wave superconducting state by and large remains untouched
at higher energies—which appears to be the case in the actual cuprates.

6.3 stretching qpi to its breaking point

In Chapter 5 we studied the impact of self-energies on the QPI power
spectrum and the spectral function of both a d-wave superconduc-
tor and a metal, with the goal of developing testable predictions for
STS experiments on the cuprates at temperatures near and above Tc.
For the d-wave superconductor, we contrasted the “gap-filling” phe-
nomenology seen in the cuprates—where the gap becomes filled with
low-energy excitations as one nears Tc, with the gap fully closing only
at temperatures above Tc—with BCS-like “gap-closing,” in which the
gap closes at Tc. The general lesson as far as the d-wave superconduc-
tor is concerned is that the presence of a large self-energy is highly
detrimental to the octet-model peaks, which become smeared to the
point of incoherence as the scattering rate is increased. Nevertheless,
even though the octet-model peaks are lost once scattering rates are
large enough, the QPI power spectrum retains “memories” of the d-
wave gap—the QPI power spectrum of a broadened d-wave supercon-
ductor is manifestly different from that of a normal metal, even if their
spectral functions begin to resemble each other more and more.

This is an instance in which STS provides a way of sharply distin-
guishing a finite superconducting gap from a vanishing one above Tc.
ARPES experiments have some difficulty resolving this because at the
high temperatures being considered here (T ∼ Tc), the quasiparticle
scattering rate is large, and consequently the peaks seen in EDCs be-
come blurred and incoherent, and thus one can misidentify a phase
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with a finite superconducting gap as a phase whose gap vanishes if
the peaks marking the locations of the quasiparticle excitations are no
longer discernible. As noted earlier, one hypothesis for the existence of
Fermi arcs in the pseudogap is that these are simply d-wave nodes that
have been smeared thanks to the very large scattering rate inherent in
this phase. The large scattering rates near Tc appear to be a consis-
tent feature of the underdoped and optimally-doped cuprates. QPI,
because of its sensitivity to coherence factors, does see this difference:
when one has a broadened d-wave superconductor, the QPI power
spectrum is highly anisotropic, with spectral weight spread nonuni-
formly across the caustics.

Chapter 4 shows through explicit calculations that QPI does have a
“breaking point” as far as its usefulness as a probe of the momentum-
space structure is concerned. When the lifetimes of the Bogoliubov
quasiparticles become short, these do not yield sharp peaks, with only
broad and incoherent features remaining in the power spectrum. This
makes sense if one invokes the simple picture of QPI as quantum-
mechanical waves interfering with each other. If the quasiparticle life-
time is short, then there is no sense in which these excitations can be
treated as coherent propagating waves—the quasiparticles die before
any interference ensues. As the main signal of QPI in a d-wave super-
conductor consists of peaks, the elimination of this signal at sufficiently
high temperatures can be taken as one piece of evidence of the loss of
coherence of these particles. The ease with which this signal is de-
graded further points to the stability of the Bogoliubov quasiparticles
deep within the superconducting phase at low temperatures, which
yield sharp octet-model peaks and are thus identifiably long-lived ex-
citations. In this way, the breakdown of QPI can itself be argued to
be a piece of evidence suggesting that the long-lived nature of the ex-
citations is lost. Viewed through the lens of our results, this bolsters
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the interpretation that QPI extinction in the underdoped cuprates is
caused by the loss of coherence of the Bogoliubov quasiparticles at the
antinodal regime. However, the extent to which this interpretation is
consistent with ARPES results is unclear—recall that ARPES sees co-
herent quasiparticles across the entire Fermi surface. It has to be said,
however, that QPI, as it rests on a wave-like picture involving the in-
terference of propagating waves, is more sensitive to the coherence of
the excitations than ARPES is.

Having said all this, we find that the marginal Fermi liquid is sur-
prisingly stable insofar as it leads to fairly detectable features in the
QPI power spectrum. Compared to the ordinary Fermi liquid, the
caustics for the MFL are broadened, but still discernable. The main
difference between the MFL and the ordinary Fermi liquid as far as
QPI is concerned is quite subtle: the QPI power spectrum of the for-
mer has much more broadening than the latter, but despite this and
the diminished intensity in the power spectrum, the shape of the caus-
tics can still be discerned clearly. Further differences between these
two cases come in the form of a different dependence of the widths
of the caustics on temperature and frequency. However, none of these
differences are particularly sharp at first glance. If one takes a look at
QPI spectra at fixed temperature and frequency for the MFL and the
FL, one is hard-pressed to identify the differences between them, un-
less spectra at other temperatures and frequencies are obtained—and
even then, the differences still do not jump out of the page. In fact,
these subtle (rather than sharp) differences between the MFL and the
FL spectra are already apparent in ARPES results taken in the nodal
regime, which have been interpreted as the spectra of an anisotropic
marginal Fermi liquid. Because ARPES experiments on the normal
state of cuprates are done at high temperatures (T > 100 K), the mani-
festly ω-linear behavior of the widths of the spectral function is appar-
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ent only at frequencies |ω| > πT. It is in this regime where the MFL is
most different from the ordinary FL, for which the widths scale as ω2.
The lesson here is that at finite temperatures the MFL is only subtly dif-
ferent from the FL, and some of the sharper distinctions one can make
between the two phases at T = 0 are rounded off, requiring fine anal-
yses of the temperature- and frequency-dependence of the observed
spectra to tease out these differences.

Finally, we note that an exciting outcome might be—ironically—a
negative result disproving our predictions for QPI in a marginal Fermi
liquid. It is highly likely that the normal state of the cuprates is ulti-
mately described by a theory which is as different from Fermi-liquid
theory as one can get. It is hard to imagine what the spectra for
such a state should look like, but as we have noted in Chapter 2, a
real-world paradigm of a non-Fermi liquid without any quasiparticle-
like excitations is the Luttinger liquid in one spatial dimension. It
has been shown to lead to a number of anomalous features: MDCs
which are sharp, even with strong interactions; EDCs which broaden
as the interaction strength is increased, with no quasiparticle peaks
visible; and QPI spectra which show dispersing features due to spin-
charge-separated excitations collectively formed from the underlying
electrons. The Luttinger liquid in this sense goes even further than the
MFL in violating the basic features of the noninteracting Fermi gas.
The MFL at its core is a dressed Fermi gas—no long-lived excitations
exist, but its correlation functions can nevertheless be understood in
terms of the electronic excitations forming the Fermi gas which are
renormalized away by the MFL self-energy. In a Luttinger liquid, on
the other hand, the basic excitations are collective modes which sepa-
rately carry charge and spin—about as far removed from the electrons
as possible!
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While we are agnostic as to what the ultimate theory of the normal
state is, if one considers the very existence of the Luttinger liquid—a
state of matter which has been seen in experiments to be almost un-
recognizably different from the weakly-interacting Fermi liquid (and
which happens to be the most easily solvable of all models at that!)—it
is clear that one has to square oneself with the possibility that QPI for
the normal state of the cuprates is dominated by features not at all
related to the noninteracting Fermi gas, but instead by some set of ex-
otic, hitherto unknown excitations which reflect the quantum-critical
nature of the system. It has been noted early on in this thesis that exam-
ples of these finite-density quantum-critical states of matter have been
constructed using nonperturbative methods—the most prominent of
which is holography. Thus, if one does not see the caustics we pre-
dicted will form the QPI spectra of the MFL, this negative experimen-
tal result is a strong indication of the highly quantum-critical nature of
the normal state—so quantum-critical that there is no sense in it being
described even by the fairly radical MFL theory! We can only specu-
late what this theory will look like, but one remains hopeful that the
features of this strange beast can be understood, or at least sketched
out roughly, by STS experiments high up in the strange-metal phase.
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S A M E N VAT T I N G

Dit proefschrift is gewijd aan een gedetailleerd onderzoek naar de
verschillende effecten van wanorde in hoge-temperatuur cupraat su-
pergeleiders. Wanorde is alomtegenwoordig in deze materialen en
speelt een centrale rol in een aantal verschijnselen die geobserveerd
worden in verschillende fasen. Een voorbeeld hiervan is de verstrooi-
ingsinterferentie van quasideeltjes—modulaties van de lokale toestands-
dichtheid door de verstrooiing van quantummechanische golven door
onzuiverheden—die gebruikt is om de structuur in de impulsruimte
van elektronische excitaties in deze materialen in kaart te brengen. Een
ander voorbeeld is de waarneming van een eindige toestandsdichtheid
bij de Fermi-energie in de supergeleidende fase, dat typisch verklaard
wordt door de aanwezigheid van wanorde. Uit deze twee voorbeelden
wordt de duale rol van wanorde in deze materialen zichtbaar: als de
wanorde zwak is tast het de elektronische excitaties af, maar onder
bepaalde omstandigheden kan het ook nieuwe laagenergetische exci-
taties genereren die in een “schoon” materiaal afwezig zijn.

In dit proefschrift worden enkele verschijnselen die voorkomen in
cupraten onder de loep genomen, vanuit het perspectief van wat nu
bekend is over de aard van de wanorde in deze materialen. Van de me-
tallische koperoxidevlakken is bekend dat zij geen wanorde bevatten,
wat impliceert dat veel van de aanwezige wanorde veroorzaakt wordt
door doping defecten die zich in de isolerende bufferlagen bevinden,
op afstand van de metallische vlakken. Deze defecten zorgen voor
een gedistribueerde Coulombische wanorde, een relatief gladde poten-
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tiaal die gevoeld wordt door de elektronen in de metallische vlakken.
Deze details zijn cruciaal, omdat in veel van de literatuur aangenomen
wordt dat de wanorde zich in de metallische vlakken bevindt. Veel
van de bestaande theorie over de verstrooiingsinterferentie van quasi-
deeltjes draaide om modellen van wanorde met slechts één defect. Op
een soortgelijke manier wordt er in veel modellen aangenomen dat de
wanorde zich in de koperoxidevlakken bevindt om de eindige toes-
tandsdichtheid bij de Fermi-energie te verklaren. In hoeverre de door
wanorde aangedreven verschijnselen in experimenten door realistis-
che, gedistribueerde vormen van wanorde kunnen worden verklaard
is nauwelijks bestudeert.

In hoofdstuk 3 richten wij ons op verstrooiingsinterferentie van quasi-
deeltjes in cupraten en beschouwen wij hoe de scherpe pieken in de
tunnelingspectra van experimenten gereproduceerd kunnen worden
door een reeks modellen van gedistribueerde wanorde, inclusief de
modellering voor het tunnelproces tussen de koperoxidevlakken en
de tip van de scanning tunneling microscoop. Wij concluderen dat
zwakke puntvormige wanorde en willekeurige wanorde in de chemis-
che potentiaal het best de experimentele spectra nabootst in zowel de
reële ruimte als in de impulsruimte. Tegelijkertijd is gladde wanorde
niet afdoende om de experimentele spectra te reproduceren omdat ver-
strooiing bij groot momentum onderdrukt wordt in dit geval. Even
interessant als paradoxaal is het feit dat de pieken geobserveerd in ex-
perimenten scherper zijn dan de pieken die volgen uit onze simulaties.

Hoofdstuk 4 beschouwt verschillende vormen van wanorde en hun
uitwerking op de toestandsdichtheid bij de Fermi-energie met variërende
hoeveelheden wanorde. Hoewel sterke puntvormige onzuiverheden
en wanorde in de chemische potentiaal wel tot een eindige toestands-
dichtheid leiden, moet er onrealistisch veel wanorde aangenomen wor-
den om het experiment te reproduceren. Anderzijds laten we zien dat
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wanorde door defecten buiten het vlak tot realistische waarden van
de toestandsdichtheid bij de Fermi-energie kan leiden zonder de su-
pergeleidende excitaties bij middelmatige en hogere energieën aan te
tasten. Wij vinden scherpe resonanties bij de Fermi-energie wanneer
er zeer veel dotanten buiten het vlak aanwezig zijn. Wij onderzoeken
ook de lokalisatielengte voor verschillende modellen van wanorde, en
het wordt aangetoond dat voor alle modellen van wanorde de quasi-
deeltjes bij de Fermi-energie gelokaliseerd zijn, terwijl de lokalisatie-
lengte als functie van energie sterk gevoelig is voor het type wanorde
dat aanwezig is.

Hoofdstuk 5 beschouwt wederom verstrooiingsinterferentie van quasi-
deeltjes, dit keer met het oog op de effecten van zelf-energieën op
de lokale toestandsdichtheid, wat toegepast wordt op relevante voor-
beelden in de cupraten. In de supergeleidende toestand bestuderen
we het fenomeen van kloofvullen versus -dichten dat in ARPES experi-
menten wordt waargenomen en wij analyseren in hoeverre scanning
tunneling spectroscopie experimenten dit fenomeen ook waar kun-
nen nemen. De pieken in de supergeleidende spectra worden aange-
toond gevoelig te zijn voor de hoeveelheid verbreding die aanwezig
is: de pieken worden uitgesmeerd en worden incoherent bij grote
zelf-energieën. We besturen ook de spectra in de normale toestand,
waar wij aannemen dat het “vreemde metaal” goed beschreven wordt
door een marginale Fermivloeistof. Wij vinden dat een belangrijk ken-
merk van deze toestand de aanwezigheid van brede patronen is in het
spectrum dat de verstrooiing tussen punten op het Fermi-oppervlak
beschrijft. Het grootste verschil tussen de marginale Fermivloeistof
en de gewone Fermivloeistof blijkt de mate van verbreding te zijn; het
spectrum van een marginale Fermivloeistof heeft veel meer verbreding
dan dat van een gewone Fermivloeistof.
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De meest belangrijkste resultaten van dit proefschrift zijn als volgt:
de gedistribueerde vormen van wanorde kan de verstrooiingsinterfer-
entie van quasideeltjes die gezien wordt in experimenten veroorzaken,
niettegenstaande de afwezigheid van duidelijk geı̈soleerde onzuiverhe-
den; de microscopische details van het tunnelproces geassocieerd met
scanning tunneling spectroscopie experimenten zijn van groot belang
voor de theoretische interpretatie van experimenten; wanorde buiten
de vlakken is een kandidaat mechanisme voor de productie van laa-
genergetische excitaties die in soortelijke warmte experimenten wor-
den waargenomen; de gevoeligheid van de verstrooiingsinterferentie
van quasideeltjes in de supergeleidende toestand voor de lange levens-
duur van Bogoliubov quasideeltjes; en tenslotte het verrassend subtiele
verschil tussen de spectra van een marginale Fermivloeistof en die van
zijn conventionele broertje, de Fermivloeistof. In hoofdstuk 6 brengen
wij al deze resultaten samen en plaatsen wij deze in de grotere context
van wat er over de cupraten bekend is.
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