
Lattice models for Josephson junctions and graphene superlattices
Ostroukh, V.

Citation
Ostroukh, V. (2018, June 27). Lattice models for Josephson junctions and graphene
superlattices. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/63217
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/63217
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/63217


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/63217 holds various files of this Leiden University 
dissertation. 
 
Author: Ostroukh, V. 
Title: Lattice models for Josephson junctions and graphene superlattices 
Issue Date: 2018-06-27 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/63217
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 4

Two-dimensional Josephson
vortex lattice and
anomalously slow decay of
the Fraunhofer oscillations
in a ballistic SNS junction
with a warped Fermi surface

4.1 Introduction

A junction between two superconductors responds to an imposed magnetic
flux Φ by producing a chain of circulating current vortices, known as
Josephson vortices [9]. The critical current Ic(Φ) oscillates with period
Φ0 = h/2e and amplitude ∝ Φ0/Φ. These socalled Fraunhofer oscillations
are a macroscopic quantum interference effect, first observed in 1963 in a
tunnel junction [74]. The effect is now used as a sensitive probe of ballistic
transport and edge currents in graphene and topological insulators [19, 32,
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63, 67, 75, 76].
Since the self-field of the current vortices is typically too weak to

screen the imposed magnetic field B from the junction area, the arrange-
ment of Josephson vortices is governed by quantum interference — un-
affected by the classical electrostatics that governs the two-dimensional
(2D) Abrikosov vortex lattice in the bulk superconductor [9]. The funda-
mental question addressed here, is whether quantum interference by itself
is capable of producing a 2D vortex lattice in a Josephson junction. It is
known that the linear arrangement of the vortices along the superconduct-
ing interface is modified by insulating boundaries [41–43, 77], in a junction
of lateral width W comparable to the separation L of the interfaces. But
in wide junctions (W � L), when boundary effects are irrelevant, only
linear arrangements of Josephson vortices are known [25, 78–81].

We have discovered that a 2D Josephson vortex lattice appears when
the circular Fermi surface acquires a square or hexagonal distortion. Such
a warped Fermi surface has flattened facets that produce a nonisotropic
velocity distribution of the conduction electrons, peaked at velocity di-
rections normal to the facets. Analytical and numerical calculations of
the supercurrent distribution in the high-field regime (magnetic length
lm =

√
~/eB less than L) reveal the appearance of multiple rows of vortex-

antivortex pairs, forming a 2D bipartite rectangular lattice in the normal
region with lattice constant

avortex = WΦ0
Φ = πl2m

L
. (4.1)

As shown in Fig. 4.1 (resulting from a numerical simulation discussed
in Sec. 4.7), in the weak-field regime lm & L there is only a single row of
W/avortex vortex-antivortex pairs. However, when lm drops well below L
multiple rows of vortex-antivortex pairs appear. The appearance of this
2D vortex lattice is associated with a crossover from a 1/B to a 1/

√
B

decay of the amplitude of the Fraunhofer oscillations. In contrast, for a
circular Fermi surface the amplitude crosses over to an accelerated 1/B2

decay when lm < L [69].
The outline of this chapter is as follows. In Secs. 4.2 and 4.3 we

formulate the problem of magnetic interference in a ballistic Josephson
junction and present the semiclassical analytical solution for the current
distribution. The resulting vortex lattice is described in Sec. 4.4, far from
the lateral boundaries. As shown in Sec. 4.5, within a magnetic length
lm from the boundaries there is a lattice reconstruction that produces
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Figure 4.1. Supercurrent density in an SNS (superconductor–normal-metal–
superconductor) Josephson junction, resulting from the numerical simulation of
Sec. 4.7 on a square lattice with a half-filled band and a square Fermi surface
(lattice constant a0, normal region of size W = 10L = 300 a0, band width 2E0,
Fermi velocity vF ≡ E0a0/

√
2~, resulting in N = 282 transverse modes per

spin direction at the Fermi level, superconducting gap ∆ = 2.5 · 10−3 E0 ⇒ ξ ≡
~vF/∆ = 283 a0, zero phase difference). The two panels are for a weak and strong
perpendicular magnetic field, both at a low temperature kBT/∆ = 10−2 in the
short-junction regime L/ξ = 0.1. The cyclotron radius lcycl remains large com-
pared to L also for the strongest fields considered, lcycl/L = (W/a0)(Φ0/Φ) & 10.
A bipartite square lattice of vortex-antivortex pairs in the normal region (lattice
constant avortex = πl2m/L) forms in the lower panel. Notice the edge recon-
struction of the vortex lattice, producing an edge channel of width ' lm large
compared to avortex. This edge channel results purely from magnetic interference,
it is unrelated to the skipping orbits along the edge that would form in higher
fields (when lcycl < L).

an edge channel purely as a result of quantum interference, at magnetic
fields that are still so weak that the curvature of the trajectories due
to the Lorentz force can be neglected. Because of the edge channel the
amplitude of the Fraunhofer oscillations decays as lm/W ∝ B−1/2 rather
than as l2m/LW ∝ B−1, see Sec. 4.6. In Sec. 4.7 we test the semiclassics
with a fully quantum mechanical solution of a tight-binding model. This
numerical simulation also allows us to assess the sensitivity of the results
against the effects of disorder and nonideal NS interfaces. We conclude in
Sec. 4.8.
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Figure 4.2. Josephson junction formed by a normal metal (width W , length L)
connecting two superconductors at a phase difference φ = φ1−φ2. A perpendic-
ular magnetic field B is applied to the normal region. Electron trajectories used
in the semiclassical calculation of the supercurrent density are indicated.

4.2 Description of the problem

We consider a two-dimensional (2D) normal metal (N) layer in the x–y
plane, covered by two superconducting electrodes (S1 and S2) a distance
L apart (see Fig. 4.2). The proximity effect induces an excitation gap
∆ in the S-region |x| < W/2, |y| > L/2, producing a discrete excitation
spectrum in the N-region |x| < W/2, |y| < L/2.

We work in the short-junction regime L � ξ, with ξ = ~vF/∆ the
superconducting coherence length induced by the proximity effect. (The
short-junction regime is chosen for simplicity, we do not expect our qual-
itative findings to change when L becomes longer than ξ.) The lateral
width W of the junction is � L, it may be comparable to ξ. The gap ∆0
in the bulk superconductors is assumed to be much larger than ∆, with a
bulk coherence length ξ0 much smaller than ξ.

A perpendicular magnetic field B (magnetic length lm =
√
~/eB) pro-

duces oscillations in the critical current of the Josephson junction (Fraun-
hofer oscillations), periodic with period Φ0 = h/2e in the enclosed flux
Φ = BWL. We assume that the magnetic field is screened from the S-
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region by a short screening length in the bulk superconductors, even in
the high-field regime lm . L.

In the analytical calculation we take the semiclassical limit kFL � 1,
in which bound states in the junction can be associated with classical
trajectories. The junction is ballistic (no impurity scattering), so the
trajectories are arcs of cyclotron radius lcycl = ~kF/eB. We assume that
kFL is sufficiently large that the ratio lcycl/L = kFL × (lm/L)2 remains
� 1 for the largest fields considered, so we neglect the curvature of the
trajectories in the analytical calculation (but not in the numerics). In
particular, skipping orbits along the edge play no role in our analysis.

The single-electron dispersion relation Ek has a nonisotropic depen-
dence on the 2D wave vector k = (kx, ky), resulting in a nonisotropic
distribution of the velocity vk = ~−1∂Ek/∂k over the Fermi surface. Our
analysis is general, but for a specific example we consider the warping of
the Fermi surface on a square lattice (unit lattice constant), with disper-
sion relation

Ek = E0 − 1
2E0(cos kx + cos ky).

⇒ vk = E0
2~ (sin kx, sin ky).

(4.2)

The Fermi surface is deformed from a circle to a square as we raise the
Fermi energy from the bottom of the band to the band center. For later
use we record the relation at the Fermi energy EF ∈ (0, E0) between kx
and the angle of incidence θ on the NS interface:

tan θ = vx
vy

= sin kx√
1− (cos kx + 2EF/E0 − 2)2 ,

− kF < kx < kF, kF = arccos (1− 2EF/E0).
(4.3)

4.3 Semiclassical calculation of the supercurrent
In semiclassical (WKB) approximation [82] a bound state at energy |ε| <
∆ corresponds to a periodic classical trajectory that traverses the junction,
accumulating a phase shift that is a multiple of 2π. We distinguish two
types of periodic trajectories, one in which an electron propagates from
superconductor S1 to S2, is Andreev reflected as a hole and retraces its
path to S1, and another in which a hole propagates from S1 to S2 and
retraces its path as an electron. The first path is indicated by σeh = +1,
the second path by σeh = −1.
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For a given periodic trajectory the total phase shift is given by
φtotal = −2 arccos (ε/∆) + σeh(φ− γ),

γ = 2e
~

∫ S2

S1
A · dl.

(4.4)

The ε-dependent term, which has the same sign for σeh = ±1, is the phase
shift accumulated over a penetration depth in the superconductor (in the
Andreev approximation [83] ∆ � EF). The σeh-dependent terms consist
of the contribution from the pair potential in S1, S2 (phase difference φ =
φ1−φ2) and the phase shift γ accumulated in the N-region from the vector
potential A = (0, Bx, 0).

In the short-junction regime L � ξ we may neglect the phase shift
in N arising from the energy difference 2ε of electron and hole1. For
0 < φ − γ < π the (spin degenerate) bound state corresponding to this
periodic trajectory is at energy σehε with

ε = ∆ cos(φ/2− γ/2). (4.5)

A tube of width of the order of the Fermi wave length, extending
along the trajectory that passes through the point (x0, y0) at an angle θ
with the y-axis, can be thought of as a single-mode wave guide connecting
the two superconductors. In thermal equilibrium at temperature T the
single-mode supercurrent is given by [84]

δI(x0, y0, θ) = − tanh
(

ε

2kBT

) 2e
~
dε

dφ

= e∆
~

sin(φ/2− γ/2) tanh
(∆ cos(φ/2− γ/2)

2kBT

)
, (4.6)

including a factor of two from the spin degeneracy. The trajectory depen-
dence enters via the phase shift γ ≡ γ(x0, y0, θ). Notice that, notwith-
standing the appearance of the half-phases φ/2, the supercurrent is 2π-
periodic in φ — as it should be.

The total supercurrent I through the Josephson junction follows upon
integration of Eq. (4.6) over the phase space of the propagating modes at
the Fermi level, with measure dx0dkx/2π:

I =
∫
dkx
2π

∫
dx0 δI(x0, y0, θk). (4.7)

1 At grazing incidence angles |θ| → π/2 the short-junction criterion is more stringent
than L � ξ, we require L � ξ cos θ. In the analytics we ignore this complication, but
it is fully incorporated in the numerics.
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There is no dependence of I on y0 because of current conservation.
In zero magnetic field B = 0⇒ γ = 0 the dependence of δI on x0, y0, θ

disappears, so we recover the familiar expression [85]

I0 = kFW
e∆
π~

sin(φ/2) tanh
(∆ cos(φ/2)

2kBT

)
(4.8)

for the supercurrent in a ballistic Josephson junction. The zero-temperature
critical current, reached at φ = π − 0+, is

Ic,0 = kFW
e∆
π~

. (4.9)

We also require the spatial distribution of the supercurrent density. To
avoid notational complexity we assume that there is a one-to-one relation
between kx ∈ (−kF, kF) and θk ∈ (−π/2, π/2). This applies to a warping
of the Fermi circle that keeps it singly-connected and convex. For a circular
Fermi surface the measure dkx 7→ kF cos θ dθ. Upon warping we have
instead

dkx
2π 7→

kF
2πρ(θ) cos θ dθ, (4.10)

with a nonuniform angular profile ρ(θ). The current density can then be
written as (

jx
jy

)
= kF

2π

∫ π/2

−π/2
dθ ρ(θ)

(
sin θ
cos θ

)
δI(x0, y0, θ), (4.11)

with (sin θ, cos θ) a unit vector in the direction of motion (note that θ is
the angle with the y-axis, see Fig. 4.2). This is an intuitive expression,
but for the calculations it is more convenient to return to kx as integration
variable,

jx(x0, y0) =
∫
dkx
2π δI(x0, y0, θk) tan θk,

jy(x0, y0) =
∫
dkx
2π δI(x0, y0, θk).

(4.12)

4.4 Supercurrent vortex lattice

To demonstrate the emergence of a supercurrent vortex lattice we calculate
the current density at a point (x0, y0) in the normal region, in the limit
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Figure 4.3. The six color scale plots show the supercurrent density in a wide
Josephson junction, far from the lateral boundaries, for two values of the magnetic
field (first and second row of panels at lm/L = 0.8 and 0.32, respectively) and for
three values of the Fermi energy (labeled a, b, c and corresponding to the square-
lattice Fermi surfaces at EF/E0 = 0.2, 0.8, and 0.99, respectively). The plots are
calculated from Eqs. (4.3), (4.12), (4.13), at temperature kBT = ∆. The bottom
right panel shows the bipartite vortex lattice (vortices and antivortices indicated
by red and blue dots, lattice constant avortex = πl2m/L = 0.32L at lm/L = 0.32)
that develops for lm . L in a square-warped Fermi surface.

W → ∞ that boundary effects can be ignored. (These are considered in
the next section.) At a given angle θ with the y-axis (see Fig. 4.2), the
phase shift γ in Eq. (4.4) equals

γ = 2L
l2m

(x0 − y0 tan θ). (4.13)

The resulting current density follows from Eq. (4.12) upon integration,
once we have specified the relation between kx and θ. To be definite we
take a square lattice dispersion, where tan θ is given as a function of kx
by Eq. (4.3). Results are shown in Fig. 4.3.

If the angular distribution ρ(θ) on the Fermi surface is peaked at an-
gles ±θ0, the phase shift (4.13) produces a bipartite rectangular lattice
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Figure 4.4. Same as Fig. 4.3c for lm/L = 0.32, at a much lower temperature of
kBT = 0.05 ∆. The vortex and antivortex sublattices (red and blue dots) are no
longer equivalent.

of vortex-antivortex pairs. (Notice that the superconducting phase differ-
ence φ simply shifts the lattice in the x-direction.) The lattice constants
are a‖ = avortex parallel to the NS interfaces and a⊥ = avortex/ tan θ0 in
the perpendicular direction, with avortex given by Eq. (4.1).

In the square lattice the Fermi surface has a square warping near the
center of the band, and if the NS interfaces are oriented along a principal
axis one has tan θ0 = 1, so the vortex-antivortex lattice is a square lattice
with lattice constant avortex in both directions, see panels (c) in Fig. 4.3.
The two-dimensional lattice disappears — leaving only a single row of
vortices — if we move away from band center, see panels (a), as the angular
distribution ρ(θ) broadens around normal incidence. Since a⊥ → ∞ for
θ → 0 this broadening of ρ(θ) produces a broad range of perpendicular
lattice constants, which smear out the structure of the vortex lattice in
the direction perpendicular to the NS interface. Only the θ-independent
structure parallel to the NS interfaces remains.

At the elevated temperatures kBT & ∆ of Fig. 4.3 the vortices and
antivortices are equivalent, but at lower temperatures this symmetry be-
tween the two sublattices is broken, see Fig. 4.4. Counterclockwise vortices
and clockwise antivortices are centered at points where φ − γ equals, re-
spectively, π or 0, modulo 2π. At elevated temperatures the current-phase
relationship (4.6) is nearly sinusoidal, with the same slope at φ = 0, π (up
to a sign difference). At low temperatures the slope at φ = 0 is not much
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affected, so the antivortices retain their circular shape, but the vortices at
φ = π see a much larger slope and contract in a square-like shape around
the lattice points.

4.5 Edge reconstruction of the vortex lattice
The vortex lattice is modified if we approach the lateral boundaries at
x = ±W/2. We still assume W � L, so we can treat the boundaries
separately. At each boundary we impose a hard-wall confinement with
specular reflection (see Fig. 4.2).

A trajectory from superconductor S1 to S2 that passes through the
point (x0, y0) at an angle θ with the y-axis is affected by the boundary at
x = W/2 if x0 is in the interval

1
2W −

1
2L| tan θ|+ y0 tan θ < x0 <

1
2W. (4.14)

In this interval the boundary reflection replaces the expression (4.13) for
the phase shift γ by

γ = β − 1
2l2m| tan θ|(W − 2x0 + 2y0 tan θ)2, (4.15a)

β = LW

l2m

(
1− L| tan θ|

2W

)
, (4.15b)

see App. 4.9.1. The corresponding expression for the boundary at x =
−W/2 follows from the symmetry relation

γ(x0, y0, θ) = −γ(−x0, y0,−θ). (4.16)

The resulting supercurrent distribution near the boundary is shown
in Fig. 4.5. For lm . L an edge channel appears when the Fermi sur-
face is strongly warped, see panel (c), becoming less pronounced as the
Fermi surface becomes more and more circular, see panels (b) and (a).
The streamlines in the edge channel inherit their periodicity from the vor-
tex lattice, but the width wedge ' lm of the edge channel is larger than
avortex ' l2m/L. The net current flowing along the edge channel is sensitive
to the phase difference φ between superconductors S1 and S2, see Fig. 4.6.

To understand this edge reconstruction of the vortex lattice, we note
that because the phase shift γ now depends quadratically rather than
linearly on x0, there is a point of stationary phase: ∂γ/∂x0 = 0 at x0 =
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Figure 4.5. Effect of a hard-wall lateral boundary on the supercurrent vortex
lattice. The panels a,b,c correspond to the three labeled Fermi surfaces in Fig. 4.3,
with the same color scale; the other parameters are lm/L = 0.32, W/L = 10.16,
φ1 − φ2 ≡ φ = π/2, and kBT = ∆.

y0 tan θ + W/2. For a warped Fermi surface with ρ(θ) peaked at ±θ0 an
edge channel extends along the lines of stationary phase, of width

wedge ≡ 2
∣∣∣∂2γ/∂x2

0

∣∣∣−1/2
= lm

√
tan θ0. (4.17)

The edge channel carries a net current from S1 to S2 that depends on the
parameter β and the superconductor phase difference φ: the edge current
is minimal for φ−β = 0 and maximal for φ−β = π/2, modulo π. (In Fig.
4.6 we have β ≈ 0 mod π, so minimal and maximal current corresponds
to φ = 0 and π/2, respectively.) As we will show in the next section, this
edge current produces a critical current of order (wedge/W )Ic,0, with the
anomalously slow decay ∝ 1/

√
B.

4.6 High-field decay of the Fraunhofer oscilla-
tions

To obtain the critical current Ic = maxφ I(φ) of the Josephson junction, we
first need to calculate at a given phase difference φ the total supercurrent
I(φ) by integrating jy(x0, y0) over x0 from −W/2 toW/2. From Eq. (4.11)
we thus have

I = kF
2π

∫ π/2

−π/2
ρ(θ) cos θ dθ

∫ W/2

−W/2
dx0 δI(x0, y0, θ). (4.18)

Analytical progress is simplest in the high-temperature regime kBT &
∆, when the φ-dependence of δI from Eq. (4.6) becomes approximately
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Figure 4.6. Streamlines corresponding to the vortex lattice in panel (c) of Fig.
4.5, for two values of the superconducting phase difference φ = φ1−φ2 (all other
parameters are kept the same). The left and right panels correspond, respectively,
to minimal and maximal current flowing along the edge channel.

sinusoidal,

δI ≈ e∆2

4~kBT
sin(φ− γ), γ = 2e

~

∫ S2

S1
A · dl. (4.19)

We assume that the velocity distribution on the Fermi surface is symmetric
around normal incidence, ρ(θ) = ρ(−θ). Because of Eq. (4.16) we may
then restrict the θ-integration in Eq. (4.18) to positive angles,

I = e∆2kF
8π~kBT

∫ π/2

0
ρ(θ) cos θ dθ

∫ W/2

−W/2
dx0

× [sin(φ− γ) + sin(φ+ γ)]. (4.20)

We thus find that the integrated supercurrent retains a sinusoidal φ-
dependence, with critical current

Ic = Ic,0

∣∣∣∣∣
∫ π/2

0
ρ(θ) cos θ dθ

∫ W/2

−W/2

dx0
W

cos γ
∣∣∣∣∣ ,

Ic,0 = e∆2kFW

4π~kBT
.

(4.21)
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In the interval 0 < θ < arctan (W/L) there is at most one boundary
collision. We restrict ourselves to this interval, because the contributions
to Ic near grazing incidence are anyway suppressed exponentially at finite
temperature. (All contributions are included in the numerics.) Fixing the
arbitrary y-coordinate at y0 = −L/2, we have from Eqs. (4.13) and (4.15)
the expression for γ that we need:

γ = 2L
l2m

(x0 + 1
2L tan θ) if x0 + L tan θ < W/2, (4.22a)

γ = β − (W − 2x0 − L tan θ)2

2l2m tan θ if x0 + L tan θ > W/2, (4.22b)

with β defined in Eq. (4.15b).
The integral over x0 in Eq. (4.21) can be carried out analytically:

Ic = Ic,0

∣∣∣∣∣
∫ π/2

0
ρ(θ)Γ(θ) cos θ dθ

∣∣∣∣∣ , (4.23)

Γ(θ) ≡
∫ W/2

−W/2

dx0
W

cos γ = l2m
LW

sin β′ (4.24)

+ (lm/W )
√
π tan θ[FC(α) cosβ + FS(α) sin β],

α = L
√

tan θ
lm
√
π
, β′ = LW

l2m

(
1− L

W
tan θ

)
. (4.25)

The functions FC and FS are the Fresnel cosine and sine integrals,

FC(α) =
∫ α

0
cos(π2 t

2) dt, FS(α) =
∫ α

0
sin(π2 t

2) dt. (4.26)

Both FC(α) and FS(α) tend to 1/2 for α→∞.
If the angular distribution ρ(θ) is sharply peaked around ±θ0, we ob-

tain from Eqs. (4.23) and (4.24) the high-field (lm � L) critical current

Ic(high-field) = Ic,0
wedge
W

√
π/2

∣∣∣∣sin(π4 + LWeff
l2m

)∣∣∣∣ , (4.27)

with effective junction widthWeff = W− 1
2L tan θ0 and edge channel width

wedge = lm
√

tan θ0. Comparing with the low-field (lm � L) Fraunhofer
oscillations,

Ic(low-field) = Ic,0
l2m
LW

∣∣∣sin(LW/l2m)
∣∣∣ , (4.28)
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Figure 4.7. Log-log plot of the critical current Ic versus the flux Φ through
the normal region (aspect ratio W/L = 10.16), calculated from Eq. (4.23) for a
circular Fermi surface (ρ(θ) = 1, red curve decaying ∝ 1/Φ2), and for a square
Fermi surface (ρ(θ) = δ(θ − π/4), blue curve decaying ∝ 1/

√
Φ). The low-field

Fraunhofer oscillations (4.28) are included for comparison (grey curve decaying
∝ 1/Φ).

we note three differences: the amplitude decays more slowly, ∝ 1/
√
B

instead of ∝ 1/B; the flux periodicity is larger by a factor W/Weff ; and
the maxima are phase shifted by 1/4 flux quantum. This qualitatively
different behavior is illustrated in Fig. 4.7, compare blue and grey curves.

At the other extreme of an isotropic angular distribution, for a circular
Fermi surface, we obtain the opposite effect: instead of a slower decay of
the high-field Fraunhofer oscillations the decay is faster, ∝ 1/B2 instead of
∝ 1/B, compare red and blue curves.2 This accelerated decay is a known
result [69]. What we have found here is that the switch from a circular to
a square Fermi surface slows down the decay by a fourth root, from B−2

to B−1/2.

2 The 1/B2 decay of the critical current for a circular Fermi surface follows upon
numerical integration of Eq. (4.23) with ρ(θ) = 1, see Fig. 4.7. Unlike the 1/

√
B decay

for a square Fermi surface, we have not managed to derive the 1/B2 decay analytically.
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4.7 Numerical simulations
To test the analytical semiclassical theory we have performed numerical
simulations of a tight-binding model. We start from the Bogoliubov-De
Gennes Hamiltonian,

H(k) =
(
E(k − eA)− EF ∆

∆∗ EF − E(k + eA)

)
, (4.29)

with the single-particle dispersion E(k) on a square lattice given by Eq.
(4.2). The pair potential ∆ and vector potential A are chosen as in Fig.
4.2, with ∆ = 0 for |y| < L/2 (no pairing interaction in the normal region)
and A = 0 for |y| > L/2 (complete screening of the magnetic field from
the superconductor). The self-field of the currents in the normal region
is neglected, so A is entirely due to the externally imposed field B. The
orbital effect of the magnetic field is fully included, but we neglect the
coupling to the electron spin3 and can therefore omit the spin degree of
freedom from the Hamiltonian.

The 2 × 2 matrix Green’s function G(ε) = (ε − H)−1 is calculated
at imaginary energy ε = iω using the Kwant toolbox for tight-binding
models [16]. The expectation value of the current density in thermal
equilibrium,

j(r) = 2e
~
kBT Re

∞∑
p=0

Tr 〈r|G(iωp)|r〉〈r|
∂H

∂k
|r〉, (4.30)

is then obtained from a (rapidly convering) sum over Matsubara frequen-
cies ωp = (2p+ 1)πkBT [73]. (See Ref. [87] for an alternative approach.)

The time-consuming step in this calculation is the calculation of the
inverse operator (iω − H)−1, but once this is done for one value of the
superconducting phase difference φ, we can use Dyson’s equation to obtain
the result for other values of φ without further inversions.

Results for the vortex lattice in the case of a nearly square Fermi
surface (EF/E0 = 0.99) are shown in Figs. 4.1 and 4.8. The agreement
with the semiclassical result is not fully quantitative, see Fig. 4.9, but all

3 As explained in [86], the influence of the Zeeman energy on the Josephson effect
is quantified by the phase shift θ = gµBBL/~vF = 1

2gL/lcycl. In the magnetic field
regime where the cyclotron radius lcycl = mvF/eB is large compared to the separation
L of the NS interfaces (which is the regime of interest here), the condition θ � 1 is
ensured provided the g-factor is not much larger than unity.
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Figure 4.8. (a): Same as Fig. 4.1, zoomed in at the right boundary. (b): At a
higher temperature the vortices and antivortices are approximately equivalent.

the qualitative features of the vortex lattice coming out of the analytics
are well reproduced in the numerics. Also the 1/

√
B decay is recovered in

the simulation, see Fig. 4.10.
In both the analytics and numerics so far we took a ballistic Joseph-

son junction, without any disorder in the normal region, and ideal (fully
transparent) NS interfaces. The numerical simulation provides a way to
test for the effects of impurity scattering and nonideal interfaces. Disorder
was modeled by adding a random component δU to the on-site electro-
static potential, drawn uniformly from the interval [−U0, U0]. For the
tunnel barrier we reduced the hopping amplitude at the two NS inter-
faces. As shown in Fig. 4.11, the slow 1/

√
B decay persists even if the

critical current is reduced substantially by the tunnel barrier. Disorder
provides a stronger perturbation, in the form of random sample-specific
fluctuations [69], but averaged over series of peaks the slow decay persists.

4.8 Discussion

Two-dimensional vortex lattices are well established for Abrikosov vortices
in a bulk superconductor [9], but Josephson vortices in an SNS junction
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Figure 4.9. Current density profile along a cut through x = 0, for the same
parameters as Fig. 4.1. Since jy = 0 along this cut, the plotted jx is the full cur-
rent density. The red and blue dots identify the center of a vortex or antivortex,
which are distinct at this low temperature of kBT = 0.01 ∆. The solid curves are
the results of the numerical simulation, the dashed curves are the semiclassical
result (4.12) in the short-junction regime.

were only known to arrange as a one-dimensional chain [25, 78, 80]. Our
key conceptual finding is that the 2D arrangement is hidden by angular
averaging over the Fermi surface. For a distribution of angles of incidence
peaked at ±θ, resulting from a strong square or hexagonal warping of
the Fermi surface, a 2D lattice develops when the magnetic length lm =√
~/eB drops below the separation L of the NS interfaces. The lattice is

bipartite, with a vortex and antivortex in a rectangular unit cell of size
πl2m/L parallel to the interface and πl2m/(L tan θ) perpendicular to the
interface. For a circular Fermi surface the 2D lattice degrades to a 1D
chain.

It would be interesting to search for this 2D Josephson vortex lattice
in some of the quasi-two-dimensional systems that are known to have a
warped Fermi surface, such as the hexagonal warping on the surface of a
three-dimensional topological insulator [88]. By way of illustration, Fig.
4.12 shows the vortex lattice calculated for the [111] surface dispersion of
Bi2Te3 [89],

Ek = E0
√
λ2k2

x + λ2k2
y + λ6(k3

x − 3kxky2)2, (4.31)

with the x-axis (the NS interface) oriented along the ΓK direction in the
Brillouin zone.

The vortices could be detected directly by a scanning tunneling probe [90–
92], or indirectly through the flux Φ-dependent Fraunhofer oscillations [93,
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Figure 4.10. Plot of the critical current Ic versus the flux Φ through the normal
region, resulting from the numerical simulation with the parameters of Figs. 4.1
and 4.8. The minima of the Fraunhofer oscillations no longer go to zero at low
temperatures (blue curves), because of the skewed current-phase relationship.
The upper panel shows a linear scale, the lower panel a log-log scale with the
Φ−1/2 decay indicated (black dashed line). (The 1/Φ decay of the conventional
Fraunhofer oscillations is also included for comparison.)

94] — we have found that the transition from a 1D to a 2D arrangement
of vortices is accompanied by a slow-down of the decay of the oscillation
amplitude from 1/Φ to 1/

√
Φ. While in the main text we have focused

on the current distribution, we note that a 2D lattice structure with the
same periodicity appears also in the superconducting pair potential (see
App. 4.9.2) and in the local density of states (see App. 4.9.3).

A particularly intriguing feature of the vortex lattice is the reconstruc-
tion at the edge, resulting in an edge channel of width ' lm parametrically
larger than the lattice constant. It is this edge channel that effectively
carries the supercurrent when lm . L, resulting in the decay scaling as
lm/W ∝ 1/

√
B. Notice that the edge channel appears entirely as a result

of quantum interference — in contrast to the quantum Hall edge channel
any orbital effects of the magnetic field play no role here.



4.9 Appendix 67

Figure 4.11. Effect on the Fraunhofer oscillations of a tunnel barrier at the
NS interfaces (panel a) or of disorder in the normal region (panel b). The data
results from the numerical simulation with the parameters of Fig. 4.8b. The
disorder strength or tunnel barrier height is quantified by the reduction of the
normal state conductance G. The topmost (red) curve corresponds to the ideal
case without disorder or tunnel barrier.

4.9 Appendix

4.9.1 Calculation of the Aharonov-Bohm phase shift

We calculate the Aharonov-Bohm phase shift

γ = 2e
~

∫ S2

S1
A · dl (4.32)

accumulated along a trajectory across the Josephson junction, from su-
perconductor S1 at y = −L/2 to S2 at y = +L/2, including the effects of
multiple specular reflections at the side walls x = ±W/2. The geometry
is shown in Fig. 4.2. Assume that the trajectory starts at t = 0 from
the point x = x(0), y = −L/2 at the lower NS interface, at an angle
θ(0) ∈ (−π/2, π/2) with the positive y-axis. The opposite NS interface at
y = L/2 is reached at the time tL = L/vy, with vy = vF cos θ(0) the veloc-
ity component in the y-direction (which does not change at a boundary
reflection).

In the gauge A = (0, Bx, 0) the line integral takes the form

γ = 2vy
l2m

∫ tL

0
x(t)dt. (4.33)
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Figure 4.12. Vortex lattice for a Fermi surface having the hexagonal warping
of the Bi2Te3 dispersion relation (4.31) (parameters λ ≈ 1 nm, E0 ≈ 260 meV,
EF = 6−3/4√7E0, kF = 6−1/4λ−1, other parameters and color scale as in Fig.
4.4). The difference with square warping is that the lattice is rectangular rather
than square, with aspect ratio a⊥/a‖ = 1/ tan(π/6) =

√
3.

The time dependence of x(t) is given by

x(t) = (−1)νu(t) [u(t)− νu(t)W ],
u(t) = x(0) + vFt sin θ(0),

(4.34)

where we have defined νu ∈ Z as the integer nearest to u/W . The absolute
value of ν counts the number of boundary reflections up to time t. At time
tL = L/[vF cos θ(0)] we have

x(tL) = (−1)νL [x(0) + L tan θ(0)− νLW ], (4.35)

where νL ≡ νu(tL) is the integer nearest to [x(0) + L tan θ(0)]/W .
Integration of Eq. (4.33) results in

γ = 1
l2m tan θ(0)

(
1
4W

2 − x2(0) + (−1)νL
[
x2(tL)− 1

4W
2]). (4.36)

This is sufficient to calculate the total current through the Josephson junc-
tion, by integrating the current density through the lower NS interface.

To obtain the current distribution within the junction, say at the point
(x0, y0), we need to find the corresponding coordinates (x(0),−L/2) of
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the trajectory at the lower NS interface. The angle θ at the point (x0, y0)
equals ±θ(0). The point (x0, y0) is reached at a time t0 = (y0 + L/2)/vy
after

ν0 = νx0−vFt0 sin θ = νx0−(y0+L/2) tan θ (4.37)
boundary reflections. Retracing back the trajectory, we find

x(0) = (−1)ν0 [x0 − (y0 + L/2) tan θ − ν0W ],
θ(0) = (−1)ν0θ.

(4.38)

This calculation of the Aharonov-Bohm phase γ holds for any number
of boundary collisions at x = ±W/2. In the main text we only need the
result for a single boundary collision at x = W/2. One readily checks that
Eq. (4.36) reduces to Eq. (4.15) upon substitution of νL = 1, ν0 = 0 for
tan θ > 0 or νL = 1, ν0 = 1 for tan θ < 0.

4.9.2 Two-dimensional lattice structure of the supercon-
ducting order parameter

The coherent superposition of electrons and holes in an Andreev level
produces a nonzero order parameter F (r) in the normal region, in the
absence of any pairing interaction [9]. In this appendix we show that the
amplitude |F | has a 2D lattice structure with the same periodicity as the
current vortex lattice studied in the main text.

An Andreev level in the SNS junction of Fig. 4.2, at the positive energy

ε = ∆ cos(ψ/2), ψ = φ1 − φ2 − γ ∈ (−π, π), (4.39)

has a wave function Ψ(r) that penetrates into the superconducting regions
|y| > L/2 over a distance

ξε = ~vy(∆2 − ε2)−1/2 = (~vy/∆)| sin(ψ/2)|−1. (4.40)

In the normal region |y| < L/2 the wave function has a constant ampli-
tude, given in WKB approximation by [82]

Ψ(r) =
(
u(r)
v(r)

)
= (2ξε)−1/2eik·r

(
eiη/2

e−iη/2

)
. (4.41)

The electron and hole components u, v differ in phase by

η = 1
2(φ1 + φ2 + γ)− 2e

~

∫ r

S1
A · dl, (4.42)
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in accord with the Andreev reflection boundary condition at the NS in-
terfaces [84],

η =
{
φ1 − σ arccos (ε/∆) at y = −L/2,
φ2 + σ arccos (ε/∆) at y = +L/2.

(4.43)

We have defined σ = signψ, so that arccos (ε/∆) = σψ/2 for ψ ∈ (−π, π).
The electron-hole mode (u, v) at energy ε contributes to the supercon-

ducting order parameter an amount [9]

δF (r) = tanh
(

ε

2kBT

)
u∗(r)v(r). (4.44)

Integration over the modes gives the full order parameter,

F (r) =
∫
dkx
2π δF (r)

= kF
2π

∫ π/2

−π/2
dθ ρ(θ) cos θ tanh

(
ε

2kBT

)
e−iη

2ξε
. (4.45)

This expression has the proper 2π-periodicity in the superconducting
phase, since η 7→ η + π and ε 7→ −ε if φ1 or φ2 is incremented by 2π.

We evaluate F (r) in a wide SNS junction, at a point r = (x0, y0) far
from the lateral boundaries. A mode passing through this point at an
angle θ relative to the y-axis has Aharonov-Bohm phase

2e
~

∫ r

S1
A · dl = (y0 + L/2)

l2m
[2x0 − (y0 + L/2) tan θ],

γ = 2e
~

∫ S2

S1
A · dl = 2L

l2m
(x0 − y0 tan θ), (4.46)

so that the phase shift (4.42) is given by

η = φ̄− 2x0y0
l2m

+
y2

0 + 1
4L

2

l2m
tan θ, φ̄ = 1

2(φ1 + φ2). (4.47)

For the warped Fermi surface of a square lattice (unit lattice constant,
see Sec. 4.2) we have

tan θ = sin kx
Ξ , vy = E0Ξ

2~ , (4.48)

ψ = φ1 − φ2 −
2L
l2m

(
x0 −

y0
Ξ sin kx

)
, (4.49)

Ξ =
√

1− (cos kx + 2EF/E0 − 2)2. (4.50)
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Figure 4.13. (a) Absolute value of the superconducting order parameter F (r),
calculated from Eq. (4.51). Current vortices and antivortices in Fig. 4.4 corre-
spond to local minima of |F |. (b) Local density of states ρδ at the Fermi level
(with a Lorentzian broadening δ), calculated from Eq. (4.54). Current vortices
and antivortices in Fig. 4.4 correspond to local maxima and minima of ρδ.

The order parameter then results from the integral

F (r) = ∆
2πE0

e−iφ̄ exp(2ix0y0/l
2
m)
∫ kF

−kF
dkx

1
Ξ |sin(ψ/2)|

× tanh
(∆ cos(ψ/2)

2kBT

)
exp

(
−
i(y2

0 + 1
4L

2)
l2mΞ sin kx

)
, (4.51)

with kF = arccos (1−2EF/E0). The resulting 2D lattice structure is shown
in Fig. 4.13(a), corresponding to the current vortex lattice of Fig. 4.4.

4.9.3 Two-dimensional lattice structure of the density of
states

To complete the picture, we also demonstrate the development of a 2D
lattice structure in the density of states. The states at ±ε contribute
|Ψ(r)|2[δ(E + ε) + δ(E − ε)] to the local density of states ρ(r, E). The
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total contribution is

ρ(r, E) =
∫
dkx
2π
(
|u(r)|2 + |v(r)|2

) ∑
σ=±

δ(E − σε)

=
∫
dkx
2π

∆
~vy
| sin(ψ/2)|

∑
σ=±

δ
(
E − σ∆ cos(ψ/2)

)
. (4.52)

We regularize the delta function by introducing a Lorentzian broaden-
ing δ,

ρδ(r, E) =
∫
dkx
2π

∆
~vy

∑
σ=±

(δ/π)| sin(ψ/2)|
δ2 +

(
E − σ∆ cos(ψ/2)

)2 . (4.53)

At the Fermi level, E = 0, we evaluate

ρδ(r, 0) = 2δ
π2E0∆

∫ kF

−kF
dkx

Ξ−1| sin(ψ/2)|
(δ/∆)2 + cos2(ψ/2) . (4.54)

The resulting 2D lattice is shown in Fig. 4.13(b).


