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Chapter 2

Even-odd flux quanta effect
in the Fraunhofer
oscillations of an
edge-channel Josephson
junction

2.1 Introduction

Superconductor–normal-metal–superconductor (SNS) junctions with edge
channel conduction in the normal region are governed by the interplay
of charge e and charge 2e transport: charge can only enter or exit the
superconductor in units of 2e, but in the normal region this Cooper pair
can be split over opposite edges, when an electron incident on the NS
interface along one edge is Andreev reflected as a hole along the opposite
edge.

For quantum Hall edge channels this mechanism produces Fraunhofer
oscillations (oscillations of the critical current with enclosed flux Φ) hav-

The contents of this chapter have been published and reprinted with permission
from B. Baxevanis, V. P. Ostroukh, and C.W. J. Beenakker, Phys. Rev. B 91, 041409(R)
(2015). Copyright 2015 by the American Physical Society.

https://doi.org/10.1103/PhysRevB.91.041409
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Figure 2.1. Beating mechanism for the even-odd effect in the Fraunhofer oscil-
lations. For uncoupled edges the flux periodicity is h/2e, corresponding to the
transfer of a charge-2e Cooper pair along the left or right edge channel (blue/red
hatched strips). The edge channels are coupled by a conducting path along the
NS interface, allowing for a circulating loop of charge ±e with h/e flux period-
icity. The circulating loop may be partly e-type (red lines) and partly h-type
(blue), as in panel a, or it may be entirely of one charge-type (entirely e, as in
panel b, or entirely h). Both loops contribute to the even-odd effect, but panel a
dominates when the Andreev reflection probability Γ is small. (It is of order Γ,
while panel b is of order Γ2.)

ing a fundamental period of h/e, twice the usual periodicity [29]. These
are chiral edge channels, so Andreev reflection along the edge of incidence
is forbidden and only the circulating path of Fig. 2.1(a) contributes to
the supercurrent. When the edge channels allow for propagation in both
directions, the critical current includes the usual h/2e-periodic contribu-
tions from Andreev reflection along a single edge, and further h/e periodic
contributions from circulating paths without charge transfer (Fig. 2.1(b)).

Here we investigate this beating of h/e and h/2e periodic contribu-
tions to the Fraunhofer oscillations. We are motivated by recent work
on proximity induced superconductivity in quantum spin-Hall (QSH) in-
sulators1 [19, 23, 31–34], which in one series of experiments [19] showed
Fraunhofer oscillations with an even-odd effect: Large peaks in the criti-
cal current at even multiples of h/2e alternate with smaller peaks at odd
multiples.

The QSH insulator has helical edge channels (with direction of motion
tied to the spin), so we consider that case in what follows (although the
beating mechanism for the even-odd effect does not rely on helicity). Fol-

1 G. Tkachov et. al. [30] calculate the flux dependence of Im(Φ) = |I(φ0,Φ)| at
the fixed phase φ0 that maximizes the zero-field supercurrent I(φ, 0). This partial
maximization provides a lower bound to the critical current Ic(Φ) = maxφ |I(φ,Φ)|,
but the flux-periodicity of Ic cannot be deduced from Im. Although authors find an
even-odd effect in Im, the critical current has no even-odd effect in their model.
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lowing Ref. [23] we assume that the superconductors dope the contacted
QSH insulator, locally pushing the Fermi level in the conduction band.
The broad conducting pathway that appears along the NS interface will
be gapped by the superconducting proximity effect, but a narrow gapless
channel may remain because superconductivity only becomes effective at
some penetration length ξ0 from the NS interface. (Ref. [19] estimates
ξ0 & 240 nm, comparable to the estimated width of the edge states.) This
channel provides a connection between the helical edge states that is non-
helical, meaning that either spin can propagate in both directions.

To describe the phase-coherent coupling of helical and non-helical edge
channels we study a network model of the Josephson junction, inspired by
the spectral theory of graphs [35] and as a counterpart to network models
of the quantum Hall effect [36, 37]. As we will show, all information on
the temperature and flux dependence of the supercurrent can be encoded
in the product of a permutation matrix, representing the connectivity of
the network, and a block-diagonal matrix describing the relation between
incoming and outgoing modes at each node of the network.

2.2 Edge-channel Josephson junction
We consider the Josephson junction geometry of Fig. 2.2(a). A current
I is passed between two superconducting electrodes at phase difference
φ, related to the voltage V over the junction by the Josephson relation
dφ/dt = (2e/~)V . Upon increasing the current bias, the junction switches
from zero to finite dc voltage at a critical current Ic, dependent on the
enclosed magnetic flux Φ. If phase fluctuations can be neglected (for a
low-impedance environment), the critical current is given by

Ic(Φ) = maxφ |I(φ,Φ)|. (2.1)

We seek the oscillatory Φ-dependence of Ic (Fraunhofer oscillations) in a
junction where the current flows along the edges, rather than through the
bulk.

Referring to Fig. 2.2(b), the junction has widthW (edges at x = 0,W )
and length L (normal-superconductor or NS interfaces at y = 0, L). We
choose a gauge where the superconducting pair potential ∆0 is real. A
vector potential A = Ayŷ in the y-direction,

Ay = Φx
LW

+ Φ0φ

2π δ(y − L/2), Φ0 ≡
h

2e, (2.2)
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Figure 2.2. Josephson junction in a current-biased circuit (panel a), to study
the dependence of the critical current Ic on the magnetic flux Φ enclosed by a
circulating edge channel (panel b). The network model of the Josephson junction
is illustrated in panel c. Helical modes (red, amplitudes a↑, a↓) and non-helical
modes (blue, amplitudes b↑, b↓) are coupled at four nodes by a scattering matrix
sn, relating incoming and outgoing amplitudes.

then accounts for the phase difference between the NS interfaces.

2.3 Network model

To capture the essence of the problem, while still allowing for analytical
solution, we represent the scattering processes by a network (Fig. 2.2(c)).
At the nodes n = 1, 2, 3, 4 the helical edge channels along x = 0,W are
coupled to a single-mode non-helical channel along y = 0, L. Each node
has a 4 × 4 electronic scattering matrix sn, which relates incoming and
outgoing wave amplitudes of the helical channel, a = (a↑, a↓), and the
non-helical channel, b = (b↑, b↓), according to

(
a
b

)
out

= sn

(
a
b

)
in
. (2.3)
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The short-range scattering at a node can be taken as energy-independent,
so the hole scattering matrix is simply the complex conjugate s∗n. We
collect these matrices in the unitary matrix snode = s1⊕ s∗1⊕· · ·⊕ s4⊕ s∗4,
consisting of eight 4× 4 blocks arranged along the diagonal.

Since the effect of the magnetic field is only felt on long length scales,
we can assume that sn preserves time-reversal symmetry. The requirement

sn =
(
σy 0
0 σy

)
sT
n

(
σy 0
0 σy

)
, (2.4)

together with unitarity, s†nsn = 1, imposes the form [38]

sn =
(

e2iψnσ0
√

Γn eiψn+iψ′nUn
√

1− Γn
eiψn+iψ′nU †n

√
1− Γn −e2iψ′nσ0

√
Γn

)
. (2.5)

Helical and non-helical channels are coupled with probability 1−Γn, while
Un ∈ SU(2) describes the spin-mixing associated with that coupling. (Eq.
2.4 is satisfied because σyUT

n σy = U †n for any SU(2) matrix U(n).) Time-
reversal symmetry forbids spin mixing within the helical or non-helical
channel, which is why the upper-left and lower-right blocks of sn are pro-
portional to the 2× 2 unit matrix σ0.

The nodes are connected by a unitary bond matrix sbond, which is the
product of a diagonal matrix of phase factors and a permutation matrix.
We decompose sbond = sleft ⊕ sright ⊕ sbottom ⊕ stop in terms of matrices
sleft and sright that connect the a-amplitudes (along x = 0 and x = W ,
with phase factor eiεL/~v exp[iτz(e/~)

∫
Ay dy]) and matrices sbottom and

stop that connect the b-amplitudes (along y = 0 and y = L, with phase
factor eiεW/~v). Andreev reflection is included in sleft and sright via matrix
elements that connect a node to itself, switching electron-hole and spin-
band with phase factor

sA = iατy ⊗ σy, α(ε) = iε/∆0 +
√

1− ε2/∆2
0. (2.6)

(The Pauli matrices τi and σi act, respectively, on the electron-hole e, h
and spin ↑, ↓ degrees of freedom.)

Knowledge of snode and sbond determines the entire spectrum of the
network [35]. A bound state at energy |ε| < ∆0 corresponds to a unit
eigenvalue ofM(ε) = snodesbond(ε), leading to the determinantal equation
Det [1 −M(ε)] = 0. The density of states of the continuous spectrum at
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|ε| > ∆0 is given by

ρ(ε) = − 1
π

d

dε
Im ln Det[1−M(ε+ i0+)] + constant, (2.7)

where the “constant” refers to φ-independent terms (see Sec. 2.8 for defi-
vation). The Josephson current at temperature T then follows from [39,
40]:

I(φ,Φ) = −kT 2e
~
d

dφ

∞∑
p=0

ln Det [1−M(iωp)], (2.8)

as a sum over fermionic Matsubara frequencies ωp = (2p + 1)πkT . This
expression assumes that the system equilibrates without restrictions on
the fermion parity, so it holds on time scales long compared to the quasi-
particle poisoning time (otherwise there would appear an additional sum
over bosonic Matsubara frequencies) [22].

2.4 Uncoupled edges
When kT � ~v/W there is no phase-coherent coupling between the edges
at x = 0 and x = W . We may then set stop and sbottom to zero in the
evaluation of the determinant in Eq. 2.8, with the result

I(φ,Φ) = Iedge(φ) + Iedge(φ+ 2πΦ/Φ0), (2.9)

Iedge(φ) = kT
4e
~

sinφ
∞∑
p=0

[2 cosφ+ ζ(ωp) + 1/ζ(ωp)]−1,

ζ(ω) = Γ2e−2ωL/~v
[√

1 + ω2/∆2
0 − ω/∆0

]2
. (2.10)

(To simplify the formulas we have taken identical Γn ≡ Γ.)
For Γ → 1 we recover the short-junction-to-long-junction crossover

formula of Ref. [22], which in the short-junction limit L� ~v/∆0 and for
low temperatures kT � ∆0 results in a critical current

Ic(Φ) = e∆0
2~

(
1 + | cos(πΦ/Φ0)|

)
(2.11)

with minima that are offset from zero, in agreement with Ref. [23]. For
Γ � 1, still in the short-junction and low-temperature limit, we find
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instead

I(φ,Φ) = I0 sin(φ+ πΦ/Φ0) cos(πΦ/Φ0) (2.12)

⇒ Ic(Φ) = I0| cos(πΦ/Φ0)|, I0 = 8e∆0
3π~ Γ2. (2.13)

For these uncoupled edges the critical current is h/2e periodic in Φ.

2.5 Coupled edges
The effect on the supercurrent of a phase-coherent coupling of the edges
can be studied perturbatively in powers of e−πkTW/~v, by expanding the
logarithmic determinant in Eq. 2.8 with the help of the formula

ln Det (1−M0 − δM) = ln Det (1−M0)

−
∞∑
n=1

1
n

Tr
[
(1−M0)−1δM

]n
. (2.14)

The lowest order contribution with h/e periodicity in Φ is given by

δIh/e = kT
2e
~
d

dφ
Tr snode(1− sleftsnode)−1stopsnode

· (1− srightsnode)−1sbottom
∣∣
ε=iω0

+ {sleft ↔ sright}, (2.15)

describing a quasiparticle that encircles the junction clockwise or anti-
clockwise.

The effect of this contribution is largest for small Andreev reflection
probability Γn � 1. To first order in Γ, and in the low-temperature,
short-junction limit, we find

δIh/e = (8e/~)kTe−2πkTW/~v sin(φ+ πΦ/Φ0)
×
(√

Γ1Γ2 +
√

Γ1Γ4 +
√

Γ3Γ4 +
√

Γ3Γ2
)

× sin(γ2 − γ4) sin(γ1 − γ3). (2.16)

(To simplify a lengthy general expression we made a definite choice Un =
eiγnσx , ψn = ψ′n = 0 for the spin-mixing matrices.) Without spin mixing,
for γn = 0, the contribution 2.16 of order Γ vanishes, but there is a nonzero
contribution of order Γ2,

δIh/e = (8e/~)kTe−2πkTW/~v[(sin(φ− πΦ/Φ0)Γ1Γ2

+ sin(φ+ 3πΦ/Φ0)Γ3Γ4)
]
. (2.17)
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Figure 2.3. Even-odd effect in the Fraunhofer oscillations of the critical current
due to the beating of h/e and h/2e oscillations. The curves are calculated with
spin mixing from Eq. 2.18 (solid lines, dominated by the path of Fig. 2.1(a)) and
without spin mixing from Eq. 2.19 (dashed lines, dominated by the path of Fig.
2.1(b)).

The contributions 2.16 and 2.17 correspond to the pathways show in Figs.
2.1(a) and 2.1(b), respectively.

Addition of δIh/e to the zeroth order supercurrent 2.12 (for identical
Γn ≡ Γ) gives the critical current

Ic(Φ) = I0| cos(πΦ/Φ0) + f |, (2.18a)

f = 12πkT
∆0Γ e−2πkTW/~v sin(γ2 − γ4) sin(γ1 − γ3), (2.18b)

with spin mixing at the nodes, and

Ic(Φ) = I0| cos(πΦ/Φ0) + f ′ cos(2πΦ/Φ0)|, (2.19a)
f ′ = (6πkT/∆0)e−2πkTW/~v, (2.19b)

without spin mixing. Both types of Fraunhofer oscillations are h/e pe-
riodic, with an even-odd effect of relative magnitude f or f ′, see Fig.
2.3.
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Figure 2.4. Fraunhofer oscillations for the experimentally relevant parameters
given in the text, calculated from Eq. 2.8 for three different temperatures.

2.6 Comparison with experiment

Turning now to the experiment that motivated this analysis [19], we first
of all notice that the observed even-odd effect appears already for the first
few peaks around zero field. An explanation in terms of a Lorentz-force
induced asymmetry in the current distribution is therefore unlikely2. The
h/e-periodic Josephson effect of Majorana zero-modes [45] is spoiled, on
the time scale of the experiment, by any small amount of quasiparticle
poisoning [23], so an explanation along these lines is not viable. A con-
ducting pathway through the bulk, parallel to the edges, can explain the
data [19] — but only if it is located within 10% of the device center (the
flux Φ needs to be accurately partitioned into twice Φ/2). The mechanism
proposed here does not require any such fine tuning.

The InAs/GaSb quantum well with Ti/Al electrodes of Ref. [19] has
superconducting gap ∆0 = 0.125 meV and edge state velocity[46] v =
4.6 · 104 m/s. We take the same v for the non-helical channel. There
is some uncertainty in the effective dimensions of the junction, we set

2 In a device with aspect ratio W/L the Lorentz force produces an even-odd effect
in the Fraunhofer oscillations for flux Φ & (W/L)h/e, as calculated in Refs. [41, 42] and
measured in Refs. [43, 44].
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Figure 2.5. The solid curve is the T = 20 mK critical current of Fig. 2.4, without
phase shifts at the scattering nodes, while the dashed curve shows the inverted
even-odd effect for ψ′1 + ψ′3 = π (and all other phase shifts kept at zero).

L = 0.5µm, W = 3.5µm. We then have comparable L and ξ0 = ~v/∆0,
so we calculate the supercurrent directly from Eq. 2.8 — without taking
the short-junction limit. The observed critical current in the 0.25 nA range
implies an Andreev reflection probability Γ ≈ 0.2, which is the value we
take for Γn at all four scattering nodes.

The degree of spin mixing upon propagation along the nonhelical chan-
nel is quantified by setting U1U

†
3 = U2U

†
4 = eiγσx . The value of γ is un-

known, we take a moderately strong spin mixing with γ = π/6, but note
that the even-odd effect exists also without any spin mixing (see Fig. 2.3).
The critical current shown in Fig. 2.4 exhibits an even-odd effect of a
similar magnitude as observed experimentally [19]. The temperature de-
pendence is somewhat stronger: In the experiment traces of the even-odd
effect are still visible at 100 mK, but not in our calculation.

The beating mechanism has one qualitative feature that can help to
distinguish it from other explanations of the even-odd effect: The sign
of the effect — whether the Φ = 0 peak is larger or smaller than the
Φ = h/2e peak — depends on microscopic details. This is evident from
Eq. 2.18, in that the offset f can be of either sign. A similar inversion of
the even-odd effect can be induced by varying the phase shifts in the node
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scattering matrix 2.5, as we show in Fig. 2.5. Observation of an even-odd
effect with the smallest peak at even multiples of h/2e would constitute
strong support for the beating mechanism, but no such inversion has been
found so far [19].

In our analysis we have assumed helical edge state transport, appro-
priate for a quantum spin-Hall insulator, but the beating mechanism itself
would apply also to nonhelical edge conduction. As was also pointed out
in the experimental paper [19], the Fraunhofer oscillations are a sensi-
tive probe of the current distribution, but cannot distinguish between a
topologically trivial or nontrivial Josephson junction. That would require
observation of a quantized conductance or supercurrent.

2.7 Conclusion

We have analyzed the effect of inter-edge coupling on the Fraunhofer os-
cillations in a quantum spin-Hall Josephson junction. A network model
allows for an efficient description of the beating of h/2e periodic intra-
edge and h/e periodic inter-edge contributions to the critical current. The
even-odd effect has comparable magnitude to what is observed in a recent
experiment [19], see Fig. 2.4, but the sample-dependent inversion of Fig.
2.5 has not been observed.

We note that the beating mechanism studied here in the two-dimensional
geometry of a quantum spin-Hall insulator may apply more generally when
a pair of conducting pathways enclosing different flux interferes. Indeed,
a recent work studies a similar beating effect in a one-dimensional wire
geometry [47], to explain multi-periodic Fraunhofer oscillations observed
in Bi nanowires [48].

2.8 Appendix

We describe in more detail the network model of a Josephson junction
that we have introduced and applied in the main text, and in particular
give a selfcontained derivation of the formula (2.7) for the supercurrent
through the network.
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Figure 2.6. Network model of a Josephson junction. The normal metal leads
are attached to the superconductor as an intermediate step in the derivation of
the scattering matrix formula for the supercurrent. The final expression (2.31)
contains only the scattering matrices of the nodes and bonds in the junction
region. Andreev reflection at the interface with the superconductor is included
in the bond matrix, via Eq. (2.20).

2.8.1 Construction of node and bond scattering matrices

The scattering theory of a Josephson junction developed in Ref. [39]
expresses the supercurrent in terms of the two scattering matrices sN
of the normal region (N) and sA of Andreev reflection at the normal-
superconductor (NS) interfaces. While the matrix sA has a simple expres-
sion, see Eq. (2.6), calculation of sN can be quite complicated.

In this work we have used an alternative network representation, where
the supercurrent is expressed in terms of the scattering matrices snode and
sbond of the nodes and bonds of a network (see Fig. 2.6). These matrices
are the direct sum of scattering matrices of individual nodes and bonds,
so they have a simple structure that can be written down without any
calculation.

The node matrix snode is block-diagonal with the scattering matrices
sn of node n = 1, 2, . . . on the diagonal. Because electrons and hole are
uncoupled in the normal region, each matrix sn is itself block-diagonal
with an electron block sn,e(ε) and a hole block sn,h(ε) = s∗n,e(−ε). We
thus have snode = s1e ⊕ s1h ⊕ s2e ⊕ s2h ⊕ · · · .

The bond matrix sbond = UP is the product of a diagonal matrix U
of phase factors and a permutation matrix P that maps the indices of
outgoing modes to incoming modes. The mode indices are spin s ∈ {↑
, ↓} ≡ {+1,−1}, particle-hole t ∈ {e, h} ≡ {+1,−1}, and possibly also
an orbital degree of freedom ν ∈ {1, 2, . . .}. (In the system considered in
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the main text all bonds support only a single orbital mode.) The matrix
element 〈nν ′s′t′|sbond|mνst〉 is zero unless a mode with spin s of particle-
hole type t that is outgoing from node m in orbital mode ν is incoming
onto node n in orbital mode ν ′ as a spin-s′ type-t′ particle. There are
no “dangling bonds”, meaning that sbond has a single non-zero element in
each row and column.

Andreev reflection at the NS interface is included in sbond via the
matrix elements

〈nν ′s′t′|sbond|mνst〉 = −iα st δmnδνν′δs′,−sδt′,−t,

α(ε) = ie−i arccos(ε/∆0) = iε/∆0 +
√

1− ε2/∆2
0.

(2.20)

Please note that this definition of α differs by a factor i with that used
in Ref. [39]; we prefer it this way because now α(ε) = α∗(−ε), so it is
particle-hole symmetric. The branch of the square root of 1 − ε2/∆2

0 is
fixed by Reα(ε + i0+) > 0, so that for |ε| > ∆0 one has α = iε/∆0 −
i(sign ε)

√
ε2/∆2

0 − 1.
For |ε| < ∆0 one has |α| = 1, hence Eq. (2.20) describes Andreev

reflection with unit probability. This is a matter of convenience, because
a nonzero probability of normal reflection at the NS interface can be ac-
counted for by inserting a node just before the interface. (See Ref. [49] for
an alternative scattering formulation that does not separate normal and
Andreev reflection.)

The simplification afforded by the network representation in the con-
struction of the scattering matrices comes at a price: the matrix snodesbond
is sparse, but its dimension is much larger than the dimension of sNsA.
We have not studied this systematically, but we expect both representa-
tions in terms of snodesbond and sNsA to have the same computational
complexity, scaling ∝ N3 with the number of nodes.

2.8.2 Density of states in terms of node and bond matrices

To calculate the density of states of the Josephson junction it is conve-
nient to attach normal metal leads to the superconductors (see Fig. 2.6).
The leads support the propagating modes that form basis states for the
scattering matrix SSNS(ε) of the junction. (Without the normal leads we
would only have propagating modes above the gap, for |ε| > ∆0.)

The density of states ρ(ε) is determined by the unitary scattering
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matrix SSNS via the general expression[50]

ρ(ε) = 1
2π

d

dε
Im ln DetSSNS(ε+ i0+). (2.21)

In Ref. [39] the determinant of SSNS was related to the determinant of
1− sNsA. Here we seek to derive a similar expression in terms of the node
and bond matrices of the network.

For |ε| < ∆0 the bond matrix sbond(ε) is unitary, but for |ε| > ∆0 the
Andreev reflection probability |α|2 drops below unity because of propagat-
ing modes in the superconductor. Unitarity can be restored by embedding
sbond in larger matrix

Sbond =
(
sbond tNS
t′NS rNS

)
, (2.22)

containing also the transmission and reflection matrices of the NS in-
terfaces: a mode incident from the normal lead onto the NS interface
is reflected with amplitude rNS and is transmitted through the interface
with amplitude tNS, while t′NS describes the transmission in the opposite
direction (into the normal lead). At subgap energies tNS = t′NS = 0, while
rNS as well as sbond are unitary. Above the gap only the full matrix Sbond
is unitary.

In order to rewrite Eq. (2.21) in terms of snode and sbond we start from
the relation

SSNS = rNS +
∞∑
n=0

t′NSsnode(sbondsnode)ntNS

= rNS + t′NSsnode(1− sbondsnode)−1tNS

= rNS − t′NS(sbond − s†node)
−1tNS. (2.23)

This relation expresses the fact that modes incident on the SNS junction
are either reflected directly at the NS interface, with amplitude rNS, or first
transmitted through the interface (amplitude tNS), followed by multiple
scattering in the network (amplitude snode + snodesbondsnode + · · · ), and
finally transmission back through the NS interface (amplitude t′NS). In
the final equality in Eq. (2.23) we have used that snode (unlike sbond) is
unitary for all energies.

We now invoke the folding identity,

Det
(
A B
C D

)
= (DetA) Det (D − CA−1B), (2.24)
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valid for any invertible submatrix A, to equate

Det (sbond − s†node) DetSSNS

= Det
(
sbond − s†node tNS

t′NS rNS

)

= Det
[
Sbond −

(
s†node 0

0 0

)]

= DetSbond Det
[
1−

(
s†node 0

0 0

)
S†bond

]
= DetSbond Det (1− s†nodes

†
bond) (2.25)

⇒ DetSSNS = DetSbond Det snode
Det (1− s†nodes

†
bond)

Det (1− snodesbond)

= (DetSbond Det snode)1/2 Det (1− s†nodes
†
bond)

(DetS†bond Det s†node)1/2 Det (1− snodesbond)
. (2.26)

In the final equality we have used that both Sbond and snode are unitary.
The folding identity also tells us that

DetSbond = Det sbond Det slead, (2.27)
slead = rNS − t′NSs

−1
bondtNS, (2.28)

where slead describes the reflection of a mode incident from the normal
metal lead when all bonds of the network are cut at the first node from
the NS interface. We can therefore identify

ρlead(ε) = 1
2π

d

dε
Im ln Det slead(ε+ i0+) (2.29)

with the density of states of the SNS junction without the normal region.
Combination of Eq. (2.21) with Eqs. (2.26) and (2.28) gives the re-

quired scattering formula for the density of states of the Josephson junc-
tion,

ρ(ε) = Im d

dε
ν(ε+ i0+) + ρlead(ε), (2.30a)

ν(ε) = −π−1 ln Det (1− snodesbond)
+ 1

2π
−1 ln Det (snodesbond). (2.30b)
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This is Eq. (2.7) from the main text, where the φ-independent terms ρlead
and ln Det snodesbond are simply referred to as “constant”. The formula
describes both the discrete and the continuous spectrum: for |ε| < ∆0 it
gives a sum of delta functions at the bound state energies, superimposed
on the smooth ρlead, while for |ε| > ∆0 these peaks are broadened because
the bound states can leak out into the superconductor.

2.8.3 Supercurrent in terms of node and bond matrices

In the absence of fermion parity conservation (the case treated in the main
text) we need to only retain the φ-independent term
∝ ln Det (1 − snodesbond) in the density of states (2.30). As derived in
Ref. [40], the supercurrent at temperature T is then a sum of the logarith-
mic determinant over fermionic Matsubara frequencies ωp = (2p+ 1)πkT ,

I0 = −kT 2e
~
d

dφ

∞∑
p=0

ln Det [1− snode(iωp)sbond(iωp)]

= kT
2e
~

∞∑
p=0

Tr
{

[1− snodesbond]−1snode
dsbond
dφ

}
ε=iωp

. (2.31)

At zero temperature the sum may be approximated by an integral,
kT
∑
p 7→

∫∞
0 dω/2π. The factor of 2e refers to the Cooper pair charge.

Ref. [40] has an additional factor of two because of spin degeneracy, which
here we do not assume.

The derivation of Eq. (2.31) in Ref. [40] was for Det (1 − sNsA), but
it holds equally well for Det (1− snodesbond) because it only relies on two
properties of ν that are universally valid: particle-hole symmetry, ν(ε) =
ν∗(−ε), and causality — ν(ε) being an analytic function for Im ε > 0.

When fermion parity is conserved the terms ρlead and
ln Det (1−snodesbond) in Eq. (2.30) must be retained even though they are
not φ-dependent, because they are needed to determine whether a set of
occupation numbers has the right fermion parity. It is for this reason that
we were careful to properly account for these φ-independent terms in the
calculation of the density of states. The expression for the supercurrent
in the fermion-parity conserving case contains also a sum over bosonic
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Matsubara frequencies Ωp = 2pπkT ,

I± = I0 − kT
2e
~
d

dφ
ln 1

2

[
1± eJlead

√
DetX(0)

× exp

 ∞∑
p=1

(−1)p ln DetX(iΩp/2)

 , (2.32)

X = (1− snodesbond)(snodesbond)−1/2, (2.33)

Jlead =
∫ ∞

0
dε ρlead(ε) ln tanh(ε/2kT ). (2.34)

The ± sign in Eq. (2.32) indicates even or odd fermion parity of the
superconducting ground state. The sign is + at φ = 0, and then switches
each time a pair of bound states crosses the Fermi level (ε = 0).

One limitation of the network representation is that we do not have a
formula for the ground-state fermion parity in terms of snode and sbond.
The derivation in Ref. [22] of such a formula in terms of sN and sA does
not carry over.
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