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PARAMETERS
Investigation of the cardio- and cerebrovascular response to physiological stress requires 
(simultaneous) monitoring of systemic, cerebral and respiratory parameters. This chapter provides 
an overview of the parameters that were measured in the studies described in this thesis. 

SYSTEMIC

Blood pressure
Continuous arterial blood pressure (BP) can be measured non-invasively by finger plethys-
mography (Nexfin, Edwards Lifesciences BMEYE, Amsterdam, the Netherlands) using a volume-
clamp technique [79]. The cuff is placed around the midphalanx of the non-dominant hand 
and held at heart level. An optical plethysmograph in the finger cuff measured arterial volume 
continuously. The pressure in the cuff around the finger is adjusted in near real-time (~100 Hz) to 
keep the arterial volume clamped, allowing continuous tracking of the blood pressure. A height 
reference system is placed around a finger next to the cuff and at heart level to account for the 
hydrostatic pressure difference. To estimate changes in BP accurately over time, an automatic 
built-in calibration system (Physiocal) tracks the unloaded diameter of the finger artery to 
keep the arterial unloaded volume constant [80]. The arterial pressure measured at the finger is 
fundamentally different from brachial pressure both in absolute terms (hydrostatic difference) 
and wave shape, such that necessary corrections are applied in the Nexfin system to transform 
finger pressure into brachial pressure [81]. 

In case finger plethysmography is not available (for instance in the MR-environment), BP 
measurements were taken every 2–4 min using an inflatable arm-cuff (Magnitude, In-Vivo, 
Orlando, FL) while HR is continuously monitored by means of an MR-compatible finger pulse-
oximetry unit. 

Heart rate, stroke volume and cardiac output
A pulse contour method (Nexfin CO-trek, Edwards Lifesciences BMEYE, Amsterdam, the 
Netherlands) – adapted for age, sex, height and weight [82] – can provide left ventricular stroke 
volume (SV) and cardiac output (CO; SV multiplied by instantaneous HR). This method has been 
thoroughly validated against invasive thermodilution measurements [82,83]. In our work , Nexfin 
derived CO was validated by means of inert gas rebreathing (Innocor, Innovision A/S, Odense, 
Denmark) [84,85]. The rebreathing method relies on two inert gasses that are inhaled in tracer 
quantities through a bag. The blood-soluble N20 diffuses into the lung capplilaries and the blood 
insoluble NF6 remains in the alveoli and airl. The rate at which the soluble gas disappears from the 
bag is assumed to be equal to the CO of the left ventricle [86].
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BRAIN

In this thesis, we assessed using two non-invasive modalities the CBF response to a variety of 
physiological challenges. The first modality, transcranial Doppler ultrasonography (TCD), provides 
high temporal resolution assessments of CBF velocity (CBFv) in large brain-feeding arteries. This 
method is a relatively simple and low-cost bedside technique and is assumed to provide accurate 
quantification of the mean CBF over a large area of the brain, that is, the flow territory perfused by 
the insonated artery. The second modality, MRI, provides techniques such as arterial spin labeling 
(ASL) and blood-oxygen-level dependent (BOLD) imaging which enable the measurement of 
whole brain CBF and oxygenation changes at the microvascular level. MRI is a complex, costly 
and time-consuming procedure that offers a non-invasive measure of brain perfusion and 
oxygenation at a high spatial resolution. A combination of TCD and MRI-based quantifications of 
CBF has the potential to complement each other in obtaining a more complete understanding of 
brain perfusion at both the macro- and microvascular level. In the following paragraphs we will 
discuss both modalities into more detail. 

Middle cerebral artery blood flow velocity 
Measuring CBFv in the basal cerebral arteries by TCD was introduced in the early eighties of the 
twentieth century by Aaslid and coworkers [87] and has found wide acceptance in both clinical 
and research settings. The ultrasound probe emits a high-pitched sound wave through the intact 
scull, which is then reflected from erythrocytes moving through ultrasound beam. The CBFv is 
recorded from the Doppler shift spectrum of the reflected sound waves [88]. Mean CBFv reports 
the velocity associated with the maximal frequency of the Doppler shift (“the envelope”), rather 
than the cross-sectional average velocity that defines the blood flow through the artery [89]. The 
average velocity can be obtained from the intensity-weighted mean flow velocity or the total 
signal power, but is sensitive to small changes in insonation angle of the artery [89]. Therefore, the 
maximum velocity is preferred as reported entity.

A TCD system (DWL Multidop X4, Sipplingen, Germany) with a pulsed ultrasound frequency of 
2 MHz can be used to satisfactory penetrate the skull. As the bone of the temporal region is thin 
and therefore the best promising area for ultrasound insonation [87]. CBFv measurements were 
localized in the proximal segments of the left or right middle cerebral artery (MCA). The ultrasound 
probe is placed on the temporal region of the skull just above the zygomatic arch (Figure 3.1). At 
an insonation depth between 45 and 60 mm, the signal is optimized. Subsequently, the probe is 
secured in position by a head-band. 

The relation between calculated vs. actual CBFv depends on angle of insonation [90]. When the 
angle increases from 0° to 30°, its cosine will decrease from 1 to 0.86 resulting in a maximum 
error up to 15% [88]. By immobilizing the probe by a head-band, we minimized the influence 
of a potential change in angle as might occur during the experiments. An important issue of 
TCD whether blood flow velocity accurately reflects the actual underlying blood flow. Changes 
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in blood flow velocity reflect those in blood flow when the cross-sectional area of the insonated 
vessel remains constant (blood flow = blood flow velocity x cross-sectional area). 

Vessel diameter does not change significantly during moderate variations in mean BP or CO2 
tension according to direct observations made during craniotomy [91]. Also orthostatic stress, 
as stimulated by lower body negative pressure (LBNP), does not induce detectable changes in 
the diameter of the MCA as observed with 3 Tesla MRI [92]. These findings suggest that the MCA 
diameter does not change and that changes in TCD-determined CBFv will track those in CBF. In 
three studies presented in chapters 4-6, we examined these assumptions under influence of 
carbon dioxide and sympathetic stimulation using high-resolution MRI at 7 Tesla.

Figure 3.1 | The ultrasound probe is placed on the temporal region of the skull (dotted line indicates the 
‘temporal window’) just above the zygomatic arch A). A frontal view of the ultrasound probe directed 
toward the MCA B). The cilindrical sample volume is indicated by a circle over the MCA, i.e. observation 
region; the distance from the middle of the cylinder to the probe corresponds to the depth setting. 
Reproduced from J Neurosurg [87].

Whole brain blood flow
Since the proposal of ASL two decades ago [93], the non-invasive quantification of regional CBF 
with MRI has progressively developed into a well-accepted and clinically suitable technique. ASL 
MRI is based on the detection of a tracer that is delivered to and cleared from the tissue by blood 
flow [94], and usually expressed in ml/min/100g tissue [95,96]. With ASL, an endogenous tracer is 
created by inverting the proton spins of blood, mainly located in water molecules (H2O). Magnetic 
labeling of arterial blood water spins is done by a long series of radiofrequency pulses (in pseudo-
continuous ALS) that are applied in a plane perpendicular to the neck. Subsequently, labeled 
protons in the arterial blood water act as (almost) freely diffusible tracers. From the labeling 
location the labeled protons migrate within 1–2 seconds via the arterial vessels and capillaries 
into the brain tissue where the label accumulates, thereby altering the local tissue magnetization. 
The change in tissue magnetization is measured by acquiring multiple image slices covering 
the whole brain and a comparison to an identical control scan in which the inflowing blood was 
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not labeled. A 3-dimensional perfusion map can be obtained by subtracting the labeled image 
volume from the control image volume (no label) (Figure 3.2). 

The ASL-signal, i.e. the difference in signal intensity between label and control images, is small 
(~1%). To obtain a sufficient signal-to-noise ratio (SNR), many repetitions of the control and label 
pairs are acquired during 3–5 minutes. The ASL technique applied here is pseudo-continuous 
ASL, as the recommended standard for use in a clinical setting [96] and which has been recently 
compared with 15H2O positron emission tomography (PET) CBF measurements [97]. Background 
suppression RF pulses were used to enhance the SNR of the CBF signal. In addition, the imaging 
module was extended with an extra echo block to obtain the BOLD fMRI signal with minimal 
additional scan time [98]. The BOLD signal is mainly sensitive to the concentration of deoxy-
hemoglobin, and also depends on blood flow, blood volume and tissue properties, such as 
diffusion. This makes this method less specific than ASL. Changes in ASL or BOLD determined 
regional are often used as proxy for neuronal activation [99]. Chapter 7 describes a comparative 
study of the determination of the CBF changes upon small muscle group exercise as measured by 
either ASL MRI or TCD. 

Figure 3.2 | Principle of arterial spin labeling. Arterial blood flowing to the brain is magnetically labeled 
in the neck by applying radiofrequency pulses. The labeled protons (i.e. water in arterial blood) flow 
to the brain tissue, where the labeled water protons mix and accumulate in the extravascular space 
and tissue. To allow the protons to reach the brain tissue, a delay time is applied (i.e. post labeling 
delay, PLD) after which the images are acquired, often with full brain coverage. The static brain tissue 
is subtracted by acquiring a separate set of control images. The control images are obtained without 
labeling the arterial blood. A full brain quantified ASL measurement requires multiple measurements 
of label and control images, and takes 3–5 minutes. 

RESPIRATION

Brain perfusion is highly sensitive to changes in PaCO2 (see section on Chemoregulation). To 
enable a correct interpretation of the CBF and CBFv responses, it is highly recommended to also 
monitor (changes in) PaCO2. The partial pressure of CO2 in exhaled air (designated as end-tidal 
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CO2; PetCO2) is generally used as a non-invasive proxy for PaCO2 and therefore measured in the 
studies described in this thesis. 

Partial end-tidal carbon dioxide pressure
PetCO2 is continuously monitored, via a nasal cannula, by a sampling infrared capnograph 
(Tonocap, Datex-Ohmeda, Madison, USA or Datex Normocap 200, Helsinki, Finland). This technique 
is based upon the absorption of infrared radiation by CO2, with the amount of absorbed radiation 
having a nearly exponential relation to the CO2 concentration. Detecting a change in infrared 
radiation levels, using photo-detectors, allows for the calculation of the CO2 concentration in the 
gas sample. 

Physiological challenges
The present thesis discusses various physiological methods (including orthostatic stress tests, 
small muscle group exercise and inhalation of a gas mixture containing CO2) that were applied to 
address autonomic cardio- and cerebrovascular control. This section summarizes these methods 
with respect to their known physiological mechanism and the way in which they were performed. 

Orthostatic stress tests
Passive head-up tilt (HUT), lower body negative pressure (LBNP) and orthostasis (standing up) all 
lead to a gradual translocation of blood from the intra-thoracic region into the lower parts of the 
body. As a result, CO decreases and a series of cardiovascular regulating mechanisms and reflexes 
come into action to maintain arterial blood pressure and cerebral perfusion. 

Passive head-up tilt
Passive HUT is performed with the subject lying supine and safely strapped on a tilt table (custom 
built by AMC Medical Technological Development / Dr. Kaiser Medizintechnik, Bad Hersfeld, 
Germany) and then either mechanically or manually tilted to a semi-supine (30°), semi-upright 
(45°) and/or almost completely upright (70°) position. Tilting back from 70° HUT to the supine 
position leads to central blood volume repletion and mimics a fluid challenge. 

The bulk blood volume translocates between upper and lower body because the hydrostatic 
indifference point for intravascular pressure (i.e. point in the vascular tree at which pressure 
remains constant independent of body position) is located at the level of the diaphragm [100]. 
Moreover, blood volume measurements by electrical impedance suggest that the indifference 
point for volume as is even lower, positioned between the navel and iliac crest [101,100]. As a 
consequence, in upright position, roughly 70% of the blood volume is located below the level 
[100] of the heart . The translocated blood is mainly being contained in the (compliant) veins and 
venules and, therefore, does not contribute to the effective arterial blood volume [100,102]. This 
shift in blood volume distribution is estimated to be 300–800 ml of which 50% takes place within 
the first few seconds [34,103,104]. The central blood volume is challenged further by an estimated 
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10% or ~500 ml reduction after 5 min and 15% or ~750 ml reduction after another 5 minutes in 
the HUT position [105].

Lower body negative pressure
During LBNP, sub-atmospheric pressure is applied to the lower limbs in a supine subject such 
that blood redistributes from the upper parts of the body into the compliant compartment of the 
lower extremities. In preparation for LBNP, the lower body of the subject is positioned inside an 
LBNP box (Dr. Kaiser Medizintechnik, Bad Hersfeld, Germany / Dept. Instrumental Development, 
LUMC) and sealed at the level of the iliac crest [106]. An advantage of this technique compared to 
passive HUT, is its utilization within the static and horizontal setup of the MRI-scanner.

Standing up
The presumed mechanism behind the gravitational translocation of blood from the intra-thoracic 
region to the veins in the legs during passive HUT is similar to that when humans stand up from 
the supine position. However, the active change in posture during standing-up produces a 
hemodynamic response that is different from what happens with passive tilt during the first 30 s 
of upright posture [107]. 

Small muscle group exercise
Rhythmic handgrip exercise is a form of small muscle group exercise that increases HR and CO, 
with modest changes in blood pressure [108]. An advantage of rhythmic handgripping is that it 
can be performed in the supine position while ensuring minimal (head) motion, which makes 
it a suitable exercise method during MRI monitoring. Moreover, a mild to moderate handgrip 
exercise level can be maintained for a longer period of time to achieve the steady state needed 
for acquisition of ASL-measurements, which typically take about 3–5 minutes. To standardize 
the workload between individuals, the subjects were first instructed to squeeze a handgrip 
dynamometer (fOrb Gripforce, Current Designs Inc., Philadelphia PA, USA) to the maximum 
extent possible for 2–3 s without tensing the entire body. The so-measured maximum force was 
taken as 100%. The exercise experiments consisted of 0.5 Hz intermittent handgrip contractions 
performed for the first minute at 80% of the maximum force followed by 4 minutes at 60%. The 
decreasing force protocol was used to achieve a steady-state in minutes 3 to 5. 

Inhalation of a gas mixture containing CO2 

In order to quantify the cerebral vasomotor reactivity, a wide range of PetCO2 was established 
by, respectively, inhaling a gas mixture containing 5% CO2 and 95% O2 (carbogen) through a 
mouthpiece for 2 minutes, followed by 2 minutes of breathing room air and hyperventilating for 
approximately 2 minutes. 
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