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2
T H E G E O M E T RY O F T H R E S H O L D L E S S AC T I V E
F L OW I N N E M AT I C S

Active liquids [1] are complex fluids with some components individu-
ally capable of converting internal energy into sustained motion. These
“active components” can be sub-cellular (such as microtubules pow-
ered by molecular motors, and acto-myosin networks [2, 3]), synthetic
(e.g., self-propelled colloids [11], or interacting micro-robots), or, al-
ternatively, living organisms [7, 8, 9, 10], such as birds, fish [30], mi-
croorganisms [4, 5] or insects [6]. Hybrid systems composed of motile
rod-shaped bacteria placed in nontoxic liquid crystals have also been
recently realized [31]. All of these systems blur the line between the
living and synthetic world, thereby opening up unprecedented oppor-
tunities for the design of novel smart materials and technology. At the
same time, the far-from-equilibrium nature of active matter leads to ex-
otic phenomena of fundamental interest. Among these are the ability
of active fluids to (i) spontaneously break a continuous symmetry in
two spatial dimensions [13, 32, 14, 15], (ii) exhibit spontaneous steady
state flow [21, 2] in the absence of an external driving force and (iii)
support topologically protected excitations (e.g., sound modes) that
originate from time-reversal symmetry breaking [33].

A striking example of the phenomenon of spontaneous flow occurs
in active nematic liquid crystals [1, 21, 22, 23, 24, 25, 26]. These ma-
terials are orientationally ordered but apolar fluids; that is, the active
particles share a common axis of motion but, in the homogeneous state,
equal numbers of them move in each of the two directions parallel to
this axis. As a result, there is no net motion and no net flow. However,
if the activity parameter α (defined later) exceeds a critical threshold
αc, the undistorted nematic ground state becomes unstable. Once this
instability threshold is passed, the active nematics spontaneously de-
form their state of alignment, triggering macroscopic “turbulent flow”
[21, 2, 34, 35, 36, 37]. For nematics, this activity threshold αc goes to
zero as the system size L → 8: αc ∼ K

L , where K is a characteristic
Frank elastic constant. Equivalently, one can say that the instability-
triggered flow does not occur in systems of characteristic size smaller
than Linst ∼

√
K
|α| .

An example of a flow with a threshold for an active nematic in a
cylinder [26] is shown in Fig. 10. In their numerical simulations, for
small values of activity α < αc ≈ ., the director field is aligned
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14 T H E G E O M E T RY O F T H R E S H O L D L E S S AC T I V E F L O W I N N E M AT I C S

Figure 10: Numerical simulation of active flow in a nematic cylinder with a
threshold taken from [26]. A cross-section of flow in the cylinder
is shown for three values of activity α. Flow is observed only for
α < ..

with the axis of the cylinder and there is no motion; activity in the
nematic only starts to induce flow when it exceeds this threshold value.

Other numerical studies of active nematics suggest that some non-
uniform director configurations can lead to laminar flow for arbitrar-
ily small activity, i.e., well below the instability threshold [34]. How-
ever, no systematic study of the mechanisms and criteria behind such
“thresholdless active flow” has previously been undertaken. In this the-
sis, we use a well established hydrodynamic theory of active nematics
to identify the class of surface deformations, boundary conditions or
external fields that induce a non-uniform director ground-state capable
of generating such thresholdless laminar flow. We emphasize that not
all spatially non-uniform configurations will induce such flow.

The condition for a given set of boundary conditions and applied
fields to induce thresholdless active flow in nematics is most easily
expressed in terms of the director field n̂(r) [38], which is defined as
the local orientation of molecular alignment. It can be stated as follows:
if the active force, which is defined in general as

fa ≡ α
[
n̂
(
∇ · n̂

)
+ (n̂ · ∇)n̂

]
= α

[
n̂
(
∇ · n̂

)
− n̂× (∇× n̂)

]
,

(1)

has non-zero curl, when computed for the director configuration n̂(r)

that minimizes the Frank elastic free energy (including external fields)
of the corresponding equilibrium problem [38], then the active fluid
in the same geometry must flow (i.e., the velocity field v , ). Note
that this condition is far more stringent than simply requiring that the
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nematic ground state orientation be inhomogeneous. For example, any
pure twist configuration (e.g, a cholesteric, or a twist cell) does not
satisfy it, since splay ∇ · n̂ and bend n̂ ×

(
∇× n̂

)
both vanish in

such configurations. The criterion ∇× fa ,  is a sufficient but not
necessary condition for thresholdless flow.

In the present study, we calculate the resulting flow field v(r) explic-
itly in the “frozen director” approximation, in which the nematic direc-
tor remains in its equilibrium configuration when activity is turned on.
We demonstrate that this approximation is asymptotically exact in the
experimentally relevant limit of weak orientational order. Since many
nematic to isotropic transitions are weakly first order [38] (at least in
equilibrium), this frozen director limit may be realized close to such
transitions, and in any case, these approximate solutions provide qual-
itative insights into the nature of the flow.

Our ideas can also be applied with some modifications to the re-
cently discovered “living liquid crystals” [31]. These systems are a
mixture of two components: living bacteria, which provide the activ-
ity, and a background medium composed of nematically ordered non-
active molecules, but we leave a full discussion of this until chapter
4.

The remainder of this chapter is organized as follows: in section 2.1,
we review the “standard model” for the hydrodynamics of active ne-
matics. We also discuss some generalizations of this model, and argue
that none of our conclusions will be substantively affected by these
generalizations. In sections 2.2 and 2.3, we derive the general criterion
for thresholdless active flow and explain the frozen director regime; in
section 2.4 we then apply this criterion to the specific case of surfaces
of non-zero Gaussian curvature, and show that such surfaces always
have non-zero active forces, but need not always have thresholdless
flow. We also derive the additional criteria that must be satisfied for
thresholdless flow to occur in these systems. In section 2.5, we derive
similar results for bulk systems with curved boundaries, consider a first
example in section 2.6 and then summarise in section 2.7.
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2.1 T H E H Y D RO DY N A M I C S O F AC T I V E N E M AT I C S

We take as our model for an incompressible one-component active ne-
matic fluid the following three coupled equations [21]:

ρ
Dvk
Dt

= −∂kP + η∇vk + α∂j
(
njnk

)
+ ∂j(λijk

δF

δni
)

(2a)
Dni
Dt

= λijk∂jvk −


γ

[
δF

δni
−
(
δF

δn̂
· n̂
)
ni

]
(2b)

∇ · v = , (2c)

where D/Dt ≡ ∂t + v · ∇ is the convective derivative and the tensor
λijk is given by

λijk ≡
(
λ + 



)
njδik +

(
λ− 


)
nkδij − λninjnk. (3)

The first Eq. (2a) is a modified Navier-Stokes equation describing
the evolution of the velocity field v(r, t); Eq. (2b) is the nematody-
namic equation describing the evolution of the director field n̂(r, t),
which responds both to the flow v, and to its own molecular field δF

δn
(described in more detail below), and (2c) is the incompressibility con-
dition, which is required since we take the density ρ to be constant.
We denote by P the dynamic pressure, η the shear viscosity, which
we take to be isotropic for simplicity, and γ the director field rota-
tional viscosity. The dimensionless flow-alignment parameter λ cap-
tures the anisotropic response of the nematogens to shear. Note that
the only difference between Eq. (2a-2c) and the equations of motion
for an equilibrium nematic [38] is the active force term α∂j

(
njnk

)
in

the Navier-Stokes Eq. (2a), which may be contractile (α > ) or ex-
tensile (α < ), depending on the system [21]. The molecular field δF

δn ,
derived from the Frank free energy

F =




∫
dr[K

(
∇ · n̂

)
+K

(
n̂ ·
(
∇× n̂

))
+K

∣∣n̂× (∇× n̂)∣∣], (4)

is parametrized respectively by three independent elastic constantsK,,

for splay, twist, and bend deformations of the director.
Note that, strictly speaking, Eq. (2a-2c) are not the most general set

of equations for a one-component active nematic. Specifically, there
are two ways in which they could be generalized:
1) The free energy F that appears in the velocity equation of motion
(2a) need not, in a non-equilibrium system, be the same as that in the
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director equation of motion (2b). Both free energies have to have the
same form as (4), since that form is required by rotation invariance, but
the Frank constants K,, that appear in them need not be equal.
2) The viscosity need not be isotropic: there are in general six Leslie
coefficients [42] characterizing this anisotropic response.

However, both of these concerns can safely be ignored in the small
activity regime which we are considering. We deal with 2) later in this
chapter in section 2.3 while 1) we discuss now.

To see why non-equilibrium molecular fields may be ignored in the
hydrodynamic theory, first we rewrite the equations of motion (2a-2c)
taking into account this difference in Frank free energies:

ρ
Dvk
Dt

= −∂kP + η∇vk + α∂j
(
njnk

)
+ ∂j(λijkhvi)

(5a)
Dni
Dt

= λijk∂jvk −


γ

[
hni −

(
hn · n̂

)
ni
]

(5b)

∇ · v = , (5c)

where the molecular fields hν , ν = [v,n] appearing in these equations
are given by hν = δFν

δn̂ , which implies

hν ≡
δFν
δn̂
= (Kν −Kν)

(
n̂ ·
(
∇× n̂

))
∇× n̂

− Kν∇n̂ + (Kν −Kν)n̂×∇
(
n̂ · ∇× n̂

)
+ (Kν −Kν)∇

(
∇ · n̂

)
. (6)

Here the the Fν’s, ν = [v,n] are the non-equilibrium generalizations
of the equilibrium Frank free energy F . They are constrained by rota-
tion invariance in exactly the same way as in equilibrium, and must,
therefore, both take the usual Frank free energy [38] form:

Fν =




∫
dr[Kν

(
∇ · n̂

)
+Kν

(
n̂ ·
(
∇× n̂

))
+Kν

∣∣n̂× (∇× n̂)∣∣] , (7)

Although the form of the two free energies must be the same, away
from equilibrium, the values of the Frank constants K,, need not
be the same in the two free energies. Only in equilibrium, in which
the activity parameter α = , do the two Frank free energies become
equal (Fv = Fn). In an active system, however, the fundamentally non-
equilibrium nature of the problem means that there are no such require-
ments of equality; that is, Fv , Fn away from equilibrium, in contrast
to the equations of motion (2a-2c) of the main text, in which we took
Fv = Fn = F . This is not necessarily true but we do expect [21] that
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both α and the difference between Fv and Fn will be proportional to
the density of active particles, and so will be very small when that
density is small. Since we are interested in the small activity (i.e., low
active particle density) limit, we can ignore the difference between Fv
and Fn.

To see this, note that, even when α is very small, the terms involving
hv in (5a) are always negligible, relative to the α terms. This is because,
in the small activity limit, hv → hn, with the difference hv −hn ∝ α,
since, as noted earlier, the difference between hv and hn is a purely ac-
tive effect. However, we have already shown that hn ‖ n̂; it is straight-
forward to show that when hv ‖ n̂, the terms involving hv in eq. (5a)
vanish. Hence, the only piece of those terms that can survive must arise
from the difference hv −hn, which, as we have just shown, is propor-
tional to α. However, these terms also involve more spatial derivatives
of n̂ than the α term and so on dimensional grounds, we expect the
ratio of the hv terms to the α terms to be O

(
a
L

), where a is a mi-
croscopic length (e.g., the size of the active particles), while L is the
macroscopic length scale over which n̂ varies. Hence, the hv terms in
eq. (5a) are negligible, regardless of the value of α, in a macroscopic
geometry.

Note that the length a that appears in this estimate cannot be the

instability length Linst ∼
√

K
α discussed at the start of this chapter,

since the ratio of the hv to the α term must be independent of α.

2.2 T H R E S H O L D L E S S F L O W I N AC T I V E N E M AT I C S

In certain geometries, the consitutive equations (2a-2c) lead to steady
state macroscopic fluid flow for arbitrarily small activity.

We will estalish the nature of the geometrical conditions by con-
tradiction. If there is no fluid flow (i.e., if the velocity field v = ),
then the equation of motion (2b) for the director field implies that, in
a steady state, for which Dni

Dt = , δFδn̂ − (n̂ · δFδn̂ n̂) =  (which also
holds in the case of anisotropic viscosity). This is simply the Euler-
Lagrange equation for minimizing the Frank free energy F subject to
the constraint |n̂| = . The contradiction arises when we insert such
an equilibrium solution for the nematic director into the equation of
motion for the velocity field (2a).

The last term on the right hand side of Eq. (2a), involving δF
δn̂ , van-

ishes when δF
δn̂ ‖ n̂, which is the case when the director field is in its

ground state. Since the velocity field v vanishes, Eq. (2a) reduces to
∇P = α

(
n̂ · ∇n̂ + n̂∇ · n̂

)
≡ fa. Hence the pressure gradient must

cancel the active force to prevent flow, but if the active force has a non-
vanishing curl, this is not possible. In such cases, v =  can never be a
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solution in the presence of activity; the fluid must flow, no matter how
small the activity. Thus, a sufficient (but not necessary) condition for
thresholdless active flow is

∇× fa , , (8)

which has also been implicit in other work such as [41].
One class of director configurations for which the condition in Eq.

(8) is not satisfied is that of “pure twist” configurations; that is, con-
figurations in which the twist does not vanish (i.e., n̂ ·

(
∇× n̂

)
, ),

but the splay and bend do (i.e., ∇ · n̂ =  and n̂ ×
(
∇× n̂

)
= ,

respectively). This can be seen by using the vector calculus identity
[n̂×

(
∇× n̂

)
]i = nj∇inj − n̂ · ∇ni = 

∇i|n̂|
 − n̂ · ∇ni = −n̂ ·

∇ni, where in the last equality we have used the fact that n̂ is a unit
vector to set∇i|n̂| = ∇i = . Using this, the active force fa may be
rewritten as

fa = α
[
n̂∇ · n̂− n̂×

(
∇× n̂

)]
, (9)

which implies that a director field with pure twist has zero active force,
and, hence, no flow for sufficiently small activity.

One might wonder whether active flow in this case can be induced
by the activity-induced difference betweenhv andhn; we’ll now prove
that this is not the case.

To see this, note that in a pure twist state, since n̂× (∇× n̂) = ,
∇× n̂ must be parallel to n̂ itself. This implies

∇× n̂ = g(r)n̂(r) (10)

where g(r) is some scalar function of r. Furthermore, since n̂ is di-
vergenceless in a pure twist state (∇ · n̂ = ), a well-known identity
of vector calculus implies ∇n̂ = −∇× (∇× n̂); using (10) in this
identity gives

∇n̂ = −g∇× n̂−∇g× n̂ = −gn̂ + n̂×∇g , (11)

where in the second equality we have used (10) a second time. Using
(10), (11) and ∇ · n̂ =  in our expression (34) for the molecular field
hn gives

hn = (Kn −Kn)gn̂−Knn̂×∇g . (12)

However, for this to be parallel to n̂, which is required to satisfy the
director equation of motion (5b) with v = , we must have ∇g ‖ n̂.
For such a g, (12) implies

hn = (Kn −Kn)gn̂ , (13)
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and, by the same reasoning,

hv = (Kv −Kv)g
n̂ . (14)

Thus, for any pure twist configuration that gives hn ∝ n̂ (which is
just the condition for minimizing the Frank energy Fn subject to the
constraint |n̂| = ), the active force fa vanishes, and both hv and
hn are everywhere parallel to n̂. But the latter conditions imply, as
noted earlier, that all of the terms involving hv and hn in (5a) and
(5b) vanish. Since fa does as well, and all of the other terms in those
equations vanish when v = , we can conclude that, if n̂ is in a pure
twist configuration that minimizes Fn, there will be no thresholdless
active flow.

2.3 F RO Z E N D I R E C T O R R E G I M E

When we consider specific examples of thresholdless active flow in
chapter 3, we will determine analytically the velocity field v(r, t). In
general, this is a difficult, non-linear calculation, since the flow field
reorients the nematic director. However, in the “frozen director” limit
γ � η, turning on activity (and thereby inducing thresholdless flow)
does not lead to an appreciable change in the nematic director config-
uration from that in equilibrium, which is obtained by minimizing the
Frank free energy. We now show that there is a very natural, generic,
and well-defined limit in which γ will always be much less than η:
namely, the limit of weak nematic order.

We begin by noting that if the active and viscous terms are balanced
in Eq. (2a), this implies schematically that if the system has a charac-
teristic length scale L, then ηv/L ∼ α/L and so v ∼ αL/η. This last
result implies that the Reynolds number Re ≡ ρvL

η =
ρL

α
η . Using

this estimate of v in Eq. (2b), we see that



γ

δF

δn̂
∼ α/η. (15)

Assuming that α is small enough that Re � , we can make the
familiar Stokes approximation of neglecting the inertial terms on the
left hand side of Eq. (2a). We may neglect the λ term in Eq. (2a), which
is of order γ

η
α
L , and is therefore smaller than the unperturbed active

force by a factor of γη .
We also need to take into account the change in the active force re-

sulting from the change in the director field δn̂ ≡ n̂− n̂ induced by
the flow; here n̂ is the equilibrium configuration of the nematic direc-
tor (that is, the one that minimizes the Frank free energy, or, equiva-
lently, the field that is present before the activity is switched on). Since



2.3 F RO Z E N D I R E C T O R R E G I M E 21

schematically the molecular field δF
δn̂ ∼

Kδn
L (note that δn appears in

this expression rather than n because
(
δF
δn̂

)
n̂=n̂

= ), our estimate
(15) of that field implies that the magnitude δn of the perturbation in

the director field must be of order αγL


ηK ∼ γ
η

(
L
Linst

)
, where Linst

is the length-scale beyond which the uniform state becomes unstable.
Since we are considering systems which are smaller than this length,
and since we are also assuming γ � η, the change δn in n̂ is� n̂0,
the undistorted director configuration, and, hence, negligible.

To summarize: in the “frozen director” regime, defined as γ � η,
and small activity α� K/L, we can determine the flow field simply
by balancing the viscous force η∇v plus the pressure gradient ∇P
against the active force fa computed for the unperturbed, equilibrium
configuration n̂ which minimizes the Frank free energy; that is, we
can take the active force

fa = α
(
n̂ · ∇n̂ + n̂∇ · n̂

)
≈ α

(
n̂ · ∇n̂ + n̂∇ · n̂

)
. (16)

Making this substitution, and neglecting the λ-term in (2a), simpli-
fies (2a)-(2c) to:

 = −∇P + η∇v + α
(
n̂ · ∇n̂ + n̂∇ · n̂

)
(17)

with∇ · v = .
We now justify the isotropic viscosity approximation which we raised

in section 2.1. In the limit of weak order, which in the notation of
Kuzuu and Doi [43] is the limit S,S � , our isotropic viscosity ap-
proximation becomes valid because the isotropic piece of the viscosity
α is much greater than the anisotropic pieces α,, of the viscosity,
since the latter all vanish when S, → ) with , η = α/ ≈ η∗Cr.
Furthermore, the coefficient γ = α − α = η∗CrS/λ. Taking
the ratio γ/η then gives γ/η ≈ S/λ, which, is always much less
than  when the order is weak, since the flow alignment parameter λ is
typically O(), and S �  when the order is weak.

We therefore expect our analytic solutions for the velocity fields,
which assumed both isotropic viscosity and γ � η (to justify the
“frozen director” approximation) to be quantitatively accurate in all
active systems in which the nematic order is weak.

Note that no matter how strong the order is, at sufficiently long wave-
lengths, fluctuations in the nematic order parameter are much smaller
than fluctuations in the nematic director. Hence, the director field rep-
resentation is always a good approximation at sufficiently long wave-
lengths. In the case of weak nematic order, the nematic correlation
length is of order a/S where a is a molecular length (∼ nm) and S is
the nematic order parameter. Taking S ∼ ., the nematic correlation
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length is of order nm, much smaller than the size of a millimeter-
sized sample.

We also note that this in particular implies that the “frozen director”
approximation will always be valid for systems close to a weakly first
order nematic to isotropic (NI) transition; since many NI transitions
are, indeed, weakly first order [38], this means it should be quite easy
to experimentally test our quantitative predictions for the flow field.

Next, in the remainder of this section we extend the results of section
2.2 in the case of a simply connected sample in the “frozen director”
approximation, in which case the condition for thresholdless flow∇×
fa ,  is necessary as well as sufficient. We consider the case in which
the director field that minimizes Fn is pure splay, by which we mean
∇× n̂ = . The curl of the active force is now given by

∇× fa = α∇×
[
n̂∇ · n̂

]
= α∇

(
∇ · n̂

)
× n̂, (18)

which is also zero when the pure splay director field is a ground state
of Fn, because the Euler-Lagrange equations that arise from minimiz-
ing Fn then require that hn ‖ n̂, which in turn, from (34), requires
that ∇

(
∇ · n̂

)
is parallel to n̂. Furthermore, when ∇× n̂ = , we

can write n̂ = ∇Φ(r), which then implies hv = −Kv∇∇Φ, and
hn = −Kn∇∇Φ. Thus, hv ‖ hn, so, if hn ‖ n̂ everywhere, hv ‖ n̂
everywhere as well. Hence, once again, the hv and hn terms in (5a)
and (5b), respectively, vanish, as does the curl of the active force. Un-
der the conditions of this section we can conclude that there is no flow.

We now turn to the case of a pure bend field (i.e., one for which
∇ · n̂ = n̂ · ∇ × n̂ = ). Using the identity ∇(A ·B) = (A · ∇)B +

(B · ∇)A +A× (∇×B) +B × (∇×A), with A = n̂ and B =
∇× n̂, and recalling that n̂ · ∇ × n̂ must vanish in a pure bend field,
gives:

(n̂ · ∇)∇× n̂ + (∇× n̂ · ∇)n̂ + n̂× (∇×∇× n̂) = . (19)

If this pure bend state is also a ground state of Fn, the Euler-Lagrange
Eq. (34) for Fn is satisfied. For pure bend, that equation reduces to
∇n̂ ‖ n̂, so that n̂× (∇×∇× n̂) = −n̂×∇n̂ = 0, thereby elimi-
nating the last term of (19). To compute ∇× fa, we now use the iden-
tity∇× (A×B) = A(∇ ·B)−B(∇ ·A)+ (B · ∇)A− (A · ∇)B,
again withA = n̂ andB = ∇× n̂, for −n̂× (∇× n̂), to get

∇× fa = (n̂ · ∇)∇× n̂− (∇× n̂ · ∇)n̂. (20)

Using our previous result (19) together with n̂× (∇×∇× n̂) = 0,
we can rewrite this equation as

∇× fa = (n̂ · ∇)∇× n̂ = −(∇× n̂ · ∇)n̂. (21)
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This is as far as we can go considering completely general pure bend
configurations. To proceed further, we will now, in addition to impos-
ing pure bend, add the additional restriction to “2D” configurations, by
which we mean that n̂ only depends on x and y, and has no z com-
ponent, in some Cartesian coordinate system. Then ∇× n̂ is in the
z-direction, and so (∇× n̂ · ∇)n̂ = , which implies from (21) that
∇× fa = 0 as well. Similarly we have that hn = −Kn∇n̂ ‖ n̂ by
virtue of the Euler-Lagrange equations. Since hv = −Kv∇n̂, this is
also parallel to n̂ and so the hv terms vanish, contributing nothing to
Eq. (5a).

We can thus conclude that under the conditions of this section, a
two-dimensional active nematic with a director field in its ground state
must have both splay and bend for there to be thresholdless flow in the
absence of external fields.

For fully three-dimensional configurations of an active nematic, on
the other hand, for which there is also twist to take into account, it is
unclear whether or not both splay and bend are necessary for thresh-
oldless flow to occur in the absence of external fields.

What we can conclude though is that, under the conditions of this
section and in the absence of external fields, the ground state director
field must at the very least either have both splay and twist, or have
bend, in order to induce thresholdless active flow.

In summary, we have identified three large classes of spatially non-
uniform director configurations, namely, all pure twist and in the case
of simply connected geometries in the “frozen director” approxima-
tion, all pure splay, and pure 2D bend, which do not induce thresh-
oldless active flow. Thus, the requirements for thresholdless active
flow are far more stringent than the mere existence of a spatially non-
uniform director field.

2.4 T W O - D I M E N S I O N A L C U RV E D S Y S T E M S

Having introduced and discussed the concept of thresholdless active
flow, we now look at geometric conditions which can apply on 2D
curved surfaces which will firstly lead to a non-zero active force, and
secondly to non-zero flow.

Consider an active nematic material confined to a curved monolayer
shell, such as that shown in Fig. 11. Such systems are of special interest
since many active nematics synthesized to date are monolayers or thin
shells with planar anchoring [22, 25]. In this section, we will show that,
in general, a shell with non-vanishing Gaussian curvature G generates
a non-vanishing active force fa. To prove this result, we first assume
that, if the shell is very thin, the component of n̂ perpendicular to
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Figure 11: Orthonormal set of unit vectors and geodesics on a curved surface.
(a) A volume V ′ of arbitrary cross-section with torsional symme-
try. The normal to the bounding surface is N̂ and 2 orthonormal
sets of unit vectors are shown: (i) director field n̂ tangential to the
bounding surface with t̂ = N̂ × n̂; and (ii) direction of symme-
try ν̂ also tangential to bounding surface with τ̂ = N̂ × ν̂; and
(b) In the case of planar anchoring of the director n̂ on a surface
with Gaussian curvature, the distance between geodesics `(s) as a
function of the arc-length s.

the surface is negligible everywhere inside the shell [44, 45, 46], i.e.,
planar anchoring conditions. In this case, we can decompose the active
force fa(x) at position x along three orthogonal directions: (i) the
local surface normal N̂ , (ii) the nematic director n̂ and (iii) the tangent
vector t̂ perpendicular to both N̂ and n̂, shown in Fig. 11(a) (which
in addition shows a second orthonormal set of unit vectors (N̂ , ν̂, τ̂ )

used below in Section 2.4). The active force reads

fa(x) = α
[
n̂(x) ∇ · n̂(x) + t̂(x) κg(x) + N̂ (x) κn(x)

]
(22)

where κn = N̂ ·
(
n̂ · ∇

)
n̂ denotes the local normal curvature of the

nematic director field n̂(x) and κg = t̂ ·
(
n̂ · ∇

)
n̂ denotes its geodesic

curvature [47, 48], which quantifies deviations from the local geodesic
tangent to n̂.

Since the set of vectors (N̂ , n̂, t̂) is orthonormal, the active force
can only vanish if all three of its components vanish. In particular, this
implies that κg = . However, we now show that the condition κg = 
forces the n̂ component of fa (which is proportional to ∇ · n̂) to be
non-zero, on any surface with non-zero Gaussian curvature. To prove
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this statement, note that if κg = , the nematic director must lie on
geodesics everywhere on the surface, as illustrated in Fig. 11(b). Con-
sider an infinitesimal patch bounded by two geodesics (along which
the nematic director is aligned) and their normals, drawn in red in Fig.
11(b). These perpendicular arcs have length equal to the distance `(s)
between the two geodesics parametrized by the arc-length s along one
of them. We now apply the divergence theorem to the director field
n̂ on this small patch, whose area is approximately given by ds times
`(s). The n̂ flux vanishes along the two geodesics, and it is equal to
`(s + ds) and −`(s) along the two red arcs, which yields

∇ · n̂ = 
`

d`

ds
. (23)

The right hand side of Eq. (23) cannot be identically zero because
d`
ds = −G(s) ` on an arbitrary surface with non-vanishing G(x) [51].
Intuitively, Gaussian curvature forces geodesics to either converge or
diverge, which in turn implies that ∇ · n̂ , . The converse state-
ment also holds, namely that ∇ · n̂ =  requires κg , . Thus we
have proved that non-vanishing Gaussian curvature G implies a non-
vanishing active force fa. The incompatibility relation derived above
has a purely geometric origin and is independent of the values of elastic
constants and other material parameters, such as the viscosity tensor. It
is also responsible for the geometric frustration of nematic (and more
generally orientational and crystalline) order in curved space.

A non-vanishing Gaussian curvature always enforces a non-zero in-
plane active force, but thresholdless flow will occur only if this active
force fa cannot be balanced by the pressure gradient. Since ∇P is by
definition a conservative force, a sufficient condition for thresholdless
flow is therefore

G(x) ,  (24)

at some point x on the shell, and∮
C
dl · fa ,  (25)

for some closed loop C on the shell.
Our derivation of this condition never assumed that the director con-

figuration was free of topological defects (i.e., disclinations); hence
the active force must be non-zero for any surface with non-vanishing
Gaussian curvature, even if, as often happens [49, 50], that Gaussian
curvature induces disclinations on the surface. Topological defects ac-
tually make flow highly likely (a result first noted in references [23, 24]
for flat surfaces), since they induce large director gradients near their
core.
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Note, however, the condition (25) will not be satisfied for all sur-
faces with non-zero Gaussian curvature, even though the active force
must be non-zero for all such surfaces. In the next chapter, we consider
a specific example that illustrates this point.

2.5 T H R E E - D I M E N S I O N A L S Y S T E M S W I T H C U RV E D B O U N D -
A R I E S

We now look at how the geometry of the boundaries and anchoring
conditions of the director can also force thresholdless flow in bulk ac-
tive nematics under confinement. This may be of practical importance,
since controlling boundaries and boundary conditions for liquid crys-
tals is a highly developed technology, that has long been used for the
construction of liquid crystal displays. Efforts are under way to extend
such control to the active regime [31, 55, 56].

Consider non-planar alignment of the director to the walls of a three-
dimensional channel with torsional symmetry (by which we mean equiv-
alently that the sample is bounded by a surface of revolution about the
z−axis as shown in Fig. 11(a)). The nematic liquid crystal fills the
bulk bound by the surface. If we make the additional assumption that
the pressure gradient vanishes along the direction of torsional symme-
try, which we denote by ν̂, a non-zero component of the active force
along ν̂ will result in thresholdless flow.

A small section of a channel V ′ bounded by an arbitrarily shaped
surface with torsional symmetry along ν̂ is shown in Fig. 11(a), where
the local surface normal is represented by the unit vector N̂(x). De-
noting the torsional coordinate by φ, the volume V ′ is the section of
the three-dimensional channel bounded by the surfaces φ = φ and
φ = φ + δφ. The integrated force F (φ) acting on the volume V ′ can
then be obtained by integrating the force density, (fa)i = α ∂j(ninj),
over the infinitesimal volume V ′. Applying the divergence theorem,
we obtain the projection of F (φ) along ν̂(φ) in terms of the anchor-
ing conditions of the nematic director at the boundary, leading to the
sufficient condition for thresholdless flow:

 , F (φ) · ν̂(φ) = α

∫
∂V (φ,φ+δφ)

dS(N̂ · n̂) (ν̂ · n̂)

+ α δφ

∫
X(φ)

dS(ν̂ × ẑ · n̂) (ν̂ · n̂)

(26)
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where ẑ is the axis of torsional symmetry (see Fig. 11(a)), so that in
cylindrical coordinates centered on the axis of symmetry, ν̂ × ẑ is a
unit vector in the radial direction. A detailed derivation of Eq. (26) in
the case of general curvilinear coordinates under suitable assumptions
follows in section 2.5.1. Here, we note that in the case of a sample with
high slenderness (for which the radius of curvature along ν̂ is much
greater than in the directions perpendicular to it), the second term may
be dropped relative to the first term. Once this simplification is made,
condition (26) becomes

 , F (φ) · ν̂(φ) = α

∫
∂V (φ,φ+δφ)

dS(N̂ · n̂) (ν̂ · n̂) (27)

which we see is met as long as the nematic director n̂ is not perpendic-
ular to N̂ or ν̂ on all the surfaces bounding the volume element.

2.5.1 Geometric integral conditions for thresholdless active flow

To derive the geometric integral formula (26) above, for a sample with
symmetry and arbitrary smooth cross-section X , parametrised by gen-
eral orthogonal curvilinear coordinates ξ,, shown in Fig. 12. Above
we make the replacements in notation ξ̂ → N̂ , the normal to the
bounding surface ∂V , ξ̂ → ν̂, the direction of symmetry and ξ̂ →
τ̂ = N̂ × ν̂. The net active force F (φ) acting on this volume is given
by

F (φ) =

∫
V ′
hhhdξdξdξfa , (28)

where the geometrical scale factors h,, are the ratios of the infinites-
imal distances to infinitesimal changes dξ,, in the curvilinear coor-
dinates (and should not, of course, be confused with the components
of the “molecular fields” h). Applying the divergence theorem to the
component of F (φ) along the direction ξ̂ enables us to convert the
volume integral in (28) into an integral over the surface ∂V ′ of V ′:

F (φ) · ξ̂(φ) = α

∫
∂V ′

dS(ξ̂ · n̂)(ξ̂ · n̂). (29)

To evaluate this surface integral, we note that the surface ∂V ′ of
V ′ can be divided into three parts: the portion of the sample surface
∂V (φ,φ + δφ) that borders V ′, and the two cross-sectional “caps”
X(φ) and X(φ + δφ) (see Fig. 12). Doing so gives three surface
integrals to evaluate, the first of which is:

Iα∂V (φ,φ+δφ) = αξ̂(φ) ·
∫ φ+δφ

φ

dξ

∫
dξhhnniξ̂i .
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Figure 12: General co-ordinates ξ,, for a shape with torsional symmetry.
Volume V ′ with cross-section X bounded by the surfaces ξ = φ
and φ + δφ. The faces of V ′ are ∂V (φ,φ + δφ),X(φ) and
X(φ + δφ).

Using the facts that the element of surface area dS = dξdξhh,
n = N̂ · n̂, n̂ = niξ̂i and, in the notation of the main text, ξ̂(φ) = ν̂,
we obtain the first term on the right hand side of Eq. (26):

Iα∂V (φ,φ+δφ) ≈ α

∫
∂V (φ,φ+δφ)

dS(N̂ · n̂)(ν̂ · n̂). (30)

Now evaluating the integrals across the cross-sections, it is convenient
to combine them as follows:

IαX(φ) = αξ̂(φ) ·
∫
dξdξhhn

(
−niξ̂i(φ)

)
IαX(φ+δφ) = αξ̂(φ) ·

∫
dξdξhhn

(
niξ̂i(φ + δφ)

)
so that

IαX(φ) + I
α
X(φ+δφ) ≈ αδφξ̂ ·

∫
dξdξhhnni∂ξ̂i(φ)

≈ αδφ

∫
dξdξhhnξ̂ ·

(
ni∂ξ̂i

)
(31)

again taking ξ̂ inside the integral sign. The second term IαX(φ) +

IαX(φ+δφ) can be simplified by noting that ξ̂ · ∂ξ̂i = ∂ξ̂ · ξ̂i − ξ̂i ·
∂ξ̂.
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Since ξ̂ · ξ̂i = δi, which is independent of φ, the first term van-
ishes. The argument of the integral in (31) can then be rewritten ξ̂ ·(
ni∂ξ̂i

)
= −niξ̂i ·

(
∂ξ̂

)
= −n̂ ·

(
∂ξ̂

)
, where we’ve used the

fact that niξ̂i = n̂ (this simply being the decomposition of n̂ along the
local coordinate axes ξ̂i). Now, using the fact that ∂ξ̂ = ∂φφ̂ = −r̂,
where r̂ is the unit vector in the radial direction from the axis of
toroidal symmetry, we obtain

IαX(φ) + I
α
X(φ+δφ) ≈ α δφ

∫
X(φ)

dS
((
ν̂ × ẑ

)
· n̂
)

(ν̂ · n̂) ,(32)

where r̂ = ν̂ × ẑ. Adding this expression for the contribution of the
cross sectionsX(φ) andX(φ + δφ) to the net toroidal force to that of
the boundary ∂V as given by (30) immediately gives Eq. (26) above.

High slenderness limit In the case of torsional symmetry with an arbi-
trary (smooth) cross-section X where the volume has a high slender-
ness, σ, the second term in eq. (26) may be dropped if the first term
is non-zero. To see this, suppose that the length-scale in the ξ̂- and
ξ̂-directions is L, while in the ξ̂-direction it has a length scale of σL.
A very slender sample will therefore have σ � , whereas a “fat” sam-
ple will have σ ≈ . The first term in eq. (26) is proportional to Lσ,
whereas the second term is proportional to L and so can be neglected
compared with the first term.

2.6 A F I R S T E X A M P L E

We now look at a first example - an active nematic confined between
two infinite parallel plates, one with perpendicular and the other with
planar anchoring, shown in Fig. 13. The director field and flow pro-
file for this system were determined numerically in Ref. [34] but we
work it analytically in chapter 3. Here, we deduce the main features
of the flow using simple geometric arguments without carrying out ex-
plicit calculations. Firstly, notice that because of the symmetry in the
y−direction, this system is the high slenderness limit of a similar tor-
sionally symmetric system. This can be seen by giving the system tor-
sional symmetry by revolving the figure about, say, the point (−R, )

in the (x, y)−plane to create an annulus. The high slenderness limit is
obtained by sending R→ 8 and recovering Fig. 13, in which case Eq.
(27) is exact. However, F · ν̂ =  in this cell because (N̂ · n̂) =  on
one plate and (ν̂ · n̂) =  on the other. Nonetheless, active nematics
flow at arbitrary small α in such a mixed alignment cell. This can be
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Figure 13: Flow profile and director field ground state generated with mixed
boundary conditions in 2 dimensions (a) in the isotropic case
K = K and (b) in the anisotropic case K � K. Red de-
notes maximum flow in the ŷ-direction, violet maximum flow in
the −ŷ-direction and green no flow.
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explained by applying Eq. (27) to either of the two portions of the cell,
on opposite sides of the plane (parallel to both walls), whose surface
normal N̂ makes an angle of π/ with n̂. The boundary conditions
on θ, and continuity ensure that such a plane exists, though it will not,
for arbitrary and unequal values of the Frank constants K,,, be the
midplane. According to Eq. (27), the resulting active forces in each
of the two portions will be non-zero but of opposite sign; hence, the
two sides must flow in opposite directions. In the special case of equal
Frank constants K = K = K, the midplane is the plane on which
the surface normal N̂ makes an angle of π/ with n̂, and the flow in
the two halves cancels out, leading to zero net flow in the whole cell.
In the generic case of unequal Frank constants, this cancellation does
not occur, leading to non-zero net flow, as we discuss more fully in
chapter 3.

2.7 S U M M A RY

We have introduced the topic of active nematic systems and reviewed
the “standard model” for the hydrodynamics of active nematics. We
then considered some generalizations of this model, and explained why
none of our conclusions are significantly affected by these generaliza-
tions. After that, we derived the general criterion for thresholdless ac-
tive flow and explained the frozen director regime and then went on to
apply this criterion to the specific case of surfaces of non-zero Gaus-
sian curvature. We showed that these surfaces always have non-zero
active forces and then also derived the additional criteria that must be
satisfied for thresholdless flow to occur in these systems.

We then considered the case of 3D bulk systems and concluded
with an introductory simple 3D example of parallel plates with mixed
boundary conditions. In the next chapter we will develop this further
and work several more examples in both 2D as well as 3D.




