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Chapter 1

Introduction

1.1 Preface

The topic of this thesis is the modeling of electronic devices on the nanome-
ter scale. The need for such modeling appears because modern device
engineering requires going to lower and lower length scales, where clas-
sical circuit dynamics does not work anymore. The first commercially
available microprocessor from the early 1970’s, the Intel 4004 processor,
had a minimal feature size of 10 micrometers. In 2018 we are approach-
ing one thousand times smaller minimal dimensions. This 10 nanometer
length scale is still two orders of magnitude above the atomic limit, but
comparable to the electron wave length. A quantum mechanical model-
ing, including the effects of quantum interference, is required to properly
describe these devices.

Our focus is on lattice models, which describe how the electron dy-
namics is modified by the periodic potential of the atomic lattice. The
modification can be dramatic, as in graphene, a carbon monolayer, where
the conduction electrons move through the honeycomb lattice of carbon
atoms as if they were massless relativistic particles. We explore what
happens if the electrons are subject to an additional “superlattice” from
a copper substrate.

Superconductivity is a macroscopic quantum effect, that is modified
as well on the nanoscale. We consider the induced superconductivity in
topological insulators, which have an insulating bulk but a conducting
surface or edge. In one of these investigations we have collaborated with
an experimental group in Delft, so that our modelling could be directly
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applied to the measured data.
In the next subsections we introduce the topics that will play a central

role in the following chapters of the thesis.

1.2 Josephson junctions

A Josephson junction is a weak link between two superconductors. A
dissipationless supercurrent can flow through the junction and it can be
controlled by application of a magnetic field. For that reason a Joseph-
son junction is the basic circuit element in superconducting technology.
Applications include sensitive magnetometers [1], single-electron transis-
tors [2], quantum computers (in flux [3], charge [4], or phase [5] qubits),
scanning probe microscopy [6], and metrology [7, 8].

Our interest in Josephson junctions is as a probe of current-carrying
paths in the junction region. Different paths will include different amounts
of magnetic flux, so a study of the magnetic field dependence of the su-
percurrent will provide information on where the current flows. This is
of particular interest if the junction is formed out of a topological insula-
tor, which is predicted to have a current flow confined to the edge of the
material.

1.2.1 Josephson effect

Superconductors are characterized by a complex order parameter ∆ =
|∆|eiφ. The amplitude gives the energy gap for single-particle excitations
from the ground state [9]. The gap appears because an effective attraction
between electrons (which can have a variety of origins) imparts an energy
penalty for the appearance of an unpaired single electron. The phase of
∆ plays no role in a single homogenous superconductor, but when there
is a weak link, a phase difference can drive a supercurrent. This is the
Josephson effect.

The Josephson effect has two manifestations, as a stationary effect
(DC) and as a time-dependent effect (AC). We will be only concerned
with the DC Josephson effect. This effect is fully characterized by the de-
pendence of the free energy F (φ) on the superconducting phase difference
φ across the junction. The derivative gives the supercurrent according to

I(φ) = 2e
~
dF

dφ
. (1.1)
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Because φ appears as a phase factor eiφ in the order parameter, all physical
properties must be 2π-periodic functions of φ. This includes the super-
current, I(φ) = I(φ+ 2π).

A periodic function must have a maximum value, this is called the
critical current Ic = maxφ I(φ). The φ dependence can be complicated at
low temperatures, but at elevated temperatures all harmonics except the
lowest one are suppressed, and we have the simple relation

I(φ) = Ic sinφ. (1.2)

The size of the critical current depends on the properties of the junction.
If the weak link is formed by a point contact Ic is quantized in units of
e|∆|/~ [10].

1.2.2 Fraunhofer oscillations and Dynes-Fulton relation

Figure 1.1. Schematic image of a Josephson junction. If the current is passing
approximately along the y direction (grey arrows), the Dynes-Fulton analysis is
applicable.

When a magnetic field B penetrates the junction region, the critical
current depends on the enclosed flux in an oscillatory manner. These are
called Fraunhofer oscillations, because the electron interference effect that
gives rise to the oscillations is similar to the Fraunhofer diffraction pattern
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in optics. We will use the Fraunhofer oscillations to find the current flow
in the junction, and for that purpose we adopt a method developed by
Dynes and Fulton [11].

We describe the method for a rectangular two-dimensional Joseph-
son junction (se Fig. 1.1). Assume the existence of a local supercurrent
density function J(x, φ), which is non-uniform because of some local in-
homogeneities in the junction or, more interestingly, because of the edge
states in a topological insulator. The magnetic-field dependence enters
when we replace the phase φ by the gauge-invariant expression

γ(x) = φ− 2e
~

∫ L/2

−L/2
Ay(x, y) dy = φ− 2e

~
BxL, (1.3)

in the gauge A = (0, Bx, 0). The total current through the junction is

I(φ,B) =
∫ W/2

−W/2
J(x, φ− 2e

~
BxL) dx. (1.4)

We assume a sinusoidal current-phase relationship, J(x, φ) = Jc(x) sinφ,
with a spatially dependent critical current density Jc(x). If the junction
is ±x symmetric, so that Jc(x) is an even function of x, we may decouple
the coordinate and phase dependence,

I(φ,B) =
(∫ W/2

−W/2
Jc(x) cos

(2e
~
BLx

)
dx

)
sinφ, (1.5)

which leads to the critical current

Ic(B) =
∣∣∣∣∣
∫ W/2

−W/2
Jc(x) cos

(2e
~
BLx

)
dx

∣∣∣∣∣ . (1.6)

If Jc(x) is uniform inside the junction, we recover the classical Fraun-
hofer pattern,

Ic(B) = Ic(0)
∣∣∣∣sin(πΦ/Φ0)

πΦ/Φ0

∣∣∣∣ , (1.7)

where Φ = BWL is the total flux through the junction and Φ0 = h/2e
is the superconducting flux quantum. In contrast, if we have only edge
currents, Jc(x) = j0 [δ(x+W/2) + δ(x−W/2)], we obtain an entirely dif-
ferent B-dependence,

Ic(B) = Ic(0) |cos(πΦ/Φ0)| , (1.8)
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characteristic of a SQUID (a superconducting quantum interference de-
vice).

More generally, the dependence Jc(x) can be extracted from the mea-
sured Ic(B) by a Fourier transformation,

Jc(x) = L

Φ0

∫ ∞
−∞

Ĩc(B) cos (2πBLx/Φ0) dB. (1.9)

The tilde Ĩ indicates that one should distinguish +Ic from −Ic. In practice
this means that one has to switch between + and− every time, when Ic(B)
touches zero.

The Dynes-Fulton analysis is simple and informative, but the basic
assumption of a local supercurrent density function can give false results.
In fact, Chapters 2, 3, and 4 describe situations where we must go beyond
this approximation.

1.3 Graphene superlattices
Materials consisting of single-atom monolayers are actively studied for
two main reasons: Firstly, due to effectively 2D physics, they often have
unique physical properties. Secondly, they fit well into the modern elec-
tronics design, where elements are primarily located on a surface. For
many decades it was assumed that monolayers are not thermodynamically
stable, but would roll up as a scroll. We now know that this does not nec-
essarily happen. Andre Geim and Konstantin Novoselov were awarded
the 2010 Nobel Prize for their demonstration that carbon can form a sta-
ble monolayer, called graphene. The European Union research initiative
“Graphene Flagship” [12] aims at bringing graphene and other 2D mate-
rials from scientific laboratories to industrial applications.

Our research has addressed a particular topic in this arena, the modi-
fication of graphene by a periodic potential imposed by a commensurate
substrate, forming a “superlattice”.

1.3.1 Electronic properties

Graphene has a honeycomb lattice consisting of two triangular sublat-
tices. The unit cell has two atoms, labeled A and B. The tight-binding
Hamiltonian is

H = −t
∑
〈i,j〉

(a†ibj + b†iaj), (1.10)



6 Chapter 1. Introduction

with 〈i, j〉 indicating nearest neighbor atoms. The nearest-neighbor hop-
ping amplitude is t, and a, b denote fermion annihilation operators on the
A and B sublattice. Atoms on the same sublattice are not coupled by
nearest-neighbor hopping.

The first Brillouin zone is a hexagon, with a band structure that has a
conical singularity (a socalled Dirac point) at the corners of the hexagon.
Near a corner the Hamiltonian can be linearized in momentum k, resulting
in the Dirac Hamiltonian

H = ~vF

(
0 kx − iky

kx + iky 0

)
= ~vF (kxσx + kyσy). (1.11)

This 2 × 2 matrix operator acts on a two-component wave function ψ =
(ψA, ψB), containing the wave amplitudes on the A and B sublattice. The
Pauli matrices σx and σy are called “pseudospin” operators, because this
sublattice degree of freedom is not a real spin. (The real spin plays no
role in zero magnetic field.)

The energy spectrum of this Hamiltonian forms a Dirac cone,
E(k) = ±~vF |k|. (1.12)

The Fermi velocity vF = 3ta/2 ≈ 106 m/s plays the role of the speed
of light in the relativistic Dirac equation for particles without mass. For
this reason electrons in graphene are often referred as “massless”. The
Hamiltonian (1.11) has the property that the current operator

j = ∂H

∂k
= vFσ (1.13)

locks the sublattice degree of freedom to the direction of propagation —
one speaks of “pseudospin-momentum locking”.

In particle physics there is the notion that massless electrons on a lat-
tice must come in pairs, an effect known as “fermion-doubling”. The same
effect is operative in graphene: the two opposite corners of the hexagonal
Brillouin zone, labeled K and K’, are not related by a reciprocal lattice vec-
tor, so they are inequivalent “valleys” in the bandstructure. Each produces
a massless Dirac fermion, described by the same Hamiltonian (1.11). The
valley degree of freedom could be used to store information, and by anal-
ogy with electronics (information processing using the electron charge)
and spintronics (spin-based information processing) one speaks of “val-
leytronics”.

In this thesis we will propose a way to control the valley degree of
freedom by means of a superlattice potential of the Kekulé type.
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1.3.2 Kekulé-type superlattices
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Figure 1.2. Four types of low-energy dispersion relations for the family of
graphene superlattices with 6 atoms in the unit cell. The threefold enlargement
of the unit cell (scaled by

√
3 ×
√

3) folds the K and K’ Dirac points onto the
center of the Brillouin zone (the Γ point). Panels (a) and (b) correspond to
a hopping amplitude modulation of Kekulé-O type (panel a) or Kekulé-Y type
(panel b). Panels (c) and (d) correspond to a modulation of the atomic potential,
resulting in a linear triple-point crossing (panel c) or a quadratic band crossing
(panel d).

If graphene is deposited epitaxially on a substrate with the same hon-
eycomb lattice, the dominant effect of the substrate is to couple the K and
K’ valleys of the Dirac fermions [13, 14]. The effect depends on whether the
substrate predominantly modulates the hopping amplitudes or the atomic
potentials. When the hopping amplitudes are modulated one speaks of a
Kekulé-type superlattice. This name refers to the bond modulation in a
benzene ring, studied by the chemist August Kekulé. Four different types
of bandstructures in a graphene superlattice are shown in Fig. 1.2.

Our study of Kekulé-type graphene superlattices was motivated by an
experiment performed by Gutierrez et al. [15], who realized a Y-shaped
bond modulation by placing graphene on top of a copper substrate. That
experiment was interpreted in terms of a gapped spectrum, as in panel
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(a) of Fig. 1.2, however as we will show in Chapter 5, the spectrum re-
mains gapless as in panel (b) — but with an unexpected valley-momentum
locking.

1.4 Lattice models

Due to the rise of numerical computational power, numerical modeling
on a lattice is one of the most important methods in modern science.
Approximating a continuous differential or integral equation with a matrix
analog on a space-time grid is a natural way to reformulate a problem for
the machine, if analytical methods are not capable to solve it. Moreover,
in practice often it happens also vice versa: numerical modeling can give
some tips for actual way of solving the problem or point out interesting
parameter regimes to explore.

Often lattice models also arise naturally from the system structure.
First of all, this is an atomic-scale tight-binding model. Each atom is rep-
resented as a vertex on a graph, and interactions between them are bonds
between these vertices. This graph can be mapped to the Hamiltonian
matrix, if we know onsite energies for each vertex and hopping integrals
for each bond [16]. These unknown values can be taken, for example,
from density functional theory simulations, k · p perturbation theory, or
from experiment. In general, lattice models are convenient to use when-
ever the system has some kind of sparse structure. This sparsity need not
be obvious at first sight. For example, in Chapter 2 the sparse structure
arises not from the microscopic but from the macroscopic properties of
the device, namely, the existence of edge states.

1.4.1 Current calculations in tight-binding formalism

Experiments typically probe the system by measuring the electrical cur-
rent, so that is the quantity we are most interested in when we perform
a calculation. Here we briefly describe how the electrical current can be
obtained from a lattice model.

We start with a general form of a many-body tight-binding Hamilto-
nian for non-interacting particles on a lattice:

H = −
∑
i,j

Hijc
†
i (t)cj(t). (1.14)
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This Hamiltonian naturally appears either from discretization of a contin-
uous one (then usually square lattice is used), or from microscopic mate-
rial structure (typical example of this is graphene, each lattice site then
represents a real atom). We work in the Heisenberg representation where
operators that do not commute with the Hamiltonian are time dependent.

Let us split our system into two arbitrary parts A and B and compute
the current IBA from part A to part B,

IBA = dQB
dt

= −e
〈
dNB

dt

〉
, (1.15)

where NB(t) = ∑
i∈B c

†
i (t)ci(t) is a number operator of part B. Using the

Heisenberg equation of motion and the fermionic commutation relations,
we may rewrite this as

IBA = ie

~
〈[NB, H]〉 = ie

~

〈∑
i∈B

∑
j∈A

Hijc
†
i (t)cj(t)−Hjic

†
j(t)ci(t)

〉
. (1.16)

With the help of the lesser Green’s function

G<ij(t, t′) = i

~

〈
c†j(t′)ci(t)

〉
,

this expression becomes

IBA = e
∑
i∈B

∑
j∈A

(
HijG

<
ji(t, t)−HjiG

<
ij(t, t)

)
. (1.17)

This expression is convenient for a computation in a tight-binding model,
because it takes advantage from the sparsity of the Hamiltonian. We have
to compute only those values of the Green’s function, that correspond to
hoppings which conect subsystems A and B. Usually the number of such
sites is much less than the size of a system itself.

In equilibrium the Green’s function depends only on the time difference

G<ij(t, t′) = G<ij(t− t′, 0),

which means that we may replace G<ij(t, t) in Eq. (1.17) with G<ij(0, 0).
To compute it, we take a Fourier transform and switch to the frequency
domain,

G<ij(ω) =
∫ +∞

−∞
G<ij(t, 0)eiωtdt,

G<ij(t, t′) = 1
2π

∫ +∞

−∞
G<ij(ω)e−iω(t−t′)dω.

(1.18)
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To compute these expressions, let us define the retarded and advanced
Green’s functions,

GRij(t, t′) = − i
~

Θ(t− t′)
〈{
ci(t), c

†
j(t′)

}〉
,

GAij(t, t′) = i

~
Θ(t′ − t)

〈{
ci(t), c

†
j(t′)

}〉
.

(1.19)

As it is shown in [17], their Fourier transforms have a convenient form for
numerical computation,

G
R/A
ij (ω) = (~ω −H ± iη)−1. (1.20)

which in a finite system requires a numerical inversion of the Hamiltonian.
For an infinite system it needs to be modified by inclusion of the self-energy
of the translation-invariant part of the system ΣR or ΣA, usually referred
to as a “lead”:

G
R/A
ij (ω) =

(
~ω −H − ΣR/A ± iη

)−1
. (1.21)

In this thesis we make use of the Kwant toolbox [16], which implements
the calculation of the Green’s functions for arbitrary tight-binding Hamil-
tonians.

Once we have determined the Green’s functions, we proceed as follows.
In equilibrium one has [17, 18]

G<ij(ω) = if0(~ω)Aij(ω), (1.22)

where f0(ε) = (ε/kBT + 1)−1 is the Fermi distribution function at energy
ε and temperature T . The quantity Aij(ω) is the socalled spectral density,
defined by

Aij(ω) = i
(
GRij(ω)−GAij(ω)

)
. (1.23)

Using this relation, we may write the Green’s function in Eq. (1.17) as

G<ij(0, 0) = − 1
2π

∫ +∞

−∞
f0(~ω)

(
GRij(ω)−GAij(ω)

)
dω. (1.24)

We can evaluate this integral by contour integration in the complex
energy plane. The Fermi distribution function has poles at ω = iωp, where
ωp = (2p + 1)πkBT/~ for integer p is a fermionic Matsubara frequency.
The retarded Green’s function has poles only in lower half of the complex
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plane, and the advanced Green’s function only in the upper half. Closing
the contour in the upper half of the complex plane for the retarded Green’s
function and in the lower half for the advanced Green’s function, and
evaluating the integrals by summing over the residues at the poles, we
arrive at

G<ij(0, 0) = i
kBT

~

+∞∑
p=−∞

GRij(iωp). (1.25)

Now we may insert this into Eq. (1.17) to obtain an equation for the
equilibrium current,

IBA = i
ekBT

~

+∞∑
p=−∞

∑
i∈B

∑
j∈A

HijG
R
ji(iωp)−HjiG

R
ij(iωp)

= 2ekBT
~

+∞∑
p=0

∑
i∈B

∑
j∈A
=
(
HjiG

R
ij(iωp)−HijG

R
ji(iωp)

)
.

(1.26)

This result forms the basis of our calculations of the supercurrent through
a Josephson junction.

1.5 This thesis

Here we will give a brief overview of what will be explored in this thesis.

1.5.1 Chapter 2

Work, represented in this chapter, was motivated by V. S. Pribiag et. al. [19]
(at that moment this paper was not yet published). Authors were per-
forming superconducting quantum interference measurements in Joseph-
son junctions, made with InAs/GaSb quantum wells. InAs/GaSb is a
two-dimensional topological insulator [20, 21], therefore we expect exis-
tence of helical quantum spin Hall edge modes in the regime, when Fermi
energy is inside the topological gap. This means, that SNS junction can
be driven by gate from bulk-dominated regime to edge dominated (when
the transport happens through the helical modes, and bulk is gapped).
This transition was indeed observed in the SQI measurements, alongside
with more peculiar phenomenon, displayed on the Fig. 1.3.

In the edge-dominated regime, in addition to expected SQUID-like
dependency of switching current on transversal magnetic field (series of
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Figure 1.3. (a) Quantum interference pattern in Josephson junction with edge-
dominated transport through normal part, that demonstrates 2Φ0 periodicity in
SQUID-like Josephson junction instead of expected Φ0. Taken from Ref. [19].
(b) Current profile through the bulk of the junction, assuming validity of Dynes-
Fulton analysis [11]. This picture was our original motivation for the research,
represented in Chapter 2. Reprinted by permission from Springer Customer
Service Centre GmbH: Springer Nature, Nature Nanotechnology, V. S. Pribiag,
A. J.A. Beukman, F. Qu, M.C. Cassidy, C. Charpentier et al., “Edge-mode su-
perconductivity in a two-dimensional topological insulator”, Nature Nanotech.
10, 593–597 (2015), Copyright 2015.

equally spaced peaks of equal height with period of Φ0/A, where A is area
of Josephson junction and Φ0 = h/2e is a superconducting flux quantum),
authors observed a modulation between peaks amplitude, usually referred
to as even-odd effect or 2Φ0-periodicity. This could be explained by the
fermion-parity anomaly [22], but would require quasiparticle poisoning
time of order of tens of seconds [23], therefore it was extremely unlikely.
Other possibility would be an existence of a conducting channel in the
middle of SNS junction, but this requires fine-tuning and improbable to
occur in different devices, which happened in the experiments.

In this chapter we build a phenomenological model, that assumes ex-
istence of scattering between opposite quantum spin Hall edges along the
NS interfaces, that is formed due to the influence of superconductor, lo-
cally pushing the Fermi level from the topological gap to conduction band.
This opens several paths for even-odd beating in critical current to occur
(see Fig. 2.1). To describe the effect quantitatively, we build a network
model of quantum spin Hall Josephson junction and explore the relative
amplitude of even-odd beating versus coupling strength between helical
edge channel and non-helical channel near the NS interface of the junction.

https://doi.org/10.1038/nnano.2015.86
https://doi.org/10.1038/nnano.2015.86
https://doi.org/10.1038/nnano.2015.86
https://doi.org/10.1038/nnano.2015.86
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Figure 1.4. Schematic image of NS contact in experiment from Chapter 3.
(a) Geometry of NS contact, that leads to the formation of a conducting channel
along it, that enables transport between InAs edge channels. As it is shown in
Chapter 2, this can lead to even-odd beating on top of SQUID-like quantum
interference pattern. (b) Results of electrostatic simulations, that are performed
using a finite element Poisson solver, based on this geometry. The electron density
profile is changing as the top and bottom gate voltages are swept. The top gate
voltage is indicated in the legend. In the lower gate voltage traces the electrons
in the bulk are depleted while there is still a large electron density in the vicinity
of the contacts. For clarification, the x-axis value where the NbTiN contact is on
top of the InAs is indicated by the dashed line in both (a) and (b). The top gate is
screened close to the contacts due to the triangular shape of the top AlSb barrier.
Reprinted with permission from F.K. de Vries, T. Timmerman, V. P. Ostroukh,
J. van Veen et. al., Phys. Rev. Lett. 120, 047702 (2018). Copyright 2018 by the
American Physical Society.

1.5.2 Chapter 3

This chapter naturally continues the work from Chapter 2. At that mo-
ment it was already clarified, that alongside with topological edge chan-
nels, InAs/GaSb can host also trivial ones due to Fermi level pinning.
Here we focus on superconducting transport through these trivial edges.
Similarly to the previous chapter, we explore SNS junction, using su-
perconducting quantum interference measurements and varying chemical
potential in the normal part using top and bottom gates. Again, in the
edge-conducting regime even-odd beating is observed.

https://doi.org/10.1103/PhysRevLett.120.047702
https://doi.org/10.1103/PhysRevLett.120.047702
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On the experimental side of this chapter we describe in details exper-
iments performed and obtained results. From the theoretical side (which
was mainly the area of responsibility of author of this Thesis), we build
a tight-binding model of the system, reproduce experimental data and
demonstrate, that even-odd beating originates most probably from the
conducting channel along the NS interface of the Josephson junction.

1.5.3 Chapter 4

Figure 1.5. (a) Historically first observation of Abrikosov lattice from the ex-
periment of Essman and Träuble [24]. Each black dot is a cobalt particle, bound
to vortex core. Reprinted from U. Essmann and H. Träuble, “The direct obser-
vation of individual flux lines in type II superconductors”, Physics Letters A 24,
526–527 (1967), Copyright 1967, with permission from Elsevier. (b) Josephson
vortex line formation in diffusive Josephson junctions, with increasing magnetic
flux Φ, that penetrates normal part of the junction. Simulations by Cuevas and
Bergeret [25]. Colorscale corresponds to the pair correlation function amplitude
(which is effectively density of Cooper pairs), each minimum corresponds to the
Josephson vortex core. Reprinted figure with permission from J.C. Cuevas and
F. S. Bergeret, Phys. Rev. Lett. 99, 217002 (2007). Copyright 2007 by the
American Physical Society.

Vortices in superconductors are known already for a while and is still
a subject of investigations. For example, Abrikosov [26] proposed a vortex

https://doi.org/10.1016/0375-9601(67)90819-5
https://doi.org/10.1016/0375-9601(67)90819-5
https://doi.org/10.1016/0375-9601(67)90819-5
https://doi.org/10.1103/PhysRevLett.99.217002
https://doi.org/10.1103/PhysRevLett.99.217002
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lattice in type-II superconductors to explain critical field scaling near the
critical temperature (for type-II superconductors Hc ∝ Tc − T , instead of
Hc ∝

√
Tc − T for type-I superconductors). Each Abrikosov vortex carries

magnetic flux Φ0, usually they organize into triangular lattice for magnetic
field higher than first critical, or can be pinned to defects in the bulk [9].
Correct description of thermodynamical or transport properties of type-II
superconductors is impossible without taking them into account.

Another superconducting setup, where one can find vortices, is a Joseph-
son junction. Its two NS interfaces act as two reflecting surfaces in Fabry-
Pérot interferometer, and interference in this setup leads to the destruction
of current in several points along the 1D line in the normal part. [9]. These
points are cores of so-called Josephson vortices. Contrary to Abrikosov
vortices, they carry not quantized flux and generally appear in vortex-
antivortex pairs. They are also responsible for the formation of Fraun-
hofer oscillations of critical current in magnetic field in the case of short
wide Josephson junction:

Ic(Φ) = Ic0
sin(πΦ/Φ0)

Φ/Φ0
, (1.27)

where Φ = BWL is a magnetic flux, penetrating to the junction area, and
Φ0 = h/2e is a superconducting flux quantum. However, cases, when then
arrange to 2D structure instead of 1D chain, were unknown.

In this chapter we point out, that in the case of warped Fermi surface
is is possible also to achieve two-dimensional Josephson vortex lattice.
This happens, because current carriers receive preferred direction of mo-
tion, that drastically changes interference pattern inside a junction. We
illustrate this finding using semiclassical description and a tight-binding
model, both independently leading to the consistent picture. Also we ex-
plore, how this vortex lattice and edge effects impact Ic(B) dependency of
a junction and figure out, that it plays important role in high-B asymp-
totic behavior of critical current decay.

1.5.4 Chapter 5

Graphene offers a rich platform for wide range of applications in nano-
electronics. Conduction electrons in graphene have three distinct spin-like
quantum numbers: spin itself, sublattice pseudospin and valley isospin.
One of goals in graphene research is to provide handles for controlling these
degrees of freedom. Another important quest is opening controllable gap
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Figure 1.6. (a) Kek-O bond density modulation, that couples valleys in
graphene spectrum and opens a gap [27]. (b) Kek-Y bond density modulation,
that couples valleys in grapene spectrum and removes their degeneracy without
opening a gap, but inducing different velocities (Chapter 5). (c) An STM im-
age from, that demonstrates Kek-Y bond density modulation in graphene on top
of copper substrate [15]. Reprinted by permission from Springer Customer Ser-
vice Centre GmbH: Springer Nature, Nature Physics, C. Gutiérrez, C.-J. Kim,
L. Brown, T. Schiros, D. Nordlund et al., “Imaging chiral symmetry breaking
from Kekulé bond order in graphene”, Nature Phys. 12, 950 (2016), Copyright
2016.

in graphene spectrum, that will turn it into a semiconductor. That was
the motivation of Cristopher Gutierrez et. al. [15], who tried to realize
proposal [28] and open a gap by special bond density modulation (see
Fig. 1.6(a)). They successfully induced the superlattice, placing graphene
on top of Cu-111 substrate, but the bond modulation was different from
one expected (Fig. 1.6(b, c)).

In this chapter we investigate this type of graphene-based superlat-
tice. We demonstrate, that this type of modulation removes degeneracy
between two Dirac cones of graphene spectrum, leaving the spectrum non-
gapped. These Dirac cones are still symmetry-protected, as well as zeroth
Landau level, that stays at zero energy with a double degeneracy, while all
other Landau level get split. This is remarkably different from the expec-
tations and opens a way to control valley degree of freedom in transport
experiments in graphene or its analogues in optics or acoustics.
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