

Lattice models for Josephson junctions and graphene superlattices Ostroukh, V.

Citation

Ostroukh, V. (2018, June 27). Lattice models for Josephson junctions and graphene superlattices. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/63217

Version: Not Applicable (or Unknown)

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/63217

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle http://hdl.handle.net/1887/63217 holds various files of this Leiden University dissertation.

Author: Ostroukh, V.

Title: Lattice models for Josephson junctions and graphene superlattices

Issue Date: 2018-06-27

Stellingen

 ${\it behorende\ bij\ het\ proefschrift} \\ {\it Lattice\ models\ for\ Josephson\ junctions\ and\ graphene\ superlattices}$

1. The doubled Fraunhofer periodicity observed in an edge-channel Josephson junction can be explained by the appearance of a conducting channel along the interface with the superconductor.

Chapter 2

2. The SQUID-like Fraunhofer diffraction pattern observed in InAs quantum wells is not conclusive evidence for topologically protected edge channels.

Chapter 3

3. A non-circular Fermi surface may induce a two-dimensional vortex lattice in the normal region of a ballistic Josephson junction.

Chapter 4

4. An index theorem protects the valley degeneracy of the lowest Landau level in the presence of valley-momentum locking.

Chapter 5

5. Contrary to the claim by Gutiérrez $et\ al.$, the Kekulé bond texture in a graphene-on-copper superlattice does not produce a gapped spectrum.

C. Gutiérrez *et al.*, Nature Phys. **12**, 950 (2016).

6. The topologically protected valley switch in a graphene superlattice, reported by Beenakker *et al.* for electron reflection, exists also in transmission.

C. W. J. Beenakker et~al., Phys. Rev. B **97**, 241403(R) (2018).

7. The Dynes-Fulton relationship, used to reconstruct the current density from the magnetic-field dependence of the Josephson effect, can be relied upon only in tunnel junctions.

R. C. Dynes and T. A. Fulton, Phys. Rev. B 3, 3015 (1971).

8. The dispersion relation of a spin-1 Weyl semimetal can be understood as the effect of a non-Abelian gauge field, by application of the theory of de Juan.

F. de Juan, Phys. Rev. B 87, 125419 (2013).

Viacheslav Ostroukh 27 June 2018