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Chapter 3

h/eh/eh/e superconducting
quantum interference
through trivial edge states
in InAs

3.1 Introduction

Topological systems are a hot topic in condensed matter physics [51]. This
is largely motivated by the existence of states at the interface between two
topologically distinct phases, for example helical edge states in a quan-
tum spin Hall insulator (QSHI) [52, 53]. Inducing superconductivity in
these edge states would form a topological superconductor [51]. Super-
conducting edge transport has already been found in materials that are
predicted to be QSHI [19, 32]. However, edge states can also have a non-
topological origin. Trivial edge conduction is found in InAs alongside the
chiral edge states in the QH regime [54] and recently in the proposed
QSHI InAs/GaSb as well [55, 56]. To be able to discriminate between
topological and trivial states it is crucial to study transport through triv-
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ial edges also and clarify differences and similarities between them. In
this work we study the superconducting transport through trivial edge
states in non-topological InAs Josephson junctions using superconducting
quantum interference (SQI) measurements. We find supercurrent carried
by these edge states and an intriguing h/e periodic signal in a supercon-
ducting quantum interference device (SQUID) geometry.

3.2 Description of the experiment
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Figure 3.1. (a) Sketch of the conduction band minimum around the edge of a
2DEG with Fermi level pinning at W/2. The band bending leads to a roughly
triangular quantum well in the vicinity of the edge, therefore one-dimensional
sub bands form of which three are drawn, as an example. The orange dashed
line indicates the Fermi level corresponding to the current distribution in (e).
(b) False coloured SEM image of the device with dimensions W = 4 µm and L
= 500 nm, where the quasi-four terminal measurement setup is added. Red is
the mesa, green the NbTiN contacts, blue SiNx dielectric and yellow the gold
top gate. (c) Schematic representation of a Josephson junction of width W and
length L. A homogeneously distributed supercurrent Isc is running through the
whole junction, resulting in (d) a Fraunhofer SQI pattern. (e) If supercurrent
only flows along the edges of the sample, (f) a SQUID pattern is observed.
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Trivial edge states arise when the Fermi level resides in the band gap in
the bulk, while being pinned in the conduction band at the surface. Then,
band bending leads to electron accumulation at that surface as schemati-
cally drawn in Fig. 1(a). The Fermi level pinning can have several origins:
truncating the Bloch functions in space [57, 58], a work function differ-
ence [59], the built-in electric field in a heterostack [60] and the surface
termination [61]. In our 2D InAs Josephson junctions the accumulation
surface is located at the edge of the mesa that is defined by wet etch-
ing. The quantum well is MBE grown on a GaSb substrate serving as a
global bottom gate. The superconducting electrodes are made of sputtered
NbTiN with a spacing of 500 nm and a width of 4 µm. A SiNx dielectric
separates the top gate from the heterostructure. Electrical quasi-four ter-
minal measurements [see Fig.1(b)] are performed in a dilution refrigerator
with an electron temperature of 60 mK unless stated otherwise.

The electron density in the InAs quantum well is altered by using the
electrostatic gates, Vtg and Vbg, located above and below the 2DEG. De-
creasing the density subsequently increases the normal state resistance Rn
and reduces the switching current Is as shown in Fig. 2(a). The Joseph-
son junction is first characterized at Vtg = 0 V and Vbg = -1.65 V, where
the largest switching current is observed. From the IV trace in Fig. 2(a)
we estimate an induced superconducting gap of 0.4 meV and, using the
corrected OBTK model [62], a transmission of T = 0.73. The junction is
quasi-ballistic because the mean free path of 2.8 µm (extracted from a Hall
bar device on the same wafer) is larger than its length L of 500 nm. The
large superconducting gap and high transmission value indicate a high
quality InAs Josephson junction.

3.3 Superconducting quantum interference mea-
surements

SQI measurements have successfully been used before to gather informa-
tion on the supercurrent density profile in Josephson junctions [19, 32, 63].
This is typically done, using Dynes-Fulton approach [11], which connects
critical current dependency on magnetic field Ic(B) and zero-field super-
current density profile j(x) with a Fourier transform. It was originally
developed for tunnel junctions, but can also be applied to transparent
junctions under several assumptions. Firstly, we should have a sinusoidal
current-phase dependency, which is in accordance with the transmission



38 Chapter 3. h/e SQI through trivial edge states in InAs

(a)

x

2∆

(b)

Figure 3.2. (a) Normal state resistance Rn and switching current Is at the
respective top gate Vtg and bottom gate Vbg voltages. The left inset depicts a
seperate measurement at the indicated gate voltages, where a smaller current
bias step size is used for higher resolution. The right inset shows an IV trace at
Vtg = 0 V and Vbg = -1.65 V , where two dashed lines are added for extraction
of the induced superconducting gap ∆ and the excess current. (b) The measured
voltage as function of the applied current Ibias and perpendicular magnetic field
B at Vtg = 0 V and Vbg = -1.65 V. The inset depicts the calculated supercurrent
density along the width of the device that is indicated by the dotted lines.

value and temperature in our experiment [64]. Secondly, the Andreev lev-
els, that carry supercurrent in the junction, may only weakly deviate from
the longitudinal propagation. Our junction satisfies this constraint since
the superconducting coherence length ζ = ~vF /∆ ≈ 1.3 µm > L [34]. If
both assumptions hold, we expect Fraunhofer SQI pattern in the case of
homogeneous current distribution (Fig. 1(c-d)) and SQUID pattern in the
case of current flowing along the edges (Fig. 1(e-f)).

A SQI measurement at the largest switching current reveals a Fraun-



3.3 Superconducting quantum interference measurements 39

hofer like pattern as shown in Fig. 2(b). The central lobe is twice as wide
as the side lobes and the amplitude decreases as expected. The slight
asymmetry in the amplitudes we contribute to breaking of the mirror
symmetry of the sample in the direction along the current [65]. The ef-
fective length of the junction [λ = δBlobe/(Φ0 ·W )] of 1.2 µm is extracted
from the periodicity of the SQI pattern. Flux focusing due to the Meissner
effect causes it to be larger than the junction length (λ > L) [66]. The
extracted current density profile, plotted in Fig. 2(b), is close to uniform.
The supercurrent is thus dominated by bulk transport as expected at these
gate voltages.

The interference pattern in Fig. 2(b) deviates from the expected pat-
tern after the second lobe. Recently a similar distorted Fraunhofer tail
was observed and discussed in graphene [67]. The perpendicular magnetic
field exerts a Lorentz force on the electron and holes suppressing the for-
mation of Andreev bound states. The suppression becomes relevant at
a magnetic field scale of ∆/eLvF , equal to 1 mT in our case, roughly
agreeing with the observation. The analysis only holds for the bulk of the
junction, since the scattering at the edges reduces the difference in the
electron and hole motion in a magnetic field.

Next we study the SQI pattern as the Fermi level is decreased by tun-
ing the top gate to more negative values. The upper two (green) traces
in Fig. 3(a) have a wide central lobe, identifying a Fraunhofer pattern.
The effective length is λ =1.7 µm, different from before, which we believe
is due to different vortex pinning because of the larger magnetic field range
of the measurement. In the third (first blue) trace we observe that the first
nodes turn into peaks, which is highlighted by the dashed lines. This is the
transition from a Fraunhofer to a SQUID pattern. Curiously the ampli-
tude and width of the peaks are alternating in the blue traces in Fig. 3(a).
The even-odd pattern is composed of an h/e and h/2e periodic signal. An
even-odd pattern was observed before in Pribiag et al. [19]. In compari-
son, in this work the amplitude difference in the lobes is much larger and
the pattern is visible over a large gate range. The calculated supercurrent
density profiles in Fig. 3(b) have a central peak that is physically unlikely
considering the device geometry. The cause of this intriging interference
pattern will be discussed in more detail later. Reducing Vtg further we find
a clear h/2e periodic SQUID interference pattern in the bottom two (or-
ange) traces. This is a strong indication of edge conduction in our device.
Confirmed by the edge transport only in the extracted supercurrent den-
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Figure 3.3. (a) The switching current plotted as function of perpendicular
magnetic field and (b) the corresponding current density along the width of the
device (see inset), assuming the validity of the Dynes-Fulton approach. The
gate values used are from bottom to top: Vtg -5.4 V to -3.6 V (0.2 V step) and
Vbg -1.270 V to -1.396 V (0.014 V step). The green, blue and orange traces
are Fraunhofer, even-odd and SQUID patterns, respectively. Since the current
is only swept up to 100 nA, the green traces are not suitable for extracting a
supercurrent density profile. The traces are offset by 50 nA in (a) and 25 nA/µm
in (b).

sity profiles in Fig. 3(b). The transition from bulk to edge transport as a
function of gate voltage is measured in several other Josephson junctions.
Since we observe supercurrent through the trivial edge states of an InAs
quantum well, we conclude that a clear demonstration of superconducting
edges alone does not prove induced superconductivity in topological edge
states.

3.4 Even-odd SQI pattern

We now return to the remarkable h/e SQUID signal to investigate its
origin. Figure 4(a) shows a more detailed measurement in this gate regime,
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Figure 3.4. (a) Measured voltage as a function of Ibias and magnetic field B at
Vtg = -5 V and Vbg = -1.29 V. (b) Switching current versus the magnetic field
for different temperatures at the same gate voltages as (a). The traces are offset
by 5 nA for clarity. (c) Current density profile, calculated from the SQI pattern
of (a). The blue trace uses equation (1), thus correcting the vertical offset in the
SQI pattern. The yellow dashed trace is extracted without this correction.

the even-odd pattern is observed over more than 25 oscillations. The
envelope of the peaks is attributed to the finite width of the edge channels.
The effect is suppressed by raising the temperature [see Fig. 4(b)], for T >
850 mK a regular h/2e SQUID pattern remains. The origin can not lie
in effects that occur beyond a certain critical magnetic field, like 0 − π
transitions [68], edge effects [43, 69] and a topological state, because we
observe the even-odd pattern around zero magnetic field as well. An effect
that does not rely on magnetic field and is strongly temperature dependent
is crossed Andreev reflection [70].

The lowest order crossed Andreev reflection (up to electron-hole sym-
metry) is schematically depicted in Fig. 5(a). An electron travels along
one edge, whereafter a hole is retroreflected over the other edge. This
process alone is independent of the flux through the junction, but still
adds to the critical current (see Sec. 2.5). Higher order processes that in-
clude an electron that encircles the junction completely pick up an h/e
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phase when a flux quantum threads through the junction, hence the su-
percurrent becomes h/e periodic [71]. Additionaly, interference processes
between crossed Andreev and single edge Andreev states could lead to a
h/e contribution [72]. It is important to note that the critical current is
h/e periodic in flux trough the sample, but still 2π periodic in supercon-
ducting phase difference.

Forming crossed Andreev states in the junction is only possible if the
particles can flow along the contacts. Electrostatic simulations indeed
show a large electron density close to the contacts at gate voltages where
the bulk is already depleted, because of local screening of the top gate.
Nevertheless the needed coherence length for a crossed Andreev reflection
is on the order of 10 µm, where the estimated superconducting coherence
length (from bulk values) is 1.3 µm. The difference between these values
remains an open question.
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Figure 3.5. (a) Schematic representation of two crossed Andreev processes. The
black and white lines indicate electron and hole trajectories or vice versa. The
solid lines represent a single edge Andreev state and the dotted lines a crossed
Andreev state. (b) Detailed sketch of one corner of junction in our tight binding
mode indicating the widths Wns and We, and tunnel barrier Γ. (c) Calculated
SQI patterns at overall chemical potential ranging from -0.06 eV to 0.18 eV
(0.04 eV step) at 0.46 K and (d) at temperatures 0.4 K, 0.9 K, 1.4 K, 1.9 K,
2.3 K at a chemical potential of -0.2 eV. Traces are offset by 10 nA for clarity.
In (c) the color represents the type of interference pattern, green for Fraunhofer,
blue for even-odd and orange for SQUID, respectively.
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3.5 Phenomenological model: crossed Andreev
reflection impact

The phenomenological model proposed in Chapter 2 considers both single
edge and crossed Andreev states. In our device we expect the lowest order
crossed Andreev states to contribute most because of the short coherence
length. Combining their flux insensitive contribution to the critical current
and the usual h/2e periodic contribution from single edge Andreev bound
states, the model predicts an even-odd or h/e SQUID pattern:

Ic(Φ) = I0 |cos(πΦ/Φ0) + f | . (3.1)

Where I0 the critical field at zero magnetic field and Φ is the applied flux.
Constant f can be arbitrarily large, it dependes on the ratio Γ between
the probability to Andreev reflect on a node versus the probability to
scatter to another edge and is exponentially suppressed by the width of
the sample:

f ∼ Γ−1kBT

∆ e−2π(kBT/∆)(W/ζ). (3.2)

The predicted pattern is thus the absolute value of a vertically offsetted
cosine function. That is exactly the pattern we measured in Fig. 3(a) and
4(a) as both the amplitude and width of the lobes alternate From the
data we estimate f = 0.3 and, using the other known parameters, find
Γ ∼ 10−1. Taking the Fourier transform in the Dynes-Fulton analysis,
offset f leads to a non-physical current density around zero, like we ob-
serve in the current density profiles in Fig. 3(b) and the yellow dashed line
in Fig. 4(c). Moreover, the Dynes-Fulton approach is not valid here since
crossed Andreev reflection does not meet the second assumption of having
straight trajectories only. We can compensate the crossed Andreev contri-
bution by subtracting the constant offset of f ·I0=11 nA. This results in a
current distribution with mainly current along the edges, as plotted in the
blue trace of Fig. 4(c). We did not take into account that I0 is actually
not constant due to the Fraunhofer envelope of the SQI pattern, so the
current density in the center of the junction is not entirely eliminated.

3.6 Tight-binding simulations
Even though the SQI pattern from the phenomenological model is in qual-
itative agreement with our data, we also present a tight binding model of
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system in order to connect it directly to experimentally accessible param-
eters. In the microscopic model we include the superconducting gap as
measured, the width of the paths along the contacts Wns of 20 nm [ex-
tracted from the Fraunhofer envelope in Fig. 4(a)], and Fermi level pinning
on the edges leading to edge current in the region We. It is crucial to also
take into account a tunnel barrier Γ at the contacts that has a magnitude
consistent with the measured transmission value. This barrier enhances
normal reflection and therefore elongates the length electrons and holes
travel before Andreev reflecting. Incorporating these experimental values
we find an h/e SQUID pattern. Emulating the experimental gating effect
by changing the overall chemical potential results in a crossover from even-
odd to Fraunhofer [Fig. 5(c)], consistent with the measurement in Fig. 3.
As a check, Wns is reduced in steps to zero, which results in a SQUID
pattern. Additionally, in Fig. 5(d) we observe that increasing the temper-
ature indeed smears out the even-odd pattern and leaves us with a regular
SQUID pattern, similar to the experimental data in Fig. 4(b). Summariz-
ing, both the phenomenological model and the microscopic model support
our hypothesis of the h/e SQUID originating from crossed Andreev states.

3.7 Conclusion
We have experimentally shown that trivial edge states can support highly
coherent superconducting transport that also becomes visible in an h/e
periodic SQI pattern. Both effects have been considered as possible signa-
tures for inducing superconductivity in topological edge states before [19,
32]. Therefore we conclude that superconducting edge transport and an
h/e SQUID pattern only, cannot distinguish between topological and triv-
ial edge states, nor can it be considered a definite proof for a topological
phase.

3.8 Appendix

3.8.1 Tight binding model

We have taken the following Hamiltonian for tight binding simulations:

H =
(
~2(k2

x + k2
y)

2meff
− µ(x, y)

)
τz+α(kxσy−kyσx)τz+gµBB(x)σz+∆(x)τx,

(3.3)
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Figure 3.6. (a) Schematical representation of a tight-binding model.
Bogolyubov-de Gennes Hamiltonian is discretized on a square lattice. Supercon-
ducting sites of the system have a blue color, normal – black. A tunnel barrier is
created, using one row of sites with decreased chemical potential (marked TB on
the scheme). The current was calculated from Green’s function of sites, marked
1 and 2 on the scheme (see the detailed explanation below). (b) Chemical po-
tential profile for x = 0. Offset between location of chemical potential step and
superconducting region together with the tunnel barrier leads to formation of
scattering channel between edges. (c) Chemical potential profile for y = 0. Band
bending is represented with an increased chemical potential at the edges, leading
to edge conductivity in a doped regime.

where σ Pauli matrices correspond to the spin degree of freedom, and
τ – to the electron and hole one. It is discretized on a square lattice
with lattice constant a = 2 nm. The normal part of a SNS junction is
represented as a rectangle −L/2 ≤ x ≤ L/2 and −W/2 ≤ y ≤ W/2, the
superconducting parts – as translationally invariant in x direction stripes
with −W/2 ≤ y ≤W/2. Proximity-induced pairing potential ∆(x) is zero
in a normal part and constant in a superconducting part of the system,
with a step-like transition. The magnetic field is assumed to be fully
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screened by the superconductors. Its impact is included as Zeeman term
and via Peierls substitution.

At first realistic values of α = 5 · 10−12 eV · m and g = 11.5 for the
Rashba and Zeeman term were used to verify that they do not play an
important role in this parameter regime. After we were sure that Zeeman
and Rashba terms can be neglected, we have put α = 0 and g = 0 for the
sake of numerical performance. This allowed to decouple spins and de-
crease the dimensionality of the Hamiltonian twice, since both decoupled
subblocks contribute equally to the current.

Chemical potential µ(x, y) is selected to capture primary features of
the device: band bending near the edges and screening near the NS bound-
aries top gate. It has the following form:

µ(x, y) = µnorm + δµedge(y)
2

(
tanh x+ xµ

λµ
− tanh x− xµ

λµ

)
+

µsc
2

(
2− tanh x+ xµ

λµ
+ tanh x− xµ

λµ

)
, (3.4)

where
δµedge(y) = 2µee−W/2λe cosh y

λe
(3.5)

is the term, that introduces band bending near the edges of a normal
part. µnorm and µsc are chemical potentials in gated area (primarily nor-
mal part) and area screened by the superconducting contacts. If normal
part is governed to the insulating state with negative µnorm, the offset
between L/2 and xµ leads to formation of a conducting channel on the
NS boundaries of the junction, with a width:

Wns = L/2− xµ. (3.6)

The tunnel barrier on the NS interface was represented as a single row of
sites with a chemical potential reduced by ∆µTB.

The finite-temperature critical current of the SNS junction was calcu-
lated by maximizing the current-phase dependency, similarly to the ap-
proach, used in [73]. The Green’s function was numerically calculated for
several Matsubara frequencies on two neighbouring rows of the sites in
the normal part of the junction, then the current was obtained by the
summation:

I = 2ekBT
~

Nmax∑
n=0

(= trH21G12(iωn)−= trH12G21(iωn)) . (3.7)



3.8 Appendix 47

Here H21 and G21 denote hopping matrix and Green’s function subblock
from cells of row 1 to row 2, indicated on Fig. 3.6 (all the hoppings, that
form a cut through the system), and vice versa. ωn = (2n+1)πkBT is the
n-th Matsubara frequency. Value Nmax was obtained dynamically, based
on the estimated convergence rate. The Green’s functions were calculated,
using package Kwant [16].

The numerical values of parameters, used for simulations, are pre-
sented in Table 3.1. A lattice constant of a = 2 nm was selected small
enough to capture characteristic length scales of an edge and NS boundary
current channels.

W [nm] L [nm] λe [nm] λµ [nm] xµ [nm]
400 200 28 1 0÷ 50
meff/me ∆ [eV] µsc [eV] δµe [eV]

0.04 4 · 10−4 0.2 0.15

Table 3.1. Numerical parameters, used for tight-binding simulations.
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Figure 3.7. Tight binding calculation of the superconducting quantum interfer-
ence as a function of tunnel barrier strength at the contact. Increasing the tunnel
barrier height leads to enhanced normal reflection with respect to Andreev re-
flection. The electrons or holes then have a higher chance of traversing along the
contact before Andreev reflecting. Forming a crossed Andreev states requires the
charge carriers to traverse around the junction fully. Therefore enhanced normal
reflection is benefecial for forming these states and the resulting even-odd SQI
pattern. Here we plot the SQI patterns for a tunnel barrier strength ranging
from 0.6 eV to 1.40 eV (bottom to top) in 0.2 eV steps.

Figure 3.8. Tight binding calculation of the superconducting quantum interfer-
ence as a function of width of the channel along the edge. As a sanity check: if
the width is 2 nm (bottom trace), we do not see even-odd effect. Increasing the
width (in 8 nm steps up to 50 nm), increases the number of channels along the
contact and the coherence length, up to the point that the 1D channel become
2D and the even-odd effect reduces again.


