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Chapter 5

Valley-momentum locking
in a graphene superlattice
with Y-shaped Kekulé bond
texture

5.1 Introduction

The coupling of orbital and spin degrees of freedom is a promising new
direction in nano-electronics, referred to as “spin-orbitronics”, that aims
at non-magnetic control of information carried by charge-neutral spin cur-
rents [95–97]. Graphene offers a rich platform for this research [98, 99],
because the conduction electrons have three distinct spin quantum num-
bers: in addition to the spin magnetic moment s = ±1/2, there is the
sublattice pseudospin σ = A,B and the valley isospin τ = K,K ′. While
the coupling of the electron spin s to its momentum p is a relativistic
effect, and very weak in graphene, the coupling of σ to p is so strong that
one has a pseudospin-momentum locking: the pseudospin points in the

The contents of this chapter have been published at O.V. Gamayun, V. P. Os-
troukh, N.V. Gnezdilov, İ. Adagideli, and C.W. J. Beenakker, New J. Phys. 20, 023016
(2018) and may be used under the terms of the Creative Commons Attribution 3.0 li-
cence.
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direction of motion, as a result of the helicity operator p ·σ ≡ pxσx+pyσy
in the Dirac Hamiltonian of graphene.

Figure 5.1. Honeycomb lattices with a Kek-O or Kek-Y bond texture, all three
sharing the same superlattice Brillouin zone (yellow hexagon, with reciprocal
lattice vectors K±). Black and white dots label A and B sublattices, black
and red lines distinguish different bond strengths. The lattices are parametrized
according to Eq. (5.4) (with φ = 0) and distinguished by the index ν = 1 + q− p
modulo 3 as indicated. The K and K ′ valleys (at the green Dirac points) are
coupled by the wave vectorG = K+−K− of the Kekulé bond texture and folded
onto the center of the superlattice Brillouin zone (blue point).

The purpose of this work is to propose a way to obtain a similar handle
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on the valley isospin, by adding a term p · τ to the Dirac Hamiltonian,
which commutes with the pseudospin helicity and locks the valley to the
direction of motion. We find that this valley-momentum locking should
appear in a superlattice that has recently been realized experimentally by
Gutiérrez et al. [15, 100, 101]: a superlattice of graphene grown epitaxially
onto Cu(111), with the copper atoms in registry with the carbon atoms.
One of six carbon atoms in each superlattice unit cell (

√
3 ×
√

3 larger
than the original graphene unit cell) have no copper atoms below them
and acquire a shorter nearest-neighbor bond. The resulting Y-shaped
periodic alternation of weak and strong bonds (see Fig. 5.1) is called a
Kekulé-Y (Kek-Y) ordering, with reference to the Kekulé dimerization in
a benzene ring (called Kek-O in this context) [101].

The Kek-O and KeK-Y superlattices have the same Brillouin zone,
with the K and K ′ valleys of graphene folded on top of each other. The
Kek-O ordering couples the valleys by opening a gap in the Dirac cone [27,
28, 102–104], and it was assumed by Gutiérrez et al. that the same applies
to the Kek-Y ordering [15, 101]. While it is certainly possible that the
graphene layer in the experiment is gapped by the epitaxial substrate (for
example, by a sublattice-symmetry breaking ionic potential [13, 105, 106]),
we find that the Y-shaped Kekulé bond ordering by itself does not impose
a mass on the Dirac fermions1. Instead, the valley degeneracy is broken by
the helicity operator p · τ , which preserves the gapless Dirac point while
locking the valley degree of freedom to the momentum. In a magnetic
field the valley-momentum locking splits all Landau levels except for the
zeroth Landau level, which remains pinned to zero energy.

5.2 Tight-binding model

5.2.1 Real-space formulation

A monolayer of carbon atoms has the tight-binding Hamiltonian

H = −∑r

∑3
`=1tr,` a

†
rbr+s` + H.c., (5.1)

describing the hopping with amplitude tr,` between an atom at site r =
na1 + ma2 (n,m ∈ Z) on the A sublattice (annihilation operator ar)

1 That the Kek-Y bond ordering by itself preserves the massless nature of the Dirac
fermions in graphene could already have been deduced from Ref. [13] (it is a limiting
case of their equation 4), although it was not noticed in the experimental Ref. [15]. We
thank Dr. Gutiérrez for pointing this out to us.
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and each of its three nearest neighbors at r + s` on the B sublattice
(annihilation operator br+s`). The lattice vectors are defined by s1 =
1
2(
√

3,−1), s2 = −1
2(
√

3, 1), s3 = (0, 1), a1 = s3 − s1, a2 = s3 − s2. All
lengths are measured in units of the unperturbed C–C bond length a0 ≡ 1.

For the uniform lattice, with tr,` ≡ t0, the band structure is given
by [107]

E(k) = ±|ε(k)|, ε(k) = t0
∑3
`=1e

ik·s` . (5.2)

There is a conical singularity at the Dirac points K± = 2
9π
√

3(±1,
√

3),
where E(K±) = 0. For later use we note the identities

ε(k) = ε(k + 3K±) = e2πi/3ε(k +K+ +K−). (5.3)

The bond-density wave that describes the Kek-O and Kek-Y textures
has the form

tr,`/t0 = 1 + 2 Re
[
∆ei(pK++qK−)·s`+iG·r] (5.4a)

= 1 + 2∆0 cos[φ+ 2
3π(m− n+N`)], (5.4b)

N1 = −q, N2 = −p, N3 = p+ q, p, q ∈ Z3.

The Kekulé wave vector

G ≡K+ −K− = 4
9π
√

3(1, 0) (5.5)

couples the Dirac points. The coupling amplitude ∆ = ∆0e
iφ may be

complex, but the hopping amplitudes tr,` are real in order to preserve
time-reversal symmetry.

As illustrated in Fig. 5.1, the index

ν = 1 + q − p mod 3 (5.6)

distinguishes the Kek-O texture (ν = 0) from the Kek-Y texture (ν = ±1).
Each Kekulé superlattice has a 2π/3 rotational symmetry, reduced from
the 2π/6 symmetry of the graphene lattice. The two ν = ±1 Kek-Y
textures are each others mirror image 2.

2 There are three sets of integers p, q ∈ Z3 for a given index ν = 1 + q − p mod 3,
corresponding to textures on the honeycomb lattice that are translated by one hexagon,
or equivalently related by a ±2π/3 phase shift of ∆.
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5.2.2 Transformation to momentum space

The Kek-O and Kek-Y superlattices have the same hexagonal Brillouin
zone, with reciprocal lattice vectors K± — smaller by a factor 1/

√
3 and

rotated over 30◦ with respect to the original Brillouin zone of graphene
(see Fig. 5.1). The Dirac points of unperturbed graphene are folded from
the corner to the center of the Brillouin zone and coupled by the bond
density wave.

To study the coupling we Fourier transform the tight-binding Hamilo-
nian (5.1),

H(k) = − ε(k)a†kbk −∆ε(k + pK+ + qK−)a†k+Gbk

−∆∗ε(k − pK+ − qK−)a†k−Gbk + H.c. (5.7)

The momentum k still varies over the original Brillouin zone. In order
to restrict it to the superlattice Brillouin zone we collect the annihilation
operators at k and k ±G in the column vector

ck = (ak, ak−G, ak+G, bk, bk−G, bk+G) (5.8)

and write the Hamiltonian in a 6× 6 matrix form:

H(k) = −c†k

(
0 Eν(k)
E†ν(k) 0

)
ck, (5.9a)

Eν =

 ε0 ∆̃εν+1 ∆̃∗ε−ν−1
∆̃∗ε1−ν ε−1 ∆̃εν
∆̃εν−1 ∆̃∗ε−ν ε1

 , (5.9b)

∆̃ = e2πi(p+q)/3∆, εn = ε(k + nG), (5.9c)

where we used Eq. (5.3).

5.3 Low-energy Hamiltonian

5.3.1 Gapless spectrum

The low-energy spectrum is governed by the four modes

uk = (ak−G, ak+G, bk−G, bk+G), (5.10)

which for small k lie near the Dirac points at ±G. (We identify the
K valley with +G and the K ′ valley with −G.) Projection onto this
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subspace reduces the six-band Hamiltonian (5.9) to an effective four-band
Hamiltonian,

Heff = −u†k

(
0 hν
h†ν 0

)
uk, hν =

(
ε−1 ∆̃εν

∆̃∗ε−ν ε1

)
. (5.11)

Corrections to the low-energy spectrum from virtual transitions to the
higher bands are of order ∆2

0. We will include these corrections later, but
for now assume ∆0 � 1 and neglect them.

The k-dependence of εn may be linearized near k = 0,

ε0 = 3t0, ε±1 = ~v0(∓kx + iky) + order (k2), (5.12)

with Fermi velocity v0 = 3
2 t0a0/~. The corresponding 4-component Dirac

equation has the form

H
(

ΨK′

ΨK

)
= E

(
ΨK′

ΨK

)
, H =

(
v0p · σ ∆̃Qν
∆̃∗Q†ν v0p · σ

)
, (5.13a)

ΨK′ =
(
−ψB,K′
ψA,K′

)
, ΨK =

(
ψA,K
ψB,K

)
, (5.13b)

Qν =
(
ε∗−ν 0
0 −εν

)
=
{

3t0σz if ν = 0,
v0(νpx − ipy)σ0 if |ν| = 1.

(5.13c)

The spinor ΨK contains the wave amplitudes on the A and B sublattices in
valley K and similarly ΨK′ for valley K ′, but note the different ordering of
the components3. We have defined the momentum operator p = −i~∂/∂r,
with p · σ = pxσx + pyσy. The Pauli matrices σx, σy, σz, with σ0 the unit
matrix, act on the sublattice degree of freedom.

For the Kek-O texture we recover the gapped spectrum of Kekulé
dimerized graphene [102],

E2 = v2
0|p|2 + (3t0∆0)2 for ν = 0. (5.14)

The Kek-Y texture, instead, has a gapless spectrum,

E2
± = v2

0(1±∆0)2|p|2, for |ν| = 1, (5.15)

consisting of a pair of linearly dispersing modes with different velocities
v0(1 ±∆0). The two qualitatively different dispersions are contrasted in
Fig. 5.2.

3 The ordering of the spinor components in Eq. (5.13b) is the socalled valley-isotropic
representation of Dirac fermions, see [108].
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0.10 -0.05 0.05 0.10

Figure 5.2. Dispersion relation near the center of the superlattice Brillouin
zone, for the Kek-O texture (blue dashed curves) and for the Kek-Y texture
(black solid). The curves are calculated from the full Hamiltonian (5.9) for |∆̃| =
∆0 = 0.1.

5.3.2 Valley-momentum locking

The two gapless modes in the Kek-Y superlattice are helical, with both
the sublattice pseudospin and the valley isospin locked to the direction
of motion. To see this, we consider the ν = 1 Kek-Y texture with a
real ∆̃ = ∆0. (Complex ∆̃ and ν = −1 are equivalent upon a unitary
transformation.) The Dirac Hamiltonian (5.13) can be written in the
compact form

H = vσ (p · σ)⊗ τ0 + vτ σ0 ⊗ (p · τ ), (5.16)

with the help of a second set of Pauli matrices τx, τy, τz and unit matrix
τ0 acting on the valley degree of freedom. The two velocities are defined
by vσ = v0 and vτ = v0∆0.

An eigenstate of the current operator

jα = ∂H/∂pα = vσ σα ⊗ τ0 + vτ σ0 ⊗ τα (5.17)

with eigenvalue vσ ± vτ is an eigenstate of σα with eigenvalue +1 and
an eigenstate of τα with eigenvalue ±1. (The two Pauli matrices act on
different degrees of freedom, so they commute and can be diagonalized
independently.) This valley-momentum locking does not violate time-
reversal symmetry, since the time-reversal operation in the superlattice
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inverts all three vectors p, σ, and τ , and hence leaves H unaffected4:

(σy ⊗ τy)H∗(σy ⊗ τy) = H. (5.18)

The valley-momentum locking does break the sublattice symmetry,
since H no longer anticommutes with σz, but another chiral symmetry
involving both sublattice and valley degrees of freedom remains:

(σz ⊗ τz)H = −H(σz ⊗ τz). (5.19)

5.3.3 Landau level quantization

A perpendicular magnetic field B in the z-direction (vector potential A in
the x–y plane), breaks the time-reversal symmetry (5.18) via the substitu-
tion p 7→ −i~∂/∂r+eA(r) ≡ Π. The chiral symmetry (5.19) is preserved,
so the Landau levels are still symmetrically arranged around E = 0, as in
unperturbed graphene. Because the two helicity operators Π ·σ and Π ·τ
do not commute for A 6= 0, they can no longer be diagonalized indepen-
dently. In particular, this means the Landau level spectrum is not simply
a superposition of two spectra of Dirac fermions with different velocities.

It is still possible to calculate the spectrum analytically (see Sec. 5.7.1).
We find Landau levels at energies E+

n , E
−
n ,−E+

n ,−E−n , n = 0, 1, 2, . . .,
given by

E±n = EB

[
2n+ 1±

√
1 + n(n+ 1)(4vσvτ )2v̄−4

]1/2
, (5.20)

with the definitions v̄ =
√
v2
σ + v2

τ and EB = v̄
√
~eB.

In unperturbed graphene all Landau levels have a twofold valley de-
generacy5: E+

n = E−n+1 for vτ = 0. This includes the zeroth Landau level:
E−0 = 0 = −E−0 . A nonzero vτ breaks the valley degeneracy of all Landau
levels at E 6= 0, but a valley-degenerate zero-mode E−0 = 0 remains, see
Fig. 5.3.

4 The time-reversal operation T = (σy ⊗ τy)C from Eq. (5.18) (with C complex
conjugation) squares to +1 because the electron spin is not explicitly included. If we
do include it, we would have T = (sy ⊗ σy ⊗ τy)C, which squares to −1 as expected for
a fermionic quasiparticle. The combination of the time-reversal symmetry (5.18) and
the chiral symmetry (5.19) places the superlattice in the BDI symmetry classification
of topological states of matter.

5 The Landau levels also have a twofold spin degeneracy, which could be resolved by
the Zeeman energy but is not considered here.
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Figure 5.3. Landau levels in the Kek-Y superlattice (∆0 = 0.1, φ = 0, ν = 1).
The data points are calculated numerically [16] from the tight-binding Hamilto-
nian (5.1) with bond modulation (5.4). The lines are the analytical result from
Eqs. (5.20) and (5.21) for the first few Landau levels. Lines of the same color
identify the valley-split Landau level, the zeroth Landau level (red line) is not
split.

The absence of a splitting of the zeroth-Landau level can be understood
as a topological protection in the context of an index theorem [109–112],
which requires that either Π+ ≡ Πx + iΠy or Π− ≡ Πx − iΠy has a
zero-mode. If we decompose H = Π+S− + Π−S+, with S± = vσ(σx ±
iσy) + vτ (τx ± iτy), we see that both S+ and S− have a rank-two null
space6, spanned by the spinors ψ(1)

± and ψ(2)
± . So if Π±f± = 0, a twofold

degenerate zero-mode of H is formed by the states f±ψ(1)
∓ and f±ψ(2)

∓ .
All of this is distinctive for the Kek-Y bond order: for the Kek-O

texture it’s the other way around — the Landau levels have a twofold
valley degeneracy except for the nondegenerate Landau level at the edge
of the band gap7.

6 If we define the eigenstates |α, β〉 by σz|α, β〉 = α|α, β〉, τz|α, β〉 = β|α, β〉, then
S+ annihilates ψ(1)

+ = |1, 1〉 and ψ
(2)
+ = vτ | − 1, 1〉 − vσ|1,−1〉, while S− annihilates

ψ
(1)
− = | − 1,−1〉 and ψ(2)

− = vτ |1,−1〉 − vσ| − 1, 1〉.
7 In a Kek-O superlattice the Landau levels are given by E2

n = (3t0∆0)2 + 2n~eBv2
0 ,

n = 0, 1, 2, . . ., with a twofold valley degeneracy for n ≥ 1 and a nondegenerate zeroth
Landau level at ±3t0∆0.
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5.4 Effect of virtual transitions to higher bands

So far we have assumed ∆0 � 1, and one might ask how robust our
findings are to finite-∆0 corrections, involving virtual transitions from the
ε±1 bands near E = 0 to the ε0 band near E = 3t0. We have been able
to include these to all orders in ∆0 (see Sec. 5.7.2), and find that the
entire effect is a renormalization of the velocities vσ and vτ in the Hamil-
tonian (5.16), which retains its form as a sum of two helicity operators.
For real ∆ = ∆0 the renormalization is given by vσ = v0ρ+, vτ = v0ρ−
with

ρ± = 1
2(1−∆0)

 1 + 2∆0√
1 + 2∆2

0

± 1

 . (5.21)

For complex ∆ = ∆0e
iφ the nonlinear renormalization introduces a de-

pendence on the phase φ modulo 2π/3.
What this renormalization shows is that, as expected for a topological

protection, the robustness of the zeroth Landau level to the Kek-Y texture
is not limited to perturbation theory — also strong modulations of the
bond strength cannot split it away from E = 0.

5.5 Pseudospin-valley coupling

In zero magnetic field the low-energy Hamiltonian (5.16) does not couple
the pseudospin σ and valley τ degrees of freedom. A σ ⊗ τ coupling
is introduced in the Kek-Y superlattice by an ionic potential µY on the
carbon atoms that line up with the carbon vacancies — the atoms located
at each center of a red Y in Fig. 5.1. We consider this effect for the ν = 1
Kek-Y texture with a real ∆̃ = ∆0.

The ionic potential acts on one-third of the A sublattice sites, labeled
rY. (For ν = −1 it would act on one-third of the B sublattice sites.)
Fourier transformation of the on-site contribution µY

∑
rY
a†rYarY to the

tight-binding Hamiltonian (5.1) gives with the help of the lattice sum

∑
rY
eik·rY ∝ δ(k) + δ(k −G) + δ(k +G) (5.22)
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the momentum-space Hamiltonian

H(k) = −c†k

(
MY E1(k)
E†1(k) 0

)
ck, (5.23a)

MY = −µY

1 1 1
1 1 1
1 1 1

 . (5.23b)

The E1 block is still given by Eq. (5.9). The additional MY-block breaks
the chiral symmetry.

Projection onto the subspace spanned by low-energy modes (Eq. 5.10)
gives the effective Hamiltonian

Heff = −u†k

(
mY h1
h†1 0

)
uk, mY = −µY

(
1 1
1 1

)
. (5.24)

The corresponding Dirac Hamiltonian has the form (5.13) with an addi-
tional σ ⊗ τ coupling,

H = vσ (p · σ)⊗ τ0 + vτ σ0 ⊗ (p · τ ) + 1
2µY

+ 1
2µY(σx ⊗ τx + σy ⊗ τy − σz ⊗ τz).

(5.25)

The energy spectrum,

E
(1)
± = ±(vσ − vτ )|p|,

E
(2)
± = µY ±

√
(vσ + vτ )2|p|2 + µ2

Y,
(5.26)

has two bands that cross linearly in p at E = 0, while the other two bands
have a quadratic p-dependence. (See Fig. 5.4.)

The three bands E(1)
+ , E(1)

− , E(2)
− that intersect at p = 0 are reminiscent

of a spin-one Dirac one. Such a dispersion is a known feature of a potential
modulation that involves only one-third of the atoms on one sublattice [13,
106]. The spectrum remains gapless even though the chiral symmetry is
broken. This is in contrast to the usual staggered potential between A
and B sublattices, which opens a gap via a σz ⊗ τz term [107].

5.6 Discussion
In summary, we have shown that the Y-shaped Kekulé bond texture (Kek-
Y superlattice) in graphene preserves the massless character of the Dirac
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Figure 5.4. Effect of an on-site potential µY on the Kek-Y bandstructure of Fig.
5.2. The three bands that intersect linearly and quadratically at the center of the
superlattice Brillouin zone form the “spin-one Dirac cone” of Refs. [106] and [13].
The curves are calculated from the full Hamiltonian (5.23) for ∆0 = 0.1 = µY.

fermions. This is fundamentally different from the gapped band structure
resulting from the original Kekulé dimerization [27, 28, 102, 103] (Kek-O
superlattice), and contrary to expectations from its experimental realiza-
tion [15, 101].

The gapless low-energy Hamiltonian H = vσp · σ + vτp · τ is the sum
of two helicity operators, with the momentum p coupled independently
to both the sublattice pseudospin σ and the valley isospin τ . This valley-
momentum locking is distinct from the coupling of the valley to a pseudo-
magnetic field that has been explored as an enabler for valleytronics [113],
and offers a way for a momentum-controlled valley precession. The broken
valley degeneracy would also remove a major obstacle for spin qubits in
graphene [114].

A key experimental test of our theoretical predictions would be a con-
firmation that the Kek-Y superlattice has a gapless spectrum, in stark
contrast to the gapped Kek-O spectrum. In the experiment by Gutiér-
rez et al. on a graphene/Cu heterostructure the Kek-Y superlattice is
formed by copper vacancies that are in registry with one out of six car-
bon atoms [15, 101]. These introduce the Y-shaped hopping modulations
shown in Fig. 5.1, but in addition will modify the ionic potential felt by
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the carbon atom at the center of the Y. Unlike the usual staggered poten-
tial between A and B sublattices, this potential modulation in an enlarged
unit cell does not open a gap [13, 106]. We have also checked that the
Dirac cone remains gapless if we include hoppings beyond nearest neig-
bor. All of this gives confidence that the gapless spectrum will survive in
a realistic situation.

Further research in other directions could involve the Landau level
spectrum, to search for the unique feature of a broken valley degeneracy
coexisting with a valley-degenerate zero-mode. The graphene analogues
in optics and acoustics [115] could also provide an interesting platform for
a Kek-Y superlattice with a much stronger amplitude modulation than
can be realized with electrons.

5.7 Appendix

5.7.1 Calculation of the Landau level spectrum in a Kek-Y
superlattice

We calculate the spectrum in a perpendicular magnetic field of a graphene
sheet with a Kekulé-Y bond texture. We start by rewriting the Hamilto-
nian (5.16), with Π = p+ eA, in the form

H = 1
2Π+S− + 1

2Π−S+ + µσz ⊗ τz, (5.27)

in terms of the raising and lowering operators

Π± = Πx ± iΠy, σ± = σx ± iσy, τ± = τx ± iτy,
S± = vσ σ± ⊗ τ0 + vτ σ0 ⊗ τ±.

(5.28)

The chiral-symmetry breaking term µσz⊗τz that we have added will serve
a purpose later on.

We know that the Hermitian operator Ω = Π+Π− has eigenvalues
ωn = 2n~eB, n = 0, 1, 2, . . ., in view of the commutator [Π−,Π+] = 2~eB.
So the strategy is to express the secular equation det(E−H) = 0 in a form
that involves only the mixed products Π+Π−, and no Π2

+ or Π2
−. This is

achieved by means of a unitary transformation, as follows.
We define the unitary matrix

U = exp[1
4 iπ(σ0 + σz)⊗ τy] (5.29)
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and reduce the determinant of a 4× 4 matrix to that of a 2× 2 matrix:

det(H− E) = detU †(H− E)U

= det
(
−E + µ R†

R −E − µ

)

=
{

det(E2 − µ2 −RR†) if E 6= µ,

det(E2 − µ2 −R†R) if E 6= −µ,
(5.30)

with R =
(
−vτΠ− vσΠ−
−vσΠ+ vτΠ+

)
. (5.31)

The matrix product RR† is not of the desired form, but R†R is,

R†R =
(

v2
σΠ−Π+ + v2

τΠ+Π− −vσvτ (Π−Π+ + Π+Π−)
−vσvτ (Π−Π+ + Π+Π−) v2

σΠ+Π− + v2
τΠ−Π+

)
, (5.32)

involving only Π+Π− = Ω and Π−Π+ = Ω + ω1. Hence the determinant
is readily evaluated for E 6= −µ,

det(H− E) = det(E2 − µ2 −R†R)

=
∞∏
n=0

det
(
E2 − µ2 − v̄2ωn − v2

σω1 vσvτ (2ωn + ω1)
vσvτ (2ωn + ω1) E2 − µ2 − v̄2ωn − v2

τω1

)
,

(5.33)

where we have abbreviated v̄ =
√
v2
σ + v2

τ .
Equating the determinant to zero and solving for E we find four sets

of energy eigenvalues E+
n , E

−
n ,−E+

n ,−E−n , given by

(E±n )2 − µ2 = (ωn + 1
2ω1)v̄2 ± 1

2

√
ω2

1 v̄
4 + (4vσvτ )2ωnωn+1

= E2
B

[
2n+ 1±

√
1 + n(n+ 1)(4vσvτ )2v̄−4

]
.

(5.34)

In the second equation we introduced the energy scale EB = ~v̄/lm, with
lm =

√
~/eB the magnetic length. The B-independent level E−0 = µ

becomes a zero-mode in the limit µ→ 0.
As a check on the calculation, we note that for µ = 0, vτ = 0 we

recover the valley-degenerate Landau level spectrum of graphene [107],

E−n = (~vσ/lm)
√

2n, E+
n = E−n+1. (5.35)
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Another special case of interest is µ = 0, vσ = vτ ≡ v0, when the two
modes of Dirac fermions have velocities vσ ± vτ equal to 0 and 2v0. From
Eq. (5.34) we find the Landau level spectrum

E−n = 0, E+
n = 2(~v0/lm)

√
2n+ 1. (5.36)

The mode with zero velocity remains B-independent, while the mode with
velocity 2v0 produces a sequence of Landau levels with a 1/2 offset in the
n-dependence.

5.7.2 Calculation of the low-energy Hamiltonian to all or-
ders in the Kek-Y bond modulation

Figure 5.5. Velocities v1 = vσ+vτ and v2 = vσ−vτ of the two gapless modes in
the Kek-Y superlattice, as a function of the bond modulation amplitude ∆0 for
two values of the modulation phase φ. The φ-dependence modulo 2π/3 appears
to second order in ∆0. The curves are calculated from Eq. (5.43). Note that
positive and negative values of v1, v2 are equivalent.

We seek to reduce the six-band Hamiltonian (5.9) to an effective 4× 4
Hamiltonian that describes the low-energy spectrum near k = 0. For
∆0 � 1 we can simply project onto the 2 × 2 lower-right subblock of
Eν , which for the |ν| = 1 Kek-Y bond modulation vanishes linearly in k.
This subblock is coupled to the ε0 band near E = 3t0 by matrix elements
of order ∆0, so virtual transitions to this higher band contribute to the
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Figure 5.6. Kek-Y superlattice with a complex bond amplitude ∆ = eiφ∆0,
according to Eq. (5.4) with ν = 1. The three colors of the bonds refer to three
different bond strengths, adding up to 3t0. For φ = 0 two of the bond strengths
are equal to t0(1−∆0) and the third equals t0(1 + 2∆0). This is the case shown
in Fig. 5.1. For φ = π/6 the bond strengths are equidistant: t0(1 −∆0

√
3), t0,

and t0(1 + ∆0
√

3). The value of ∆0 where a bond strength vanishes shows up in
Fig. 5.5 as a point of vanishing velocity.

low-energy spectrum in order ∆2
0. We will now show how to include these

effects to all order in ∆0.

One complication when we go beyond the small-∆0 regime is that
the phase φ of the modulation amplitude can no longer be removed by
a unitary transformation. As we will see, the low-energy Hamiltonian
depends on φ modulo 2π/3 — so we don’t need to distinguish between
the phase of ∆̃ = e2πi(p+q)/3∆ and the phase of ∆. The choice between
ν = ±1 still does not matter, the two Kek-Y modulations being related
by a mirror symmetry. For definiteness we take ν = +1.
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We define the unitary matrix

V =
(

Φ 0
0 Φ

)(
V 0
0 11

)
, Φ =

1 0 0
0 e−iφ 0
0 0 eiφ

 , (5.37a)

V = 1
2D0

 2 −2∆0 −2∆0
2∆0 1 +D0 1−D0
2∆0 1−D0 1 +D0

 , (5.37b)

with D0 =
√

1 + 2∆2
0 and evaluate

V †
(

0 E1
E†1 0

)
V =

(
0 Ẽ1
Ẽ†1 0

)
, (5.38a)

Ẽ1 = V†E1 =

D0ε0 ρ∗0ε−1 ρ0ε1
0 ρ+ε−1 ρ∗−ε1
0 ρ−ε−1 ρ∗+ε1

 , (5.38b)

ρ± = 1
2D0

[
1− 2∆2

0 ±D0 + e−3iφ∆0(1∓D0)
]
, (5.38c)

ρ0 = ∆0
D0

(2 + e3iφ∆0). (5.38d)

The matrix elements that couple the lower-right 2 × 2 subblock of Ẽ1 to
ε0 are now of order k, so the effect on the low-energy spectrum is of order
k2 and can be neglected — to all orders in ∆0.

The resulting effective low-energy Hamiltonian has the 4 × 4 form
(5.11), with h1 replaced by

h1 =
(
ρ+ε−1 ρ∗−ε1
ρ−ε−1 ρ∗+ε1

)
. (5.39)

The phases of ρ± = |ρ±|eiθ± can be eliminated by one more unitary trans-
formation, with the 4× 4 diagonal matrix

Θ = diag (eiθ− , eiθ+ , eiθ++iθ− , 1), (5.40)

which results in

Θ†
(

0 h1
h̃†1 0

)
Θ =

(
0 h̃1
h̃†1 0

)
, h̃1 =

(
|ρ+|ε−1 |ρ−|ε1
|ρ−|ε−1 |ρ+|ε1

)
. (5.41)



90 Chapter 5. Valley-momentum locking in a graphene superlattice

Finally, we arrive at the effective Hamiltonian (5.16), with renormal-
ized velocities:

H = vσ (p · σ)⊗ τ0 + vτ σ0 ⊗ (p · τ ), vσ = |ρ+|v0, vτ = |ρ−|v0, (5.42)

|ρ±|2 = 1
2D2

0

(
1 + 3∆4

0 ±D0(1− 3∆2
0) + 2∆3

0(±D0 − 2) cos 3φ
)
. (5.43)

To third order in ∆0 we have

vσ/v0 = 1− 3
2∆2

0 − 1
2∆3

0 cos 3φ,
vτ/v0 = ∆0 − 3

2∆2
0 cos 3φ+ 1

16∆3
0(1− 9 cos 6φ) +O(∆4

0).
(5.44)

For real ∆, when φ = 0 and ρ± is real, Eq. (5.43) simplifies to

ρ± = 1
2(1−∆0)

 1 + 2∆0√
1 + 2∆2

0

± 1

 . (5.45)

The velocities of the two Dirac modes are then given by

v1 = vσ + vτ = v0
(1−∆0)(1 + 2∆0)√

1 + 2∆2
0

v2 = vσ − vτ = v0(1−∆0).
(5.46)

More generally, for complex ∆ = ∆0e
iφ both v1 and v2 become φ-dependent

to second order in ∆0, see Fig. 5.5.
Note that the asymmetry in ±∆0 vanishes for φ = π/6. For this phase

the superlattice has three different bond strengths (see Fig. 5.6) that are
symmetrically arranged around the unperturbed value t0.


