

Structural characterization of bacterial proteins involved in antibiotic resistance and peptidoglycan biosynthesis

Tassoni, R.

Citation

Tassoni, R. (2018, June 27). Structural characterization of bacterial proteins involved in antibiotic resistance and peptidoglycan biosynthesis. Retrieved from https://hdl.handle.net/1887/63154

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/63154

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The following handle holds various files of this Leiden University dissertation: <u>http://hdl.handle.net/1887/63154</u>

Author: Tassoni, R. Title: Structural characterization of bacterial proteins involved in antibiotic resistance and peptidoglycan biosynthesis Issue Date: 2018-06-27

Stellingen

Propositions accompanying the thesis

Structural characterization of bacterial proteins involved in antibiotic resistance and peptidoglycan biosynthesis.

- 1. The use of acid/base mutants to obtain covalent intermediates leads to artefacts in the conformation of the adduct. (Chapter 3)
- 2. The Ambler residues Ser70 and Ser130 are crucial for substrate binding by βlactamases. (Chapter 4, and Helfand *et al.*, 2003)
- 3. Despite the structural similarity to Alr, YImE is not an alanine racemase. (Chapters 6 and 7)
- 4. YImE is an RNA-binding protein, and its activity is required for proper sporulation of *Streptomyces coelicolor*. (Chapter 6)
- 5. RNA species that are yet unknown play key roles in the regulation of cellular processes. (Cech and Steitz, 2014; Kirchner and Ignatova, 2014)
- There is a conserved functionality of COG0325 proteins that is essential for cell division in bacteria and for neuronal activity in mammals. (Darin *et al.*, 2016; Plecko *et al.*, 2017)
- 7. The actual need of new antibiotics is debatable. (Rolain et al., 2016)
- 8. Proteins in crystals are much more dynamic than the word *crystal* suggests.
- 9. In life, motivation counts more than intelligence.
- 10. After making Europe, we will have to make Europeans [After Massimo d'Azeglio (1798-1866)]