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Chapter 1

Introduction

1.1 Preface

The topic of this thesis is the modeling of electronic devices on the nanome-
ter scale. The need for such modeling appears because modern device
engineering requires going to lower and lower length scales, where clas-
sical circuit dynamics does not work anymore. The first commercially
available microprocessor from the early 1970’s, the Intel 4004 processor,
had a minimal feature size of 10 micrometers. In 2018 we are approach-
ing one thousand times smaller minimal dimensions. This 10 nanometer
length scale is still two orders of magnitude above the atomic limit, but
comparable to the electron wave length. A quantum mechanical model-
ing, including the effects of quantum interference, is required to properly
describe these devices.

Our focus is on lattice models, which describe how the electron dy-
namics is modified by the periodic potential of the atomic lattice. The
modification can be dramatic, as in graphene, a carbon monolayer, where
the conduction electrons move through the honeycomb lattice of carbon
atoms as if they were massless relativistic particles. We explore what
happens if the electrons are subject to an additional “superlattice” from
a copper substrate.

Superconductivity is a macroscopic quantum effect, that is modified
as well on the nanoscale. We consider the induced superconductivity in
topological insulators, which have an insulating bulk but a conducting
surface or edge. In one of these investigations we have collaborated with
an experimental group in Delft, so that our modelling could be directly
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applied to the measured data.
In the next subsections we introduce the topics that will play a central

role in the following chapters of the thesis.

1.2 Josephson junctions

A Josephson junction is a weak link between two superconductors. A
dissipationless supercurrent can flow through the junction and it can be
controlled by application of a magnetic field. For that reason a Joseph-
son junction is the basic circuit element in superconducting technology.
Applications include sensitive magnetometers [1], single-electron transis-
tors [2], quantum computers (in flux [3], charge [4], or phase [5] qubits),
scanning probe microscopy [6], and metrology [7, 8].

Our interest in Josephson junctions is as a probe of current-carrying
paths in the junction region. Different paths will include different amounts
of magnetic flux, so a study of the magnetic field dependence of the su-
percurrent will provide information on where the current flows. This is
of particular interest if the junction is formed out of a topological insula-
tor, which is predicted to have a current flow confined to the edge of the
material.

1.2.1 Josephson effect

Superconductors are characterized by a complex order parameter ∆ =
|∆|eiφ. The amplitude gives the energy gap for single-particle excitations
from the ground state [9]. The gap appears because an effective attraction
between electrons (which can have a variety of origins) imparts an energy
penalty for the appearance of an unpaired single electron. The phase of
∆ plays no role in a single homogenous superconductor, but when there
is a weak link, a phase difference can drive a supercurrent. This is the
Josephson effect.

The Josephson effect has two manifestations, as a stationary effect
(DC) and as a time-dependent effect (AC). We will be only concerned
with the DC Josephson effect. This effect is fully characterized by the de-
pendence of the free energy F (φ) on the superconducting phase difference
φ across the junction. The derivative gives the supercurrent according to

I(φ) = 2e
~
dF

dφ
. (1.1)
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Because φ appears as a phase factor eiφ in the order parameter, all physical
properties must be 2π-periodic functions of φ. This includes the super-
current, I(φ) = I(φ+ 2π).

A periodic function must have a maximum value, this is called the
critical current Ic = maxφ I(φ). The φ dependence can be complicated at
low temperatures, but at elevated temperatures all harmonics except the
lowest one are suppressed, and we have the simple relation

I(φ) = Ic sinφ. (1.2)

The size of the critical current depends on the properties of the junction.
If the weak link is formed by a point contact Ic is quantized in units of
e|∆|/~ [10].

1.2.2 Fraunhofer oscillations and Dynes-Fulton relation

Figure 1.1. Schematic image of a Josephson junction. If the current is passing
approximately along the y direction (grey arrows), the Dynes-Fulton analysis is
applicable.

When a magnetic field B penetrates the junction region, the critical
current depends on the enclosed flux in an oscillatory manner. These are
called Fraunhofer oscillations, because the electron interference effect that
gives rise to the oscillations is similar to the Fraunhofer diffraction pattern
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in optics. We will use the Fraunhofer oscillations to find the current flow
in the junction, and for that purpose we adopt a method developed by
Dynes and Fulton [11].

We describe the method for a rectangular two-dimensional Joseph-
son junction (se Fig. 1.1). Assume the existence of a local supercurrent
density function J(x, φ), which is non-uniform because of some local in-
homogeneities in the junction or, more interestingly, because of the edge
states in a topological insulator. The magnetic-field dependence enters
when we replace the phase φ by the gauge-invariant expression

γ(x) = φ− 2e
~

∫ L/2

−L/2
Ay(x, y) dy = φ− 2e

~
BxL, (1.3)

in the gauge A = (0, Bx, 0). The total current through the junction is

I(φ,B) =
∫ W/2

−W/2
J(x, φ− 2e

~
BxL) dx. (1.4)

We assume a sinusoidal current-phase relationship, J(x, φ) = Jc(x) sinφ,
with a spatially dependent critical current density Jc(x). If the junction
is ±x symmetric, so that Jc(x) is an even function of x, we may decouple
the coordinate and phase dependence,

I(φ,B) =
(∫ W/2

−W/2
Jc(x) cos

(2e
~
BLx

)
dx

)
sinφ, (1.5)

which leads to the critical current

Ic(B) =
∣∣∣∣∣
∫ W/2

−W/2
Jc(x) cos

(2e
~
BLx

)
dx

∣∣∣∣∣ . (1.6)

If Jc(x) is uniform inside the junction, we recover the classical Fraun-
hofer pattern,

Ic(B) = Ic(0)
∣∣∣∣sin(πΦ/Φ0)

πΦ/Φ0

∣∣∣∣ , (1.7)

where Φ = BWL is the total flux through the junction and Φ0 = h/2e
is the superconducting flux quantum. In contrast, if we have only edge
currents, Jc(x) = j0 [δ(x+W/2) + δ(x−W/2)], we obtain an entirely dif-
ferent B-dependence,

Ic(B) = Ic(0) |cos(πΦ/Φ0)| , (1.8)
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characteristic of a SQUID (a superconducting quantum interference de-
vice).

More generally, the dependence Jc(x) can be extracted from the mea-
sured Ic(B) by a Fourier transformation,

Jc(x) = L

Φ0

∫ ∞
−∞

Ĩc(B) cos (2πBLx/Φ0) dB. (1.9)

The tilde Ĩ indicates that one should distinguish +Ic from −Ic. In practice
this means that one has to switch between + and− every time, when Ic(B)
touches zero.

The Dynes-Fulton analysis is simple and informative, but the basic
assumption of a local supercurrent density function can give false results.
In fact, Chapters 2, 3, and 4 describe situations where we must go beyond
this approximation.

1.3 Graphene superlattices
Materials consisting of single-atom monolayers are actively studied for
two main reasons: Firstly, due to effectively 2D physics, they often have
unique physical properties. Secondly, they fit well into the modern elec-
tronics design, where elements are primarily located on a surface. For
many decades it was assumed that monolayers are not thermodynamically
stable, but would roll up as a scroll. We now know that this does not nec-
essarily happen. Andre Geim and Konstantin Novoselov were awarded
the 2010 Nobel Prize for their demonstration that carbon can form a sta-
ble monolayer, called graphene. The European Union research initiative
“Graphene Flagship” [12] aims at bringing graphene and other 2D mate-
rials from scientific laboratories to industrial applications.

Our research has addressed a particular topic in this arena, the modi-
fication of graphene by a periodic potential imposed by a commensurate
substrate, forming a “superlattice”.

1.3.1 Electronic properties

Graphene has a honeycomb lattice consisting of two triangular sublat-
tices. The unit cell has two atoms, labeled A and B. The tight-binding
Hamiltonian is

H = −t
∑
〈i,j〉

(a†ibj + b†iaj), (1.10)
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with 〈i, j〉 indicating nearest neighbor atoms. The nearest-neighbor hop-
ping amplitude is t, and a, b denote fermion annihilation operators on the
A and B sublattice. Atoms on the same sublattice are not coupled by
nearest-neighbor hopping.

The first Brillouin zone is a hexagon, with a band structure that has a
conical singularity (a socalled Dirac point) at the corners of the hexagon.
Near a corner the Hamiltonian can be linearized in momentum k, resulting
in the Dirac Hamiltonian

H = ~vF

(
0 kx − iky

kx + iky 0

)
= ~vF (kxσx + kyσy). (1.11)

This 2 × 2 matrix operator acts on a two-component wave function ψ =
(ψA, ψB), containing the wave amplitudes on the A and B sublattice. The
Pauli matrices σx and σy are called “pseudospin” operators, because this
sublattice degree of freedom is not a real spin. (The real spin plays no
role in zero magnetic field.)

The energy spectrum of this Hamiltonian forms a Dirac cone,
E(k) = ±~vF |k|. (1.12)

The Fermi velocity vF = 3ta/2 ≈ 106 m/s plays the role of the speed
of light in the relativistic Dirac equation for particles without mass. For
this reason electrons in graphene are often referred as “massless”. The
Hamiltonian (1.11) has the property that the current operator

j = ∂H

∂k
= vFσ (1.13)

locks the sublattice degree of freedom to the direction of propagation —
one speaks of “pseudospin-momentum locking”.

In particle physics there is the notion that massless electrons on a lat-
tice must come in pairs, an effect known as “fermion-doubling”. The same
effect is operative in graphene: the two opposite corners of the hexagonal
Brillouin zone, labeled K and K’, are not related by a reciprocal lattice vec-
tor, so they are inequivalent “valleys” in the bandstructure. Each produces
a massless Dirac fermion, described by the same Hamiltonian (1.11). The
valley degree of freedom could be used to store information, and by anal-
ogy with electronics (information processing using the electron charge)
and spintronics (spin-based information processing) one speaks of “val-
leytronics”.

In this thesis we will propose a way to control the valley degree of
freedom by means of a superlattice potential of the Kekulé type.
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1.3.2 Kekulé-type superlattices

0.2

0.1

0.0

0.1

0.2

E
[t
0
]

(a) (b)

0.10 0.05 0.00 0.05 0.10
k [1/a0]

0.2

0.1

0.0

0.1

0.2

E
[t
0
]

(c)

0.10 0.05 0.00 0.05 0.10
k [1/a0]

(d)

Figure 1.2. Four types of low-energy dispersion relations for the family of
graphene superlattices with 6 atoms in the unit cell. The threefold enlargement
of the unit cell (scaled by

√
3 ×
√

3) folds the K and K’ Dirac points onto the
center of the Brillouin zone (the Γ point). Panels (a) and (b) correspond to
a hopping amplitude modulation of Kekulé-O type (panel a) or Kekulé-Y type
(panel b). Panels (c) and (d) correspond to a modulation of the atomic potential,
resulting in a linear triple-point crossing (panel c) or a quadratic band crossing
(panel d).

If graphene is deposited epitaxially on a substrate with the same hon-
eycomb lattice, the dominant effect of the substrate is to couple the K and
K’ valleys of the Dirac fermions [13, 14]. The effect depends on whether the
substrate predominantly modulates the hopping amplitudes or the atomic
potentials. When the hopping amplitudes are modulated one speaks of a
Kekulé-type superlattice. This name refers to the bond modulation in a
benzene ring, studied by the chemist August Kekulé. Four different types
of bandstructures in a graphene superlattice are shown in Fig. 1.2.

Our study of Kekulé-type graphene superlattices was motivated by an
experiment performed by Gutierrez et al. [15], who realized a Y-shaped
bond modulation by placing graphene on top of a copper substrate. That
experiment was interpreted in terms of a gapped spectrum, as in panel
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(a) of Fig. 1.2, however as we will show in Chapter 5, the spectrum re-
mains gapless as in panel (b) — but with an unexpected valley-momentum
locking.

1.4 Lattice models

Due to the rise of numerical computational power, numerical modeling
on a lattice is one of the most important methods in modern science.
Approximating a continuous differential or integral equation with a matrix
analog on a space-time grid is a natural way to reformulate a problem for
the machine, if analytical methods are not capable to solve it. Moreover,
in practice often it happens also vice versa: numerical modeling can give
some tips for actual way of solving the problem or point out interesting
parameter regimes to explore.

Often lattice models also arise naturally from the system structure.
First of all, this is an atomic-scale tight-binding model. Each atom is rep-
resented as a vertex on a graph, and interactions between them are bonds
between these vertices. This graph can be mapped to the Hamiltonian
matrix, if we know onsite energies for each vertex and hopping integrals
for each bond [16]. These unknown values can be taken, for example,
from density functional theory simulations, k · p perturbation theory, or
from experiment. In general, lattice models are convenient to use when-
ever the system has some kind of sparse structure. This sparsity need not
be obvious at first sight. For example, in Chapter 2 the sparse structure
arises not from the microscopic but from the macroscopic properties of
the device, namely, the existence of edge states.

1.4.1 Current calculations in tight-binding formalism

Experiments typically probe the system by measuring the electrical cur-
rent, so that is the quantity we are most interested in when we perform
a calculation. Here we briefly describe how the electrical current can be
obtained from a lattice model.

We start with a general form of a many-body tight-binding Hamilto-
nian for non-interacting particles on a lattice:

H = −
∑
i,j

Hijc
†
i (t)cj(t). (1.14)
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This Hamiltonian naturally appears either from discretization of a contin-
uous one (then usually square lattice is used), or from microscopic mate-
rial structure (typical example of this is graphene, each lattice site then
represents a real atom). We work in the Heisenberg representation where
operators that do not commute with the Hamiltonian are time dependent.

Let us split our system into two arbitrary parts A and B and compute
the current IBA from part A to part B,

IBA = dQB
dt

= −e
〈
dNB

dt

〉
, (1.15)

where NB(t) = ∑
i∈B c

†
i (t)ci(t) is a number operator of part B. Using the

Heisenberg equation of motion and the fermionic commutation relations,
we may rewrite this as

IBA = ie

~
〈[NB, H]〉 = ie

~

〈∑
i∈B

∑
j∈A

Hijc
†
i (t)cj(t)−Hjic

†
j(t)ci(t)

〉
. (1.16)

With the help of the lesser Green’s function

G<ij(t, t′) = i

~

〈
c†j(t′)ci(t)

〉
,

this expression becomes

IBA = e
∑
i∈B

∑
j∈A

(
HijG

<
ji(t, t)−HjiG

<
ij(t, t)

)
. (1.17)

This expression is convenient for a computation in a tight-binding model,
because it takes advantage from the sparsity of the Hamiltonian. We have
to compute only those values of the Green’s function, that correspond to
hoppings which conect subsystems A and B. Usually the number of such
sites is much less than the size of a system itself.

In equilibrium the Green’s function depends only on the time difference

G<ij(t, t′) = G<ij(t− t′, 0),

which means that we may replace G<ij(t, t) in Eq. (1.17) with G<ij(0, 0).
To compute it, we take a Fourier transform and switch to the frequency
domain,

G<ij(ω) =
∫ +∞

−∞
G<ij(t, 0)eiωtdt,

G<ij(t, t′) = 1
2π

∫ +∞

−∞
G<ij(ω)e−iω(t−t′)dω.

(1.18)
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To compute these expressions, let us define the retarded and advanced
Green’s functions,

GRij(t, t′) = − i
~

Θ(t− t′)
〈{
ci(t), c

†
j(t′)

}〉
,

GAij(t, t′) = i

~
Θ(t′ − t)

〈{
ci(t), c

†
j(t′)

}〉
.

(1.19)

As it is shown in [17], their Fourier transforms have a convenient form for
numerical computation,

G
R/A
ij (ω) = (~ω −H ± iη)−1. (1.20)

which in a finite system requires a numerical inversion of the Hamiltonian.
For an infinite system it needs to be modified by inclusion of the self-energy
of the translation-invariant part of the system ΣR or ΣA, usually referred
to as a “lead”:

G
R/A
ij (ω) =

(
~ω −H − ΣR/A ± iη

)−1
. (1.21)

In this thesis we make use of the Kwant toolbox [16], which implements
the calculation of the Green’s functions for arbitrary tight-binding Hamil-
tonians.

Once we have determined the Green’s functions, we proceed as follows.
In equilibrium one has [17, 18]

G<ij(ω) = if0(~ω)Aij(ω), (1.22)

where f0(ε) = (ε/kBT + 1)−1 is the Fermi distribution function at energy
ε and temperature T . The quantity Aij(ω) is the socalled spectral density,
defined by

Aij(ω) = i
(
GRij(ω)−GAij(ω)

)
. (1.23)

Using this relation, we may write the Green’s function in Eq. (1.17) as

G<ij(0, 0) = − 1
2π

∫ +∞

−∞
f0(~ω)

(
GRij(ω)−GAij(ω)

)
dω. (1.24)

We can evaluate this integral by contour integration in the complex
energy plane. The Fermi distribution function has poles at ω = iωp, where
ωp = (2p + 1)πkBT/~ for integer p is a fermionic Matsubara frequency.
The retarded Green’s function has poles only in lower half of the complex
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plane, and the advanced Green’s function only in the upper half. Closing
the contour in the upper half of the complex plane for the retarded Green’s
function and in the lower half for the advanced Green’s function, and
evaluating the integrals by summing over the residues at the poles, we
arrive at

G<ij(0, 0) = i
kBT

~

+∞∑
p=−∞

GRij(iωp). (1.25)

Now we may insert this into Eq. (1.17) to obtain an equation for the
equilibrium current,

IBA = i
ekBT

~

+∞∑
p=−∞

∑
i∈B

∑
j∈A

HijG
R
ji(iωp)−HjiG

R
ij(iωp)

= 2ekBT
~

+∞∑
p=0

∑
i∈B

∑
j∈A
=
(
HjiG

R
ij(iωp)−HijG

R
ji(iωp)

)
.

(1.26)

This result forms the basis of our calculations of the supercurrent through
a Josephson junction.

1.5 This thesis

Here we will give a brief overview of what will be explored in this thesis.

1.5.1 Chapter 2

Work, represented in this chapter, was motivated by V. S. Pribiag et. al. [19]
(at that moment this paper was not yet published). Authors were per-
forming superconducting quantum interference measurements in Joseph-
son junctions, made with InAs/GaSb quantum wells. InAs/GaSb is a
two-dimensional topological insulator [20, 21], therefore we expect exis-
tence of helical quantum spin Hall edge modes in the regime, when Fermi
energy is inside the topological gap. This means, that SNS junction can
be driven by gate from bulk-dominated regime to edge dominated (when
the transport happens through the helical modes, and bulk is gapped).
This transition was indeed observed in the SQI measurements, alongside
with more peculiar phenomenon, displayed on the Fig. 1.3.

In the edge-dominated regime, in addition to expected SQUID-like
dependency of switching current on transversal magnetic field (series of
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Figure 1.3. (a) Quantum interference pattern in Josephson junction with edge-
dominated transport through normal part, that demonstrates 2Φ0 periodicity in
SQUID-like Josephson junction instead of expected Φ0. Taken from Ref. [19].
(b) Current profile through the bulk of the junction, assuming validity of Dynes-
Fulton analysis [11]. This picture was our original motivation for the research,
represented in Chapter 2. Reprinted by permission from Springer Customer
Service Centre GmbH: Springer Nature, Nature Nanotechnology, V. S. Pribiag,
A. J.A. Beukman, F. Qu, M.C. Cassidy, C. Charpentier et al., “Edge-mode su-
perconductivity in a two-dimensional topological insulator”, Nature Nanotech.
10, 593–597 (2015), Copyright 2015.

equally spaced peaks of equal height with period of Φ0/A, where A is area
of Josephson junction and Φ0 = h/2e is a superconducting flux quantum),
authors observed a modulation between peaks amplitude, usually referred
to as even-odd effect or 2Φ0-periodicity. This could be explained by the
fermion-parity anomaly [22], but would require quasiparticle poisoning
time of order of tens of seconds [23], therefore it was extremely unlikely.
Other possibility would be an existence of a conducting channel in the
middle of SNS junction, but this requires fine-tuning and improbable to
occur in different devices, which happened in the experiments.

In this chapter we build a phenomenological model, that assumes ex-
istence of scattering between opposite quantum spin Hall edges along the
NS interfaces, that is formed due to the influence of superconductor, lo-
cally pushing the Fermi level from the topological gap to conduction band.
This opens several paths for even-odd beating in critical current to occur
(see Fig. 2.1). To describe the effect quantitatively, we build a network
model of quantum spin Hall Josephson junction and explore the relative
amplitude of even-odd beating versus coupling strength between helical
edge channel and non-helical channel near the NS interface of the junction.

https://doi.org/10.1038/nnano.2015.86
https://doi.org/10.1038/nnano.2015.86
https://doi.org/10.1038/nnano.2015.86
https://doi.org/10.1038/nnano.2015.86
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Figure 1.4. Schematic image of NS contact in experiment from Chapter 3.
(a) Geometry of NS contact, that leads to the formation of a conducting channel
along it, that enables transport between InAs edge channels. As it is shown in
Chapter 2, this can lead to even-odd beating on top of SQUID-like quantum
interference pattern. (b) Results of electrostatic simulations, that are performed
using a finite element Poisson solver, based on this geometry. The electron density
profile is changing as the top and bottom gate voltages are swept. The top gate
voltage is indicated in the legend. In the lower gate voltage traces the electrons
in the bulk are depleted while there is still a large electron density in the vicinity
of the contacts. For clarification, the x-axis value where the NbTiN contact is on
top of the InAs is indicated by the dashed line in both (a) and (b). The top gate is
screened close to the contacts due to the triangular shape of the top AlSb barrier.
Reprinted with permission from F.K. de Vries, T. Timmerman, V. P. Ostroukh,
J. van Veen et. al., Phys. Rev. Lett. 120, 047702 (2018). Copyright 2018 by the
American Physical Society.

1.5.2 Chapter 3

This chapter naturally continues the work from Chapter 2. At that mo-
ment it was already clarified, that alongside with topological edge chan-
nels, InAs/GaSb can host also trivial ones due to Fermi level pinning.
Here we focus on superconducting transport through these trivial edges.
Similarly to the previous chapter, we explore SNS junction, using su-
perconducting quantum interference measurements and varying chemical
potential in the normal part using top and bottom gates. Again, in the
edge-conducting regime even-odd beating is observed.

https://doi.org/10.1103/PhysRevLett.120.047702
https://doi.org/10.1103/PhysRevLett.120.047702
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On the experimental side of this chapter we describe in details exper-
iments performed and obtained results. From the theoretical side (which
was mainly the area of responsibility of author of this Thesis), we build
a tight-binding model of the system, reproduce experimental data and
demonstrate, that even-odd beating originates most probably from the
conducting channel along the NS interface of the Josephson junction.

1.5.3 Chapter 4

Figure 1.5. (a) Historically first observation of Abrikosov lattice from the ex-
periment of Essman and Träuble [24]. Each black dot is a cobalt particle, bound
to vortex core. Reprinted from U. Essmann and H. Träuble, “The direct obser-
vation of individual flux lines in type II superconductors”, Physics Letters A 24,
526–527 (1967), Copyright 1967, with permission from Elsevier. (b) Josephson
vortex line formation in diffusive Josephson junctions, with increasing magnetic
flux Φ, that penetrates normal part of the junction. Simulations by Cuevas and
Bergeret [25]. Colorscale corresponds to the pair correlation function amplitude
(which is effectively density of Cooper pairs), each minimum corresponds to the
Josephson vortex core. Reprinted figure with permission from J.C. Cuevas and
F. S. Bergeret, Phys. Rev. Lett. 99, 217002 (2007). Copyright 2007 by the
American Physical Society.

Vortices in superconductors are known already for a while and is still
a subject of investigations. For example, Abrikosov [26] proposed a vortex

https://doi.org/10.1016/0375-9601(67)90819-5
https://doi.org/10.1016/0375-9601(67)90819-5
https://doi.org/10.1016/0375-9601(67)90819-5
https://doi.org/10.1103/PhysRevLett.99.217002
https://doi.org/10.1103/PhysRevLett.99.217002
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lattice in type-II superconductors to explain critical field scaling near the
critical temperature (for type-II superconductors Hc ∝ Tc − T , instead of
Hc ∝

√
Tc − T for type-I superconductors). Each Abrikosov vortex carries

magnetic flux Φ0, usually they organize into triangular lattice for magnetic
field higher than first critical, or can be pinned to defects in the bulk [9].
Correct description of thermodynamical or transport properties of type-II
superconductors is impossible without taking them into account.

Another superconducting setup, where one can find vortices, is a Joseph-
son junction. Its two NS interfaces act as two reflecting surfaces in Fabry-
Pérot interferometer, and interference in this setup leads to the destruction
of current in several points along the 1D line in the normal part. [9]. These
points are cores of so-called Josephson vortices. Contrary to Abrikosov
vortices, they carry not quantized flux and generally appear in vortex-
antivortex pairs. They are also responsible for the formation of Fraun-
hofer oscillations of critical current in magnetic field in the case of short
wide Josephson junction:

Ic(Φ) = Ic0
sin(πΦ/Φ0)

Φ/Φ0
, (1.27)

where Φ = BWL is a magnetic flux, penetrating to the junction area, and
Φ0 = h/2e is a superconducting flux quantum. However, cases, when then
arrange to 2D structure instead of 1D chain, were unknown.

In this chapter we point out, that in the case of warped Fermi surface
is is possible also to achieve two-dimensional Josephson vortex lattice.
This happens, because current carriers receive preferred direction of mo-
tion, that drastically changes interference pattern inside a junction. We
illustrate this finding using semiclassical description and a tight-binding
model, both independently leading to the consistent picture. Also we ex-
plore, how this vortex lattice and edge effects impact Ic(B) dependency of
a junction and figure out, that it plays important role in high-B asymp-
totic behavior of critical current decay.

1.5.4 Chapter 5

Graphene offers a rich platform for wide range of applications in nano-
electronics. Conduction electrons in graphene have three distinct spin-like
quantum numbers: spin itself, sublattice pseudospin and valley isospin.
One of goals in graphene research is to provide handles for controlling these
degrees of freedom. Another important quest is opening controllable gap
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Figure 1.6. (a) Kek-O bond density modulation, that couples valleys in
graphene spectrum and opens a gap [27]. (b) Kek-Y bond density modulation,
that couples valleys in grapene spectrum and removes their degeneracy without
opening a gap, but inducing different velocities (Chapter 5). (c) An STM im-
age from, that demonstrates Kek-Y bond density modulation in graphene on top
of copper substrate [15]. Reprinted by permission from Springer Customer Ser-
vice Centre GmbH: Springer Nature, Nature Physics, C. Gutiérrez, C.-J. Kim,
L. Brown, T. Schiros, D. Nordlund et al., “Imaging chiral symmetry breaking
from Kekulé bond order in graphene”, Nature Phys. 12, 950 (2016), Copyright
2016.

in graphene spectrum, that will turn it into a semiconductor. That was
the motivation of Cristopher Gutierrez et. al. [15], who tried to realize
proposal [28] and open a gap by special bond density modulation (see
Fig. 1.6(a)). They successfully induced the superlattice, placing graphene
on top of Cu-111 substrate, but the bond modulation was different from
one expected (Fig. 1.6(b, c)).

In this chapter we investigate this type of graphene-based superlat-
tice. We demonstrate, that this type of modulation removes degeneracy
between two Dirac cones of graphene spectrum, leaving the spectrum non-
gapped. These Dirac cones are still symmetry-protected, as well as zeroth
Landau level, that stays at zero energy with a double degeneracy, while all
other Landau level get split. This is remarkably different from the expec-
tations and opens a way to control valley degree of freedom in transport
experiments in graphene or its analogues in optics or acoustics.

https://doi.org/10.1038/nphys3776
https://doi.org/10.1038/nphys3776
https://doi.org/10.1038/nphys3776


Chapter 2

Even-odd flux quanta effect
in the Fraunhofer
oscillations of an
edge-channel Josephson
junction

2.1 Introduction

Superconductor–normal-metal–superconductor (SNS) junctions with edge
channel conduction in the normal region are governed by the interplay
of charge e and charge 2e transport: charge can only enter or exit the
superconductor in units of 2e, but in the normal region this Cooper pair
can be split over opposite edges, when an electron incident on the NS
interface along one edge is Andreev reflected as a hole along the opposite
edge.

For quantum Hall edge channels this mechanism produces Fraunhofer
oscillations (oscillations of the critical current with enclosed flux Φ) hav-

The contents of this chapter have been published and reprinted with permission
from B. Baxevanis, V. P. Ostroukh, and C.W. J. Beenakker, Phys. Rev. B 91, 041409(R)
(2015). Copyright 2015 by the American Physical Society.

https://doi.org/10.1103/PhysRevB.91.041409
https://doi.org/10.1103/PhysRevB.91.041409
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Figure 2.1. Beating mechanism for the even-odd effect in the Fraunhofer oscil-
lations. For uncoupled edges the flux periodicity is h/2e, corresponding to the
transfer of a charge-2e Cooper pair along the left or right edge channel (blue/red
hatched strips). The edge channels are coupled by a conducting path along the
NS interface, allowing for a circulating loop of charge ±e with h/e flux period-
icity. The circulating loop may be partly e-type (red lines) and partly h-type
(blue), as in panel a, or it may be entirely of one charge-type (entirely e, as in
panel b, or entirely h). Both loops contribute to the even-odd effect, but panel a
dominates when the Andreev reflection probability Γ is small. (It is of order Γ,
while panel b is of order Γ2.)

ing a fundamental period of h/e, twice the usual periodicity [29]. These
are chiral edge channels, so Andreev reflection along the edge of incidence
is forbidden and only the circulating path of Fig. 2.1(a) contributes to
the supercurrent. When the edge channels allow for propagation in both
directions, the critical current includes the usual h/2e-periodic contribu-
tions from Andreev reflection along a single edge, and further h/e periodic
contributions from circulating paths without charge transfer (Fig. 2.1(b)).

Here we investigate this beating of h/e and h/2e periodic contribu-
tions to the Fraunhofer oscillations. We are motivated by recent work
on proximity induced superconductivity in quantum spin-Hall (QSH) in-
sulators1 [19, 23, 31–34], which in one series of experiments [19] showed
Fraunhofer oscillations with an even-odd effect: Large peaks in the criti-
cal current at even multiples of h/2e alternate with smaller peaks at odd
multiples.

The QSH insulator has helical edge channels (with direction of motion
tied to the spin), so we consider that case in what follows (although the
beating mechanism for the even-odd effect does not rely on helicity). Fol-

1 G. Tkachov et. al. [30] calculate the flux dependence of Im(Φ) = |I(φ0,Φ)| at
the fixed phase φ0 that maximizes the zero-field supercurrent I(φ, 0). This partial
maximization provides a lower bound to the critical current Ic(Φ) = maxφ |I(φ,Φ)|,
but the flux-periodicity of Ic cannot be deduced from Im. Although authors find an
even-odd effect in Im, the critical current has no even-odd effect in their model.



2.2 Edge-channel Josephson junction 19

lowing Ref. [23] we assume that the superconductors dope the contacted
QSH insulator, locally pushing the Fermi level in the conduction band.
The broad conducting pathway that appears along the NS interface will
be gapped by the superconducting proximity effect, but a narrow gapless
channel may remain because superconductivity only becomes effective at
some penetration length ξ0 from the NS interface. (Ref. [19] estimates
ξ0 & 240 nm, comparable to the estimated width of the edge states.) This
channel provides a connection between the helical edge states that is non-
helical, meaning that either spin can propagate in both directions.

To describe the phase-coherent coupling of helical and non-helical edge
channels we study a network model of the Josephson junction, inspired by
the spectral theory of graphs [35] and as a counterpart to network models
of the quantum Hall effect [36, 37]. As we will show, all information on
the temperature and flux dependence of the supercurrent can be encoded
in the product of a permutation matrix, representing the connectivity of
the network, and a block-diagonal matrix describing the relation between
incoming and outgoing modes at each node of the network.

2.2 Edge-channel Josephson junction
We consider the Josephson junction geometry of Fig. 2.2(a). A current
I is passed between two superconducting electrodes at phase difference
φ, related to the voltage V over the junction by the Josephson relation
dφ/dt = (2e/~)V . Upon increasing the current bias, the junction switches
from zero to finite dc voltage at a critical current Ic, dependent on the
enclosed magnetic flux Φ. If phase fluctuations can be neglected (for a
low-impedance environment), the critical current is given by

Ic(Φ) = maxφ |I(φ,Φ)|. (2.1)

We seek the oscillatory Φ-dependence of Ic (Fraunhofer oscillations) in a
junction where the current flows along the edges, rather than through the
bulk.

Referring to Fig. 2.2(b), the junction has widthW (edges at x = 0,W )
and length L (normal-superconductor or NS interfaces at y = 0, L). We
choose a gauge where the superconducting pair potential ∆0 is real. A
vector potential A = Ayŷ in the y-direction,

Ay = Φx
LW

+ Φ0φ

2π δ(y − L/2), Φ0 ≡
h

2e, (2.2)
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Figure 2.2. Josephson junction in a current-biased circuit (panel a), to study
the dependence of the critical current Ic on the magnetic flux Φ enclosed by a
circulating edge channel (panel b). The network model of the Josephson junction
is illustrated in panel c. Helical modes (red, amplitudes a↑, a↓) and non-helical
modes (blue, amplitudes b↑, b↓) are coupled at four nodes by a scattering matrix
sn, relating incoming and outgoing amplitudes.

then accounts for the phase difference between the NS interfaces.

2.3 Network model

To capture the essence of the problem, while still allowing for analytical
solution, we represent the scattering processes by a network (Fig. 2.2(c)).
At the nodes n = 1, 2, 3, 4 the helical edge channels along x = 0,W are
coupled to a single-mode non-helical channel along y = 0, L. Each node
has a 4 × 4 electronic scattering matrix sn, which relates incoming and
outgoing wave amplitudes of the helical channel, a = (a↑, a↓), and the
non-helical channel, b = (b↑, b↓), according to

(
a
b

)
out

= sn

(
a
b

)
in
. (2.3)
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The short-range scattering at a node can be taken as energy-independent,
so the hole scattering matrix is simply the complex conjugate s∗n. We
collect these matrices in the unitary matrix snode = s1⊕ s∗1⊕· · ·⊕ s4⊕ s∗4,
consisting of eight 4× 4 blocks arranged along the diagonal.

Since the effect of the magnetic field is only felt on long length scales,
we can assume that sn preserves time-reversal symmetry. The requirement

sn =
(
σy 0
0 σy

)
sT
n

(
σy 0
0 σy

)
, (2.4)

together with unitarity, s†nsn = 1, imposes the form [38]

sn =
(

e2iψnσ0
√

Γn eiψn+iψ′nUn
√

1− Γn
eiψn+iψ′nU †n

√
1− Γn −e2iψ′nσ0

√
Γn

)
. (2.5)

Helical and non-helical channels are coupled with probability 1−Γn, while
Un ∈ SU(2) describes the spin-mixing associated with that coupling. (Eq.
2.4 is satisfied because σyUT

n σy = U †n for any SU(2) matrix U(n).) Time-
reversal symmetry forbids spin mixing within the helical or non-helical
channel, which is why the upper-left and lower-right blocks of sn are pro-
portional to the 2× 2 unit matrix σ0.

The nodes are connected by a unitary bond matrix sbond, which is the
product of a diagonal matrix of phase factors and a permutation matrix.
We decompose sbond = sleft ⊕ sright ⊕ sbottom ⊕ stop in terms of matrices
sleft and sright that connect the a-amplitudes (along x = 0 and x = W ,
with phase factor eiεL/~v exp[iτz(e/~)

∫
Ay dy]) and matrices sbottom and

stop that connect the b-amplitudes (along y = 0 and y = L, with phase
factor eiεW/~v). Andreev reflection is included in sleft and sright via matrix
elements that connect a node to itself, switching electron-hole and spin-
band with phase factor

sA = iατy ⊗ σy, α(ε) = iε/∆0 +
√

1− ε2/∆2
0. (2.6)

(The Pauli matrices τi and σi act, respectively, on the electron-hole e, h
and spin ↑, ↓ degrees of freedom.)

Knowledge of snode and sbond determines the entire spectrum of the
network [35]. A bound state at energy |ε| < ∆0 corresponds to a unit
eigenvalue ofM(ε) = snodesbond(ε), leading to the determinantal equation
Det [1 −M(ε)] = 0. The density of states of the continuous spectrum at
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|ε| > ∆0 is given by

ρ(ε) = − 1
π

d

dε
Im ln Det[1−M(ε+ i0+)] + constant, (2.7)

where the “constant” refers to φ-independent terms (see Sec. 2.8 for defi-
vation). The Josephson current at temperature T then follows from [39,
40]:

I(φ,Φ) = −kT 2e
~
d

dφ

∞∑
p=0

ln Det [1−M(iωp)], (2.8)

as a sum over fermionic Matsubara frequencies ωp = (2p + 1)πkT . This
expression assumes that the system equilibrates without restrictions on
the fermion parity, so it holds on time scales long compared to the quasi-
particle poisoning time (otherwise there would appear an additional sum
over bosonic Matsubara frequencies) [22].

2.4 Uncoupled edges
When kT � ~v/W there is no phase-coherent coupling between the edges
at x = 0 and x = W . We may then set stop and sbottom to zero in the
evaluation of the determinant in Eq. 2.8, with the result

I(φ,Φ) = Iedge(φ) + Iedge(φ+ 2πΦ/Φ0), (2.9)

Iedge(φ) = kT
4e
~

sinφ
∞∑
p=0

[2 cosφ+ ζ(ωp) + 1/ζ(ωp)]−1,

ζ(ω) = Γ2e−2ωL/~v
[√

1 + ω2/∆2
0 − ω/∆0

]2
. (2.10)

(To simplify the formulas we have taken identical Γn ≡ Γ.)
For Γ → 1 we recover the short-junction-to-long-junction crossover

formula of Ref. [22], which in the short-junction limit L� ~v/∆0 and for
low temperatures kT � ∆0 results in a critical current

Ic(Φ) = e∆0
2~

(
1 + | cos(πΦ/Φ0)|

)
(2.11)

with minima that are offset from zero, in agreement with Ref. [23]. For
Γ � 1, still in the short-junction and low-temperature limit, we find
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instead

I(φ,Φ) = I0 sin(φ+ πΦ/Φ0) cos(πΦ/Φ0) (2.12)

⇒ Ic(Φ) = I0| cos(πΦ/Φ0)|, I0 = 8e∆0
3π~ Γ2. (2.13)

For these uncoupled edges the critical current is h/2e periodic in Φ.

2.5 Coupled edges
The effect on the supercurrent of a phase-coherent coupling of the edges
can be studied perturbatively in powers of e−πkTW/~v, by expanding the
logarithmic determinant in Eq. 2.8 with the help of the formula

ln Det (1−M0 − δM) = ln Det (1−M0)

−
∞∑
n=1

1
n

Tr
[
(1−M0)−1δM

]n
. (2.14)

The lowest order contribution with h/e periodicity in Φ is given by

δIh/e = kT
2e
~
d

dφ
Tr snode(1− sleftsnode)−1stopsnode

· (1− srightsnode)−1sbottom
∣∣
ε=iω0

+ {sleft ↔ sright}, (2.15)

describing a quasiparticle that encircles the junction clockwise or anti-
clockwise.

The effect of this contribution is largest for small Andreev reflection
probability Γn � 1. To first order in Γ, and in the low-temperature,
short-junction limit, we find

δIh/e = (8e/~)kTe−2πkTW/~v sin(φ+ πΦ/Φ0)
×
(√

Γ1Γ2 +
√

Γ1Γ4 +
√

Γ3Γ4 +
√

Γ3Γ2
)

× sin(γ2 − γ4) sin(γ1 − γ3). (2.16)

(To simplify a lengthy general expression we made a definite choice Un =
eiγnσx , ψn = ψ′n = 0 for the spin-mixing matrices.) Without spin mixing,
for γn = 0, the contribution 2.16 of order Γ vanishes, but there is a nonzero
contribution of order Γ2,

δIh/e = (8e/~)kTe−2πkTW/~v[(sin(φ− πΦ/Φ0)Γ1Γ2

+ sin(φ+ 3πΦ/Φ0)Γ3Γ4)
]
. (2.17)



24 Chapter 2. Even-odd effect in the Fraunhofer oscillations

Figure 2.3. Even-odd effect in the Fraunhofer oscillations of the critical current
due to the beating of h/e and h/2e oscillations. The curves are calculated with
spin mixing from Eq. 2.18 (solid lines, dominated by the path of Fig. 2.1(a)) and
without spin mixing from Eq. 2.19 (dashed lines, dominated by the path of Fig.
2.1(b)).

The contributions 2.16 and 2.17 correspond to the pathways show in Figs.
2.1(a) and 2.1(b), respectively.

Addition of δIh/e to the zeroth order supercurrent 2.12 (for identical
Γn ≡ Γ) gives the critical current

Ic(Φ) = I0| cos(πΦ/Φ0) + f |, (2.18a)

f = 12πkT
∆0Γ e−2πkTW/~v sin(γ2 − γ4) sin(γ1 − γ3), (2.18b)

with spin mixing at the nodes, and

Ic(Φ) = I0| cos(πΦ/Φ0) + f ′ cos(2πΦ/Φ0)|, (2.19a)
f ′ = (6πkT/∆0)e−2πkTW/~v, (2.19b)

without spin mixing. Both types of Fraunhofer oscillations are h/e pe-
riodic, with an even-odd effect of relative magnitude f or f ′, see Fig.
2.3.
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Figure 2.4. Fraunhofer oscillations for the experimentally relevant parameters
given in the text, calculated from Eq. 2.8 for three different temperatures.

2.6 Comparison with experiment

Turning now to the experiment that motivated this analysis [19], we first
of all notice that the observed even-odd effect appears already for the first
few peaks around zero field. An explanation in terms of a Lorentz-force
induced asymmetry in the current distribution is therefore unlikely2. The
h/e-periodic Josephson effect of Majorana zero-modes [45] is spoiled, on
the time scale of the experiment, by any small amount of quasiparticle
poisoning [23], so an explanation along these lines is not viable. A con-
ducting pathway through the bulk, parallel to the edges, can explain the
data [19] — but only if it is located within 10% of the device center (the
flux Φ needs to be accurately partitioned into twice Φ/2). The mechanism
proposed here does not require any such fine tuning.

The InAs/GaSb quantum well with Ti/Al electrodes of Ref. [19] has
superconducting gap ∆0 = 0.125 meV and edge state velocity[46] v =
4.6 · 104 m/s. We take the same v for the non-helical channel. There
is some uncertainty in the effective dimensions of the junction, we set

2 In a device with aspect ratio W/L the Lorentz force produces an even-odd effect
in the Fraunhofer oscillations for flux Φ & (W/L)h/e, as calculated in Refs. [41, 42] and
measured in Refs. [43, 44].



26 Chapter 2. Even-odd effect in the Fraunhofer oscillations

�2 �1 0 1 2

� [h/2e]

0

0.1

0.2

0.3

I c
[n

A
]

Figure 2.5. The solid curve is the T = 20 mK critical current of Fig. 2.4, without
phase shifts at the scattering nodes, while the dashed curve shows the inverted
even-odd effect for ψ′1 + ψ′3 = π (and all other phase shifts kept at zero).

L = 0.5µm, W = 3.5µm. We then have comparable L and ξ0 = ~v/∆0,
so we calculate the supercurrent directly from Eq. 2.8 — without taking
the short-junction limit. The observed critical current in the 0.25 nA range
implies an Andreev reflection probability Γ ≈ 0.2, which is the value we
take for Γn at all four scattering nodes.

The degree of spin mixing upon propagation along the nonhelical chan-
nel is quantified by setting U1U

†
3 = U2U

†
4 = eiγσx . The value of γ is un-

known, we take a moderately strong spin mixing with γ = π/6, but note
that the even-odd effect exists also without any spin mixing (see Fig. 2.3).
The critical current shown in Fig. 2.4 exhibits an even-odd effect of a
similar magnitude as observed experimentally [19]. The temperature de-
pendence is somewhat stronger: In the experiment traces of the even-odd
effect are still visible at 100 mK, but not in our calculation.

The beating mechanism has one qualitative feature that can help to
distinguish it from other explanations of the even-odd effect: The sign
of the effect — whether the Φ = 0 peak is larger or smaller than the
Φ = h/2e peak — depends on microscopic details. This is evident from
Eq. 2.18, in that the offset f can be of either sign. A similar inversion of
the even-odd effect can be induced by varying the phase shifts in the node
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scattering matrix 2.5, as we show in Fig. 2.5. Observation of an even-odd
effect with the smallest peak at even multiples of h/2e would constitute
strong support for the beating mechanism, but no such inversion has been
found so far [19].

In our analysis we have assumed helical edge state transport, appro-
priate for a quantum spin-Hall insulator, but the beating mechanism itself
would apply also to nonhelical edge conduction. As was also pointed out
in the experimental paper [19], the Fraunhofer oscillations are a sensi-
tive probe of the current distribution, but cannot distinguish between a
topologically trivial or nontrivial Josephson junction. That would require
observation of a quantized conductance or supercurrent.

2.7 Conclusion

We have analyzed the effect of inter-edge coupling on the Fraunhofer os-
cillations in a quantum spin-Hall Josephson junction. A network model
allows for an efficient description of the beating of h/2e periodic intra-
edge and h/e periodic inter-edge contributions to the critical current. The
even-odd effect has comparable magnitude to what is observed in a recent
experiment [19], see Fig. 2.4, but the sample-dependent inversion of Fig.
2.5 has not been observed.

We note that the beating mechanism studied here in the two-dimensional
geometry of a quantum spin-Hall insulator may apply more generally when
a pair of conducting pathways enclosing different flux interferes. Indeed,
a recent work studies a similar beating effect in a one-dimensional wire
geometry [47], to explain multi-periodic Fraunhofer oscillations observed
in Bi nanowires [48].

2.8 Appendix

We describe in more detail the network model of a Josephson junction
that we have introduced and applied in the main text, and in particular
give a selfcontained derivation of the formula (2.7) for the supercurrent
through the network.
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Figure 2.6. Network model of a Josephson junction. The normal metal leads
are attached to the superconductor as an intermediate step in the derivation of
the scattering matrix formula for the supercurrent. The final expression (2.31)
contains only the scattering matrices of the nodes and bonds in the junction
region. Andreev reflection at the interface with the superconductor is included
in the bond matrix, via Eq. (2.20).

2.8.1 Construction of node and bond scattering matrices

The scattering theory of a Josephson junction developed in Ref. [39]
expresses the supercurrent in terms of the two scattering matrices sN
of the normal region (N) and sA of Andreev reflection at the normal-
superconductor (NS) interfaces. While the matrix sA has a simple expres-
sion, see Eq. (2.6), calculation of sN can be quite complicated.

In this work we have used an alternative network representation, where
the supercurrent is expressed in terms of the scattering matrices snode and
sbond of the nodes and bonds of a network (see Fig. 2.6). These matrices
are the direct sum of scattering matrices of individual nodes and bonds,
so they have a simple structure that can be written down without any
calculation.

The node matrix snode is block-diagonal with the scattering matrices
sn of node n = 1, 2, . . . on the diagonal. Because electrons and hole are
uncoupled in the normal region, each matrix sn is itself block-diagonal
with an electron block sn,e(ε) and a hole block sn,h(ε) = s∗n,e(−ε). We
thus have snode = s1e ⊕ s1h ⊕ s2e ⊕ s2h ⊕ · · · .

The bond matrix sbond = UP is the product of a diagonal matrix U
of phase factors and a permutation matrix P that maps the indices of
outgoing modes to incoming modes. The mode indices are spin s ∈ {↑
, ↓} ≡ {+1,−1}, particle-hole t ∈ {e, h} ≡ {+1,−1}, and possibly also
an orbital degree of freedom ν ∈ {1, 2, . . .}. (In the system considered in
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the main text all bonds support only a single orbital mode.) The matrix
element 〈nν ′s′t′|sbond|mνst〉 is zero unless a mode with spin s of particle-
hole type t that is outgoing from node m in orbital mode ν is incoming
onto node n in orbital mode ν ′ as a spin-s′ type-t′ particle. There are
no “dangling bonds”, meaning that sbond has a single non-zero element in
each row and column.

Andreev reflection at the NS interface is included in sbond via the
matrix elements

〈nν ′s′t′|sbond|mνst〉 = −iα st δmnδνν′δs′,−sδt′,−t,

α(ε) = ie−i arccos(ε/∆0) = iε/∆0 +
√

1− ε2/∆2
0.

(2.20)

Please note that this definition of α differs by a factor i with that used
in Ref. [39]; we prefer it this way because now α(ε) = α∗(−ε), so it is
particle-hole symmetric. The branch of the square root of 1 − ε2/∆2

0 is
fixed by Reα(ε + i0+) > 0, so that for |ε| > ∆0 one has α = iε/∆0 −
i(sign ε)

√
ε2/∆2

0 − 1.
For |ε| < ∆0 one has |α| = 1, hence Eq. (2.20) describes Andreev

reflection with unit probability. This is a matter of convenience, because
a nonzero probability of normal reflection at the NS interface can be ac-
counted for by inserting a node just before the interface. (See Ref. [49] for
an alternative scattering formulation that does not separate normal and
Andreev reflection.)

The simplification afforded by the network representation in the con-
struction of the scattering matrices comes at a price: the matrix snodesbond
is sparse, but its dimension is much larger than the dimension of sNsA.
We have not studied this systematically, but we expect both representa-
tions in terms of snodesbond and sNsA to have the same computational
complexity, scaling ∝ N3 with the number of nodes.

2.8.2 Density of states in terms of node and bond matrices

To calculate the density of states of the Josephson junction it is conve-
nient to attach normal metal leads to the superconductors (see Fig. 2.6).
The leads support the propagating modes that form basis states for the
scattering matrix SSNS(ε) of the junction. (Without the normal leads we
would only have propagating modes above the gap, for |ε| > ∆0.)

The density of states ρ(ε) is determined by the unitary scattering
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matrix SSNS via the general expression[50]

ρ(ε) = 1
2π

d

dε
Im ln DetSSNS(ε+ i0+). (2.21)

In Ref. [39] the determinant of SSNS was related to the determinant of
1− sNsA. Here we seek to derive a similar expression in terms of the node
and bond matrices of the network.

For |ε| < ∆0 the bond matrix sbond(ε) is unitary, but for |ε| > ∆0 the
Andreev reflection probability |α|2 drops below unity because of propagat-
ing modes in the superconductor. Unitarity can be restored by embedding
sbond in larger matrix

Sbond =
(
sbond tNS
t′NS rNS

)
, (2.22)

containing also the transmission and reflection matrices of the NS in-
terfaces: a mode incident from the normal lead onto the NS interface
is reflected with amplitude rNS and is transmitted through the interface
with amplitude tNS, while t′NS describes the transmission in the opposite
direction (into the normal lead). At subgap energies tNS = t′NS = 0, while
rNS as well as sbond are unitary. Above the gap only the full matrix Sbond
is unitary.

In order to rewrite Eq. (2.21) in terms of snode and sbond we start from
the relation

SSNS = rNS +
∞∑
n=0

t′NSsnode(sbondsnode)ntNS

= rNS + t′NSsnode(1− sbondsnode)−1tNS

= rNS − t′NS(sbond − s†node)
−1tNS. (2.23)

This relation expresses the fact that modes incident on the SNS junction
are either reflected directly at the NS interface, with amplitude rNS, or first
transmitted through the interface (amplitude tNS), followed by multiple
scattering in the network (amplitude snode + snodesbondsnode + · · · ), and
finally transmission back through the NS interface (amplitude t′NS). In
the final equality in Eq. (2.23) we have used that snode (unlike sbond) is
unitary for all energies.

We now invoke the folding identity,

Det
(
A B
C D

)
= (DetA) Det (D − CA−1B), (2.24)
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valid for any invertible submatrix A, to equate

Det (sbond − s†node) DetSSNS

= Det
(
sbond − s†node tNS

t′NS rNS

)

= Det
[
Sbond −

(
s†node 0

0 0

)]

= DetSbond Det
[
1−

(
s†node 0

0 0

)
S†bond

]
= DetSbond Det (1− s†nodes

†
bond) (2.25)

⇒ DetSSNS = DetSbond Det snode
Det (1− s†nodes

†
bond)

Det (1− snodesbond)

= (DetSbond Det snode)1/2 Det (1− s†nodes
†
bond)

(DetS†bond Det s†node)1/2 Det (1− snodesbond)
. (2.26)

In the final equality we have used that both Sbond and snode are unitary.
The folding identity also tells us that

DetSbond = Det sbond Det slead, (2.27)
slead = rNS − t′NSs

−1
bondtNS, (2.28)

where slead describes the reflection of a mode incident from the normal
metal lead when all bonds of the network are cut at the first node from
the NS interface. We can therefore identify

ρlead(ε) = 1
2π

d

dε
Im ln Det slead(ε+ i0+) (2.29)

with the density of states of the SNS junction without the normal region.
Combination of Eq. (2.21) with Eqs. (2.26) and (2.28) gives the re-

quired scattering formula for the density of states of the Josephson junc-
tion,

ρ(ε) = Im d

dε
ν(ε+ i0+) + ρlead(ε), (2.30a)

ν(ε) = −π−1 ln Det (1− snodesbond)
+ 1

2π
−1 ln Det (snodesbond). (2.30b)
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This is Eq. (2.7) from the main text, where the φ-independent terms ρlead
and ln Det snodesbond are simply referred to as “constant”. The formula
describes both the discrete and the continuous spectrum: for |ε| < ∆0 it
gives a sum of delta functions at the bound state energies, superimposed
on the smooth ρlead, while for |ε| > ∆0 these peaks are broadened because
the bound states can leak out into the superconductor.

2.8.3 Supercurrent in terms of node and bond matrices

In the absence of fermion parity conservation (the case treated in the main
text) we need to only retain the φ-independent term
∝ ln Det (1 − snodesbond) in the density of states (2.30). As derived in
Ref. [40], the supercurrent at temperature T is then a sum of the logarith-
mic determinant over fermionic Matsubara frequencies ωp = (2p+ 1)πkT ,

I0 = −kT 2e
~
d

dφ

∞∑
p=0

ln Det [1− snode(iωp)sbond(iωp)]

= kT
2e
~

∞∑
p=0

Tr
{

[1− snodesbond]−1snode
dsbond
dφ

}
ε=iωp

. (2.31)

At zero temperature the sum may be approximated by an integral,
kT
∑
p 7→

∫∞
0 dω/2π. The factor of 2e refers to the Cooper pair charge.

Ref. [40] has an additional factor of two because of spin degeneracy, which
here we do not assume.

The derivation of Eq. (2.31) in Ref. [40] was for Det (1 − sNsA), but
it holds equally well for Det (1− snodesbond) because it only relies on two
properties of ν that are universally valid: particle-hole symmetry, ν(ε) =
ν∗(−ε), and causality — ν(ε) being an analytic function for Im ε > 0.

When fermion parity is conserved the terms ρlead and
ln Det (1−snodesbond) in Eq. (2.30) must be retained even though they are
not φ-dependent, because they are needed to determine whether a set of
occupation numbers has the right fermion parity. It is for this reason that
we were careful to properly account for these φ-independent terms in the
calculation of the density of states. The expression for the supercurrent
in the fermion-parity conserving case contains also a sum over bosonic
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Matsubara frequencies Ωp = 2pπkT ,

I± = I0 − kT
2e
~
d

dφ
ln 1

2

[
1± eJlead

√
DetX(0)

× exp

 ∞∑
p=1

(−1)p ln DetX(iΩp/2)

 , (2.32)

X = (1− snodesbond)(snodesbond)−1/2, (2.33)

Jlead =
∫ ∞

0
dε ρlead(ε) ln tanh(ε/2kT ). (2.34)

The ± sign in Eq. (2.32) indicates even or odd fermion parity of the
superconducting ground state. The sign is + at φ = 0, and then switches
each time a pair of bound states crosses the Fermi level (ε = 0).

One limitation of the network representation is that we do not have a
formula for the ground-state fermion parity in terms of snode and sbond.
The derivation in Ref. [22] of such a formula in terms of sN and sA does
not carry over.
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Chapter 3

h/eh/eh/e superconducting
quantum interference
through trivial edge states
in InAs

3.1 Introduction

Topological systems are a hot topic in condensed matter physics [51]. This
is largely motivated by the existence of states at the interface between two
topologically distinct phases, for example helical edge states in a quan-
tum spin Hall insulator (QSHI) [52, 53]. Inducing superconductivity in
these edge states would form a topological superconductor [51]. Super-
conducting edge transport has already been found in materials that are
predicted to be QSHI [19, 32]. However, edge states can also have a non-
topological origin. Trivial edge conduction is found in InAs alongside the
chiral edge states in the QH regime [54] and recently in the proposed
QSHI InAs/GaSb as well [55, 56]. To be able to discriminate between
topological and trivial states it is crucial to study transport through triv-

The contents of this chapter have been published and reprinted with permission
from F.K. de Vries, T. Timmerman, V.P. Ostroukh, J. van Veen et. al., Phys. Rev. Lett.
120, 047702 (2018). Copyright 2018 by the American Physical Society.

https://doi.org/10.1103/PhysRevLett.120.047702
https://doi.org/10.1103/PhysRevLett.120.047702
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ial edges also and clarify differences and similarities between them. In
this work we study the superconducting transport through trivial edge
states in non-topological InAs Josephson junctions using superconducting
quantum interference (SQI) measurements. We find supercurrent carried
by these edge states and an intriguing h/e periodic signal in a supercon-
ducting quantum interference device (SQUID) geometry.

3.2 Description of the experiment
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Figure 3.1. (a) Sketch of the conduction band minimum around the edge of a
2DEG with Fermi level pinning at W/2. The band bending leads to a roughly
triangular quantum well in the vicinity of the edge, therefore one-dimensional
sub bands form of which three are drawn, as an example. The orange dashed
line indicates the Fermi level corresponding to the current distribution in (e).
(b) False coloured SEM image of the device with dimensions W = 4 µm and L
= 500 nm, where the quasi-four terminal measurement setup is added. Red is
the mesa, green the NbTiN contacts, blue SiNx dielectric and yellow the gold
top gate. (c) Schematic representation of a Josephson junction of width W and
length L. A homogeneously distributed supercurrent Isc is running through the
whole junction, resulting in (d) a Fraunhofer SQI pattern. (e) If supercurrent
only flows along the edges of the sample, (f) a SQUID pattern is observed.
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Trivial edge states arise when the Fermi level resides in the band gap in
the bulk, while being pinned in the conduction band at the surface. Then,
band bending leads to electron accumulation at that surface as schemati-
cally drawn in Fig. 1(a). The Fermi level pinning can have several origins:
truncating the Bloch functions in space [57, 58], a work function differ-
ence [59], the built-in electric field in a heterostack [60] and the surface
termination [61]. In our 2D InAs Josephson junctions the accumulation
surface is located at the edge of the mesa that is defined by wet etch-
ing. The quantum well is MBE grown on a GaSb substrate serving as a
global bottom gate. The superconducting electrodes are made of sputtered
NbTiN with a spacing of 500 nm and a width of 4 µm. A SiNx dielectric
separates the top gate from the heterostructure. Electrical quasi-four ter-
minal measurements [see Fig.1(b)] are performed in a dilution refrigerator
with an electron temperature of 60 mK unless stated otherwise.

The electron density in the InAs quantum well is altered by using the
electrostatic gates, Vtg and Vbg, located above and below the 2DEG. De-
creasing the density subsequently increases the normal state resistance Rn
and reduces the switching current Is as shown in Fig. 2(a). The Joseph-
son junction is first characterized at Vtg = 0 V and Vbg = -1.65 V, where
the largest switching current is observed. From the IV trace in Fig. 2(a)
we estimate an induced superconducting gap of 0.4 meV and, using the
corrected OBTK model [62], a transmission of T = 0.73. The junction is
quasi-ballistic because the mean free path of 2.8 µm (extracted from a Hall
bar device on the same wafer) is larger than its length L of 500 nm. The
large superconducting gap and high transmission value indicate a high
quality InAs Josephson junction.

3.3 Superconducting quantum interference mea-
surements

SQI measurements have successfully been used before to gather informa-
tion on the supercurrent density profile in Josephson junctions [19, 32, 63].
This is typically done, using Dynes-Fulton approach [11], which connects
critical current dependency on magnetic field Ic(B) and zero-field super-
current density profile j(x) with a Fourier transform. It was originally
developed for tunnel junctions, but can also be applied to transparent
junctions under several assumptions. Firstly, we should have a sinusoidal
current-phase dependency, which is in accordance with the transmission
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Figure 3.2. (a) Normal state resistance Rn and switching current Is at the
respective top gate Vtg and bottom gate Vbg voltages. The left inset depicts a
seperate measurement at the indicated gate voltages, where a smaller current
bias step size is used for higher resolution. The right inset shows an IV trace at
Vtg = 0 V and Vbg = -1.65 V , where two dashed lines are added for extraction
of the induced superconducting gap ∆ and the excess current. (b) The measured
voltage as function of the applied current Ibias and perpendicular magnetic field
B at Vtg = 0 V and Vbg = -1.65 V. The inset depicts the calculated supercurrent
density along the width of the device that is indicated by the dotted lines.

value and temperature in our experiment [64]. Secondly, the Andreev lev-
els, that carry supercurrent in the junction, may only weakly deviate from
the longitudinal propagation. Our junction satisfies this constraint since
the superconducting coherence length ζ = ~vF /∆ ≈ 1.3 µm > L [34]. If
both assumptions hold, we expect Fraunhofer SQI pattern in the case of
homogeneous current distribution (Fig. 1(c-d)) and SQUID pattern in the
case of current flowing along the edges (Fig. 1(e-f)).

A SQI measurement at the largest switching current reveals a Fraun-
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hofer like pattern as shown in Fig. 2(b). The central lobe is twice as wide
as the side lobes and the amplitude decreases as expected. The slight
asymmetry in the amplitudes we contribute to breaking of the mirror
symmetry of the sample in the direction along the current [65]. The ef-
fective length of the junction [λ = δBlobe/(Φ0 ·W )] of 1.2 µm is extracted
from the periodicity of the SQI pattern. Flux focusing due to the Meissner
effect causes it to be larger than the junction length (λ > L) [66]. The
extracted current density profile, plotted in Fig. 2(b), is close to uniform.
The supercurrent is thus dominated by bulk transport as expected at these
gate voltages.

The interference pattern in Fig. 2(b) deviates from the expected pat-
tern after the second lobe. Recently a similar distorted Fraunhofer tail
was observed and discussed in graphene [67]. The perpendicular magnetic
field exerts a Lorentz force on the electron and holes suppressing the for-
mation of Andreev bound states. The suppression becomes relevant at
a magnetic field scale of ∆/eLvF , equal to 1 mT in our case, roughly
agreeing with the observation. The analysis only holds for the bulk of the
junction, since the scattering at the edges reduces the difference in the
electron and hole motion in a magnetic field.

Next we study the SQI pattern as the Fermi level is decreased by tun-
ing the top gate to more negative values. The upper two (green) traces
in Fig. 3(a) have a wide central lobe, identifying a Fraunhofer pattern.
The effective length is λ =1.7 µm, different from before, which we believe
is due to different vortex pinning because of the larger magnetic field range
of the measurement. In the third (first blue) trace we observe that the first
nodes turn into peaks, which is highlighted by the dashed lines. This is the
transition from a Fraunhofer to a SQUID pattern. Curiously the ampli-
tude and width of the peaks are alternating in the blue traces in Fig. 3(a).
The even-odd pattern is composed of an h/e and h/2e periodic signal. An
even-odd pattern was observed before in Pribiag et al. [19]. In compari-
son, in this work the amplitude difference in the lobes is much larger and
the pattern is visible over a large gate range. The calculated supercurrent
density profiles in Fig. 3(b) have a central peak that is physically unlikely
considering the device geometry. The cause of this intriging interference
pattern will be discussed in more detail later. Reducing Vtg further we find
a clear h/2e periodic SQUID interference pattern in the bottom two (or-
ange) traces. This is a strong indication of edge conduction in our device.
Confirmed by the edge transport only in the extracted supercurrent den-
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Figure 3.3. (a) The switching current plotted as function of perpendicular
magnetic field and (b) the corresponding current density along the width of the
device (see inset), assuming the validity of the Dynes-Fulton approach. The
gate values used are from bottom to top: Vtg -5.4 V to -3.6 V (0.2 V step) and
Vbg -1.270 V to -1.396 V (0.014 V step). The green, blue and orange traces
are Fraunhofer, even-odd and SQUID patterns, respectively. Since the current
is only swept up to 100 nA, the green traces are not suitable for extracting a
supercurrent density profile. The traces are offset by 50 nA in (a) and 25 nA/µm
in (b).

sity profiles in Fig. 3(b). The transition from bulk to edge transport as a
function of gate voltage is measured in several other Josephson junctions.
Since we observe supercurrent through the trivial edge states of an InAs
quantum well, we conclude that a clear demonstration of superconducting
edges alone does not prove induced superconductivity in topological edge
states.

3.4 Even-odd SQI pattern

We now return to the remarkable h/e SQUID signal to investigate its
origin. Figure 4(a) shows a more detailed measurement in this gate regime,
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Figure 3.4. (a) Measured voltage as a function of Ibias and magnetic field B at
Vtg = -5 V and Vbg = -1.29 V. (b) Switching current versus the magnetic field
for different temperatures at the same gate voltages as (a). The traces are offset
by 5 nA for clarity. (c) Current density profile, calculated from the SQI pattern
of (a). The blue trace uses equation (1), thus correcting the vertical offset in the
SQI pattern. The yellow dashed trace is extracted without this correction.

the even-odd pattern is observed over more than 25 oscillations. The
envelope of the peaks is attributed to the finite width of the edge channels.
The effect is suppressed by raising the temperature [see Fig. 4(b)], for T >
850 mK a regular h/2e SQUID pattern remains. The origin can not lie
in effects that occur beyond a certain critical magnetic field, like 0 − π
transitions [68], edge effects [43, 69] and a topological state, because we
observe the even-odd pattern around zero magnetic field as well. An effect
that does not rely on magnetic field and is strongly temperature dependent
is crossed Andreev reflection [70].

The lowest order crossed Andreev reflection (up to electron-hole sym-
metry) is schematically depicted in Fig. 5(a). An electron travels along
one edge, whereafter a hole is retroreflected over the other edge. This
process alone is independent of the flux through the junction, but still
adds to the critical current (see Sec. 2.5). Higher order processes that in-
clude an electron that encircles the junction completely pick up an h/e
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phase when a flux quantum threads through the junction, hence the su-
percurrent becomes h/e periodic [71]. Additionaly, interference processes
between crossed Andreev and single edge Andreev states could lead to a
h/e contribution [72]. It is important to note that the critical current is
h/e periodic in flux trough the sample, but still 2π periodic in supercon-
ducting phase difference.

Forming crossed Andreev states in the junction is only possible if the
particles can flow along the contacts. Electrostatic simulations indeed
show a large electron density close to the contacts at gate voltages where
the bulk is already depleted, because of local screening of the top gate.
Nevertheless the needed coherence length for a crossed Andreev reflection
is on the order of 10 µm, where the estimated superconducting coherence
length (from bulk values) is 1.3 µm. The difference between these values
remains an open question.

Γ
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e

(b)

(c) (d)

(a)

superconductor

superconductor

B

Figure 3.5. (a) Schematic representation of two crossed Andreev processes. The
black and white lines indicate electron and hole trajectories or vice versa. The
solid lines represent a single edge Andreev state and the dotted lines a crossed
Andreev state. (b) Detailed sketch of one corner of junction in our tight binding
mode indicating the widths Wns and We, and tunnel barrier Γ. (c) Calculated
SQI patterns at overall chemical potential ranging from -0.06 eV to 0.18 eV
(0.04 eV step) at 0.46 K and (d) at temperatures 0.4 K, 0.9 K, 1.4 K, 1.9 K,
2.3 K at a chemical potential of -0.2 eV. Traces are offset by 10 nA for clarity.
In (c) the color represents the type of interference pattern, green for Fraunhofer,
blue for even-odd and orange for SQUID, respectively.



3.5 Phenomenological model: crossed Andreev reflection impact 43

3.5 Phenomenological model: crossed Andreev
reflection impact

The phenomenological model proposed in Chapter 2 considers both single
edge and crossed Andreev states. In our device we expect the lowest order
crossed Andreev states to contribute most because of the short coherence
length. Combining their flux insensitive contribution to the critical current
and the usual h/2e periodic contribution from single edge Andreev bound
states, the model predicts an even-odd or h/e SQUID pattern:

Ic(Φ) = I0 |cos(πΦ/Φ0) + f | . (3.1)

Where I0 the critical field at zero magnetic field and Φ is the applied flux.
Constant f can be arbitrarily large, it dependes on the ratio Γ between
the probability to Andreev reflect on a node versus the probability to
scatter to another edge and is exponentially suppressed by the width of
the sample:

f ∼ Γ−1kBT

∆ e−2π(kBT/∆)(W/ζ). (3.2)

The predicted pattern is thus the absolute value of a vertically offsetted
cosine function. That is exactly the pattern we measured in Fig. 3(a) and
4(a) as both the amplitude and width of the lobes alternate From the
data we estimate f = 0.3 and, using the other known parameters, find
Γ ∼ 10−1. Taking the Fourier transform in the Dynes-Fulton analysis,
offset f leads to a non-physical current density around zero, like we ob-
serve in the current density profiles in Fig. 3(b) and the yellow dashed line
in Fig. 4(c). Moreover, the Dynes-Fulton approach is not valid here since
crossed Andreev reflection does not meet the second assumption of having
straight trajectories only. We can compensate the crossed Andreev contri-
bution by subtracting the constant offset of f ·I0=11 nA. This results in a
current distribution with mainly current along the edges, as plotted in the
blue trace of Fig. 4(c). We did not take into account that I0 is actually
not constant due to the Fraunhofer envelope of the SQI pattern, so the
current density in the center of the junction is not entirely eliminated.

3.6 Tight-binding simulations
Even though the SQI pattern from the phenomenological model is in qual-
itative agreement with our data, we also present a tight binding model of
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system in order to connect it directly to experimentally accessible param-
eters. In the microscopic model we include the superconducting gap as
measured, the width of the paths along the contacts Wns of 20 nm [ex-
tracted from the Fraunhofer envelope in Fig. 4(a)], and Fermi level pinning
on the edges leading to edge current in the region We. It is crucial to also
take into account a tunnel barrier Γ at the contacts that has a magnitude
consistent with the measured transmission value. This barrier enhances
normal reflection and therefore elongates the length electrons and holes
travel before Andreev reflecting. Incorporating these experimental values
we find an h/e SQUID pattern. Emulating the experimental gating effect
by changing the overall chemical potential results in a crossover from even-
odd to Fraunhofer [Fig. 5(c)], consistent with the measurement in Fig. 3.
As a check, Wns is reduced in steps to zero, which results in a SQUID
pattern. Additionally, in Fig. 5(d) we observe that increasing the temper-
ature indeed smears out the even-odd pattern and leaves us with a regular
SQUID pattern, similar to the experimental data in Fig. 4(b). Summariz-
ing, both the phenomenological model and the microscopic model support
our hypothesis of the h/e SQUID originating from crossed Andreev states.

3.7 Conclusion
We have experimentally shown that trivial edge states can support highly
coherent superconducting transport that also becomes visible in an h/e
periodic SQI pattern. Both effects have been considered as possible signa-
tures for inducing superconductivity in topological edge states before [19,
32]. Therefore we conclude that superconducting edge transport and an
h/e SQUID pattern only, cannot distinguish between topological and triv-
ial edge states, nor can it be considered a definite proof for a topological
phase.

3.8 Appendix

3.8.1 Tight binding model

We have taken the following Hamiltonian for tight binding simulations:

H =
(
~2(k2

x + k2
y)

2meff
− µ(x, y)

)
τz+α(kxσy−kyσx)τz+gµBB(x)σz+∆(x)τx,

(3.3)
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Figure 3.6. (a) Schematical representation of a tight-binding model.
Bogolyubov-de Gennes Hamiltonian is discretized on a square lattice. Supercon-
ducting sites of the system have a blue color, normal – black. A tunnel barrier is
created, using one row of sites with decreased chemical potential (marked TB on
the scheme). The current was calculated from Green’s function of sites, marked
1 and 2 on the scheme (see the detailed explanation below). (b) Chemical po-
tential profile for x = 0. Offset between location of chemical potential step and
superconducting region together with the tunnel barrier leads to formation of
scattering channel between edges. (c) Chemical potential profile for y = 0. Band
bending is represented with an increased chemical potential at the edges, leading
to edge conductivity in a doped regime.

where σ Pauli matrices correspond to the spin degree of freedom, and
τ – to the electron and hole one. It is discretized on a square lattice
with lattice constant a = 2 nm. The normal part of a SNS junction is
represented as a rectangle −L/2 ≤ x ≤ L/2 and −W/2 ≤ y ≤ W/2, the
superconducting parts – as translationally invariant in x direction stripes
with −W/2 ≤ y ≤W/2. Proximity-induced pairing potential ∆(x) is zero
in a normal part and constant in a superconducting part of the system,
with a step-like transition. The magnetic field is assumed to be fully
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screened by the superconductors. Its impact is included as Zeeman term
and via Peierls substitution.

At first realistic values of α = 5 · 10−12 eV · m and g = 11.5 for the
Rashba and Zeeman term were used to verify that they do not play an
important role in this parameter regime. After we were sure that Zeeman
and Rashba terms can be neglected, we have put α = 0 and g = 0 for the
sake of numerical performance. This allowed to decouple spins and de-
crease the dimensionality of the Hamiltonian twice, since both decoupled
subblocks contribute equally to the current.

Chemical potential µ(x, y) is selected to capture primary features of
the device: band bending near the edges and screening near the NS bound-
aries top gate. It has the following form:

µ(x, y) = µnorm + δµedge(y)
2

(
tanh x+ xµ

λµ
− tanh x− xµ

λµ

)
+

µsc
2

(
2− tanh x+ xµ

λµ
+ tanh x− xµ

λµ

)
, (3.4)

where
δµedge(y) = 2µee−W/2λe cosh y

λe
(3.5)

is the term, that introduces band bending near the edges of a normal
part. µnorm and µsc are chemical potentials in gated area (primarily nor-
mal part) and area screened by the superconducting contacts. If normal
part is governed to the insulating state with negative µnorm, the offset
between L/2 and xµ leads to formation of a conducting channel on the
NS boundaries of the junction, with a width:

Wns = L/2− xµ. (3.6)

The tunnel barrier on the NS interface was represented as a single row of
sites with a chemical potential reduced by ∆µTB.

The finite-temperature critical current of the SNS junction was calcu-
lated by maximizing the current-phase dependency, similarly to the ap-
proach, used in [73]. The Green’s function was numerically calculated for
several Matsubara frequencies on two neighbouring rows of the sites in
the normal part of the junction, then the current was obtained by the
summation:

I = 2ekBT
~

Nmax∑
n=0

(= trH21G12(iωn)−= trH12G21(iωn)) . (3.7)
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Here H21 and G21 denote hopping matrix and Green’s function subblock
from cells of row 1 to row 2, indicated on Fig. 3.6 (all the hoppings, that
form a cut through the system), and vice versa. ωn = (2n+1)πkBT is the
n-th Matsubara frequency. Value Nmax was obtained dynamically, based
on the estimated convergence rate. The Green’s functions were calculated,
using package Kwant [16].

The numerical values of parameters, used for simulations, are pre-
sented in Table 3.1. A lattice constant of a = 2 nm was selected small
enough to capture characteristic length scales of an edge and NS boundary
current channels.

W [nm] L [nm] λe [nm] λµ [nm] xµ [nm]
400 200 28 1 0÷ 50
meff/me ∆ [eV] µsc [eV] δµe [eV]

0.04 4 · 10−4 0.2 0.15

Table 3.1. Numerical parameters, used for tight-binding simulations.
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Figure 3.7. Tight binding calculation of the superconducting quantum interfer-
ence as a function of tunnel barrier strength at the contact. Increasing the tunnel
barrier height leads to enhanced normal reflection with respect to Andreev re-
flection. The electrons or holes then have a higher chance of traversing along the
contact before Andreev reflecting. Forming a crossed Andreev states requires the
charge carriers to traverse around the junction fully. Therefore enhanced normal
reflection is benefecial for forming these states and the resulting even-odd SQI
pattern. Here we plot the SQI patterns for a tunnel barrier strength ranging
from 0.6 eV to 1.40 eV (bottom to top) in 0.2 eV steps.

Figure 3.8. Tight binding calculation of the superconducting quantum interfer-
ence as a function of width of the channel along the edge. As a sanity check: if
the width is 2 nm (bottom trace), we do not see even-odd effect. Increasing the
width (in 8 nm steps up to 50 nm), increases the number of channels along the
contact and the coherence length, up to the point that the 1D channel become
2D and the even-odd effect reduces again.



Chapter 4

Two-dimensional Josephson
vortex lattice and
anomalously slow decay of
the Fraunhofer oscillations
in a ballistic SNS junction
with a warped Fermi surface

4.1 Introduction

A junction between two superconductors responds to an imposed magnetic
flux Φ by producing a chain of circulating current vortices, known as
Josephson vortices [9]. The critical current Ic(Φ) oscillates with period
Φ0 = h/2e and amplitude ∝ Φ0/Φ. These socalled Fraunhofer oscillations
are a macroscopic quantum interference effect, first observed in 1963 in a
tunnel junction [74]. The effect is now used as a sensitive probe of ballistic
transport and edge currents in graphene and topological insulators [19, 32,

The contents of this chapter have been published and reprinted with permis-
sion from V.P. Ostroukh, B. Baxevanis, A.R. Akhmerov, and C.W. J. Beenakker,
Phys. Rev. B 94, 094514 (2016). Copyright 2016 by the American Physical Society.
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63, 67, 75, 76].
Since the self-field of the current vortices is typically too weak to

screen the imposed magnetic field B from the junction area, the arrange-
ment of Josephson vortices is governed by quantum interference — un-
affected by the classical electrostatics that governs the two-dimensional
(2D) Abrikosov vortex lattice in the bulk superconductor [9]. The funda-
mental question addressed here, is whether quantum interference by itself
is capable of producing a 2D vortex lattice in a Josephson junction. It is
known that the linear arrangement of the vortices along the superconduct-
ing interface is modified by insulating boundaries [41–43, 77], in a junction
of lateral width W comparable to the separation L of the interfaces. But
in wide junctions (W � L), when boundary effects are irrelevant, only
linear arrangements of Josephson vortices are known [25, 78–81].

We have discovered that a 2D Josephson vortex lattice appears when
the circular Fermi surface acquires a square or hexagonal distortion. Such
a warped Fermi surface has flattened facets that produce a nonisotropic
velocity distribution of the conduction electrons, peaked at velocity di-
rections normal to the facets. Analytical and numerical calculations of
the supercurrent distribution in the high-field regime (magnetic length
lm =

√
~/eB less than L) reveal the appearance of multiple rows of vortex-

antivortex pairs, forming a 2D bipartite rectangular lattice in the normal
region with lattice constant

avortex = WΦ0
Φ = πl2m

L
. (4.1)

As shown in Fig. 4.1 (resulting from a numerical simulation discussed
in Sec. 4.7), in the weak-field regime lm & L there is only a single row of
W/avortex vortex-antivortex pairs. However, when lm drops well below L
multiple rows of vortex-antivortex pairs appear. The appearance of this
2D vortex lattice is associated with a crossover from a 1/B to a 1/

√
B

decay of the amplitude of the Fraunhofer oscillations. In contrast, for a
circular Fermi surface the amplitude crosses over to an accelerated 1/B2

decay when lm < L [69].
The outline of this chapter is as follows. In Secs. 4.2 and 4.3 we

formulate the problem of magnetic interference in a ballistic Josephson
junction and present the semiclassical analytical solution for the current
distribution. The resulting vortex lattice is described in Sec. 4.4, far from
the lateral boundaries. As shown in Sec. 4.5, within a magnetic length
lm from the boundaries there is a lattice reconstruction that produces
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Figure 4.1. Supercurrent density in an SNS (superconductor–normal-metal–
superconductor) Josephson junction, resulting from the numerical simulation of
Sec. 4.7 on a square lattice with a half-filled band and a square Fermi surface
(lattice constant a0, normal region of size W = 10L = 300 a0, band width 2E0,
Fermi velocity vF ≡ E0a0/

√
2~, resulting in N = 282 transverse modes per

spin direction at the Fermi level, superconducting gap ∆ = 2.5 · 10−3 E0 ⇒ ξ ≡
~vF/∆ = 283 a0, zero phase difference). The two panels are for a weak and strong
perpendicular magnetic field, both at a low temperature kBT/∆ = 10−2 in the
short-junction regime L/ξ = 0.1. The cyclotron radius lcycl remains large com-
pared to L also for the strongest fields considered, lcycl/L = (W/a0)(Φ0/Φ) & 10.
A bipartite square lattice of vortex-antivortex pairs in the normal region (lattice
constant avortex = πl2m/L) forms in the lower panel. Notice the edge recon-
struction of the vortex lattice, producing an edge channel of width ' lm large
compared to avortex. This edge channel results purely from magnetic interference,
it is unrelated to the skipping orbits along the edge that would form in higher
fields (when lcycl < L).

an edge channel purely as a result of quantum interference, at magnetic
fields that are still so weak that the curvature of the trajectories due
to the Lorentz force can be neglected. Because of the edge channel the
amplitude of the Fraunhofer oscillations decays as lm/W ∝ B−1/2 rather
than as l2m/LW ∝ B−1, see Sec. 4.6. In Sec. 4.7 we test the semiclassics
with a fully quantum mechanical solution of a tight-binding model. This
numerical simulation also allows us to assess the sensitivity of the results
against the effects of disorder and nonideal NS interfaces. We conclude in
Sec. 4.8.
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Figure 4.2. Josephson junction formed by a normal metal (width W , length L)
connecting two superconductors at a phase difference φ = φ1−φ2. A perpendic-
ular magnetic field B is applied to the normal region. Electron trajectories used
in the semiclassical calculation of the supercurrent density are indicated.

4.2 Description of the problem

We consider a two-dimensional (2D) normal metal (N) layer in the x–y
plane, covered by two superconducting electrodes (S1 and S2) a distance
L apart (see Fig. 4.2). The proximity effect induces an excitation gap
∆ in the S-region |x| < W/2, |y| > L/2, producing a discrete excitation
spectrum in the N-region |x| < W/2, |y| < L/2.

We work in the short-junction regime L � ξ, with ξ = ~vF/∆ the
superconducting coherence length induced by the proximity effect. (The
short-junction regime is chosen for simplicity, we do not expect our qual-
itative findings to change when L becomes longer than ξ.) The lateral
width W of the junction is � L, it may be comparable to ξ. The gap ∆0
in the bulk superconductors is assumed to be much larger than ∆, with a
bulk coherence length ξ0 much smaller than ξ.

A perpendicular magnetic field B (magnetic length lm =
√
~/eB) pro-

duces oscillations in the critical current of the Josephson junction (Fraun-
hofer oscillations), periodic with period Φ0 = h/2e in the enclosed flux
Φ = BWL. We assume that the magnetic field is screened from the S-
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region by a short screening length in the bulk superconductors, even in
the high-field regime lm . L.

In the analytical calculation we take the semiclassical limit kFL � 1,
in which bound states in the junction can be associated with classical
trajectories. The junction is ballistic (no impurity scattering), so the
trajectories are arcs of cyclotron radius lcycl = ~kF/eB. We assume that
kFL is sufficiently large that the ratio lcycl/L = kFL × (lm/L)2 remains
� 1 for the largest fields considered, so we neglect the curvature of the
trajectories in the analytical calculation (but not in the numerics). In
particular, skipping orbits along the edge play no role in our analysis.

The single-electron dispersion relation Ek has a nonisotropic depen-
dence on the 2D wave vector k = (kx, ky), resulting in a nonisotropic
distribution of the velocity vk = ~−1∂Ek/∂k over the Fermi surface. Our
analysis is general, but for a specific example we consider the warping of
the Fermi surface on a square lattice (unit lattice constant), with disper-
sion relation

Ek = E0 − 1
2E0(cos kx + cos ky).

⇒ vk = E0
2~ (sin kx, sin ky).

(4.2)

The Fermi surface is deformed from a circle to a square as we raise the
Fermi energy from the bottom of the band to the band center. For later
use we record the relation at the Fermi energy EF ∈ (0, E0) between kx
and the angle of incidence θ on the NS interface:

tan θ = vx
vy

= sin kx√
1− (cos kx + 2EF/E0 − 2)2 ,

− kF < kx < kF, kF = arccos (1− 2EF/E0).
(4.3)

4.3 Semiclassical calculation of the supercurrent
In semiclassical (WKB) approximation [82] a bound state at energy |ε| <
∆ corresponds to a periodic classical trajectory that traverses the junction,
accumulating a phase shift that is a multiple of 2π. We distinguish two
types of periodic trajectories, one in which an electron propagates from
superconductor S1 to S2, is Andreev reflected as a hole and retraces its
path to S1, and another in which a hole propagates from S1 to S2 and
retraces its path as an electron. The first path is indicated by σeh = +1,
the second path by σeh = −1.
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For a given periodic trajectory the total phase shift is given by
φtotal = −2 arccos (ε/∆) + σeh(φ− γ),

γ = 2e
~

∫ S2

S1
A · dl.

(4.4)

The ε-dependent term, which has the same sign for σeh = ±1, is the phase
shift accumulated over a penetration depth in the superconductor (in the
Andreev approximation [83] ∆ � EF). The σeh-dependent terms consist
of the contribution from the pair potential in S1, S2 (phase difference φ =
φ1−φ2) and the phase shift γ accumulated in the N-region from the vector
potential A = (0, Bx, 0).

In the short-junction regime L � ξ we may neglect the phase shift
in N arising from the energy difference 2ε of electron and hole1. For
0 < φ − γ < π the (spin degenerate) bound state corresponding to this
periodic trajectory is at energy σehε with

ε = ∆ cos(φ/2− γ/2). (4.5)

A tube of width of the order of the Fermi wave length, extending
along the trajectory that passes through the point (x0, y0) at an angle θ
with the y-axis, can be thought of as a single-mode wave guide connecting
the two superconductors. In thermal equilibrium at temperature T the
single-mode supercurrent is given by [84]

δI(x0, y0, θ) = − tanh
(

ε

2kBT

) 2e
~
dε

dφ

= e∆
~

sin(φ/2− γ/2) tanh
(∆ cos(φ/2− γ/2)

2kBT

)
, (4.6)

including a factor of two from the spin degeneracy. The trajectory depen-
dence enters via the phase shift γ ≡ γ(x0, y0, θ). Notice that, notwith-
standing the appearance of the half-phases φ/2, the supercurrent is 2π-
periodic in φ — as it should be.

The total supercurrent I through the Josephson junction follows upon
integration of Eq. (4.6) over the phase space of the propagating modes at
the Fermi level, with measure dx0dkx/2π:

I =
∫
dkx
2π

∫
dx0 δI(x0, y0, θk). (4.7)

1 At grazing incidence angles |θ| → π/2 the short-junction criterion is more stringent
than L � ξ, we require L � ξ cos θ. In the analytics we ignore this complication, but
it is fully incorporated in the numerics.
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There is no dependence of I on y0 because of current conservation.
In zero magnetic field B = 0⇒ γ = 0 the dependence of δI on x0, y0, θ

disappears, so we recover the familiar expression [85]

I0 = kFW
e∆
π~

sin(φ/2) tanh
(∆ cos(φ/2)

2kBT

)
(4.8)

for the supercurrent in a ballistic Josephson junction. The zero-temperature
critical current, reached at φ = π − 0+, is

Ic,0 = kFW
e∆
π~

. (4.9)

We also require the spatial distribution of the supercurrent density. To
avoid notational complexity we assume that there is a one-to-one relation
between kx ∈ (−kF, kF) and θk ∈ (−π/2, π/2). This applies to a warping
of the Fermi circle that keeps it singly-connected and convex. For a circular
Fermi surface the measure dkx 7→ kF cos θ dθ. Upon warping we have
instead

dkx
2π 7→

kF
2πρ(θ) cos θ dθ, (4.10)

with a nonuniform angular profile ρ(θ). The current density can then be
written as (

jx
jy

)
= kF

2π

∫ π/2

−π/2
dθ ρ(θ)

(
sin θ
cos θ

)
δI(x0, y0, θ), (4.11)

with (sin θ, cos θ) a unit vector in the direction of motion (note that θ is
the angle with the y-axis, see Fig. 4.2). This is an intuitive expression,
but for the calculations it is more convenient to return to kx as integration
variable,

jx(x0, y0) =
∫
dkx
2π δI(x0, y0, θk) tan θk,

jy(x0, y0) =
∫
dkx
2π δI(x0, y0, θk).

(4.12)

4.4 Supercurrent vortex lattice

To demonstrate the emergence of a supercurrent vortex lattice we calculate
the current density at a point (x0, y0) in the normal region, in the limit
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Figure 4.3. The six color scale plots show the supercurrent density in a wide
Josephson junction, far from the lateral boundaries, for two values of the magnetic
field (first and second row of panels at lm/L = 0.8 and 0.32, respectively) and for
three values of the Fermi energy (labeled a, b, c and corresponding to the square-
lattice Fermi surfaces at EF/E0 = 0.2, 0.8, and 0.99, respectively). The plots are
calculated from Eqs. (4.3), (4.12), (4.13), at temperature kBT = ∆. The bottom
right panel shows the bipartite vortex lattice (vortices and antivortices indicated
by red and blue dots, lattice constant avortex = πl2m/L = 0.32L at lm/L = 0.32)
that develops for lm . L in a square-warped Fermi surface.

W → ∞ that boundary effects can be ignored. (These are considered in
the next section.) At a given angle θ with the y-axis (see Fig. 4.2), the
phase shift γ in Eq. (4.4) equals

γ = 2L
l2m

(x0 − y0 tan θ). (4.13)

The resulting current density follows from Eq. (4.12) upon integration,
once we have specified the relation between kx and θ. To be definite we
take a square lattice dispersion, where tan θ is given as a function of kx
by Eq. (4.3). Results are shown in Fig. 4.3.

If the angular distribution ρ(θ) on the Fermi surface is peaked at an-
gles ±θ0, the phase shift (4.13) produces a bipartite rectangular lattice
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Figure 4.4. Same as Fig. 4.3c for lm/L = 0.32, at a much lower temperature of
kBT = 0.05 ∆. The vortex and antivortex sublattices (red and blue dots) are no
longer equivalent.

of vortex-antivortex pairs. (Notice that the superconducting phase differ-
ence φ simply shifts the lattice in the x-direction.) The lattice constants
are a‖ = avortex parallel to the NS interfaces and a⊥ = avortex/ tan θ0 in
the perpendicular direction, with avortex given by Eq. (4.1).

In the square lattice the Fermi surface has a square warping near the
center of the band, and if the NS interfaces are oriented along a principal
axis one has tan θ0 = 1, so the vortex-antivortex lattice is a square lattice
with lattice constant avortex in both directions, see panels (c) in Fig. 4.3.
The two-dimensional lattice disappears — leaving only a single row of
vortices — if we move away from band center, see panels (a), as the angular
distribution ρ(θ) broadens around normal incidence. Since a⊥ → ∞ for
θ → 0 this broadening of ρ(θ) produces a broad range of perpendicular
lattice constants, which smear out the structure of the vortex lattice in
the direction perpendicular to the NS interface. Only the θ-independent
structure parallel to the NS interfaces remains.

At the elevated temperatures kBT & ∆ of Fig. 4.3 the vortices and
antivortices are equivalent, but at lower temperatures this symmetry be-
tween the two sublattices is broken, see Fig. 4.4. Counterclockwise vortices
and clockwise antivortices are centered at points where φ − γ equals, re-
spectively, π or 0, modulo 2π. At elevated temperatures the current-phase
relationship (4.6) is nearly sinusoidal, with the same slope at φ = 0, π (up
to a sign difference). At low temperatures the slope at φ = 0 is not much
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affected, so the antivortices retain their circular shape, but the vortices at
φ = π see a much larger slope and contract in a square-like shape around
the lattice points.

4.5 Edge reconstruction of the vortex lattice
The vortex lattice is modified if we approach the lateral boundaries at
x = ±W/2. We still assume W � L, so we can treat the boundaries
separately. At each boundary we impose a hard-wall confinement with
specular reflection (see Fig. 4.2).

A trajectory from superconductor S1 to S2 that passes through the
point (x0, y0) at an angle θ with the y-axis is affected by the boundary at
x = W/2 if x0 is in the interval

1
2W −

1
2L| tan θ|+ y0 tan θ < x0 <

1
2W. (4.14)

In this interval the boundary reflection replaces the expression (4.13) for
the phase shift γ by

γ = β − 1
2l2m| tan θ|(W − 2x0 + 2y0 tan θ)2, (4.15a)

β = LW

l2m

(
1− L| tan θ|

2W

)
, (4.15b)

see App. 4.9.1. The corresponding expression for the boundary at x =
−W/2 follows from the symmetry relation

γ(x0, y0, θ) = −γ(−x0, y0,−θ). (4.16)

The resulting supercurrent distribution near the boundary is shown
in Fig. 4.5. For lm . L an edge channel appears when the Fermi sur-
face is strongly warped, see panel (c), becoming less pronounced as the
Fermi surface becomes more and more circular, see panels (b) and (a).
The streamlines in the edge channel inherit their periodicity from the vor-
tex lattice, but the width wedge ' lm of the edge channel is larger than
avortex ' l2m/L. The net current flowing along the edge channel is sensitive
to the phase difference φ between superconductors S1 and S2, see Fig. 4.6.

To understand this edge reconstruction of the vortex lattice, we note
that because the phase shift γ now depends quadratically rather than
linearly on x0, there is a point of stationary phase: ∂γ/∂x0 = 0 at x0 =
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Figure 4.5. Effect of a hard-wall lateral boundary on the supercurrent vortex
lattice. The panels a,b,c correspond to the three labeled Fermi surfaces in Fig. 4.3,
with the same color scale; the other parameters are lm/L = 0.32, W/L = 10.16,
φ1 − φ2 ≡ φ = π/2, and kBT = ∆.

y0 tan θ + W/2. For a warped Fermi surface with ρ(θ) peaked at ±θ0 an
edge channel extends along the lines of stationary phase, of width

wedge ≡ 2
∣∣∣∂2γ/∂x2

0

∣∣∣−1/2
= lm

√
tan θ0. (4.17)

The edge channel carries a net current from S1 to S2 that depends on the
parameter β and the superconductor phase difference φ: the edge current
is minimal for φ−β = 0 and maximal for φ−β = π/2, modulo π. (In Fig.
4.6 we have β ≈ 0 mod π, so minimal and maximal current corresponds
to φ = 0 and π/2, respectively.) As we will show in the next section, this
edge current produces a critical current of order (wedge/W )Ic,0, with the
anomalously slow decay ∝ 1/

√
B.

4.6 High-field decay of the Fraunhofer oscilla-
tions

To obtain the critical current Ic = maxφ I(φ) of the Josephson junction, we
first need to calculate at a given phase difference φ the total supercurrent
I(φ) by integrating jy(x0, y0) over x0 from −W/2 toW/2. From Eq. (4.11)
we thus have

I = kF
2π

∫ π/2

−π/2
ρ(θ) cos θ dθ

∫ W/2

−W/2
dx0 δI(x0, y0, θ). (4.18)

Analytical progress is simplest in the high-temperature regime kBT &
∆, when the φ-dependence of δI from Eq. (4.6) becomes approximately
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Figure 4.6. Streamlines corresponding to the vortex lattice in panel (c) of Fig.
4.5, for two values of the superconducting phase difference φ = φ1−φ2 (all other
parameters are kept the same). The left and right panels correspond, respectively,
to minimal and maximal current flowing along the edge channel.

sinusoidal,

δI ≈ e∆2

4~kBT
sin(φ− γ), γ = 2e

~

∫ S2

S1
A · dl. (4.19)

We assume that the velocity distribution on the Fermi surface is symmetric
around normal incidence, ρ(θ) = ρ(−θ). Because of Eq. (4.16) we may
then restrict the θ-integration in Eq. (4.18) to positive angles,

I = e∆2kF
8π~kBT

∫ π/2

0
ρ(θ) cos θ dθ

∫ W/2

−W/2
dx0

× [sin(φ− γ) + sin(φ+ γ)]. (4.20)

We thus find that the integrated supercurrent retains a sinusoidal φ-
dependence, with critical current

Ic = Ic,0

∣∣∣∣∣
∫ π/2

0
ρ(θ) cos θ dθ

∫ W/2

−W/2

dx0
W

cos γ
∣∣∣∣∣ ,

Ic,0 = e∆2kFW

4π~kBT
.

(4.21)
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In the interval 0 < θ < arctan (W/L) there is at most one boundary
collision. We restrict ourselves to this interval, because the contributions
to Ic near grazing incidence are anyway suppressed exponentially at finite
temperature. (All contributions are included in the numerics.) Fixing the
arbitrary y-coordinate at y0 = −L/2, we have from Eqs. (4.13) and (4.15)
the expression for γ that we need:

γ = 2L
l2m

(x0 + 1
2L tan θ) if x0 + L tan θ < W/2, (4.22a)

γ = β − (W − 2x0 − L tan θ)2

2l2m tan θ if x0 + L tan θ > W/2, (4.22b)

with β defined in Eq. (4.15b).
The integral over x0 in Eq. (4.21) can be carried out analytically:

Ic = Ic,0

∣∣∣∣∣
∫ π/2

0
ρ(θ)Γ(θ) cos θ dθ

∣∣∣∣∣ , (4.23)

Γ(θ) ≡
∫ W/2

−W/2

dx0
W

cos γ = l2m
LW

sin β′ (4.24)

+ (lm/W )
√
π tan θ[FC(α) cosβ + FS(α) sin β],

α = L
√

tan θ
lm
√
π
, β′ = LW

l2m

(
1− L

W
tan θ

)
. (4.25)

The functions FC and FS are the Fresnel cosine and sine integrals,

FC(α) =
∫ α

0
cos(π2 t

2) dt, FS(α) =
∫ α

0
sin(π2 t

2) dt. (4.26)

Both FC(α) and FS(α) tend to 1/2 for α→∞.
If the angular distribution ρ(θ) is sharply peaked around ±θ0, we ob-

tain from Eqs. (4.23) and (4.24) the high-field (lm � L) critical current

Ic(high-field) = Ic,0
wedge
W

√
π/2

∣∣∣∣sin(π4 + LWeff
l2m

)∣∣∣∣ , (4.27)

with effective junction widthWeff = W− 1
2L tan θ0 and edge channel width

wedge = lm
√

tan θ0. Comparing with the low-field (lm � L) Fraunhofer
oscillations,

Ic(low-field) = Ic,0
l2m
LW

∣∣∣sin(LW/l2m)
∣∣∣ , (4.28)
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Figure 4.7. Log-log plot of the critical current Ic versus the flux Φ through
the normal region (aspect ratio W/L = 10.16), calculated from Eq. (4.23) for a
circular Fermi surface (ρ(θ) = 1, red curve decaying ∝ 1/Φ2), and for a square
Fermi surface (ρ(θ) = δ(θ − π/4), blue curve decaying ∝ 1/

√
Φ). The low-field

Fraunhofer oscillations (4.28) are included for comparison (grey curve decaying
∝ 1/Φ).

we note three differences: the amplitude decays more slowly, ∝ 1/
√
B

instead of ∝ 1/B; the flux periodicity is larger by a factor W/Weff ; and
the maxima are phase shifted by 1/4 flux quantum. This qualitatively
different behavior is illustrated in Fig. 4.7, compare blue and grey curves.

At the other extreme of an isotropic angular distribution, for a circular
Fermi surface, we obtain the opposite effect: instead of a slower decay of
the high-field Fraunhofer oscillations the decay is faster, ∝ 1/B2 instead of
∝ 1/B, compare red and blue curves.2 This accelerated decay is a known
result [69]. What we have found here is that the switch from a circular to
a square Fermi surface slows down the decay by a fourth root, from B−2

to B−1/2.

2 The 1/B2 decay of the critical current for a circular Fermi surface follows upon
numerical integration of Eq. (4.23) with ρ(θ) = 1, see Fig. 4.7. Unlike the 1/

√
B decay

for a square Fermi surface, we have not managed to derive the 1/B2 decay analytically.
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4.7 Numerical simulations
To test the analytical semiclassical theory we have performed numerical
simulations of a tight-binding model. We start from the Bogoliubov-De
Gennes Hamiltonian,

H(k) =
(
E(k − eA)− EF ∆

∆∗ EF − E(k + eA)

)
, (4.29)

with the single-particle dispersion E(k) on a square lattice given by Eq.
(4.2). The pair potential ∆ and vector potential A are chosen as in Fig.
4.2, with ∆ = 0 for |y| < L/2 (no pairing interaction in the normal region)
and A = 0 for |y| > L/2 (complete screening of the magnetic field from
the superconductor). The self-field of the currents in the normal region
is neglected, so A is entirely due to the externally imposed field B. The
orbital effect of the magnetic field is fully included, but we neglect the
coupling to the electron spin3 and can therefore omit the spin degree of
freedom from the Hamiltonian.

The 2 × 2 matrix Green’s function G(ε) = (ε − H)−1 is calculated
at imaginary energy ε = iω using the Kwant toolbox for tight-binding
models [16]. The expectation value of the current density in thermal
equilibrium,

j(r) = 2e
~
kBT Re

∞∑
p=0

Tr 〈r|G(iωp)|r〉〈r|
∂H

∂k
|r〉, (4.30)

is then obtained from a (rapidly convering) sum over Matsubara frequen-
cies ωp = (2p+ 1)πkBT [73]. (See Ref. [87] for an alternative approach.)

The time-consuming step in this calculation is the calculation of the
inverse operator (iω − H)−1, but once this is done for one value of the
superconducting phase difference φ, we can use Dyson’s equation to obtain
the result for other values of φ without further inversions.

Results for the vortex lattice in the case of a nearly square Fermi
surface (EF/E0 = 0.99) are shown in Figs. 4.1 and 4.8. The agreement
with the semiclassical result is not fully quantitative, see Fig. 4.9, but all

3 As explained in [86], the influence of the Zeeman energy on the Josephson effect
is quantified by the phase shift θ = gµBBL/~vF = 1

2gL/lcycl. In the magnetic field
regime where the cyclotron radius lcycl = mvF/eB is large compared to the separation
L of the NS interfaces (which is the regime of interest here), the condition θ � 1 is
ensured provided the g-factor is not much larger than unity.
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Figure 4.8. (a): Same as Fig. 4.1, zoomed in at the right boundary. (b): At a
higher temperature the vortices and antivortices are approximately equivalent.

the qualitative features of the vortex lattice coming out of the analytics
are well reproduced in the numerics. Also the 1/

√
B decay is recovered in

the simulation, see Fig. 4.10.
In both the analytics and numerics so far we took a ballistic Joseph-

son junction, without any disorder in the normal region, and ideal (fully
transparent) NS interfaces. The numerical simulation provides a way to
test for the effects of impurity scattering and nonideal interfaces. Disorder
was modeled by adding a random component δU to the on-site electro-
static potential, drawn uniformly from the interval [−U0, U0]. For the
tunnel barrier we reduced the hopping amplitude at the two NS inter-
faces. As shown in Fig. 4.11, the slow 1/

√
B decay persists even if the

critical current is reduced substantially by the tunnel barrier. Disorder
provides a stronger perturbation, in the form of random sample-specific
fluctuations [69], but averaged over series of peaks the slow decay persists.

4.8 Discussion

Two-dimensional vortex lattices are well established for Abrikosov vortices
in a bulk superconductor [9], but Josephson vortices in an SNS junction
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Figure 4.9. Current density profile along a cut through x = 0, for the same
parameters as Fig. 4.1. Since jy = 0 along this cut, the plotted jx is the full cur-
rent density. The red and blue dots identify the center of a vortex or antivortex,
which are distinct at this low temperature of kBT = 0.01 ∆. The solid curves are
the results of the numerical simulation, the dashed curves are the semiclassical
result (4.12) in the short-junction regime.

were only known to arrange as a one-dimensional chain [25, 78, 80]. Our
key conceptual finding is that the 2D arrangement is hidden by angular
averaging over the Fermi surface. For a distribution of angles of incidence
peaked at ±θ, resulting from a strong square or hexagonal warping of
the Fermi surface, a 2D lattice develops when the magnetic length lm =√
~/eB drops below the separation L of the NS interfaces. The lattice is

bipartite, with a vortex and antivortex in a rectangular unit cell of size
πl2m/L parallel to the interface and πl2m/(L tan θ) perpendicular to the
interface. For a circular Fermi surface the 2D lattice degrades to a 1D
chain.

It would be interesting to search for this 2D Josephson vortex lattice
in some of the quasi-two-dimensional systems that are known to have a
warped Fermi surface, such as the hexagonal warping on the surface of a
three-dimensional topological insulator [88]. By way of illustration, Fig.
4.12 shows the vortex lattice calculated for the [111] surface dispersion of
Bi2Te3 [89],

Ek = E0
√
λ2k2

x + λ2k2
y + λ6(k3

x − 3kxky2)2, (4.31)

with the x-axis (the NS interface) oriented along the ΓK direction in the
Brillouin zone.

The vortices could be detected directly by a scanning tunneling probe [90–
92], or indirectly through the flux Φ-dependent Fraunhofer oscillations [93,
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Figure 4.10. Plot of the critical current Ic versus the flux Φ through the normal
region, resulting from the numerical simulation with the parameters of Figs. 4.1
and 4.8. The minima of the Fraunhofer oscillations no longer go to zero at low
temperatures (blue curves), because of the skewed current-phase relationship.
The upper panel shows a linear scale, the lower panel a log-log scale with the
Φ−1/2 decay indicated (black dashed line). (The 1/Φ decay of the conventional
Fraunhofer oscillations is also included for comparison.)

94] — we have found that the transition from a 1D to a 2D arrangement
of vortices is accompanied by a slow-down of the decay of the oscillation
amplitude from 1/Φ to 1/

√
Φ. While in the main text we have focused

on the current distribution, we note that a 2D lattice structure with the
same periodicity appears also in the superconducting pair potential (see
App. 4.9.2) and in the local density of states (see App. 4.9.3).

A particularly intriguing feature of the vortex lattice is the reconstruc-
tion at the edge, resulting in an edge channel of width ' lm parametrically
larger than the lattice constant. It is this edge channel that effectively
carries the supercurrent when lm . L, resulting in the decay scaling as
lm/W ∝ 1/

√
B. Notice that the edge channel appears entirely as a result

of quantum interference — in contrast to the quantum Hall edge channel
any orbital effects of the magnetic field play no role here.
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Figure 4.11. Effect on the Fraunhofer oscillations of a tunnel barrier at the
NS interfaces (panel a) or of disorder in the normal region (panel b). The data
results from the numerical simulation with the parameters of Fig. 4.8b. The
disorder strength or tunnel barrier height is quantified by the reduction of the
normal state conductance G. The topmost (red) curve corresponds to the ideal
case without disorder or tunnel barrier.

4.9 Appendix

4.9.1 Calculation of the Aharonov-Bohm phase shift

We calculate the Aharonov-Bohm phase shift

γ = 2e
~

∫ S2

S1
A · dl (4.32)

accumulated along a trajectory across the Josephson junction, from su-
perconductor S1 at y = −L/2 to S2 at y = +L/2, including the effects of
multiple specular reflections at the side walls x = ±W/2. The geometry
is shown in Fig. 4.2. Assume that the trajectory starts at t = 0 from
the point x = x(0), y = −L/2 at the lower NS interface, at an angle
θ(0) ∈ (−π/2, π/2) with the positive y-axis. The opposite NS interface at
y = L/2 is reached at the time tL = L/vy, with vy = vF cos θ(0) the veloc-
ity component in the y-direction (which does not change at a boundary
reflection).

In the gauge A = (0, Bx, 0) the line integral takes the form

γ = 2vy
l2m

∫ tL

0
x(t)dt. (4.33)
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Figure 4.12. Vortex lattice for a Fermi surface having the hexagonal warping
of the Bi2Te3 dispersion relation (4.31) (parameters λ ≈ 1 nm, E0 ≈ 260 meV,
EF = 6−3/4√7E0, kF = 6−1/4λ−1, other parameters and color scale as in Fig.
4.4). The difference with square warping is that the lattice is rectangular rather
than square, with aspect ratio a⊥/a‖ = 1/ tan(π/6) =

√
3.

The time dependence of x(t) is given by

x(t) = (−1)νu(t) [u(t)− νu(t)W ],
u(t) = x(0) + vFt sin θ(0),

(4.34)

where we have defined νu ∈ Z as the integer nearest to u/W . The absolute
value of ν counts the number of boundary reflections up to time t. At time
tL = L/[vF cos θ(0)] we have

x(tL) = (−1)νL [x(0) + L tan θ(0)− νLW ], (4.35)

where νL ≡ νu(tL) is the integer nearest to [x(0) + L tan θ(0)]/W .
Integration of Eq. (4.33) results in

γ = 1
l2m tan θ(0)

(
1
4W

2 − x2(0) + (−1)νL
[
x2(tL)− 1

4W
2]). (4.36)

This is sufficient to calculate the total current through the Josephson junc-
tion, by integrating the current density through the lower NS interface.

To obtain the current distribution within the junction, say at the point
(x0, y0), we need to find the corresponding coordinates (x(0),−L/2) of
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the trajectory at the lower NS interface. The angle θ at the point (x0, y0)
equals ±θ(0). The point (x0, y0) is reached at a time t0 = (y0 + L/2)/vy
after

ν0 = νx0−vFt0 sin θ = νx0−(y0+L/2) tan θ (4.37)
boundary reflections. Retracing back the trajectory, we find

x(0) = (−1)ν0 [x0 − (y0 + L/2) tan θ − ν0W ],
θ(0) = (−1)ν0θ.

(4.38)

This calculation of the Aharonov-Bohm phase γ holds for any number
of boundary collisions at x = ±W/2. In the main text we only need the
result for a single boundary collision at x = W/2. One readily checks that
Eq. (4.36) reduces to Eq. (4.15) upon substitution of νL = 1, ν0 = 0 for
tan θ > 0 or νL = 1, ν0 = 1 for tan θ < 0.

4.9.2 Two-dimensional lattice structure of the supercon-
ducting order parameter

The coherent superposition of electrons and holes in an Andreev level
produces a nonzero order parameter F (r) in the normal region, in the
absence of any pairing interaction [9]. In this appendix we show that the
amplitude |F | has a 2D lattice structure with the same periodicity as the
current vortex lattice studied in the main text.

An Andreev level in the SNS junction of Fig. 4.2, at the positive energy

ε = ∆ cos(ψ/2), ψ = φ1 − φ2 − γ ∈ (−π, π), (4.39)

has a wave function Ψ(r) that penetrates into the superconducting regions
|y| > L/2 over a distance

ξε = ~vy(∆2 − ε2)−1/2 = (~vy/∆)| sin(ψ/2)|−1. (4.40)

In the normal region |y| < L/2 the wave function has a constant ampli-
tude, given in WKB approximation by [82]

Ψ(r) =
(
u(r)
v(r)

)
= (2ξε)−1/2eik·r

(
eiη/2

e−iη/2

)
. (4.41)

The electron and hole components u, v differ in phase by

η = 1
2(φ1 + φ2 + γ)− 2e

~

∫ r

S1
A · dl, (4.42)
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in accord with the Andreev reflection boundary condition at the NS in-
terfaces [84],

η =
{
φ1 − σ arccos (ε/∆) at y = −L/2,
φ2 + σ arccos (ε/∆) at y = +L/2.

(4.43)

We have defined σ = signψ, so that arccos (ε/∆) = σψ/2 for ψ ∈ (−π, π).
The electron-hole mode (u, v) at energy ε contributes to the supercon-

ducting order parameter an amount [9]

δF (r) = tanh
(

ε

2kBT

)
u∗(r)v(r). (4.44)

Integration over the modes gives the full order parameter,

F (r) =
∫
dkx
2π δF (r)

= kF
2π

∫ π/2

−π/2
dθ ρ(θ) cos θ tanh

(
ε

2kBT

)
e−iη

2ξε
. (4.45)

This expression has the proper 2π-periodicity in the superconducting
phase, since η 7→ η + π and ε 7→ −ε if φ1 or φ2 is incremented by 2π.

We evaluate F (r) in a wide SNS junction, at a point r = (x0, y0) far
from the lateral boundaries. A mode passing through this point at an
angle θ relative to the y-axis has Aharonov-Bohm phase

2e
~

∫ r

S1
A · dl = (y0 + L/2)

l2m
[2x0 − (y0 + L/2) tan θ],

γ = 2e
~

∫ S2

S1
A · dl = 2L

l2m
(x0 − y0 tan θ), (4.46)

so that the phase shift (4.42) is given by

η = φ̄− 2x0y0
l2m

+
y2

0 + 1
4L

2

l2m
tan θ, φ̄ = 1

2(φ1 + φ2). (4.47)

For the warped Fermi surface of a square lattice (unit lattice constant,
see Sec. 4.2) we have

tan θ = sin kx
Ξ , vy = E0Ξ

2~ , (4.48)

ψ = φ1 − φ2 −
2L
l2m

(
x0 −

y0
Ξ sin kx

)
, (4.49)

Ξ =
√

1− (cos kx + 2EF/E0 − 2)2. (4.50)
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Figure 4.13. (a) Absolute value of the superconducting order parameter F (r),
calculated from Eq. (4.51). Current vortices and antivortices in Fig. 4.4 corre-
spond to local minima of |F |. (b) Local density of states ρδ at the Fermi level
(with a Lorentzian broadening δ), calculated from Eq. (4.54). Current vortices
and antivortices in Fig. 4.4 correspond to local maxima and minima of ρδ.

The order parameter then results from the integral

F (r) = ∆
2πE0

e−iφ̄ exp(2ix0y0/l
2
m)
∫ kF

−kF
dkx

1
Ξ |sin(ψ/2)|

× tanh
(∆ cos(ψ/2)

2kBT

)
exp

(
−
i(y2

0 + 1
4L

2)
l2mΞ sin kx

)
, (4.51)

with kF = arccos (1−2EF/E0). The resulting 2D lattice structure is shown
in Fig. 4.13(a), corresponding to the current vortex lattice of Fig. 4.4.

4.9.3 Two-dimensional lattice structure of the density of
states

To complete the picture, we also demonstrate the development of a 2D
lattice structure in the density of states. The states at ±ε contribute
|Ψ(r)|2[δ(E + ε) + δ(E − ε)] to the local density of states ρ(r, E). The
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total contribution is

ρ(r, E) =
∫
dkx
2π
(
|u(r)|2 + |v(r)|2

) ∑
σ=±

δ(E − σε)

=
∫
dkx
2π

∆
~vy
| sin(ψ/2)|

∑
σ=±

δ
(
E − σ∆ cos(ψ/2)

)
. (4.52)

We regularize the delta function by introducing a Lorentzian broaden-
ing δ,

ρδ(r, E) =
∫
dkx
2π

∆
~vy

∑
σ=±

(δ/π)| sin(ψ/2)|
δ2 +

(
E − σ∆ cos(ψ/2)

)2 . (4.53)

At the Fermi level, E = 0, we evaluate

ρδ(r, 0) = 2δ
π2E0∆

∫ kF

−kF
dkx

Ξ−1| sin(ψ/2)|
(δ/∆)2 + cos2(ψ/2) . (4.54)

The resulting 2D lattice is shown in Fig. 4.13(b).



Chapter 5

Valley-momentum locking
in a graphene superlattice
with Y-shaped Kekulé bond
texture

5.1 Introduction

The coupling of orbital and spin degrees of freedom is a promising new
direction in nano-electronics, referred to as “spin-orbitronics”, that aims
at non-magnetic control of information carried by charge-neutral spin cur-
rents [95–97]. Graphene offers a rich platform for this research [98, 99],
because the conduction electrons have three distinct spin quantum num-
bers: in addition to the spin magnetic moment s = ±1/2, there is the
sublattice pseudospin σ = A,B and the valley isospin τ = K,K ′. While
the coupling of the electron spin s to its momentum p is a relativistic
effect, and very weak in graphene, the coupling of σ to p is so strong that
one has a pseudospin-momentum locking: the pseudospin points in the

The contents of this chapter have been published at O.V. Gamayun, V. P. Os-
troukh, N.V. Gnezdilov, İ. Adagideli, and C.W. J. Beenakker, New J. Phys. 20, 023016
(2018) and may be used under the terms of the Creative Commons Attribution 3.0 li-
cence.
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https://doi.org/10.1088/1367-2630/aaa7e5
https://doi.org/10.1088/1367-2630/aaa7e5
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https://creativecommons.org/licenses/by/3.0/
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direction of motion, as a result of the helicity operator p ·σ ≡ pxσx+pyσy
in the Dirac Hamiltonian of graphene.

Figure 5.1. Honeycomb lattices with a Kek-O or Kek-Y bond texture, all three
sharing the same superlattice Brillouin zone (yellow hexagon, with reciprocal
lattice vectors K±). Black and white dots label A and B sublattices, black
and red lines distinguish different bond strengths. The lattices are parametrized
according to Eq. (5.4) (with φ = 0) and distinguished by the index ν = 1 + q− p
modulo 3 as indicated. The K and K ′ valleys (at the green Dirac points) are
coupled by the wave vectorG = K+−K− of the Kekulé bond texture and folded
onto the center of the superlattice Brillouin zone (blue point).

The purpose of this work is to propose a way to obtain a similar handle
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on the valley isospin, by adding a term p · τ to the Dirac Hamiltonian,
which commutes with the pseudospin helicity and locks the valley to the
direction of motion. We find that this valley-momentum locking should
appear in a superlattice that has recently been realized experimentally by
Gutiérrez et al. [15, 100, 101]: a superlattice of graphene grown epitaxially
onto Cu(111), with the copper atoms in registry with the carbon atoms.
One of six carbon atoms in each superlattice unit cell (

√
3 ×
√

3 larger
than the original graphene unit cell) have no copper atoms below them
and acquire a shorter nearest-neighbor bond. The resulting Y-shaped
periodic alternation of weak and strong bonds (see Fig. 5.1) is called a
Kekulé-Y (Kek-Y) ordering, with reference to the Kekulé dimerization in
a benzene ring (called Kek-O in this context) [101].

The Kek-O and KeK-Y superlattices have the same Brillouin zone,
with the K and K ′ valleys of graphene folded on top of each other. The
Kek-O ordering couples the valleys by opening a gap in the Dirac cone [27,
28, 102–104], and it was assumed by Gutiérrez et al. that the same applies
to the Kek-Y ordering [15, 101]. While it is certainly possible that the
graphene layer in the experiment is gapped by the epitaxial substrate (for
example, by a sublattice-symmetry breaking ionic potential [13, 105, 106]),
we find that the Y-shaped Kekulé bond ordering by itself does not impose
a mass on the Dirac fermions1. Instead, the valley degeneracy is broken by
the helicity operator p · τ , which preserves the gapless Dirac point while
locking the valley degree of freedom to the momentum. In a magnetic
field the valley-momentum locking splits all Landau levels except for the
zeroth Landau level, which remains pinned to zero energy.

5.2 Tight-binding model

5.2.1 Real-space formulation

A monolayer of carbon atoms has the tight-binding Hamiltonian

H = −∑r

∑3
`=1tr,` a

†
rbr+s` + H.c., (5.1)

describing the hopping with amplitude tr,` between an atom at site r =
na1 + ma2 (n,m ∈ Z) on the A sublattice (annihilation operator ar)

1 That the Kek-Y bond ordering by itself preserves the massless nature of the Dirac
fermions in graphene could already have been deduced from Ref. [13] (it is a limiting
case of their equation 4), although it was not noticed in the experimental Ref. [15]. We
thank Dr. Gutiérrez for pointing this out to us.
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and each of its three nearest neighbors at r + s` on the B sublattice
(annihilation operator br+s`). The lattice vectors are defined by s1 =
1
2(
√

3,−1), s2 = −1
2(
√

3, 1), s3 = (0, 1), a1 = s3 − s1, a2 = s3 − s2. All
lengths are measured in units of the unperturbed C–C bond length a0 ≡ 1.

For the uniform lattice, with tr,` ≡ t0, the band structure is given
by [107]

E(k) = ±|ε(k)|, ε(k) = t0
∑3
`=1e

ik·s` . (5.2)

There is a conical singularity at the Dirac points K± = 2
9π
√

3(±1,
√

3),
where E(K±) = 0. For later use we note the identities

ε(k) = ε(k + 3K±) = e2πi/3ε(k +K+ +K−). (5.3)

The bond-density wave that describes the Kek-O and Kek-Y textures
has the form

tr,`/t0 = 1 + 2 Re
[
∆ei(pK++qK−)·s`+iG·r] (5.4a)

= 1 + 2∆0 cos[φ+ 2
3π(m− n+N`)], (5.4b)

N1 = −q, N2 = −p, N3 = p+ q, p, q ∈ Z3.

The Kekulé wave vector

G ≡K+ −K− = 4
9π
√

3(1, 0) (5.5)

couples the Dirac points. The coupling amplitude ∆ = ∆0e
iφ may be

complex, but the hopping amplitudes tr,` are real in order to preserve
time-reversal symmetry.

As illustrated in Fig. 5.1, the index

ν = 1 + q − p mod 3 (5.6)

distinguishes the Kek-O texture (ν = 0) from the Kek-Y texture (ν = ±1).
Each Kekulé superlattice has a 2π/3 rotational symmetry, reduced from
the 2π/6 symmetry of the graphene lattice. The two ν = ±1 Kek-Y
textures are each others mirror image 2.

2 There are three sets of integers p, q ∈ Z3 for a given index ν = 1 + q − p mod 3,
corresponding to textures on the honeycomb lattice that are translated by one hexagon,
or equivalently related by a ±2π/3 phase shift of ∆.
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5.2.2 Transformation to momentum space

The Kek-O and Kek-Y superlattices have the same hexagonal Brillouin
zone, with reciprocal lattice vectors K± — smaller by a factor 1/

√
3 and

rotated over 30◦ with respect to the original Brillouin zone of graphene
(see Fig. 5.1). The Dirac points of unperturbed graphene are folded from
the corner to the center of the Brillouin zone and coupled by the bond
density wave.

To study the coupling we Fourier transform the tight-binding Hamilo-
nian (5.1),

H(k) = − ε(k)a†kbk −∆ε(k + pK+ + qK−)a†k+Gbk

−∆∗ε(k − pK+ − qK−)a†k−Gbk + H.c. (5.7)

The momentum k still varies over the original Brillouin zone. In order
to restrict it to the superlattice Brillouin zone we collect the annihilation
operators at k and k ±G in the column vector

ck = (ak, ak−G, ak+G, bk, bk−G, bk+G) (5.8)

and write the Hamiltonian in a 6× 6 matrix form:

H(k) = −c†k

(
0 Eν(k)
E†ν(k) 0

)
ck, (5.9a)

Eν =

 ε0 ∆̃εν+1 ∆̃∗ε−ν−1
∆̃∗ε1−ν ε−1 ∆̃εν
∆̃εν−1 ∆̃∗ε−ν ε1

 , (5.9b)

∆̃ = e2πi(p+q)/3∆, εn = ε(k + nG), (5.9c)

where we used Eq. (5.3).

5.3 Low-energy Hamiltonian

5.3.1 Gapless spectrum

The low-energy spectrum is governed by the four modes

uk = (ak−G, ak+G, bk−G, bk+G), (5.10)

which for small k lie near the Dirac points at ±G. (We identify the
K valley with +G and the K ′ valley with −G.) Projection onto this



78 Chapter 5. Valley-momentum locking in a graphene superlattice

subspace reduces the six-band Hamiltonian (5.9) to an effective four-band
Hamiltonian,

Heff = −u†k

(
0 hν
h†ν 0

)
uk, hν =

(
ε−1 ∆̃εν

∆̃∗ε−ν ε1

)
. (5.11)

Corrections to the low-energy spectrum from virtual transitions to the
higher bands are of order ∆2

0. We will include these corrections later, but
for now assume ∆0 � 1 and neglect them.

The k-dependence of εn may be linearized near k = 0,

ε0 = 3t0, ε±1 = ~v0(∓kx + iky) + order (k2), (5.12)

with Fermi velocity v0 = 3
2 t0a0/~. The corresponding 4-component Dirac

equation has the form

H
(

ΨK′

ΨK

)
= E

(
ΨK′

ΨK

)
, H =

(
v0p · σ ∆̃Qν
∆̃∗Q†ν v0p · σ

)
, (5.13a)

ΨK′ =
(
−ψB,K′
ψA,K′

)
, ΨK =

(
ψA,K
ψB,K

)
, (5.13b)

Qν =
(
ε∗−ν 0
0 −εν

)
=
{

3t0σz if ν = 0,
v0(νpx − ipy)σ0 if |ν| = 1.

(5.13c)

The spinor ΨK contains the wave amplitudes on the A and B sublattices in
valley K and similarly ΨK′ for valley K ′, but note the different ordering of
the components3. We have defined the momentum operator p = −i~∂/∂r,
with p · σ = pxσx + pyσy. The Pauli matrices σx, σy, σz, with σ0 the unit
matrix, act on the sublattice degree of freedom.

For the Kek-O texture we recover the gapped spectrum of Kekulé
dimerized graphene [102],

E2 = v2
0|p|2 + (3t0∆0)2 for ν = 0. (5.14)

The Kek-Y texture, instead, has a gapless spectrum,

E2
± = v2

0(1±∆0)2|p|2, for |ν| = 1, (5.15)

consisting of a pair of linearly dispersing modes with different velocities
v0(1 ±∆0). The two qualitatively different dispersions are contrasted in
Fig. 5.2.

3 The ordering of the spinor components in Eq. (5.13b) is the socalled valley-isotropic
representation of Dirac fermions, see [108].
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0.10 -0.05 0.05 0.10

Figure 5.2. Dispersion relation near the center of the superlattice Brillouin
zone, for the Kek-O texture (blue dashed curves) and for the Kek-Y texture
(black solid). The curves are calculated from the full Hamiltonian (5.9) for |∆̃| =
∆0 = 0.1.

5.3.2 Valley-momentum locking

The two gapless modes in the Kek-Y superlattice are helical, with both
the sublattice pseudospin and the valley isospin locked to the direction
of motion. To see this, we consider the ν = 1 Kek-Y texture with a
real ∆̃ = ∆0. (Complex ∆̃ and ν = −1 are equivalent upon a unitary
transformation.) The Dirac Hamiltonian (5.13) can be written in the
compact form

H = vσ (p · σ)⊗ τ0 + vτ σ0 ⊗ (p · τ ), (5.16)

with the help of a second set of Pauli matrices τx, τy, τz and unit matrix
τ0 acting on the valley degree of freedom. The two velocities are defined
by vσ = v0 and vτ = v0∆0.

An eigenstate of the current operator

jα = ∂H/∂pα = vσ σα ⊗ τ0 + vτ σ0 ⊗ τα (5.17)

with eigenvalue vσ ± vτ is an eigenstate of σα with eigenvalue +1 and
an eigenstate of τα with eigenvalue ±1. (The two Pauli matrices act on
different degrees of freedom, so they commute and can be diagonalized
independently.) This valley-momentum locking does not violate time-
reversal symmetry, since the time-reversal operation in the superlattice
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inverts all three vectors p, σ, and τ , and hence leaves H unaffected4:

(σy ⊗ τy)H∗(σy ⊗ τy) = H. (5.18)

The valley-momentum locking does break the sublattice symmetry,
since H no longer anticommutes with σz, but another chiral symmetry
involving both sublattice and valley degrees of freedom remains:

(σz ⊗ τz)H = −H(σz ⊗ τz). (5.19)

5.3.3 Landau level quantization

A perpendicular magnetic field B in the z-direction (vector potential A in
the x–y plane), breaks the time-reversal symmetry (5.18) via the substitu-
tion p 7→ −i~∂/∂r+eA(r) ≡ Π. The chiral symmetry (5.19) is preserved,
so the Landau levels are still symmetrically arranged around E = 0, as in
unperturbed graphene. Because the two helicity operators Π ·σ and Π ·τ
do not commute for A 6= 0, they can no longer be diagonalized indepen-
dently. In particular, this means the Landau level spectrum is not simply
a superposition of two spectra of Dirac fermions with different velocities.

It is still possible to calculate the spectrum analytically (see Sec. 5.7.1).
We find Landau levels at energies E+

n , E
−
n ,−E+

n ,−E−n , n = 0, 1, 2, . . .,
given by

E±n = EB

[
2n+ 1±

√
1 + n(n+ 1)(4vσvτ )2v̄−4

]1/2
, (5.20)

with the definitions v̄ =
√
v2
σ + v2

τ and EB = v̄
√
~eB.

In unperturbed graphene all Landau levels have a twofold valley de-
generacy5: E+

n = E−n+1 for vτ = 0. This includes the zeroth Landau level:
E−0 = 0 = −E−0 . A nonzero vτ breaks the valley degeneracy of all Landau
levels at E 6= 0, but a valley-degenerate zero-mode E−0 = 0 remains, see
Fig. 5.3.

4 The time-reversal operation T = (σy ⊗ τy)C from Eq. (5.18) (with C complex
conjugation) squares to +1 because the electron spin is not explicitly included. If we
do include it, we would have T = (sy ⊗ σy ⊗ τy)C, which squares to −1 as expected for
a fermionic quasiparticle. The combination of the time-reversal symmetry (5.18) and
the chiral symmetry (5.19) places the superlattice in the BDI symmetry classification
of topological states of matter.

5 The Landau levels also have a twofold spin degeneracy, which could be resolved by
the Zeeman energy but is not considered here.
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Figure 5.3. Landau levels in the Kek-Y superlattice (∆0 = 0.1, φ = 0, ν = 1).
The data points are calculated numerically [16] from the tight-binding Hamilto-
nian (5.1) with bond modulation (5.4). The lines are the analytical result from
Eqs. (5.20) and (5.21) for the first few Landau levels. Lines of the same color
identify the valley-split Landau level, the zeroth Landau level (red line) is not
split.

The absence of a splitting of the zeroth-Landau level can be understood
as a topological protection in the context of an index theorem [109–112],
which requires that either Π+ ≡ Πx + iΠy or Π− ≡ Πx − iΠy has a
zero-mode. If we decompose H = Π+S− + Π−S+, with S± = vσ(σx ±
iσy) + vτ (τx ± iτy), we see that both S+ and S− have a rank-two null
space6, spanned by the spinors ψ(1)

± and ψ(2)
± . So if Π±f± = 0, a twofold

degenerate zero-mode of H is formed by the states f±ψ(1)
∓ and f±ψ(2)

∓ .
All of this is distinctive for the Kek-Y bond order: for the Kek-O

texture it’s the other way around — the Landau levels have a twofold
valley degeneracy except for the nondegenerate Landau level at the edge
of the band gap7.

6 If we define the eigenstates |α, β〉 by σz|α, β〉 = α|α, β〉, τz|α, β〉 = β|α, β〉, then
S+ annihilates ψ(1)

+ = |1, 1〉 and ψ
(2)
+ = vτ | − 1, 1〉 − vσ|1,−1〉, while S− annihilates

ψ
(1)
− = | − 1,−1〉 and ψ(2)

− = vτ |1,−1〉 − vσ| − 1, 1〉.
7 In a Kek-O superlattice the Landau levels are given by E2

n = (3t0∆0)2 + 2n~eBv2
0 ,

n = 0, 1, 2, . . ., with a twofold valley degeneracy for n ≥ 1 and a nondegenerate zeroth
Landau level at ±3t0∆0.
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5.4 Effect of virtual transitions to higher bands

So far we have assumed ∆0 � 1, and one might ask how robust our
findings are to finite-∆0 corrections, involving virtual transitions from the
ε±1 bands near E = 0 to the ε0 band near E = 3t0. We have been able
to include these to all orders in ∆0 (see Sec. 5.7.2), and find that the
entire effect is a renormalization of the velocities vσ and vτ in the Hamil-
tonian (5.16), which retains its form as a sum of two helicity operators.
For real ∆ = ∆0 the renormalization is given by vσ = v0ρ+, vτ = v0ρ−
with

ρ± = 1
2(1−∆0)

 1 + 2∆0√
1 + 2∆2

0

± 1

 . (5.21)

For complex ∆ = ∆0e
iφ the nonlinear renormalization introduces a de-

pendence on the phase φ modulo 2π/3.
What this renormalization shows is that, as expected for a topological

protection, the robustness of the zeroth Landau level to the Kek-Y texture
is not limited to perturbation theory — also strong modulations of the
bond strength cannot split it away from E = 0.

5.5 Pseudospin-valley coupling

In zero magnetic field the low-energy Hamiltonian (5.16) does not couple
the pseudospin σ and valley τ degrees of freedom. A σ ⊗ τ coupling
is introduced in the Kek-Y superlattice by an ionic potential µY on the
carbon atoms that line up with the carbon vacancies — the atoms located
at each center of a red Y in Fig. 5.1. We consider this effect for the ν = 1
Kek-Y texture with a real ∆̃ = ∆0.

The ionic potential acts on one-third of the A sublattice sites, labeled
rY. (For ν = −1 it would act on one-third of the B sublattice sites.)
Fourier transformation of the on-site contribution µY

∑
rY
a†rYarY to the

tight-binding Hamiltonian (5.1) gives with the help of the lattice sum

∑
rY
eik·rY ∝ δ(k) + δ(k −G) + δ(k +G) (5.22)
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the momentum-space Hamiltonian

H(k) = −c†k

(
MY E1(k)
E†1(k) 0

)
ck, (5.23a)

MY = −µY

1 1 1
1 1 1
1 1 1

 . (5.23b)

The E1 block is still given by Eq. (5.9). The additional MY-block breaks
the chiral symmetry.

Projection onto the subspace spanned by low-energy modes (Eq. 5.10)
gives the effective Hamiltonian

Heff = −u†k

(
mY h1
h†1 0

)
uk, mY = −µY

(
1 1
1 1

)
. (5.24)

The corresponding Dirac Hamiltonian has the form (5.13) with an addi-
tional σ ⊗ τ coupling,

H = vσ (p · σ)⊗ τ0 + vτ σ0 ⊗ (p · τ ) + 1
2µY

+ 1
2µY(σx ⊗ τx + σy ⊗ τy − σz ⊗ τz).

(5.25)

The energy spectrum,

E
(1)
± = ±(vσ − vτ )|p|,

E
(2)
± = µY ±

√
(vσ + vτ )2|p|2 + µ2

Y,
(5.26)

has two bands that cross linearly in p at E = 0, while the other two bands
have a quadratic p-dependence. (See Fig. 5.4.)

The three bands E(1)
+ , E(1)

− , E(2)
− that intersect at p = 0 are reminiscent

of a spin-one Dirac one. Such a dispersion is a known feature of a potential
modulation that involves only one-third of the atoms on one sublattice [13,
106]. The spectrum remains gapless even though the chiral symmetry is
broken. This is in contrast to the usual staggered potential between A
and B sublattices, which opens a gap via a σz ⊗ τz term [107].

5.6 Discussion
In summary, we have shown that the Y-shaped Kekulé bond texture (Kek-
Y superlattice) in graphene preserves the massless character of the Dirac
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Figure 5.4. Effect of an on-site potential µY on the Kek-Y bandstructure of Fig.
5.2. The three bands that intersect linearly and quadratically at the center of the
superlattice Brillouin zone form the “spin-one Dirac cone” of Refs. [106] and [13].
The curves are calculated from the full Hamiltonian (5.23) for ∆0 = 0.1 = µY.

fermions. This is fundamentally different from the gapped band structure
resulting from the original Kekulé dimerization [27, 28, 102, 103] (Kek-O
superlattice), and contrary to expectations from its experimental realiza-
tion [15, 101].

The gapless low-energy Hamiltonian H = vσp · σ + vτp · τ is the sum
of two helicity operators, with the momentum p coupled independently
to both the sublattice pseudospin σ and the valley isospin τ . This valley-
momentum locking is distinct from the coupling of the valley to a pseudo-
magnetic field that has been explored as an enabler for valleytronics [113],
and offers a way for a momentum-controlled valley precession. The broken
valley degeneracy would also remove a major obstacle for spin qubits in
graphene [114].

A key experimental test of our theoretical predictions would be a con-
firmation that the Kek-Y superlattice has a gapless spectrum, in stark
contrast to the gapped Kek-O spectrum. In the experiment by Gutiér-
rez et al. on a graphene/Cu heterostructure the Kek-Y superlattice is
formed by copper vacancies that are in registry with one out of six car-
bon atoms [15, 101]. These introduce the Y-shaped hopping modulations
shown in Fig. 5.1, but in addition will modify the ionic potential felt by
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the carbon atom at the center of the Y. Unlike the usual staggered poten-
tial between A and B sublattices, this potential modulation in an enlarged
unit cell does not open a gap [13, 106]. We have also checked that the
Dirac cone remains gapless if we include hoppings beyond nearest neig-
bor. All of this gives confidence that the gapless spectrum will survive in
a realistic situation.

Further research in other directions could involve the Landau level
spectrum, to search for the unique feature of a broken valley degeneracy
coexisting with a valley-degenerate zero-mode. The graphene analogues
in optics and acoustics [115] could also provide an interesting platform for
a Kek-Y superlattice with a much stronger amplitude modulation than
can be realized with electrons.

5.7 Appendix

5.7.1 Calculation of the Landau level spectrum in a Kek-Y
superlattice

We calculate the spectrum in a perpendicular magnetic field of a graphene
sheet with a Kekulé-Y bond texture. We start by rewriting the Hamilto-
nian (5.16), with Π = p+ eA, in the form

H = 1
2Π+S− + 1

2Π−S+ + µσz ⊗ τz, (5.27)

in terms of the raising and lowering operators

Π± = Πx ± iΠy, σ± = σx ± iσy, τ± = τx ± iτy,
S± = vσ σ± ⊗ τ0 + vτ σ0 ⊗ τ±.

(5.28)

The chiral-symmetry breaking term µσz⊗τz that we have added will serve
a purpose later on.

We know that the Hermitian operator Ω = Π+Π− has eigenvalues
ωn = 2n~eB, n = 0, 1, 2, . . ., in view of the commutator [Π−,Π+] = 2~eB.
So the strategy is to express the secular equation det(E−H) = 0 in a form
that involves only the mixed products Π+Π−, and no Π2

+ or Π2
−. This is

achieved by means of a unitary transformation, as follows.
We define the unitary matrix

U = exp[1
4 iπ(σ0 + σz)⊗ τy] (5.29)
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and reduce the determinant of a 4× 4 matrix to that of a 2× 2 matrix:

det(H− E) = detU †(H− E)U

= det
(
−E + µ R†

R −E − µ

)

=
{

det(E2 − µ2 −RR†) if E 6= µ,

det(E2 − µ2 −R†R) if E 6= −µ,
(5.30)

with R =
(
−vτΠ− vσΠ−
−vσΠ+ vτΠ+

)
. (5.31)

The matrix product RR† is not of the desired form, but R†R is,

R†R =
(

v2
σΠ−Π+ + v2

τΠ+Π− −vσvτ (Π−Π+ + Π+Π−)
−vσvτ (Π−Π+ + Π+Π−) v2

σΠ+Π− + v2
τΠ−Π+

)
, (5.32)

involving only Π+Π− = Ω and Π−Π+ = Ω + ω1. Hence the determinant
is readily evaluated for E 6= −µ,

det(H− E) = det(E2 − µ2 −R†R)

=
∞∏
n=0

det
(
E2 − µ2 − v̄2ωn − v2

σω1 vσvτ (2ωn + ω1)
vσvτ (2ωn + ω1) E2 − µ2 − v̄2ωn − v2

τω1

)
,

(5.33)

where we have abbreviated v̄ =
√
v2
σ + v2

τ .
Equating the determinant to zero and solving for E we find four sets

of energy eigenvalues E+
n , E

−
n ,−E+

n ,−E−n , given by

(E±n )2 − µ2 = (ωn + 1
2ω1)v̄2 ± 1

2

√
ω2

1 v̄
4 + (4vσvτ )2ωnωn+1

= E2
B

[
2n+ 1±

√
1 + n(n+ 1)(4vσvτ )2v̄−4

]
.

(5.34)

In the second equation we introduced the energy scale EB = ~v̄/lm, with
lm =

√
~/eB the magnetic length. The B-independent level E−0 = µ

becomes a zero-mode in the limit µ→ 0.
As a check on the calculation, we note that for µ = 0, vτ = 0 we

recover the valley-degenerate Landau level spectrum of graphene [107],

E−n = (~vσ/lm)
√

2n, E+
n = E−n+1. (5.35)
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Another special case of interest is µ = 0, vσ = vτ ≡ v0, when the two
modes of Dirac fermions have velocities vσ ± vτ equal to 0 and 2v0. From
Eq. (5.34) we find the Landau level spectrum

E−n = 0, E+
n = 2(~v0/lm)

√
2n+ 1. (5.36)

The mode with zero velocity remains B-independent, while the mode with
velocity 2v0 produces a sequence of Landau levels with a 1/2 offset in the
n-dependence.

5.7.2 Calculation of the low-energy Hamiltonian to all or-
ders in the Kek-Y bond modulation

Figure 5.5. Velocities v1 = vσ+vτ and v2 = vσ−vτ of the two gapless modes in
the Kek-Y superlattice, as a function of the bond modulation amplitude ∆0 for
two values of the modulation phase φ. The φ-dependence modulo 2π/3 appears
to second order in ∆0. The curves are calculated from Eq. (5.43). Note that
positive and negative values of v1, v2 are equivalent.

We seek to reduce the six-band Hamiltonian (5.9) to an effective 4× 4
Hamiltonian that describes the low-energy spectrum near k = 0. For
∆0 � 1 we can simply project onto the 2 × 2 lower-right subblock of
Eν , which for the |ν| = 1 Kek-Y bond modulation vanishes linearly in k.
This subblock is coupled to the ε0 band near E = 3t0 by matrix elements
of order ∆0, so virtual transitions to this higher band contribute to the
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Figure 5.6. Kek-Y superlattice with a complex bond amplitude ∆ = eiφ∆0,
according to Eq. (5.4) with ν = 1. The three colors of the bonds refer to three
different bond strengths, adding up to 3t0. For φ = 0 two of the bond strengths
are equal to t0(1−∆0) and the third equals t0(1 + 2∆0). This is the case shown
in Fig. 5.1. For φ = π/6 the bond strengths are equidistant: t0(1 −∆0

√
3), t0,

and t0(1 + ∆0
√

3). The value of ∆0 where a bond strength vanishes shows up in
Fig. 5.5 as a point of vanishing velocity.

low-energy spectrum in order ∆2
0. We will now show how to include these

effects to all order in ∆0.

One complication when we go beyond the small-∆0 regime is that
the phase φ of the modulation amplitude can no longer be removed by
a unitary transformation. As we will see, the low-energy Hamiltonian
depends on φ modulo 2π/3 — so we don’t need to distinguish between
the phase of ∆̃ = e2πi(p+q)/3∆ and the phase of ∆. The choice between
ν = ±1 still does not matter, the two Kek-Y modulations being related
by a mirror symmetry. For definiteness we take ν = +1.
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We define the unitary matrix

V =
(

Φ 0
0 Φ

)(
V 0
0 11

)
, Φ =

1 0 0
0 e−iφ 0
0 0 eiφ

 , (5.37a)

V = 1
2D0

 2 −2∆0 −2∆0
2∆0 1 +D0 1−D0
2∆0 1−D0 1 +D0

 , (5.37b)

with D0 =
√

1 + 2∆2
0 and evaluate

V †
(

0 E1
E†1 0

)
V =

(
0 Ẽ1
Ẽ†1 0

)
, (5.38a)

Ẽ1 = V†E1 =

D0ε0 ρ∗0ε−1 ρ0ε1
0 ρ+ε−1 ρ∗−ε1
0 ρ−ε−1 ρ∗+ε1

 , (5.38b)

ρ± = 1
2D0

[
1− 2∆2

0 ±D0 + e−3iφ∆0(1∓D0)
]
, (5.38c)

ρ0 = ∆0
D0

(2 + e3iφ∆0). (5.38d)

The matrix elements that couple the lower-right 2 × 2 subblock of Ẽ1 to
ε0 are now of order k, so the effect on the low-energy spectrum is of order
k2 and can be neglected — to all orders in ∆0.

The resulting effective low-energy Hamiltonian has the 4 × 4 form
(5.11), with h1 replaced by

h1 =
(
ρ+ε−1 ρ∗−ε1
ρ−ε−1 ρ∗+ε1

)
. (5.39)

The phases of ρ± = |ρ±|eiθ± can be eliminated by one more unitary trans-
formation, with the 4× 4 diagonal matrix

Θ = diag (eiθ− , eiθ+ , eiθ++iθ− , 1), (5.40)

which results in

Θ†
(

0 h1
h̃†1 0

)
Θ =

(
0 h̃1
h̃†1 0

)
, h̃1 =

(
|ρ+|ε−1 |ρ−|ε1
|ρ−|ε−1 |ρ+|ε1

)
. (5.41)
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Finally, we arrive at the effective Hamiltonian (5.16), with renormal-
ized velocities:

H = vσ (p · σ)⊗ τ0 + vτ σ0 ⊗ (p · τ ), vσ = |ρ+|v0, vτ = |ρ−|v0, (5.42)

|ρ±|2 = 1
2D2

0

(
1 + 3∆4

0 ±D0(1− 3∆2
0) + 2∆3

0(±D0 − 2) cos 3φ
)
. (5.43)

To third order in ∆0 we have

vσ/v0 = 1− 3
2∆2

0 − 1
2∆3

0 cos 3φ,
vτ/v0 = ∆0 − 3

2∆2
0 cos 3φ+ 1

16∆3
0(1− 9 cos 6φ) +O(∆4

0).
(5.44)

For real ∆, when φ = 0 and ρ± is real, Eq. (5.43) simplifies to

ρ± = 1
2(1−∆0)

 1 + 2∆0√
1 + 2∆2

0

± 1

 . (5.45)

The velocities of the two Dirac modes are then given by

v1 = vσ + vτ = v0
(1−∆0)(1 + 2∆0)√

1 + 2∆2
0

v2 = vσ − vτ = v0(1−∆0).
(5.46)

More generally, for complex ∆ = ∆0e
iφ both v1 and v2 become φ-dependent

to second order in ∆0, see Fig. 5.5.
Note that the asymmetry in ±∆0 vanishes for φ = π/6. For this phase

the superlattice has three different bond strengths (see Fig. 5.6) that are
symmetrically arranged around the unperturbed value t0.
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Summary

In this thesis we study quantum transport phenomena on the nanometer
scale, in two classes of materials: topological insulators with induced su-
perconductivity and graphene superlattices. Both topics are motivated by
recent experimental developments: the first topic arose from the search
for Majorana fermions in a quantum spin Hall insulator, the second topic
arose from the search for massive Dirac fermions in the Kekulé band struc-
ture of graphene on a copper substrate.

The first two chapters address the experimental observation in Delft
of an h/e-periodic component in the magnetic-field dependence of the
critical supercurrent in a Josephson junction formed out of a quantum
spin Hall insulator. This doubled Fraunhofer periodicity is suggestive
of the appearance of Majorana zero-modes in the junction, however the
theory presented in Chapter 2 indicates a more mundane explanation.
Using a network model of an edge-conducting Josephson junction, we
demonstrate that the existence of a conducting channel along the normal-
superconductor interface can explain the coexistence of h/e and h/2e
Fraunhofer periodicities — without requiring any contribution from Ma-
jorana fermions.

In the next Chapter 3 we describe our collaboration with the experi-
mentalists in Delft to test our theory against new experimental data. We
take into account the details of the experimental setup, which lead to
partial screening of the normal part of the Josephson junction from the
gate electrode. Using a realistic tight-binding model, we could explain the
observations along the lines of the theory of the preceding chapter.

In Chapter 4 we continue our study of Josephson junctions in a dif-
ferent system, the conducting surface of a three-dimensional topological
insulator. The circular Fermi surface of free electrons has a square defor-
mation, which as we have found strongly influences the lattice of magnetic
vortices. Unlike the one-dimensional array of Josephson vortices of pre-
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vious studies, we find a fully two-dimensional vortex lattice. We predict
that this vortex lattice leads to observable effects in the decay rate of
the Fraunhofer oscillations. The lattice might also be directly measurable
using scanning tunneling microscopy.

In Chapter 5 we turn to the second topic of our thesis, the superlattice
of a carbon monolayer (graphene) on an epitaxial substrate. Experiments
on a graphene/copper superlattice had observed a periodic modulation of
the potential with a structure that resembles the Kekulé dimerization of
a benzene ring. The conclusion from the published experiments was that
this modulation converts the massless Dirac fermions of graphene into
massive electrons, by opening a band gap at the Dirac point. We have
found that the physics of this problem is different: the electrons remain
massless, but the superlattice potential introduces a coupling between
the valley degree of freedom and the momentum. This valley-momentum
locking could be useful in so-called valleytronics applications.



Samenvatting

In dit proefschrift onderzoeken wij quantum transportverschijnselen op
de nanometerschaal, in twee type materialen: topologische isolatoren met
geïnduceerde supergeleiding en superroosters in grafeen. Beide onderwer-
pen zijn gemotiveerd door recente experimentele ontwikkelingen: het eer-
ste onderwerp ontstond uit de zoektocht naar Majorana fermionen in een
quantum-spin-Hall-isolator, het tweede onderwerp ontstond uit de zoek-
tocht naar massieve Dirac fermionen in de Kekulé bandstructuur van gra-
feen op een koper-substraat.

In de eerste twee hoofdstukken onderzoeken wij de experimentele waar-
neming in Delft van een h/e-periodieke component in de magneetveldaf-
hankelijkheid van de kritische superstroom in een Josephsonjunctie die
gevormd is uit een quantum-spin-Hall-isolator. Deze verdubbelde Fraun-
hoferperiodiciteit suggereert de aanwezigheid van Majoranadeeltjes in de
junctie, echter de theorie in hoofdstuk 2 geeft een minder exotische inter-
pretatie. Gebruikmakend van een netwerkmodel van randgeleiding in een
Josephsonjunctie tonen wij aan dat het optreden van een geleidend kanaal
langs de grens tussen het normale materiaal en de supergeleider heel goed
het samengaan van h/e en h/2e Fraunhoferperiodiciteiten kan verklaren
— zonder dat er een bijdrage nodig is van Majorana fermionen.

Hoofdstuk 3 betreft een samenwerking met de experimentatoren in
Delft, waarin we onze theorie testen aan nieuwe waarnemingen. We hou-
den rekening met de details van het experiment, in het bijzonder de ge-
deeltelijke afscherming van het normale deel van de Josephsonjunctie door
de metalen elektrodes. Gebruikmakend van een realistische roostermodel
kunnen we de experimenten verklaren volgens de theorie van het vooraf-
gaande hoofdstuk.

In hoofdstuk 4 vervolgen we de studie van Josephsonjuncties in een
ander systeem, het geleidende oppervlak van een drie-dimensionale to-
pologische isolator. Het circulaire Fermi-oppervlak van vrije elektronen
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heeft een vierkante vervorming, die een sterke invloed blijkt te hebben op
het rooster van magnetische vortices. Een één-dimensionaal rooster van
Josephson-vortices is bekend uit eerder werk, wij vinden echter een volle-
dig twee-dimensionaal vortexrooster. We voorspellen dat dit rooster waar-
neembare consequenties heeft voor de vervalsnelheid van de Fraunhofer-
oscillaties. Het rooster zou ook direct waarneembaar kunnen zijn met
behulp van een rastermicroscoop.

In hoofdstuk 5 gaan we over tot het tweede onderwerp van het proef-
schrift, het superrooster van een koolstof-monolaag (grafeen) dat epitaxi-
aal gegroeid is op een substraat. Experimenten aan een grafeen/koper
superrooster hadden een periodieke modulatie waargenomen van de elek-
trische potentiaal, met een struktuur die lijkt op de periodieke modulatie
van de bindingen in een benzeenring (bekend als Kekulé dimerisatie). De
conclusie van de gepubliceerde experimenten was dat deze modulatie de
massaloze Dirac-fermionen in grafeen omzet in gewone massieve elektro-
nen. Wij hebben echter gevonden dat het probleem heel anders in elkaar
zit: de elektronen blijven massaloos, maar wat het superrooster bewerkt
is dat er een koppeling optreedt tussen de beweging van de elektronen en
hun “valley” vrijheidsgraad. Deze “valley-momentum locking” zou toege-
past kunnen worden in het vakgebied van de “valleytronics” (een variant
op “spintronics” waar de elektronspin vervangen wordt door de “valley”
pseudo-spin).



Пiдсумки

У цiй дисертацiї ми вивчаємо явище квантового транспорту на рiв-
нi нанометрових розмiрiв у двох класах матерiалiв: топологiчних iзо-
ляторах з наведеною надпровiднiстю i суперґратках графену. Обидва
напрямки мотивованi сучасними експериментальними наробками: пер-
ший напрямок є результатом пошуку майоранiвських фермiонiв у си-
стемах з квантовим спiновим ефектом Хола, другий — з пошуку ма-
сивних дiракiвських фермiонiв у зоннiй структурi графену на мiднiй
пiдкладцi, у якому виникає модуляцiя мiжатомних зв’язкiв типу Ке-
куле.

Першi двi глави присвяченi експериментам, зробленим у Делфтi,
якi виявили h/e-перiодичну компоненту у залежностi критичного над-
провiдного струму вiд магнiтного поля у джозефсонiвському контактi,
зробленому з iзолятору з квантовим спiновим ефектом Хола. Ця подво-
єна фраунгоферiвська перiодичнiсть натякає на появу майоранiвських
нульових мод у контактi, проте теорiя, презентована у Главi 2 надає
тривiальнiше пояснення. За допомогою сiткової моделi ми демонстру-
ємо, що iснування провiдного каналу на границi мiж надпровiдником i
iзолятором може пояснити спiвiснування h/e- i h/2e-перiодичних ком-
понент, потребуючи iснування майоранiвських нульових мод.

У наступнiй Главi 3 ми описуємо колаборацiю з експериментатора-
ми з унiверситету Делфта, де ми перевiряємо цю теорiю за допомогою
нових експериментальних даних. Ми враховуємо деталi експеримен-
тальної установки, якi приводять до часткового екранування нормаль-
ної частини джозефсонiвського контакту вiд електричного поля затво-
ру. За допомогою реалiстичної моделi найближчих сусiдiв ми змогли
пояснити це явище, базуючись на теорiї, представленiй у попереднiй
главi.

У Главi 4 ми продовжуємо вивчати джозефсонiвськi контакти у
iншiй системi, поверхнi тривимiрного топологiчного iзолятора, яка є
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провiдником. Поверхня Фермi електронiв без взаємодiї деформується
вiд круглої до квадратної, що сильно впливає на формування магнi-
тних вихорiв. На вiдмiну вiд одновимiрного розташування джозефсо-
нiвських вихорiв, яке було вiдомо з попереднiх дослiджень, ми зна-
йшли повноцiнну двовимiрну вихрову ґратку. Ми прогнозуємо, що ця
ґратка приводить до помiтного уповiльнення у затуханнi фраунгофе-
рiвських осциляцiй при збiльшеннi поперечного магнiтного поля. Вона
може також бути виявлена напряму за допомогою скануючої тунельної
мiкроскопiї.

У Главi 5 ми звертаємось до другої теми цiй дисертацiї, суперґра-
тки у одноатомному шарi вуглецю (графенi) на eпiтаксiальнiй пiдклад-
цi. Експерименти з графеном на мiднiй пiдкладцi продемонстрували
iснування перiодичної модуляцiї у енергiї взаємодiї мiж атомами кар-
бону, яка нагадує димерiзацiю типу Кекуле у кiльцi бензолу. Висновок
опублiкованої експериментальної статтi стверджує, що така модуляцiя
перетворює безмасовi дiракiвскi фермiони у спектрi графену у масив-
нi, тобто вiдкриває щiлину у спектрi. Ми демонструємо, що поведiнка
системи у цьому випадку iнакша: електрони залишваються ефективно
безмасовими, але суперґратка приводить до взаємодiї мiж iмпульсом i
долиною у графенiвському спектрi. Цей зв’язок долини i iмпульсу мо-
же бути корисним для використання у “долинотронiцi” (за аналогiєю
до спiнтронiки).
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