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Preface: 

The work in this thesis focuses on the development of new stimuli-responsive drug 

delivery systems. All four described systems rely on light as the exclusive trigger of 

activation and the spatiotemporal precision afforded by this approach is 

demonstrated, both in vitro and in vivo, throughout this thesis. Light activation, for 

three of the four described systems (chapters 2-4), leads to dePEGylation of a 

nanoparticle surface. In this way, the benefits of PEGylation (e.g. limited non-specific 

cellular interactions) are maintained, while the obstacles of PEGylation (e.g. limited 

uptake by targeted cells) can be overcome on demand. In chapter 5, light is used to 

switch the surface charge of a nanoparticle in situ and in vivo. The effectiveness of 

this approach is demonstrated within zebrafish embryos. Despite countless reports of 

stimuli-responsive drug delivery systems in the literature, none have yet made it to 

the clinic. The work in this thesis is therefore aimed at providing potential solutions to 

some of the roadblocks slowing the progression of stimulus-responsive drug delivery 

systems. 
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The Application of Sheddable PEG Coronas in Drug Delivery 

 

Abstract: To prolong in vivo circulation times of drug delivery nano-systems, 

poly(ethylene glycol) (PEG) is often used to sterically shield nanoparticle surfaces. This 

serves to minimize adsorption of serum proteins to the nanoparticle and recognition 

and bodily clearance via the mononuclear phagocyte system (MPS). However, a PEG 

corona also inhibits interactions between nano-carriers and target cells, limiting drug 

delivery and effective therapy. To overcome this dilemma, cleavable PEG coronas 

have been developed to maintain long circulation lifetimes of nanoparticles while also 

achieving efficient cellular interactions with targeted cells. In this chapter, various 

strategies and examples of drug delivery systems with a sheddable PEG corona are 

reviewed. 
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1.1 Introduction 

In the treatment of cancer, the challenge is how to deliver cytotoxic drugs to cancer 

cells while minimizing off-target toxicity in healthy cells and tissue. Current 

chemotherapy is characterized by debilitating side effects[1] (impaired immune 

system, nausea, cardiomyopathy, hair loss) and in many cases, the cumulative lifetime 

dose of an anti-cancer drug must be limited to avoid permanent damage.[2] Intense 

efforts have therefore been made to develop drug delivery systems (DDS) capable of 

delivering drugs specifically to cancer cells (Figure 1).[3]  

    

Figure 1. Distribution of free (left) and nanoparticle-encapsulated (right) drugs within the body 

following systemic (e.g. intravenous) administration. Small molecule drugs freely diffuse 

through tissue and away from the site of injection (non-targeted). Nanoparticles remain 

restricted within blood vessels and can passively accumulate within tumors (targeted). Image 

taken from www.cocoavia.com.   

Two principle technologies have emerged: antibody-drug conjugates (ADCs) and 

nanoparticle-based systems. Currently, 5 ADCs and 12 distinct nanoparticle-based 
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DDS targeted against a variety of human cancers are on the market.[4] For ADCs, 

‘active’ targeting is achieved through antibody recognition and binding to 

over-expressed receptors (tumor-associated antigens) on cancer cells.[5] Once bound, 

ADCs are endocytosed, the conjugated drug released and ideally the cell is destroyed. 

Although effective, ADCs are costly to manufacture, can elicit adverse immunogenic 

responses (limiting repeat dosing) and are largely limited to small molecule drug (and 

serum stable) cargos.[6] In the case of nanoparticle-based DDS, drugs are encapsulated 

within the structure of the self-assembled nanoparticle, hidden and protected from 

the in vivo environment. Pharmacokinetic (PK) profiles are dictated by the 

nanoparticle and, in theory, it is possible to deliver anything from small molecule 

drugs to plasmid DNA to target cells and tissue within the body. An enormous variety 

of nanoparticle-based DDS have been reported, however the most widely 

investigated are micelles, liposomes and polymersomes (Figure 2).[7] In the treatment 

of cancer, the vast majority of nanoparticle-based systems ‘passively’ target tumors 

via the enhanced permeability and retention (EPR) effect.  

 

Figure 2. Schematic showing the three most commonly self-assembled nanoparticle- based 

drug delivery systems. Self-assembly is primarily driven by the burial of hydrophobic 

functionality of amphiphilic building blocks to limit exposure to water (‘hydrophobic effect’). 
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1.1.1    The enhanced permeability and retention (EPR) effect 

Following administration to the body, small molecule drugs freely diffuse away from 

the site of injection (Figure 1). In contrast, following intravenous (i.v.) injection, 

nanoparticles are restricted to the circulating blood flow, unable to cross the tightly 

packed endothelium due to their larger size. For optimal biodistribution, 

nanoparticles should be larger than 10 nm in diameter – below which they are filtered 

from the body via the kidneys – and smaller than 200 nm in diameter – above which 

they are recognized and phagocytosed by macrophages (key cells of the mononuclear 

phagocyte system, MPS) and cleared from the body.[8] 

The EPR effect is a phenomena characterized by the ill-defined (‘leaky’) vasculature 

and poor lymphatic drainage of tumors arising from rapid angiogenesis (blood vessel 

growth) within tumor tissue (Figure 3).[9] Circulating nanoparticles passing through a 

tumor can passively diffuse across gaps in the tumor endothelium, accumulate within 

the tumor and remain there for extended periods of time. Once within the tumor, 

nanoparticle encapsulated drugs can either passively diffuse from the nanoparticle or 

an endogenous or exogenous stimulus can trigger release. 

A key difference between the various strategies described in this chapter is whether 

the nanoparticle is internalized prior to drug release or not. If it is first internalized, 

drug release occurs intracellular and beyond the barrier of the cell membrane. This 

offers opportunities to deliver membrane impermeable cargos such as DNA, RNA and 

proteins to cancer cells. If extracellular drug release occurs, the drug must be taken 

up by cancer cells itself. In either scenario, it is essential cancer cells are exposed to 

therapeutically relevant doses of cytotoxic drugs if an improved therapeutic index is 

to be achieved.   

There are several nanoparticle-based DDS (e.g. Doxil®), currently on the market, 

designed to passively target chemotherapies to solid tumors via the EPR effect.[10] 

These have been clinically proven to improve patient quality of life compared to 

administration of the free drug alone. Nevertheless, the effectiveness of this targeting 

approach remains contentious.[11] A recent analysis (>200 separate studies) of 

nanoparticle uptake in tumors via the EPR revealed, for instance, found, on average, 
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just 0.7% of the injected nanoparticle dose accumulated within the target tumor.[12] In 

addition, there is growing evidence that the EPR effect may be more pronounced in 

experimental animal models than in human patients,[13] therefore running the risk of 

false positives entering clinical evaluation. Finally, it is becoming increasingly clear 

that there is significant physiological heterogeneity within and between tumor types 

in patients. In other words, the same nanoparticle-based DDS may give very different 

therapeutic outcomes in two patients suffering from the same cancer.[14] In light of 

this, there are growing calls for pre-selection of patients to effectively identify those 

who would likely benefit from these technologies over those who would likely not.[15] 

1.1.2    Polyethylene glycol (PEG) 

To maximize nanoparticle targeting of tumors via the EPR effect, nanoparticles with 

long circulation lifetimes are sought. Put simply, the more times nanoparticles pass 

through the tumor vasculature, the more will accumulate there. As such, care must be 

taken to minimize drug leakage from the nanoparticle en route to the tumor while at 

the same time ensuring therapeutically relevant concentrations of drugs are released 

once there. In the case of liposome-drug formulations – the most widely investigated 

and major class of nanoparticles approved for clinical use[16] – this involves careful 

choice of lipid reagents (e.g. cholesterol to rigidify fluid, leaky membranes) to fine 

tune drug retention/release profiles while at the same time maximizing circulation 

lifetimes.[17]   
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Figure 3. Schematic representation of the EPR effect. Healthy cells are shown in grey and 

tumor cells in red. The small red dots indicate drug release from the nanoparticle and delivery 

to cells once nanoparticles have accumulated within the target tumor. Image taken from[18]. 

In developing nanoparticles with long circulation lifetimes, the principle biological 

barrier to overcome is recognition and clearance of nanoparticles by the MPS. The 

principle organ of the MPS is the liver where hepatic macrophages – Kupffer cells – 

are highly proficient at recognizing and removing macromolecular, colloidal and 

pathogenic waste from circulation.[19] Without any surface modification, up to 99% of 

nanoparticles are cleared through the liver.[20] In most cases, it is believed rapid 

adsorption of blood proteins to the surface of nanoparticles, (a process known as 

opsonisation), acts as a recognition beacon for the MPS.[21] For this reason, sterically 

shielding nanoparticle surfaces with biocompatible polymers such as polyethylene 

glycol (PEG), has been used to minimize opsonisation and prolong blood circulation 

times of nanoparticles in vivo.[22]  
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Figure 4. (a) The chemical structure and representation of linear PEG chains with different 

lengths and branched PEG; (b) Table of FDA approved PEGylated drugs.[23] 

PEG is a synthetic polymer of repeating ethylene glycol units. Used as a reagent or 

additive in a wide range of biological, chemical and industrial settings,[24] it is 

commercially available in a range of geometries (linear, branched, star, comb), 

molecular weights (from 300 Da – 6-7 repeating units – up to 10 MDa - >200,000 

repeating units) and can be readily functionalized. PEGylation of nanoparticle surfaces 
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has been shown to decrease serum protein adsorption, reduce nanoparticle uptake in 

the liver and prolong circulation lifetimes.[25] More recently, evidence has been 

uncovered to suggest PEG can elicit an immunogenic response.[26] However, the 

extent and accuracy of the immunogenic response caused by binding of anti-PEG 

antibodies to PEGylated nanoparticles remains unclear.[27] PEG remains an FDA 

approved polymer and is still the most widely used polymeric coating of nanoparticle 

DDS both in academic and industrial research. 

Numerous PEGylated products, such as PEGylated enzymes, proteins, antibodies or 

oligonucleotides, are FDA-approved (Figure 4). For example, PEGylated 

liposomal-doxorubicin (Doxil®) has been clinically used for over 20 years in the 

treatment of select breast and ovarian cancers, multiple myeloma and AIDS-related 

Kaposi’s sarcoma.[24b]  

1.1.3   The PEG dilemma 

While PEGylation serves to prolong circulation lifetimes, it also limits the cellular 

uptake of nanoparticles. This has proved a major obstacle in the targeted delivery of 

therapeutic cargos, particularly those that must be actively transported across the 

target cellular membrane.[28] For instance, in the delivery of oligonucleotides (ODNs) 

or small interfering RNAs (siRNAs), significantly lower transfection/transduction 

efficiencies were observed for PEGylated vs. non-PEGylated DDS.[29] To overcome this 

‘PEG dilemma’, many strategies have been proposed to trigger the shedding of PEG 

(i.e. dePEGylation) from a nanoparticle surface upon reaching the target tumor. In the 

vast majority of cases, triggered dePEGylation within the target tumor occurs outside 

of the target cell (extracellular). This leads to one of three scenarios: 1) rupture of the 

nanoparticle and extracellular drug release (Figure 5a); 2) cellular uptake of the intact 

nanoparticle-drug complex (Figure 5b) or 3) in the case of liposomal carriers, fusion of 

the nanoparticle with the target cellular membrane resulting in contents release 

directly to the cell cytoplasm (i.e. avoiding endocytotic uptake) (Figure 5c). In a small 

number of examples, PEGylated nanoparticles used to be taken up by the cancer cells 

first whereupon the low pH, reductive and protease-rich environment of the late 

endosome/lysosome triggers dePEGylation and contents release (Figure 5d). 
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However, the slow rate of uptake of PEGylated nanoparticles is a major obstacle to 

these approaches. 

  

Figure 5. Schematic illustration of the various drug release outcomes following dePEGylation 

of a nanoparticle: (a) extracellular dePEGylation, nanoparticle rupture and extracellular drug 

release; (b) extracellular dePEGylation followed by endocytotic uptake and intracellular drug 

release; (c) extracellular dePEGylation followed by nanoparticle fusion with the plasma cell 

membrane and drug delivery direct to the cell cytosol; and (d) intracellular dePEGylation 

following endocytotic uptake of PEGylated nanoparticle and intracellular drug release.    

1.2 Physical dePEGylation strategies 

Two principal physical approaches to achieve dePEGylation of nanoparticle surfaces 

have been investigated. The first, most relevant for liposome DDS, relies on the 
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exchange of PEGylated lipids from a drug carrier (e.g. liposome) surface to a target 

membrane sink (e.g. target cancer cell membranes).[30] Here, the rate at which 

exchange occurs is heavily dependent on the structure of the lipid anchoring PEG to 

the liposome membrane (i.e. how strongly it is embedded within the liposome 

membrane).[31] In a study of three different lipid-PEG conjugates, no lipid-PEG 

exchange was observed for long chain, saturated lipid anchors (DSPE-PEG, C18:0) 

whereas exchange occurred in the time frame of hours for shorter saturated lipids 

(DMPE-PEG; C14:0) or long chain, unsaturated lipids (DOPE-PEG; C18:1).[32] This time 

frame enabled efficient accumulation of liposomes in tumor sites via the EPR effect 

(prior to dePEGylation) coupled with increased cellular uptake within the tumor 

(following dePEGylation). Conversely, a similar study found that only in the case of 

DSPE-PEG where circulation times was improved to achieve efficient passive 

accumulation of nanoparticles within the tumor.[33] These conflicting results highlight 

the fine balance required to achieve efficient accumulation and subsequent 

dePEGylation within the tumor microenvironment. The propensity for non-specific 

PEG exchange with biological membranes in vivo, prior to reaching the target tumor, 

has likely limited the widespread application of this approach. 

The second physical approach relies on non-covalent adsorption of PEG onto a 

nanoparticle surface, for example, carboxylate-functionalized PEG adsorbed to a 

cationic nanoparticle surface.[34] In this case, protonation of carboxylate groups within 

the acidic tumor microenvironment can be expected to lead to dePEGylation. While 

this approach is conceptually simple, the stability of the absorbed PEG corona in 

serum and the propensity of premature dePEGylation under physiological conditions 

(e.g. high salt) and/or through competition from other serum components has 

likewise limited the widespread investigation of this approach. 

1.3 Chemical dePEGylation strategies 

The most common method to dePEGylate nanoparticle surfaces is through chemical 

approaches. In these cases, PEG is connected to the nanoparticle via a 

stimuli-responsive covalent chemical bond.[35] Stimuli can be both endogenous and 

exogenous. In the case of endogenous stimuli, intrinsic differences between 

pathological and healthy tissues are exploited, such as the lower pH and reducing 
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environments within the tumor microenvironment. Exogenous stimuli, including light 

and heat, have the benefit of being under complete user control in both time and 

space,[36] however these approaches rely on the ability to accurately deliver external 

stimuli to tissues often deep within the body. In next section, stimuli-responsive 

chemical bonds commonly used in the dePEGylation of nanoparticles are highlighted. 

1.4 Stimuli-responsive bonds towards responsive dePEGylation 

1.4.1    pH-sensitive dePEGylation 

Both the acidic intracellular environment of endosomes (pH 5.0-6.5) and lysosomes 

(pH 4.5-5.0) and the mildly acidic (pH <7) extracellular environment within tumors 

have been exploited to trigger the release of PEG from nanoparticles. The most 

common pH-sensitive bonds used in these DDS are summarized in Table 1.  
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Table 1. pH sensitive bonds used in PEGylated DDS. 

Name 
Structure and hydrolysis 

process 
Conjugated polymers Features 

β-thiopropionate 

 

Oligodeoxynucleotide[37] 

or polymer[38] 

Modify 

nucleotides; 

cleaved under 

endosomal acid 

conditions 

Phosphoramidate 

 

Oligodeoxynucleotide[39] 

or peptide[40] 

Modify 

nucleotides; high 

yield and 

chemoselectivity 

Hydrazone 

 

Lipid[41], drug[42]or 

polymer[43] 

Controllable 

sensitivity, 

predictable 

pH-sensitivity 

Ortho ester 

 

Alkyl[44], lipid[45] or 

polymer[46] 

Controllable 

sensitivity, 

predictable 

pH-sensitivity 

Vinylether 

 

Lipid[47] 

Controllable 

sensitivity, 

predictable 

pH-sensitivity 

Imine bond 

 

Lipid[48], Alkyl[49] drug[50] 

or nanoparticles[51] 

Extracellular 

dePEGylation, 

charge shielding 
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Aconitic 

anhydride amide 

 

Doxorubicin[52] Mild synthesis 

In several cases, it has been shown possible to fine tune the sensitivity of acid 

hydrolysis to achieve optimal dePEGylation either within the tumor 

microenvironment or within endosomes. Walker et al. linked polycations (PEI or PLL) 

to PEG via acyl hydrazides or 2-pyridyl hydrazines (compound 1, 2 and 3; Figure 6a) 

and found that while compound 1 and 3 resulted in efficient dePEGylation at 

endosomal pH (pH=5), hydrolysis of 2 was extremely slow.[43a] Alternatively, it has 

been shown that the acid-catalyzed hydrolysis of pH-sensitive ortho esters is heavily 

affected by its substitution at positions R1, R2 and R3 (Table 1), where methyl or 

6-membrered cyclic esters increased the rate of acid catalyzed hydrolysis by at least 

an order of magnitude.[45b] At pH 4.0, compound 4 could be completely hydrolyzed 

while only 30% of 5 was degraded within 30 min (Figure 6b). 

 

Figure 6. Substitutions of hydrazone (a) and ortho ester bond (b) fine-tune the pH-sensitivity. 

1.4.2    Redox-sensitive dePEGylation 

Glutathione (GSH), is an abundant reducing agent in most mammalian cells[53] and has 

been exploited to trigger redox-sensitive dePEGylation of DDS (Figure 7a). The 

intracellular concentration of GSH can span the range 2–10 mM, three orders of 

magnitude greater than the extracellular concentration of GSH (2–20 μM)[54] (Figure 
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7a). Furthermore, the concentration of GSH within the tumor microenvironment is 4 

times higher than in normal tissue. Reduced GSH can cleave disulfide (S-S) bonds 

linking PEG to a nanoparticle surface through a process of disulfide exchange (Figure 

7b). PEG-disulfide conjugates can be synthesized through disulfide exchange or 

through the use of symmetrical/asymmetrical disulfide-containing crosslinkers (Table 

2). A variety of symmetrical and asymmetrical disulfide containing crosslinking 

reagents, such aldrithiol, cystamine, 2-hydroxyethyl disulfide, 3,3’dithiodipropionic 

acid, DTSP and SPDP have been used to generate redox-sensitive PEGylated DDS 

(Table 2). 

 

Figure 7. (a) The structure of GSH; (b) GSH mediated reduction of disulfide bonds. 
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Table 2. Methods and reagents for synthesizing PEGylated compounds containing disulfide 

bonds. 

Crosslinker Synthesis  

Thiol-disulfide 

exchange  

Aldrithiol[55] 

Symmetrical 

crosslinker 

 
Cystamine[56] 

 
2-Hydroxyethyl disulfide[57] 

 
3,3'-dithiodipropionic acid[58] 

DTSP[59] 

Asymmetrical 

crosslinker  

SPDP[60] 

The first example of a redox sensitive PEGylated nanoparticle incorporated 

mPEG2000-DTP-DSPE within a fusogenic liposome formulation, facilitating rapid and 

complete contentsrelease (Figure 8).[59] Partial cleavage of grafted PEG from 

liposomes by thiolytic agents successfully led to destabilization of liposome bilayers 

and complete contents release within 2 h. However, this system required high 

concentrations of thiolated agents (10 mM, 1,4-dithiothreitol) limiting its application 

in vivo. To overcome this, a new generation of reductive cleavable PEG-lipid 

(mPEG-DTB-DSPE) has been shown to undergo complete thiolytic cleavage at greatly 

reduced thiol concentrations (cysteine, 150 µM).[61] Moreover, cleavage of 
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mPEG-DTB-DSPE liberated unmodified DSPE (i.e. leaving no remnant thiol attached) 

which was essential to the recovery of fusogenicity of the DDS (Figure 8). 

 

Figure 8. The structure of mPEG-DTP-DSPE and mPEG-DTB-DSPE and their thiolytic cleavage 

mechanisms. 

1.4.3    Enzyme-sensitive dePEGylation 

Within the tumor microenvironment, there are high levels of lytic enzymes. These are 

secreted by tumor cells to degrade the extracellular matrix (ECM) and aid cancer cell 

migration.[62] Short peptides containing enzyme-consensus sequences can therefore 

be used to enzymatically cleave PEG from a nanoparticle surface (Table 3). Two 

principle proteases have been exploited, matrix metalloproteinases (MMPs) and 

cathepsin B.  

MMPs play an essential role in tumor invasion and metastasis by degrading a variety 

of extracellular proteins and ECM components.[63] MMPs, particularly MMP2 and 

MMP9, are highly expressed within, and secreted by, cancer cells. MMP-sensitive 

linkers have been employed to achieve tumor-specific and extracellular dePEGylation 

of various DDS including liposomes,[64] nanoparticles[65] and micelles.[66]  

Cathepsin B is an intracellular cysteine protease found abundantly in endosomes and 

lysosomes. It is highly up-regulated in cancer cells[67] and cleaves peptides containing 

one of a variety of short recognition sequences. Cathepsin B-sensitive peptide linkers 

have been used to achieve endo/lysosomal dePEGylation, however the slow cellular 

uptake of PEGylated nanoparticles has limited the widespread application of 

cathepsin B-sensitive linkers.   
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Table 3. MMP2 and cathepsin B peptide recognition sequences (↓ represents position of 

enzymatic cleavage) 

Enzyme Peptide Sequences 
Cleavage 

Site 

MMP2-sensitive 

peptides[64-66, 68] 

GPLG↓IAGQ; GGGPQG↓IWGQGK; GPL↓GIAG; GPL↓

GV; PLG↓LAG 
Extracellular 

Cat B-sensitive 

peptides[69] 
A↓A; A↓L; F↓R; F↓K; AF↓K; GL↓FG; GF↓LG Intracellular 

 

1.4.4    Light-sensitive bonds 

Photolabile chemical bonds have been widely used in both chemistry and biology to 

precisely control where and when new functionality is revealed.[70] Unlike endogenous 

stimuli, such as pH, redox and enzymatic cleavage, the application of light can be 

precisely controlled in both time, space and intensity (i.e. is user defined) and requires 

no other reactive species (other than, in some cases, water). Light-based therapies 

have already entered the clinic. For example, photodynamic therapy[71] combines 

chemical photosensitizers and light to trigger the local production of cytotoxic singlet 

oxygen in the body and is used in the clinic to treat a wide range of medical 

conditions, including acne, atherosclerosis and cancer.[72]  

Various photolabile bonds used to dePEGylated nanoparticle surfaces are summarized 

in Table 4. The vast majority of these are sensitive to high-energy UV light (<400 nm), 

wavelengths that not only demonstrate poor tissue penetration (100-200 µm) but 

also yields significant light-induced cytotoxicity.[73] Therefore several strategies have 

been developed to alleviate these issues. These include the use of fibre optic light 

sources to deliver UV light deep within tissue,[74] the development of photolabile 

chemical bonds sensitive to longer wavelength light[75] and increasing the efficiency of 

photolysis so as to minimize light exposure. One attractive option is to improve the 

sensitivity of photolabile bonds to two photon light.[76] Two-photon excitation 

requires two light sources perpendicular to one another, each delivering photons at 

twice the wavelength required (e.g. 365 nm vs 2 x 730 nm light) for photolysis. Only at 

the exact point of intersection is enough energy delivered to cleave the photolabile 
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bond. The use of longer wavelength light not only increases tissue penetration (>1 cm 

for near-IR light) and reduces the risk of light induced cytotoxicity but, by restricting 

light activation to the focal point of two photon beams, it provides exquisite spatial 

control over light activation. We and others have previously shown that o-nitrobenzyl 

groups, the most commonly used photolabile chemical bond, can be efficiently 

cleaved using 2-photon light.[77]  

The work in this thesis primarily concerns the use of the o-nitrobenzyl (o-Nb) 

photolabile functionality. Non-hydrolytic photolysis of o-Nb proceeds through a cyclic 

intermediate followed by the release of the desired alcohol and a nitroso by-product 

(Scheme 1a).[78] O-Nb groups can also be used to ‘photocage’ primary amines, through 

the inclusion of a carbamate linker, producing CO2 as a photolytic by-product (Scheme 

1b). To broaden application in biological areas, modifications, such as substituting R1 

with methoxy groups, have been included to reduce the toxicity of the nitroso 

photolysis byproduct. 
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Table 4. Common light-cleavable bonds used in PEGylated DDS. 

Photo-responsive 

group 

Active 

wavelength 
Photo-irradiated dePEGylation 

Nitrobenzyl ester[38, 

79] 
300-400 nm 

 

2-nitrophenylalanine 

[80] 
365 nm 

 

Truxillic acid[81] < 260 nm 

 

Trithiocarbonate[82] 232-500 nm 

 

azobenzene[83] 280–450 nm 
 

Boron 

dipyrromethene[84] 
470-490 nm 

 

Fullerene[85] 350–700 nm 

 

Platinum (IV)–azide 

complexes[86] 
360-500 nm 
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Scheme 1. The mechanism of cleavage of o-Nb substituted with ester (a) and carbamate (b). 

1.5 DePEGylation of various drug carriers 

1.5.1    Liposomes 

Liposomes are formed through the self-assembly of amphiphilic (phospho)lipids in 

aqueous solution, forming closed spherical particles consisting of a lipid bilayer 

surrounding an inner aqueous core.[87] Within these structures, hydrophilic 

cargos/drugs can be encapsulated within the aqueous interior and hydrophobic 

cargos/drugs within the hydrophobic membrane. In both cases, cargos are protected 

from the outside environment. Self-assembly of liposomes is driven by the burial of 

hydrophobic fatty acid chains (‘the hydrophobic effect’) and each individual liposome 

comprises many thousands of individual lipid molecules (approximately 80,000 per 

100 nm uni-lamellar liposome). The huge diversity of lipid reagents – both natural and 

non-natural – means the overall physicochemical properties of the liposome (size, 

surface charge, rigidity, surface functionalization) can be infinitely fine-tuned for a 

particular purpose. A selection of common lipids described and/or used throughout 

this thesis is shown in Table 5.   

 

 

 



The Application of Sheddable PEG Coronas in Drug Delivery 

27 
 

Table 5. the structure of lipids used in this thesis. 

Name Structure Charge 

(d18:1/12:0) 

Sphingomyelin 
 

Zwitterionic  

18:0 PC (DSPC) 

 

18:1 (Δ9-Cis) PE 

(DOPE) 
 

18:1 (Δ9-Cis) PC 

(DOPC)  

Cholesterol 

 

Neutral  

18:1 TAP 

(DOTAP) 

 
Cationic  

18:1 (Δ9-Cis) PG 

(DOPG) 
 

Anionic  

1.5.1(a) Lipid geometries 

Lipid packing within a liposome membrane is heavily influenced by the molecular 

geometries of individual lipid molecules. Based on the difference between the surface 

area of the hydrophilic head group and the volume of the hydrophobic fatty acid tail, 

amphiphilic lipids can be divided into three distinct molecular geometries: cylinder, 

cone and inverted-cone (Figure 9). The principle lipid components of biological 

membranes (and those most commonly found in reported liposome membranes) are 

cylinder shaped. Cylindrical lipids, with equal cross-sectional areas of both hydrophilic 
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head group and hydrophobic fatty acid tails, pack favorably to form lipid bilayers. 

Examples include phosphatidyl choline (PC), serine (PS) and glycerol (PG). Lipids such 

as sphingomyelin (SM), with a larger hydrophilic headgroup and a smaller 

hydrophobic volume, preferentially form micellar structures.[88] These smaller 

self-assembled structures (typically 10-20 nm in diameter) are characterized by a 

packed hydrophobic core and have no inner aqueous volume. Finally, inverted cone 

lipids, such as DOPE, do not form stable self-assembled structures in aqueous 

solution. These lipids preferentially pack into membranes demonstrating negative 

curvature and form inverted micelles in organic solutions. Although lipid membranes 

with negative curvature are rare, a key intermediate structure during the fusion of 

two lipid membranes (e.g. during SNARE-mediated fusion) requires lipids which favor 

negative curvature.[89]  

Liposome membranes can comprise mixtures of different lipids and lipid geometries, 

so while it is not possible to make stable lipid bilayers using 100% DOPE, this lipid can 

be efficiently incorporated in stable lipid bilayers formed from cylinder-shaped lipids 

(eg, PC lipids). In all cases, the key driving force determining self-assembly, stability 

and structure of lipid mixtures in aqueous solution is the efficient burial of the 

hydrophobic core so as to minimize exposure to water.  

 

Figure 9. Schematic diagram depicting molecular shape-volumes occupied by various 

membrane lipid types. Image taken from[88]. 
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1.5.1(b) Membrane rigidity and thickness 

The length and saturation of lipid fatty acid (FA) chains determines both the thickness 

and rigidity of a liposome membrane. FA chain length within biological membranes 

typically varies between C12 and C30 – the number of carbon atoms – where a 

membrane made up of C30 lipids is approximately twice as thick one made up of C12 

lipids. A mismatch of different FA chain lengths within a single membrane can lead to 

phase separation – where FAs of one particular length preferentially assemble 

together with one another. This can create specific lipid domains within a single 

continuous lipid membrane.[90]   

FA chains can also be saturated (no double bonds) or unsaturated (1 or more double 

bond). In general, saturated FAs pack closely together to form rigid lipid membranes. 

In contrast, unsaturated FAs – with a bend in their FA chains as a result of the double 

bond – loosely pack to form fluid membranes.[91] These differences are characterized 

by variations in melting temperatures (Tm), defined as the temperature at which a 

lipid membrane transitions between the ‘rigid’ gel state and the ‘fluid’ liquid 

crystalline state.[92] Whereas the Tm of DSPC – a saturated C18:0 PC lipid – is 55oC, its 

unsaturated orthologue, DOPC has a Tm of -17oC. The ‘fluidity’ of liposome 

membranes is an important consideration in designing liposomal drug carriers as 

small molecules will more readily leak across fluid membranes than more closely 

packed ones. 

1.5.1(c) Addition of cholesterol 

Cholesterol – an endogenous and ubiquitous sterol within the body – rigidifies ‘fluid’ 

lipid membranes and makes more fluid ‘rigid’ lipid membranes.[93] As such it is helpful 

to think of cholesterol as a molecular ‘cork’ – plugging the ‘gaps’ to stabilize fluid lipid 

membranes and acting as a ‘wedge’ to destabilize rigid membranes. Cholesterol is 

often used to fine tune drug retention and release profiles of liposome-drug 

vectors.[94]  

1.5.1(d) Liposome surface functionalization 

Surface modification of liposome surfaces, for instance functionalization with active 

targeting moieties including antibodies and peptides,[88] can be achieved either 
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through incorporation of pre-synthesized lipidated reagents during formulation or 

through post-functionalization of pre-formed liposomes. Various conjugation 

strategies (e.g. click chemistry) have been used to successfully functionalize 

pre-formed liposomes.[95] As mentioned previously, PEGylation of liposome surfaces is 

known to reduce serum protein adsorption to the liposome surface, prolong 

circulation lifetimes in the body and maximize passive targeting of solid tumors via 

the EPR effect.[96] In the case of PEG2000, approximately 5 mol% lipid-PEG reagents are 

required to sterically shield the entire liposome surface. Above 9 mol% PEG2000 and 

the brush-like arrangement of PEG on the liposome surface is thought to destabilize 

the lipid bilayer.[24a] 

1.5.1.1 DePEGylation of liposome surfaces to reveal new functionalities  

Through dePEGylation it is possible to reveal underlying functionality to promote drug 

delivery to target cells. Shielding functionality en route to the target tumor also 

reduces the risk of off-target interactions with non-target cells. In this vein, several 

strategies have been investigated and three of them are highlighted in Figure 10.[60f, 97]  

In the first example, a liposome surface was functionalized with two different 

PEG-lipid conjugates whose PEG chains varied in length (PEG2000 and PEG1000) (Figure 

10a).[68c] To the longer PEG2000 arm a monoclonal antibody, (mAb) 2C5, previously 

shown to specifically target a range of human cancer cell lines, was conjugated.[98] To 

the shorter PEG1000 arm the cell-penetrating TAT peptide was attached.[99] In the 

absence of MMP enzymes, the longer PEG2000 effectively shielded the underlying 

function of the TAT peptide, preventing non-specific cellular interactions, while the 

2C5 promoted specific binding to cancer cells. In the presence of MMP enzymes – i.e. 

within the tumor microenvironment – PEG2000 was efficiently cleaved, revealing 

underlying TAT functionality which enhanced the intracellular uptake of the 

liposome-drug carrier two-fold as compared to liposomes lacking the TAT peptide.   
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Figure 10. Illustration of PEGylation strategies on different types of liposomes, (A) PEGylated 

targeted liposomes, (B) PEGylated liposomes with membrane destabilizing peptides, (C) 

PEGylated cationic liposomes. 

A similar dual responsive strategy was employed to promote extracellular drug 

release within the tumor microenvironment (Figure 10b). In this case, dePEGylation of 

longer PEG2000 arms was triggered by an increase of extracellular GSH within the 

tumor microenvironment.[100] This in turn revealed underlying functionality, which 

when catalyzed by MMP, released a membrane lytic peptide. In this way, quantitative 

drug (i.e. gemcitabine) release in both 2D and 3D “tumor-like” spheroid cultures as 

well as suppressed tumor growth in mice following intravenous administration of 

gemcitabine-encapsulated liposomes was demonstrated. As drug release required 

exposure to both reductant and protease enzymes, this approach greatly minimized 

the risk of premature activation and drug release. 
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DePEGylation has also been successfully used to reveal underlying liposome surface 

charge (Figure 10c). Cationic liposomes are often employed as a gene delivery system 

owing to their potential to efficiently condense and protect polyanionic DNA and 

RNA.[101] However, cationic nanoparticles are rapidly cleared from circulation due to 

both non-specific interactions with anionic cell surfaces and extensive adsorption of 

serum components (opsonisation) and clearance via the MPS.[101] Both extracellular 

enzymatic [29] and intracellular[52] acid catalyzed dePEGylation strategies have been 

shown to increase the transfection/transduction efficiencies of cationic gene vectors.  

1.5.1.2 DePEGylation of liposome surfaces to destabilize liposome membranes  

DePEGylation of liposomes has also been used to destabilize the integrity of the 

liposome membrane itself to trigger drug release. In these cases, dePEGylation results 

in a change of lipid geometry (i.e. loss of large hydrophilic PEG headgroup) generating 

a lipid composition which no longer packs to form a stable lipid bilayer. By utilizing a 

cholesteryl hemisuccinate (CHEMS)-PEG conjugate, Dong et al. were able to 

successfully demonstrate dePEGylation – triggered by enzymatic cleavage of the 

CHEMS-PEG ester linkage – following endocytotic uptake. Subsequent protonation of 

the newly revealed CHEMS carboxylate groups, within the acidic endosome, resulted 

in rapid liposome rupture and content release.[102] This approach did however rely on 

the cellular uptake of PEGylated liposomes, which as mentioned previously, is 

extremely slow.[103]  

Another popular strategy has been to take advantage of the ‘fusogenic’ lipid, DOPE, 

which preferentially adopts a non-bilayer, hexagonal phase (HII) in aqueous 

solution.[104] Cone-shaped DOPE can be incorporated at high concentrations within 

stable lipid bilayers consisting of cylinder and/or cone shaped lipids. If DOPE-rich 

bilayers are stabilized using a stimuli-responsive lipid-PEG conjugate, dePEGylation 

results in rapid membrane destabilization and concomitant content release (Figure 

11).[47a] 
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Figure 11. Destabilization of liposomes formed by DOPE and cleavable PEG–lipid upon 

dePEGylation. Image taken from[39a]. 

Zalipsky et al. reported the first example of a DOPE-rich liposome membrane 

stabilized using cone-shaped and redox-sensitive lipid-PEG2000 (mPEG-SS-DSPE) 

conjugates.[59] Incorporation of just 3 mol% lipid-PEG conjugate (i.e. 97 mol% DOPE) 

resulted in the formulation of stable liposomes, however in the presence of DTT – a 

thiolytic agent – loss of PEG led to rapid liposome destabilization and drug release. 

Inspired by this concept, numerous efforts have been made to design 

stimuli-responsive PEG-lipids to stabilize DOPE-rich liposomes. These have included 

dithiobenzyl (DTB) urethane,[61] diortho ester[45a] and vinylether[47b] lipid-PEG linkages.  

1.5.2    Micelles  

Micelles are formed through the self-assembly of cone-shaped amphiphiles in 

aqueous solution and are characterized by an inner hydrophobic core. Hydrophobic 

cargos/drugs can be efficiently packed within the micelle core and protected from the 

outside environment. Micelles have been widely investigated as potential DDS against 

a variety of human diseases including leukemia[105], hepatitis[106], breast cancer[107] and 

ovarian cancer.[108] An important consideration when using micelles is that the 

concentration of amphiphiles must be above the critical micelle concentration (CMC). 

Below this concentration, micelles disassemble in solution and as a result the 

drug/cargo is exposed. 
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Name Structure Charge 

Triton X-100 

 Non-ionic 

 

Tween 20/40/60/80 

 

Dodecyl sulfate 

 

Anionic 

 

Figure 12. The required geometry of molecules for micelle formation (top) and the structure 

of some common micelle-forming detergents (bottom); the dash line circled part is 

hydrophobic component. 

To preferentially form micelles over other self-assembled structures, the surface area 

(ao) of the hydrophilic head group must be sufficiently large, while the volume (v) of 

hydrophobic portion must be sufficiently small. Micelles are only formed when the 

geometric constraint, critical packing parameter (P = v/aolc), of the molecules is < 1/3. 

(Figure 12).[109] Detergents like sodium dodecyl sulfate (SDS) are classic examples of 

lipid amphiphiles which preferentially form micelles in aqueous solutions.  

PEGylated amphiphiles have a natural propensity to form micelles given the large 

surface area of the hydrophilic PEG headgroup. Upon dePEGylation however, 

cone-shaped molecular geometries are lost resulting in micelle destabilization. This 

leads to efficient drug release from the hydrophobic micelle core. Depending on the 
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hydrophobic component, micelle DDS can divided into lipid micelles, polymeric 

micelles, pro-drug micelles and hybrid micelles.   

1.5.2.1 Lipid micelles 

The most common lipid anchors used to form lipid-PEG amphiphiles have been 

DSPE[110], cholesterol[111] and fatty acids.[57d] Depending on the hydrophobicity of lipids, 

the molecular weight of the PEG block ranging from 750 to 5000 Da with the resultant 

micelle size ranging from tens to hundreds of nanometers have been used. To achieve 

stimuli responsive drug release, cleavable linkers are often incorporated between the 

PEG chain and lipid.[112] After accumulation at the site of a tumor, the dePEGylated 

micelles are internalized into endosomes/lysosomes, resulting in release of the drugs 

intracellularly. 

1.5.2.2 Polymeric micelles 

To obtain polymer-PEG micelles, hydrophobic and biocompatible/biodegradable 

polymers are required to form a stable hydrophobic micellar core. The most common 

synthetic polymers used in polymeric micelle designs are shown in Scheme 2.[57a] 

Stimuli responsive PEGylated polymeric micelles have been developed to be sensitive 

to both endogenous (e.g. redox[57a], pH[38, 79e]) and exogenous (e.g. light[38]) triggers. 

Polypeptides, composed of natural and/or non-natural amino acids have also been 

widely used to from the hydrophobic core of PEGylated, polymeric micelle DDS. In 

one example, a redox-sensitive co-polymer composed of PEG and poly-L-leucine 

(PEG-SS-pLeu) was used to control the release of doxorubicin (DOX) under reducing 

conditions.[56b] The fully biocompatible system demonstrated no toxicity to cancer 

cells in vitro prior to dePEGylation but rapid and quantitative drug release in the 

reductive environment of endosomes.   
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Scheme 2. Overview of polymer blocks conjugated to PEG used polymeric micelles.  

1.5.2.3 Polyion complex (PIC) micelles 

As a sub-group of polymeric micelles, PIC micelles have been investigated as potential 

non-viral gene vectors. These copolymer systems comprise a hydrophilic/ionic 

polymer conjugated to PEG, which upon complexation with oppositely charged cargos 

(e.g. DNA, RNA or protein) form micellar structures with a charge neutralized 

hydrophobic core (Figure 13a).[113] Depending on the associated charge of the 

complexed cargo, the hydrophilic/ionic polymer can be both polyanionic or 

polycationic. Common charged polymers used in PIC systems include poly (L-lysine) 

(PLL),[43a, 56l] poly (L-aspartate)(pAsp),[114] polyethylenimine (PEI)[60g, 68d] and 

poly(2-(dimethyl-amino)ethylmethacrylate) (PDMAEMA).[46a] 

To extend the function of PIC micelles to the delivery of both hydrophilic and charged 

cargos as well as small molecule hydrophobic drugs, Torchilin and coworkers 

incorporated an additional hydrophobic DOPE core to a PEI-PEG polymer construct. In 

this way, the authors were able to efficiently encapsulate hydrophobic paclitaxel 

within the DOPE core and simultaneously condense siRNA as a complex with PEI to 

form a dual therapy (Figure 13b).[68d]  
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Figure 13. (a) Schematic illustration of PIC micelles formed by PEGylated cationic polymers 

with anionic biotherapeutics (e.g. siRNA). (b) Illustration of PIC micelles as carriers to 

co-deliver hydrophobic drugs. 

1.5.2.4 Prodrug micelles 

The principle limitations of polymeric and lipid micelle DDS are poor drug loading 

efficiencies and premature drug leakage from the micelle core. To address these 

issues, efforts have been made to develop prodrug micelle DDS in which the 

therapeutic drugs themselves are used to form the hydrophobic core of the micelle 

(Figure 14a).[115] The principle advantages of these systems are higher drug 

encapsulation efficiencies (w/w) and, as drugs are now covalently linked to the PEG 

corona, no premature drug leakage. A key disadvantage of these systems is 

sub-optimal packing of the hydrophobic micelle, resulting in decreased micelles 

stability.  
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Figure 14. (a) Schematic illustration of micelles formed by PEGylated prodrugs; (b) two tailed 

prodrugs (c) The structure of anticancer drugs used in stimuli-sensitive PEGylated prodrugs 

(reactive groups in circles). 
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A variety of anticancer drugs have been used to construct PEGylated prodrug 

micelles. These include doxorubicin,[52a, 116] camptothecin,[117] methotrexate,[118] 

metallic antitumor agents,[86] bufalin,[119] vitamin E,[60h, 120] diosgenin,[121] paclitaxel,[122] 

embelin,[123] docetaxel[124] and farnesylthiosalicylic acid (FTS) (Figure 14c).[125]  

To overcome the principle limitation of these systems – namely, low micelle stability 

due to a high CMC, efforts have been made to stabilize the hydrophobic core using 

higher drug/PEG ratio (Figure 14b). Wang et al investigated the correlation between 

DOX loading efficiency and PEG chain length (PEG2000, PEG4000 and PEG6000), onto 

which two DOX molecules were connected to each individual PEG chain through an 

acid-sensitive linkage.[126] They achieved up to 37% (w/w) DOX encapsulation (using 

PEG2000), significantly higher than conventional drug loading method using polymeric 

micelles, and with greater micelle stability. In another report, Dong et al used a 

branched system to couple up to 8 methotrexate molecules to a single PEG polymer. 

This resulted in drug-rich pro-drug micelles (26% w/w) with improved in vivo 

stability.[56m]  

1.5.2.6 Hybrid micelles 

In many cases, micelles formed from the self-assembly of a single amphiphile building 

block do not fulfill the optimal requirements of an efficient micellar DDS. For instance, 

DOX-PEG prodrug micelles typically demonstrate high CMCs (i.e. low stability) owing 

to suboptimal packing of doxorubicin within the hydrophobic core of the micelle. 

Co-formulation and self-assembly of additional amphiphilic components, to form 

hybrid micelles, is a common strategy to improve micelle performance of a micellar 

DDS but also a simple way of adding additional functionality to an existing design.[127] 

An elegant example of a multifunctional, hybrid micelle DDS combined a 

PEG2000-paclitaxel conjugate, containing an MMP sensitive linkage (PEG2000-MMP-PTX), 

together with cell penetrating peptide-PEG1000-phosphoethanolamine 

(TATp-PEG1000-DOPE) and PEG1000-phosphoethanolamine (PEG1000-DOPE) lipid 

amphiphiles in the ratio of 5:4:1 (mol/mol/mol).[66] Compared to micelles formed 

from PEG2000-paclitaxel alone, these micelles were an order of magnitude more stable 

(3.9 µM vs 32 µM). In this system, the longer PEG2000 effectively shielded the 
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underlying TAT peptide function and extended circulation lifetimes in vivo following 

systemic administration. Once accumulated within the tumor microenvironment, 

MMP-mediated enzymatic cleavage of the PEG2000 corona revealed the underlying cell 

penetrating TAT-peptide, driving the efficient internalisation and intracellular drug 

delivery. Importantly, upon the loss of PEG2000, micelles remained intact, stabilized by 

the remaining lipid-PEG1000-TAT construct and containing paclitaxel within the 

hydrophobic core. This served to minimize extracellular release of paclitaxel within 

the tumor microenvironment. Adding further flexibility to the design of this system, 

Zhu et al. were able to successfully entrap free paclitaxel within the hydrophobic core 

of a PEG2000-MMP-DOPE/ TATp-PEG1000-DOPE hybrid micelle (Figure 15).[128] With no 

additional chemical modification to existing hydrophobic drugs required in this case, 

this system demonstrates the broad potential of such a hybrid micelle system in 

delivering diverse therapeutic cargos. 
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Figure 15. Illustration of hybrid micelles made of PEG2000-Pp-PE and TATp-PEG1000-PE to 

deliver free drugs. 

1.5.3    Polymersomes 

Polymersomes are artificial vesicles comprised of a polymer membrane surrounding 

an inner aqueous core.[129] Analogous to liposomes, it is possible to load hydrophilic 

drugs/cargos within the inner aqueous core and hydrophobic drugs within the 

polymersome membrane interior.[130] Common polymersome DDS are self-assembled 

nanostructures composed of linear diblock copolymer amphiphiles 

(hydrophilic-hydrophobic) or tri-block polymer bola-amphiphiles 

(hydrophilic-hydrophobic-hydrophilic). Typically, polymersomes are more stable than 

liposomes in aqueous solution, as reflected in their lower critical aggregation 
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concentrations (CAC).[131] Although many polymers (e.g. polyesters) are hydrolytically 

sensitive and degrade over time within the body, the rate of hydrolysis and 

polymersome destabilization, even under acid-catalyzed conditions (e.g. within 

endosomes), is generally too slow to result in the release of therapeutically relevant 

drug doses. 

DePEGylation of polymersomes has been used as an effective method to rapidly 

destabilize polymersomes and promote drug release. In these systems, PEG is used as 

the hydrophilic block of a di- or tri-block polymer and is therefore an integral to 

polymersome self-assembly. Release of PEG (i.e. the hydrophilic block) leads to 

polymersome destabilization and concomitant drug release occurs. In one of the first 

examples of polymersome dePEGylation, Hubbell et al. where able to demonstrated 

efficient endosomal drug release from polymersomes composed of redox-sensitive 

PEG-S-S-poly(propylene sulfide) di-block copolymers.[132] In this case, polymersome 

cellular uptake, disruption and quantitative drug release occurred within 10 minutes 

of incubation with cells in vitro. Since then, many reductive PEG copolymers have 

been designed and applied as building blocks to construct redox-sensitive 

polymersomes.[55b, 56f, 57c, 133] Moreover, photo-degradable polymersomes could also 

be constructed by co-polymers with photo-cleavable moiety, such as 

PEG-o-NB-PCL.[80] In this kind of polymersomes, under a short UV exposure, content 

release was accompanied with partially-cleaved PEG and the rearrangement of PCL 

segments. However, the remaining PEG-PCL still stabilizes the vesicular structure. 

Only after full cleavage of PEG-PCL, collapse of polymersomes was observed. 

1.6 Overview and goals of this thesis 

From this review of current technologies, it is clear stimuli-responsive dePEGylation of 

nanoparticle-based DDS is an effective strategy to potentially enhance therapeutic 

efficacy. However, no such systems have yet made it to market. For this to happen, a 

clear cost-to-benefit advantage, over, for example, administering the free drug alone, 

must be demonstrated. This will only be realized if DDS systems are either simplified 

(to bring down development and manufacturing costs) and/or efficacy is improved.  
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The work in this thesis focuses on overcoming various technological inefficiencies 

associated with current stimuli-responsive nanoparticles. These include: enabling 

drug delivery directly to the cell cytosol (chapter 2), optimizing physicochemical 

properties and drug retention/release profiles of pro-drug micelles (chapter 3 and 4) 

and exploiting the differing in vivo fates of nanoparticles with opposing surface 

charges (chapter 5). In all cases, activation is triggered by light, affording precise 

spatiotemporal control over where and when dePEGylation/activation occurs.  

In chapter 2, spatiotemporal control of membrane fusion system is reported through 

photolabile PEGylation of fusogenic liposomes. In this system, fusion relies on the 

recognition and binding of complementary peptides displayed on opposing liposome 

surfaces. Peptide recognition can be efficiently inhibited through liposome surface 

PEGylation. Light triggered fusion was demonstrated in both liposome-liposome 

systems and between liposomes and cells. This system paves the way towards 

controlled drug delivery direct to the cytosol of cells thereby avoiding endocytosis.  

In chapters 3 and 4, two PEGylated prodrugs, PEG2000-o-nitrobenzyl-doxorubicin 

(chapter 3) and PEG2000-o-nitrobenzyl-nervonic acid (chapter 4) are described. Both 

conjugates self-assembled into micelles in aqueous solution with the PEG layer as the 

outer corona. In chapter 3, the release behavior of conjugated doxorubicin (DOX) 

from micelles was investigated and precise spatiotemporal control of drug delivery to 

cells demonstrated.  

In chapter 4, a very long chain fatty acid (nervonic acid, NA) was conjugated to PEG 

via a photo-cleavable linker. Forming close packed micelles, this enabled the efficient 

incorporation of highly insoluble NA into target cellular membranes. Subsequent 

photolysis of PEG released free NA, which was subsequently processed by the cells to 

form very long chain phospholipids. This is expected to result in the thickening of the 

plasma cell membrane and provides an indirect method to modulate membrane 

protein activity.  

In chapter 5, novel cationic lipids were photocaged to form neutral, caged cationic 

lipids. These could be formulated into liposomes which were shown to be freely 

circulating following intravenous injection in vivo. Following UV irradiation resulting in 
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photolysis of o-Nb, the liposome surface charge rapidly switched from neutral to 

cationic leading to the non-specific cellular adsorption, uptake and intracellular drug 

delivery of liposome encapsulated cargos. Switching of surface charge was 

demonstrated in situ and in vivo and importantly did not lead to content leakage from 

the liposome drug carrier.   

Finally, in chapter 6, the main results and conclusions of this thesis are summarized 

and the advantages and future perspectives of using photo-cleavable DDS are 

described.  
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Temporal Control of Membrane Fusion through Photolabile PEGylation of 

Liposome Membranes 

Abstract: Membrane fusion results in the transport and mixing of (bio)molecules across 

otherwise impermeable barriers. In this chapter, we demonstrate, for the first time, 

temporal control of targeted liposome-liposome membrane fusion and contents mixing 

using light as an external trigger. Our method relies on the steric shielding and rapid, 

photo-induced de-shielding of complementary fusogenic peptides tethered to opposing 

liposomal membranes. In an analogous approach, we are also able to demonstrate 

precise spatiotemporal control of liposome accumulation at cellular membranes in vitro. 
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2.1 Introduction 

Membrane fusion is a fundamental process of life resulting in the highly regulated 

transport of (bio)molecules both between and within cells.[1] To achieve fusion, 

energetic barriers associated with bringing opposing membranes together and of 

subsequent membrane destabilization and merging must be overcome.[2] In vivo, 

large, often multi-component, protein fusion complexes have evolved to carry out this 

task. [3]  

The development of synthetic systems capable of controlled (non-spontaneous) 

membrane fusion is a tantalizing prospect, not least for applications in vector 

(liposomal) based drug and gene delivery in vitro and in vivo. In this context, fusion of 

drug-loaded vector with target cellular membranes would result in drug delivery 

directly to the cell cytoplasm. Crucially, this route to intracellular drug and gene 

delivery minimizes degradative loss of encapsulated payloads associated with hydro- 

and proteolytic endocytotic uptake.[4]  

Given the typical size and complexity of native fusion complexes, significant efforts 

have been made to develop simplified systems capable of membrane fusion.[5] These 

can be targeted[6] or non-targeted[7] Towards this goal, we have previously reported a 

supramolecular system capable of inducing rapid and targeted membrane fusion of 

distinct liposome populations.[8] Inspired by the native SNARE fusion complex, our 

targeted fusion system relies on the recognition and binding of complementary 

coiled-coil forming peptides (E and K) tethered to opposing liposome membranes 

(Figure 1). In our membrane fusion model, coiled-coil forming peptide pair (E/K) are 

conjugated to cholesterol via a short polyethylene glycol (PEG) spacer, yielding 

fusogens, so called CPE/CPK. Upon mixing E- and K-liposomes, membrane fusion and 

leakage-free, contents mixing occurs spontaneously.  

In Nature however, membrane fusion is highly regulated in both time and space, 

ensuring correct biological function. Likewise, if simplified fusion systems are to be 

applied to drug and gene delivery systems, the ability to control when and where 

fusion occurs will be essential in ensuring clinically relevant therapeutic indices. 

Control of membrane fusion using simplified fusion systems, in either time and/or 
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space however has yet to be demonstrated. In this communication we first 

demonstrate precise temporal control of membrane fusion in model 

(liposome-liposome) systems. This result is achieved through steric shielding and 

rapid, photo-induced de-shielding of complementary and fusogenic liposome 

populations (Figure 1).  

 

Figure 1. (top) Light induced, temporal control of liposome-liposome fusion through 

photolabile steric shielding (PEGylation) of fusogenic peptides tethered to opposing liposomal 

membranes. (bottom) EPEG-liposomes sterically shielded with 1-3. 
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Polyethylene glycol (PEG) is chosen as steric ‘shield’ given its widespread use in 

improving the pharmacokinetics and dynamics of biomolecules, nanoparticles and 

liposomes.[9] We have previously shown that 2 mol% PEGylation of both liposomal 

membranes in our simplified fusion system effectively shuts down membrane fusion 

through steric shielding of liposome-tethered peptides E and K.[10] 

2.2 Results and discussion 

The synthesis and characterization of photolabile cholesterol-o-nitrobenzyl-PEG 

constructs, 1-3, are outlined in Section 2.4.2 (Figures S1-8). Upon UV light irradiation 

(365 nm, 3-5 mW/cm2) in H2O:MeCN:tBuOH (1:1:1), complete photolysis was achieved 

within 20 min as shown by UV-Vis spectroscopy (see Figure 2a). The appearance of 

three clear isosbestic points shows clean photoconversion of 2 to its photoproducts. 

Comparable spectra and rates of photolysis were found for 1 and 3 under identical 

irradiation conditions (Figure S9). HPLC-ELSD analysis of the photolysis products 

following irradiation of 2 in both H2O:MeCN:tBuOH (1:1:1) (Figure S10b and S11) and 

PBS (Figure 2b) confirmed the conversion of 2 to cholesteryl hemisuccinate as 

expected. Conversion of 1 and 3 to their expected photoproducts was similarly 

observed (Figure S10a and S10c).  

 

Figure 2. (a) Time evolution of the UV-Vis spectra of a solution of 2 (200 μM; 

H2O:MeCN:tBuOH (1:1:1)) during photolysis (365 nm, 3-5 mW/cm2). Inset: Time evolution of 

the absorbance at 350 nm. (b) HPLC-ELSD analysis of 2 (200 μM in PBS) before (black) and after 

(red) 30 min UV irradiation (365 nm, 3-5 mW/cm2). Cholesteryl hemisuccinate (200 μM in PBS), 

an expected photoproduct, is shown in blue.  
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As a next step, liposomes containing 1 mol% CPE or CPK, referred to as E- and 

K-liposomes respectively, were formulated via lipid film hydration and sonication. 

Following previously published protocols,[11] in situ modification of E-liposomes with 

1-3 yielded EPEG-liposomes whose outer membrane leaflet contained between 0 and 

10 mol% 1-3. In all cases, liposomes, both before and after in situ modification, were 

~100 nm in diameter as shown by dynamic light scattering (polydispersity index <0.2) 

(Figure S12). 

For photolabile PEG constructs 2 and 3, lipid mixing experiments – between K- and 

EPEG-liposome populations – revealed that the degree of lipid mixing was inversely 

correlated to the degree of membrane PEGylation (Figure S13). In both cases, 4 mol% 

PEGylation of E-liposomes alone was sufficient to completely nullify lipid mixing 

between E- and K-liposomal membranes. For the shorter (PEG750) construct, 1, the 

degree of PEGylation bore no influence on the rate or extent of lipid mixing between 

EPEG- and K-liposomes (Figure 3). This was confirmed by circular dichroism (CD) 

measurements which, for mixed K- and EPEG-liposomes (4 mol% 1), shows a significant 

increase in helical content (Table S1), indicative of the formation of the expected 

heterodimeric coiled coil complex between peptides E and K (Figure 3). It should be 

noted that peptides E and K tethered to the liposome membrane are already ≈50% 

folded. This is consistent with previous reports on the conformation of these peptides 

when tethered to a liposome membrane.[8a,c,d] 

The inability of the shorter PEG construct, 1, to sterically shield the interaction 

between peptides E and K reflects a critical length requirement for the steric shield 

determined by the molecular size of peptides E and K.[12] 

To assess how liposome-liposome fusion was influenced by UV light irradiation, 

EPEG-liposomes containing 4 mol% 2 and 3 were irradiated for increasing periods of 

time prior to the addition of K-liposomes. As expected, lipid mixing efficiencies 

directly correlate with increasing pre-irradiation times (Figure 4). Complete lipid 

mixing, as compared to E- and K-liposome fusion in the absence of any steric 

shielding, was achieved following 30 min pre-irradiation of EPEG-liposomes. This result 

was mirrored in analogous content mixing experiments (Figure S14). 
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Figure 3. (a) Lipid mixing between EPEG- and K-liposomes with varying amounts of 1 presented 

from the E-liposome membrane; 0 mol% (---), 2 mol% (---), 4 mol% (---), 8 mol% (---) and 10 

mol% (---).Upon mixing EPEG- and K-liposomes, membrane merging results in a decrease in 

Förster resonance energy transfer between donor and acceptor and an increase in donor 

fluorescence emission. (b) CD spectra of K-liposomes (---) alone, 4 mol% 1 EPEG-liposomes alone 

(---) and mixed solutions of K- and EPEG-liposomes (---).  

 

Figure 4. Lipid mixing of EPEG- (4 mol%) and K-liposomes with increasing irradiation times of the 

EPEG-liposomes prior to mixing with K-liposomes. A: EPEG- (4 mol% 2); B:  EPEG- (4 mol% 3). 

Time: 0 (---), 5 (---), 10 (---), 20 (---), 30 (---), 60 min (---) irradiation. 0 mol% 2 (---). 

To validate that membrane fusion is governed through the interaction of peptides E 

and K, CD measurements of mixed populations of EPEG- and K-liposomes were taken 

both before and after irradiation (Figure 5). In both cases, following irradiation, an 

increase in helical content together with a shift towards an equal ratio of mean 

residue molar ellipticities at 208 and 222 nm respectively, confirms the formation of 
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the expected E/K heterodimeric coiled coil complex (see Table S13 for quantitative CD 

analysis).   

 

Figure 5. CD spectra: K-liposomes (---), 4 mol% EPEG-liposomes (---), mixed solutions of K- and 

EPEG-liposomes pre- (---) and post-irradiation (---). A: EPEG- (4 mol% 2); B: EPEG- (4 mol% 3). 

To monitor the photolysis and subsequent liposome-liposome fusion in situ, 

populations of EPEG-liposomes (containing 4 mol% 2) and K-liposomes were pre-mixed 

and contents mixing monitored simultaneously before and during continuous UV 

irradiation (Figure 6). In the absence of UV light we no content mixing between 

liposomes was observed, however immediately upon UV irradiation 

liposome-liposome fusion commences. This demonstrates the direct dependence of 

liposome-liposome fusion on photolysis of the PEG shield from the EPEG-liposomal 

membrane enabling precise temporal control of the fusion process. This result was 

mirrored in the analogous experiment with EPEG-liposomes containing 4 mol% 3 

(Figure S16). The influence of continuous UV irradiation upon the rate of fusion 

between E- and K-liposomes, in the absence of any PEGylation, was found to be 

insignificant (Figure S15).  
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Figure 6. Content mixing following in situ photolysis of a 1:1 mixture of EPEG-liposomes (4 mol% 

2) and K-liposomes, upon (---) and in the absence of (---) UV irradiation. Black arrow indicates 

point at which UV irradiation was turned on. For contents mixing measurements, a 

self-quenching concentration of a fluorescent dye (sulforhodamine B, 10 mM) is encapsulated 

within EPEG-liposomes. Upon mixing and fusion with empty K-liposomes, dilution of the dye 

results in fluorescence dequenching.  

Finally, applying this methodology to a biological context, we are able to demonstrate 

precise spatiotemporal control of liposome accumulation at pre-functionalised cellular 

membranes (Figure 7). To achieve this, we adapted previously reported protocols,[13] 

first incorporating lipopeptide K into the membranes of cells then incubating cells with 

EPEG-liposomes (4 mol% 2). 1 mol% fluorescent DOPE-LR was added to the 

EPEG-liposome membrane composition for visualization. Remarkably, following 

photolysis of the steric shield from the EPEG-liposomes, the interaction between 

peptides E and K, displayed from the liposome and cell surface respectively, is both 

specific and strong enough to enable well-defined, light-templated accumulation of 

liposomes at the cell surface. We have yet to confirm whether this interaction leads to 

full fusion of liposome and target plasma membranes. However, even if this results in 

docking alone, we can expect these liposomes, now localized at the cellular 

membrane, to be internalised over time, most likely via an endocytotic pathway.[14] 

Subsequent liposome degradation and endosomal escape would result in the 

intracellular release of liposome encapsulated content.  
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Figure 7. (A) Light directed, spatiotemporal control of liposome accumulation at 

pre-functionalised HeLa cell membranes in vitro. (B) (top) Fluorescence image (10x 

magnification) of EPEG-liposomes (containing 1mol% DOPE-LR fluorescent probe) docked at 

pre-functionalised HeLa cell membranes following localised UV irradiation. (middle) Brightfield 

image (10x magnification). (bottom) Merge. Experimental details: Step 1. CPK solution (5 μM) 

incubated with cells for 15 min followed by washing. Step 2. EPEG-liposome solution (250 μM 

containing 1 mol% CPE and 1 mol% DOPE-LR fluorescent probe) incubated with cells for 15 

min. Step 3. Localised irradiation (10 min, 10 mW/cm2) and further incubation for 15 min. Step 

4. Wash and image. 
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2.3 Conclusions 

In this study, we successfully synthesized photolabile cholesterol-o-nitrobenzyl-PEG 

constructs, 1-3 and incorporated these into E-liposomal membranes. We illustrate the 

need for a minimum PEG length (≥ 2000 g/mol) to effectively shield the interaction 

between fusogenic peptides, E and K. And we show rapid photo-induced de-shielding 

of EPEG-liposomal membranes results in spontaneous, and temporal control of, fusion 

between distinct liposome populations in situ. Applying this approach to a biological 

context, we are also able to demonstrate light directed spatiotemporal control of 

liposome accumulation at pre-functionalised cellular membranes in vitro. It should be 

noted, no phototoxicity, arising from the use of UV-A (365 nm) light, was observed in 

cell experiments. In any event, potential issues of phototoxicity can largely be 

alleviated through the use of longer wavelength, 2-photon excitation sources, to 

which o-nitrobenzyl functionalities are photosensitive.[15] Likewise, whilst UV-A light 

suffers from poor tissue penetration, the use of 2-photon excitation sources enables 

light activation up to tissue depths of 1 cm.[16] In conclusion, the general method 

described holds significant promise towards non-invasive, user-defined vector based 

drug and gene delivery both in vitro and in vivo. 
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2.4 Experimental 

2.4.1 Materials and Instruments 

Phospholipids used for liposomes, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dioleoyl-sn-glycero-3- 

phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (DOPE-NBD) and 1,2- 

dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) 

(DOPE-LR), were purchased from Avanti Polar Lipids. Cholesterol and all other 

chemical reagents were purchased at the highest grade available from Sigma Aldrich 

and used without further purification. All solvents were purchased from Biosolve Ltd. 

Phosphate buffered saline (PBS): 5 mM KH2PO4, 15 mM K2HPO4, 150 mM NaCl, pH 7.4. 

Silica gel column chromatography was performed using silica gel grade 40-63μm 

(Merck). TLC analysis was performed using aluminium-backed silica gel TLC plates (60F 

254, Merck), visualisation by UV absorption at 254 nm and/or staining with KMnO4 

solution. NMR spectra (1H) were measured on a Bruker AV-400MHz spectrometer. 

Chemical shifts are recorded in ppm. Tetramethylsilane (TMS) is used as an internal 

standard. Coupling constants are given in Hz. LCMS analysis was performed on a Jasco 

HPLC-system coupled to a Perkin Elmer Sciex API 165 mass spectrometer. MALDI-TOF 

mass spectra were acquired using an Applied Biosystems Voyager System 6069 

MALDI-TOF mass spectrometer. α-Cyano-4-hydroxycinnamic acid (CHCA) was used as 

matrix in all cases. Sample concentrations were ~0.3 mg/ml. UV absorption spectra 

were measured using a Cary 3 Bio UV-vis spectrometer, scanning from 200 nm to 550 

nm at 1 nm intervals. Scan rate: 120 nm/min. For the pre-irradiation of 

EPEG-liposomes, UV light irradiation was performed using a hand-held BLAK-RAY 

B-100AP high intensity UV lamp (365 nm, 100 W) encased in a cardboard box. 

Samples were irradiated in quartz cuvettes at a fixed distance of 10 cm from the UV 

source. HPLC-ELSD analysis was performed using a Shimadzu HPLC setup equipped 

with two LC-8A series pumps coupled to a Shimadzu ELSD-LT II detection system. 

Separation (Vydac 214 MS C4 column, 5u, 100 × 4.6 mm, flow rate: 1 mL/min), in all 

instances, was carried out over a linear gradient of 10-90% B over 20 minutes with an 

initial 5 min hold at 10% B. HPLC buffers: A – H2O (0.1% TFA); B – Acetonitrile (0.1% 
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TFA). The drift tube temperature for ELSD was set at 370C and the nitrogen flow-rate 

at 3.5 bar.  

CPE (cholesterol-PEG12-peptideE) and CPK (cholesterol-PEG12-peptideK) were 

synthesized and purified as previously reported.[11] Peptide sequences were 

(EIAALEK)3 and (KIAALKE)3 for E and K respectively. 

Liposomes were prepared via lipid film hydration and bath sonication using a Branson 

2510 Ultrasonic Cleaner. Sonication was carried out at 550C. 

Size exclusion chromatography (SEC) was carried out using illustraTM NAPTM 

SephadexTM G-25 DNA grade pre-made columns (GE Healthcare) and used according 

to the user instructions. 

Particle size distributions were obtained using a Malvern Zetasizer Nano ZS equipped 

with a peltier controlled thermostatic holder. The laser wavelength was 633 nm and 

the scattering angle was 173o. To obtain an estimation of the hydrodynamic radius, 

Dh, the Stokes-Einstein relation was used: 

 

where, kB is the Boltzmann constant and η is the viscosity of the solvent. DLS 

measurements were carried out at room temperature. 

Fluorescence measurements for lipid and content mixing using EPEG-liposomes 

irradiated prior to mixing with K-liposomes were performed on a TECAN Plate Reader 

Infinite M1000. All experiments were carried out in 96-well plates (PP Microplate, 96 

well, solid F-bottom (flat), chimney well). For every experimental well the final 

experimental volume was 200 μL. Fluorescent measurements were recorded at 25oC.  

CD spectra were measured using a Jasco J-815 spectropolarimeter. The observed 

ellipticity is given in millidegrees, the conversion to the mean residue molar ellipticity 

is performed by the following equation:  
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where, obs is the observed ellipiticity, CM, the molar total peptide concentration, l, 

the path length of the cuvette in cm and N, the number of amino acids per peptide. 

Spectra were obtained at a sample concentration of 3mM total lipids (1 mol% 

lipopeptide, 4 mol% photolabile cholesterol-PEG construct) in PBS in a 0.1 cm quartz 

cuvette. All measurements were made at room temperature. Data was collected at 

0.2 nm intervals, at a scanning speed of 20 nm/min and a 1 nm bandwith. Each 

spectrum was the average of 5 scans.  

Helical content was determined using the following formula:  

� � ��
�.�

�

 x 100 

where rh is the helical fraction,  222 is the ellipticity at 222 nm and N is the number 

of peptide bonds.  

In situ UV irradiation and simultaneous fluorescence measurements were conducted 

using a custom built setup. All optical parts were connected with FC-UVxxx-2 (xxx = 

200, 400, 600) optical fibers from Avantes (Apeldoorn, The Netherlands), with a 

diameter of 200-600 μm, respectively, and were suitable for the UV-Vis range 

(200-800 nm). The excitation source was a continuous wave Aries 150 532 nm 

portable DPSS laser from LaserGlow (Toronto, ON, Canada); the power was controlled 

using a NDL-25C-4 variable neutral density filter (Thorlabs, Dachau/Munich, Germany) 

put between the laser and the sample, and was measured using a S310C thermal 

sensor connected to a PM100USB power meter (Thorlabs). The laser was collimated 

to a beam of 4 mm diameter to reach an intensity of 80 mW.cm-2 (10 mW power). The 

sample was held in a 104F-QS or 104F-OS semi-micro fluorescence cuvette from 

Hellma GmbH & Co. KG (Müllheim, Germany) in a CUV-UV/VIS-TC 

temperature-controlled cuvette holder (Avantes), with the long side of the cuvette 

perpendicular to the excitation source. Emission measurement was performed by 

means of a 2048L StarLine CCD spectrometer from Avantes under a 90° angle with 

respect to excitation. A filter holder with a NF533-17 533 nm notch filter (Thorlabs) 

was placed between cuvette holder and detector to reject the excitation source. For 

measurements involving additional illumination with UV light, a 365 nm LED (17 mW) 

in a custom-made mount was fitted on top of the cuvette. 
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HeLa cells were cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM), 

supplemented with 10% fetal calf serum (iron supplied), 2% L-glutamine, 1% penicillin 

and 1% streptomycin. Cells were cultured in an atmosphere of 5% CO2 at 37°C. 

Medium was refreshed every two days and cells passaged at 70% confluence by 

treatment with trypsin-EDTA (0.05% trypsin). For fluorescence assays, cells (2x105 

mL-1) were transferred to 48-well cell culture plates (500 µL, Greiner bio-one, 

Cellstar®) and cultured for a further 24 h. Immediately prior to testing, the culture 

medium was carefully removed and the cells washed once with PBS. Fluorescence 

microscopy was carried out using an Olympus IX81 fluorescence microscope equipped 

with a filter cube (excitation: 532 – 554 nm, emission: 570 – 613 nm for   

visualization of DOPE-LR.  

2.4.2 Synthesis of 1-3 

The right structures are confirmed by both H-NMR and Maldi-TOF (Figure S1-S8). 

 

where a, n=16; b, n=44; c, n=112; 1, n=16; 2, n=44; 3, n=112 

Scheme S1. The synthetic scheme to 1. 

4-(4-acetyl-2-methoxy-5-nitrophenoxy)butanoic acid, 4, was synthesized as previously 

described. [17] The synthesis and purification of 1-3 were, aside from the variation in 

PEG chain length, identical. The representative synthesis of 2 is given below. 

Characterisation of final compounds 1-3 is reported below. 

MethoxyPEG2000 4-(4-acetyl-2-methoxy-5-nitrophenoxy)butanoate, 5b   

To a stirred solution of 4 (240 mg, 0.81 mmol) in CH2Cl2 (5 mL) was added DMAP (98 

mg, 0.81 mmol), EDCI (185 mg, 0.97 mmol), DIPEA (209 µL, 1.2 mmol) and 
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MeO-PEG2000-OH (1.20 g, 0.6 mmol). After overnight stirring, the reaction mixture was 

diluted with EtOAc (50 mL) and washed with sat. NaHCO3 (3 x 50 mL) and brine (50 

mL). The combined organic fractions were dried (Na2SO4) and solvent removed in 

vacuo to yield an orange powder. Column chromatography (Gradient: CH2Cl2 to 20% 

MeOH in CH2Cl2) afforded 5b as a pale yellow powder (0.83 g, 0.49 mmol, 61%). Rf  

0.45 (CH2Cl2:MeOH, 9:1). 1H-NMR (CDCl3, 400 MHz): 7.64 (s, 1H), 6.78 (s, 1H), 4.29 (m, 

2H), 4.19(t, J=6 Hz, 2H), 3.99 (s, 3H), 3.45-3.89(m, 176H), 3.41 (s, 3H), 2.62(t, J=8 Hz, 

2H), 2.53(s, 3H), 2.23 (m, 2H).  

MethoxyPEG2000 4-(4-(1-hydroxyethyl)-2-methoxy-5-nitrophenoxy)butanoate, 6b          

NaBH4 (18.9 mg, 0.5 mmol) was added to a suspension of 5b (0.50 g, 0.22 mmol) in 

MeOH (5 mL). After 3 h, the reaction was acidified to pH 4 by careful addition of aq. 

citric acid (5% w/v). The solution was diluted with CH2Cl2 (100 mL) and washed with 

water (50 mL) and brine (50 mL). The combined organic fractions were dried (Na2SO4) 

and solvent removed in vacuo to yield 6b as a viscous orange oil (0.45 g, 0.2 mmol, 

90%). This was used without further purification. Rf 0.44 (CH2Cl2:MeOH, 9:1). 1H-NMR 

(CDCl3, 400 MHz): 7.59 (s, 1H), 7.34 (s, 1H), 5.58 (q, 1H), 4.28 (m, 2H), 4.16(t, J=6 Hz 

2H), 4.00 (s, 3H), 3.45-3.89(m, 176H), 3.41 (s, 3H), 2.61(t, J=8 Hz 2H), 2.23 (m, 2H), 

1.57 (d, J=8 Hz , 3H). 

1-(5-methoxy-4-(4-(2-methoxyPEG2000)-4-oxobutoxy)-2-nitrophenyl)ethyl cholesteryl 

succinate, 2 

To a stirred solution of 6b (400 mg, 0.15 mmol) in CH2Cl2 (5 mL) was added DMAP 

(36.6 mg, 0.30 mmol), EDCI (57.5 mg, 0.30 mmol), DIPEA (78.3 µL, 0.45 mmol) and 

cholesteryl hemisuccinate (121 mg, 0.25 mmol). After overnight stirring, the reaction 

mixture was diluted EtOAc (50 mL) and washed with sat. NaHCO3 (3 x 50 mL) and 

brine (50 mL). The organic fractions were combined, dried (Na2SO4) and solvent 

removed in vacuo. Column chromatography (Gradient: CH2Cl2 to 10% MeOH in CH2Cl2) 

afforded 2 as a colourless waxy solid (195 mg, 0.073 mmol, 50%). Rf 0.45 

(CH2Cl2:MeOH, 9:1). 1H-NMR (CDCl3, 400 MHz): 7.60 (s, 1H), 7.06 (s, 1H), 6.49 (q, 1H), 

5.37 (t, J=8 Hz, 1H), 4.60 (m, 1H) 4.28 (m, 2H), 4.12 (t, J=6 Hz, 2H), 4.01 (s, 3H), 

3.45-3.95 (m, 196H), 3.41 (s, 3H), 0.69-2.66 (m, 56H).  
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1-(5-methoxy-4-(4-(2-methoxyPEG750)-4-oxobutoxy)-2-nitrophenyl)ethyl cholesteryl 

succinate, 1 

1H-NMR (CDCl3, 400MHz): 7.59 (s, 1H), 7.06 (s, 1H), 6.49 (q, 1H), 5.36 (t, J=4 Hz, 1H), 

4.58 (m, 1H), 4.27 (m, 2H), 4.11 (t, J=6 Hz, 2H), 4.01 (s, 3H), 3.45-3.89 (m, 62H), 3.39 

(s, 3H), 0.69-2.66 (m, 56H). 

1-(5-methoxy-4-(4-(2-methoxyPEG5000)-4-oxobutoxy)-2-nitrophenyl)ethyl cholesteryl 

succinate, 3 

1H-NMR (CDCl3, 400MHz): 7.60 (s, 1H), 7.06 (s, 1H), 6.49 (q, 1H), 5.38 (t, J=4 Hz, 1H), 

4.61 (m, 1H), 4.27 (m, 2H), 4.12 (t, J=6 Hz, 2H), 4.01 (s, 3H), 3.45-3.90 (m, 486H), 3.40 

(s, 3H), 0.70-2.75 (m, 51H). 

2.4.3 Photolysis of 1 

A solution of 1-3 (200 μM) in water:acetonitrile:tert-butanol (1:1:1) was irradiated 

(hand-held BLAK-RAY B-100AP high intensity UV lamp (365 nm, 100 W, 3-5 mW/cm2)), 

for 5 min, followed immediately by acquisition of the UV-visible absorption spectra. 

The same sample was then re-irradiated and this cycle repeated for cumulative 

irradiation time points of 10, 20, 30 and 60 min. The products of the photolysis 

reaction were analyzed by HPLC-ELSD.  

2.4.4 Liposome preparation 

Lipid stock solutions in chloroform (or 1:1 chloroform/methanol for CPE and CPK) 

were mixed and evaporated to a film under a stream of air. This film was re-hydrated 

with PBS (containing 10 mM sulphorhodamine B for Content Mixing assays), vortexed 

briefly and bath sonicated for 1-2 min at 55oC, yielding liposomes of approx. 100 nm 

diameter with polydispersity <0.2. For all lipid and content mixing assays the total 

lipid concentration in every well was 100 μM. 

Lipid compositions 

For lipid mixing assays:  

Peptide E decorated: DOPC: DOPE: Cholesterol: DOPE-LR: DOPE-NBD: CPE 

(49:24.5:24.5:0.5:0.5:1 mol%). 
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Peptide K decorated: DOPC:DOPE:Cholesterol:CPK (49.5:24.75:24.75:1 mol%). 

100% lipid mixing control: DOPC: DOPE: Cholesterol: DOPE-LR: DOPE-NBD: CPE 

(49.75:24.88:24.88:0.25:0.25:1 mol%). 

For content mixing assays: 

Peptide E decorated: DOPC:DOPE:Cholesterol:CPE (49.5:24.75:24.75:1 mol%) with 

10mM sulphorhodamine B encapsulated.  

Peptide K decorated: DOPC:DOPE:Cholesterol:CPK (49.5:24.75:24.75:1 mol%). 

100% content mixing control: DOPC:DOPE:Cholesterol: (50:25:25 mol%) with 5 mM 

sulphorhodamine B encapsulated. 

Following liposome formulation by sonication, peptide E decorated and the 100% 

control liposomes used in contents mixing assays were purified by SEC to remove 

unencapsulated sulphorhodamine B. 

In Situ Modification of Peptide E decorated liposomes with PEG 

In situ modification of E-liposomes with 1-3 was carried out following procedures 

previously described. Briefly, hydrated and sonicated solutions of 1-3 (20 μM) in PBS 

were added in equal volumes to E-decorated liposomes (200 μM total [lipid]) in PBS 

and incubated for 30 min to give a final concentration of E-decorated liposomes (100 

μM total [lipid]) with varying mol% 1-3 displayed from the outer membrane leaflet. As 

an example, to formulate E-decorated liposomes displaying 5 mol% 1, 500 μL 

E-decorated liposomes (200 μM total [lipid]), 250 μL 1 (20 μM) and 250 μL PBS were 

mixed to give 1mL of 5mol% 1 EPEG-liposomes (100 μM total [lipid]).  

2.4.5 Lipid mixing assay 

For lipid mixing assays, NBD fluorescence (excitation wavelength: 465 nm; emission 

wavelength: 530 nm) was measured upon mixing fluorescent EPEG-liposomes and 

non-fluorescent K-liposomes every 20 s for 3500 s. The 0% value was determined by 

measuring NBD emission of EPEG-liposomes to which an equal amount of PBS (in place 

of K-liposomes) was added. The 100% value was determined using liposomes 

containing half the probe (DOPE-NBD and DOPE-LR) concentrations i.e. 0.25 mol%.  
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The percentage of fluorescence increase (%F(t)) was calculated as: %F(t)=(F(t)- 

F0)/(Fmax-F0) where F(t) is the fluorescence intensity measured at time, t, F0 is the 0% 

fluorescence and Fmax is the fluorescence intensity measured on liposomes with half 

the fluorescent probe concentrations. 

For measuring the effects of UV irradiation on the rate of lipid mixing, EPEG- liposomes 

were irradiated for various times prior to the addition of K-liposomes.  

2.4.6 Content mixing assay 

For content mixing assays, the increase in fluorescence emission of sulforhodamine B 

(SR-B, 10 mM (self-quenching), excitation wavelength: 520 nm emission wavelength: 

58 nm) encapsulated in EPEG-liposomes was measured every 20 s for 3500 s upon 

mixing peptide EPEG-liposomes and K-liposomes. The 0% value was determined by 

measuring SR-B emission of EPEG-liposomes to which an equal amount of PBS (in place 

of K-liposomes) was added. The 100% value was determined using liposomes 

containing half the probe (SR-B) concentration (5 mM). 

The percentage of fluorescence increase (%F(t)) was calculated as: %F(t)=(F(t)- F0)/( 

Fmax-F0) where F(t) is the fluorescence intensity measured at time, t, F0 is the 0% 

fluorescence and Fmax is the fluorescence intensity measured for liposomes containing 

5mM encapsulated SR-B. 

For measuring the effects of UV irradiation on the rate of lipid mixing, EPEG- liposomes 

were irradiated for various times prior to the addition of K-liposomes.  

2.4.7  In situ UV irradiation and simultaneous fluorescence measurement of 

content mixing 

EPEG- and K-liposomes, prepared as above for contents mixing assays, were mixed in a 

cuvette (total volume; 600 μL) and fluorescence measurements taken continuously. 

After approximately 5 min, UV irradiation (365 nm, 15-17 mW/cm2) above the sample 

was switched on and left on for the remainder of the experiment whilst 

simultaneously measuring the increase in SR-B fluorescence emission. The laser 

intensity was recorded simultaneously and all data was corrected for source intensity 

fluctuations. 
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The percentage of fluorescence increase (%F(t)) was calculated as: %F(t)=(F(t)- F0)/( 

Fmax-F0) where F(t) is the fluorescence intensity measured at time, t, F0 is the 0% 

fluorescence and Fmax is the fluorescence intensity measured for liposomes containing 

5mM encapsulated SR-B. 

2.4.8  In vitro fluorescent assay  

A solution of CPK was prepared by 200-fold dilution of CPK (2 mM) in DMSO with PBS, 

followed by a further 2x dilution with DMEM (without FCS) to give a 5 μM CPK 

solution in PBS:DMEM(-FCS) (1:1). This solution (500 μL) was added to the cell culture 

well and incubated for 10-15 minutes at 37 °C (5% CO2) . The CPK solution was 

carefully removed and the cells washed 3x with PBS:DMEM (-FCS). EPEG-liposomes 

(500 μL, 250 μM, PBS:DMEM(-FCS)) containing 1 mol% CPE, 4 mol% 2, 1 mol% 

DOPE-LR probe, were then added to the cells. The cells were then irradiated (365 nm, 

10 min, 10 mWcm-1) from directly above the well, of which half was covered with 

aluminum foil. Following irradiation, the cells were incubated with the EPEG-liposome 

solution for a further 15 min. The EPEG-liposome solution was then carefully removed 

and the cells washed 3x with PBS:DMEM (-FCS). The cells were then immediately 

analysed under the microscope.  
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2.6 Appendix 

Figure S1. 1H-NMR of 4. 

  

Figure S2. 1H-NMR of 5a. 
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Figure S3. 1H-NMR of 5b. 

 

Figure S4. 1H-NMR of 5c. 
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Figure S5. 1H-NMR of 1. 

 

Figure S6. 1H-NMR of 2.  
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Figure S7. 1H-NMR of 3. 
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Figure S8. MALDI-TOF spectra of 1-3. 
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Figure S9. UV-Vis spectra of the photolysis of 1 (left) and 3 (right); all (200 μM) in 

water:acetonitrile:tert-butanol (1:1:1). Inset: Reaction profile over time as a function of UV 

absorption at 350 nm. 

 

Figure S10. HPLC-ELSD traces of 1(a), 2(b) and 3(c) in PBS before (magenta) and after (green) 

60 min UV irradiation. HPLC-ELSD  of the expected photolysis products, cholesteryl 

hemisuccinate (blue).  
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Figure S11. Comparison HPLC-ELSD traces of 2 in PBS and in water:acetonitrile:tert-butanol 

(1:1:1) before and after 60 min UV irradiation. 

 

 

Figure S12. DLS size distributions: 1 (top), 2 (middle), 3 (bottom): 1-3 (20 μM in PBS), 

E-liposomes (100 μM in PBS) alone (black), K-liposomes (100 μM total [lipid] in PBS) alone, 

post modified (4mol% 1-3) EPEG-liposomes (100μM total [lipid]) alone, 1:1 mixtures of (4mol% 

1-3) EPEG-liposomes and K-liposomes (100 μM total [lipid] in PBS) after 60 min, without and 

following 60 min UV irradiation of EPEG-liposomes prior to mixing with K-liposomes. 
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Figure S13. Lipid mixing between EPEG- and K-liposomes with varying amounts of 2 (left) and 3 

(right) presented from the E-liposome membrane. 0, 2, 4, 8 and 10 mol%. 

Table S1. CD spectra of investigated systems: mean residue molar ellipticities and helical 

content. 

[θθθθ] (103 deg cm2 dmol-1) 
[θθθθ]  

@222 nm 

[θθθθ]  

@208 nm 
Helicity [θθθθ]222/[θθθθ]208 

K-liposomes 14,44674 -15,50488 46.2 0.93 

1 

(4mol%) 

EPEG-liposomes -17,62973 -23,97608 56.4 0.74 

EPEG- and K-liposomes 

(pre-irradiation) 
-22,37316 -22,9173 71.6 0.97 

2 

(4mol%) 

EPEG-liposomes -16,881 -20,74584 54.0 0.81 

EPEG- and K-liposomes 

(pre-irradiation) 
-18,37925 -22,73417 58.8 0.81 

EPEG- and K-liposomes 

(post-irradiation) 
-20,40157 -20,62402 65.3 0.99 

3 

(4mol%) 

EPEG-liposomes -17,84379 -22,45793 57.1 0.79 

EPEG- and K-liposomes 

(pre-irradiation) 
-17,40497 -22,34921 55.7 0.78 

EPEG- and K-liposomes 

(post-irradiation) 
-20,86163 -20,00899 66.8 1.04 
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Figure S14. Content mixing of EPEG- and K-liposomes with 0 mol% and 4 mol% 2 (left), 3 (right) 

presented from the E-liposome membrane, in the absence of UV irradiation and following 60 

min prior UV irradiation of EPEG-liposomes.  

 

Figure S15. Simultaneous and continuous UV irradiation and monitoring of content mixing 

between E- and K-liposomes (in the absence of 1-3 presented from the E-liposome 

membrane). 

 

Figure S16. In situ photolysis of EPEG-liposomes (4 mol% 3) and consequent content mixing with 

K-liposomes, upon (---) and in the absence of (---) UV irradiation.  



 

  
 

 

 

 

 

 

 

Spatiotemporal Control of Doxorubicin Delivery from ‘’Stealth-Like” Prodrug 

Micelles 

Abstract: In the treatment of cancer, targeting of anticancer drugs to the tumor 

microenvironment is highly desirable. Not only does this imply accurate tumor targeting but 

also minimal drug release en route to the tumor and maximal drug release once there. Here 

we describe high-loading, “stealth-like” doxorubicin micelles as a pro-drug delivery system, 

which upon light activation, leads to burst-like doxorubicin release. Through this approach, we 

show precise spatiotemporal control of doxorubicin delivery to cells in vitro.  

 

 

 

 

 

 

 

 

 

 

Li Kong, Dimitrios Poulcharidis, Gregory F. Schneider, Frederick Campbell and Alexander Kros, 

Int. J. Mol. Sci. 2017, 18, 2033 
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3.1  Introduction 

Doxorubicin (DOX) is a potent cytotoxic drug used in the clinical treatment of many 

human cancers. Administered alone, and with no inherent cell selectivity, the clinical 

efficacy of DOX is however hampered by off-target cardiotoxicity.[1] This limits the 

cumulative patient lifetime dose of DOX to just 550 mg/m2, irrespective of 

therapeutic success.[2] Considerable efforts have been made to improve the 

therapeutic index of DOX by localizing its extracellular release to the tumor 

microenvironment alone. Typically, this involves chemical modification or vector 

entrapment of DOX (e.g. within long-circulating liposomes). Within these systems, 

strategies to enhance tumor targeting and/or local DOX release include the use of 

active targeting ligands,[3] steric shielding (e.g. PEGylation) of DOX carriers,[4] 

exploitation of endogenous (e.g. low pH within the tumor environment) and 

exogenous (e.g. heat, magnetism, ultrasound or light) stimuli,[5] and combinations 

thereof.[6] 

Of these various approaches, the passive targeting of liposome-entrapped DOX to 

tumors remains the only strategy approved for clinical use. Liposomal-DOX 

formulations (e.g. Myocet®, Doxil®) are used to treat a variety of malignant human 

cancers, including select breast and ovarian cancers, multiple myeloma and 

AIDS-related Kaposi’s sarcoma. These liposome formulations, optimally 100 nm in size 

and administered systemically, are designed to passively accumulate within the tumor 

via the enhanced permeability and retention (EPR) effect. This phenomenon is 

characterized by the ill-defined (“leaky”) vasculature and poor lymphatic drainage of 

many tumor pathologies.[7] Through this approach high local concentrations of DOX 

are achieved within the tumor following prolonged and passive drug leakage across 

the liposome membrane. For this strategy to be effective, liposomes with long 

circulation lifetimes are sought. Care must therefore be taken to balance the 

conflicting need to both minimize DOX leakage en route to the tumor while ensuring 

therapeutically relevant concentrations are released once there. Drug retention and 

release profiles can be fine-tuned through judicious choice of drug-to-lipid ratios and 

liposome lipid composition, and circulation lifetimes can be increased through steric 

shielding (typically PEGylation) of the liposome surface (to create ‘stealth’ liposomes) 
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[4], however finding the necessary balance between drug retention and release is an 

intrinsic limitation of these nanoparticle systems.[8] 

 

Figure 1. Light activated doxorubicin pro-drug micelles. (a) 

Doxorubicin-ortho-nitrobenzyl-mPEG2000 construct, 1; (b) Self-assembly of 1 in aqueous 

media to 100 nm PEGylated and DOX (doxorubicin)-rich micelles from which quantitative drug 

release is triggered by light; (c) Light directed DOX release, cell uptake, and cell death. 

In this chapter, we describe light activated, DOX-rich (20 wt% drug loading) micelles, 

which prior to light activation, share analogous physicochemical properties (size, 

morphology, surface chemistry) to those of long circulating liposomal-DOX 
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formulations. Crucially however we observe no premature DOX release (and 

therefore cytotoxicity) in the absence of light. Upon light activation, quantitative drug 

release is achieved (Figure 1). These properties represent a significant technological 

improvement over analogous DOX-PEG prodrug systems triggered by tumor-specific, 

endogenous stimuli (pH,[9] reduction,[10] enzymatic[11]), for which DOX release is 

typically slow (hours) and incomplete, as well as those reliant on external stimulus, 

such as light,[12] for which reported physicochemical properties (size, morphology, 

surface chemistry) preclude long circulation lifetimes necessary for efficient tumor 

accumulation via the EPR effect. 

3.2  Results and discussion  

The synthesis and characterisation of photoactivatable DOX-ortho-nitrobenzyl-PEG 

construct, 1, is described in the experimental section. Self-assembly of 1 in aqueous 

media resulted in particles with mean hydrodynamic diameters of 100 nm and 

ranging in size from 30 to 300 nm (PDI 0.25, Figure S7). TEM (transmission electron 

microscopy) measurements revealed “loose” core–shell micelle structures in which 

the nanoparticle core appears electron-rich (high contrast) and likely contains DOX 

(Figure 2a). Similar morphologies have been reported for analogous DOX-PEG 

assemblies.[9] The critical micelle concentration (CMC) of self-assembled micelles of 1 

was determined to be 9.2 µM (approx. 25 µg/mL, Figure 2b) and particles were stable 

over time, over a range of concentrations and diluted in complete cell culture media 

(Figure S7). Upon low power UV irradiation (365 nm, 3–5 mW/cm2), complete 

photolysis of self-assembled 1 to pharmacologically “active” DOX was achieved within 

25 min, however significant DOX release was observed following just 5 min low-power 

UV irradiation (Figure 2c). Drug release was quantitative and importantly, no 

premature leakage of DOX was observed in the absence of light activation (Figure 2d). 
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Figure 2. Characterization of doxorubicin pro-drug micelles and light induced drug release. (a) 

TEM image (uranyl acetate stain) of micelles of 1 (300 μM, approx. 0.7 mg/mL); (b) Time 

evolution of the HPLC spectra of a solution of 1 (100 μM in PBS) during photolysis (365 nm, 3–

5 mW/cm2). Free DOX (100 μM), dissolved in PBS, was used to confirm clean photolysis of 1 to 

release “active” DOX. HPLC conditions described in Materials and Methods; (c) CMC (critical 

micelle concentration) determination by light scattering following serial dilution of 1 (100 μM–

75 nM) in PBS; (d) In vitro DOX release profiles from 1 (300 μM) in PBS. No UV irradiation (red), 

UV irradiation at 9 h (black) and free DOX control (blue). 

Next, the cytotoxicity of 1 was assessed against cancer (HeLa) cells in vitro. While the 

measured IC50 value of free DOX was 3 μM, 1 showed no cytotoxic effect up to the 

highest concentration tested (100 μM) in the absence of light (Figure 3a). Upon light 

activation (365 nm, 15–17 mW/cm2) however, DOX induced cytotoxicity correlated, as 

expected, with both increased concentrations of 1 as well as increasing irradiation 

time (Figure 3b). 

Importantly, UV-A light induced cytotoxicity (due to UV-A induced oxidative stress),[13] 

only resulted in significant cell death following > 30 min continuous irradiation (Figure 

3b, pink line, and Figure S8). This is significantly longer than the irradiation time 
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required to release effective concentrations of DOX (released from 20 µM solutions of 

1) achieving > 50% cell death. It is also important to note, below its CMC (9.2 µM), the 

cytotoxicity of 1 was also insignificant. While this is likely due to the membrane 

impermeability of individual DOX-PEG constructs, these systems will no longer exist as 

nanoparticle assemblies and will likely demonstrate very different in vivo 

pharmacokinetic profiles (i.e. low vascular retention, rapid renal filtration) compared 

to 100 nm micelles of 1.[14]  

 

Figure 3. Viability of HeLa cells in vitro treated with doxorubicin pro-drug micelles. (a) Cell 

viability following incubation with varying concentrations (10 nM–100 μM) of free DOX (black) 

and 1 (red) in the absence of light; (b) Viability of HeLa cells in vitro treated with varying 

concentrations of 1 and irradiated (365 nm, 15–17 mW/cm2) for up to 1h. Pink line 

corresponds to photoinduced cytotoxicity. 

Increasing DOX cellular uptake with increasing time of light activation of 1 was 

confirmed by FACS analysis (Figure S9) and to demonstrate the precision afforded by 

the described DOX delivery prodrug system, micelles of 1 were first incubated with 

cells then UV light applied over just half the well plate (Figure 4a). The result was clear 

spatial delineation of DOX cellular uptake in vitro (Figure 4b), highlighting not only 

efficient photolysis of 1 but also rapid cellular uptake of DOX once released. 
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Figure 4. Light templated doxorubicin delivery in vitro. Patterned light (365 nm, 15–17 

mW/cm2) activation of 1 (300 μM) and cellular uptake of DOX (red).  

3.3 Conclusions  

Here we demonstrate rapid and quantitative release of DOX from self-assembled 

micelles of 1 triggered by light. Prior to light activation, DOX-PEG conjugate based 

micelles are not cytotoxic, do not release DOX prematurely and share near identical 

physicochemical character to that of marketed and long-circulating liposome-DOX 

formulations (e.g. Doxil®). Towards tumor targeting of DOX in vivo, it is envisaged that 

micelles of 1, administered systemically, will first passively accumulate within the 

tumor microenvironment via the EPR effect whereupon drug release could be 

triggered by light, on demand. Given the limited tissue penetration of single photon 

UV light, options to apply UV light to tumors residing deep within the body include 

the use of fiber-optic endoscopic techniques[15] or 2-photon light activation.[16] 

Alternatively, strategies rendering this system sensitive to longer wavelength, single 

photon, near-infrared (NIR) light can be considered.[17] Future studies will focus on the 
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application of these micelles in vivo and their potential use as an anti-cancer drug 

delivery system. In particular, care must be taken to maintain the concentration of 1 

above the CMC following dilution in blood (approximately 5 L for an adult human).[18] 

For the system described, this equates to an injected dose of > 130 mg/5L of 

1—approximately 30 mg DOX. This figure is below the FDA recommended dosage for 

DOX·HCl (40–60 mg/m2 administered every 21–28 days) currently used in the 

treatment of a wide range of human cancers. 
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3.4 Experimental 

3.4.1 Materials and Instruments 

Doxorubicin hydrochloride (DOX·HCl) was purchased from Cayman Chemical 

Company (Ann Arbor, MI, USA) and used without further purification. All other 

chemical reagents were purchased from Sigma-Aldrich (Zwijndrecht, Netherlands) 

and used without further purification. All solvents were purchased from Biosolve Ltd 

(Valkenswaard, Netherlands). Phosphate buffered saline (PBS): 5 mM KH2PO4, 15 mM 

K2HPO4, 150 mM NaCl, pH 7.4. Silica gel column chromatography was performed 

using silica gel grade 40–63 μm (Merck & co., Amsterdam, Netherlands). TLC analysis 

was performed using aluminum-backed silica gel TLC plates (60F254, Merck, 

Amsterdam, Netherlands), visualization by UV absorption at 254 nm and/or staining 

with KMnO4 solution. NMR (nuclear magnetic resonance) spectra were measured on a 

AV-400MHz spectrometer (Bruker Nederland BV, Leiderdorp, MA, USA). Chemical 

shifts are recorded in ppm. Tetramethylsilane (TMS) is used as an internal standard. 

Coupling constants are given in Hz. LCMS analysis was performed on a Nanoacquity 

UPLC system-Synapt G2Si mass spectrometer (Waters Corporation, Milford, MA, USA) 

operating MassLynx software. Separation (Acquity UPLC M-Class 300 µm × 50 mm 

column, packed with BEH C4 material of 1.7 µm diameter and 300Å pore size 

particles, flow rate: 2 µL/min; Waters Corporation, Milford, MA, USA) was carried out 

over a linear gradient of 10–90% B over 20 min. Buffers: A—H2O (0.1% Formic Acid); 

B—Acetonitrile (0.1% Formic Acid). Electro-spray ionization (ESI) via Nano-spray 

source with ESI emitters (New Objective Inc., Woburn, MA, USA) fused silica tubing 

360 µm OD × 25 µm ID tapered to 5 ± 0.5 µm (5 nL/cm void volume). MS (mass 

spectrometry) settings (positive resolution mode): source temperature of 80 °C, 

capillary voltage 4.5 kV, nano flow gas of 0.25 Bar, purge gas 250 L/h, trap gas flow 

2.0 mL/min, cone gas 100 L/h, sampling cone 25 V, source offset 25, trap CE 32 V, 

scan time 3.0 sec, mass range 400–2400 m/z. Lock mass acquiring was done with a 

mixture of Leu-Enkephalin (556.2771) and [Glu1]-fibrinopeptide B (785.84265), 

lockspray voltage 3.5 kV, [Glu1]-fibrinopeptide B fragmentation was used as calibrant. 

MaxEnt 1 was used for mass deconvolution of the envelopes (Cambridge, UK). HPLC 

(high-performance liquid chromatography) analysis was performed using a Shimadzu 
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HPLC setup equipped with two LC-8A series pumps (Shimadzu Europa GmbH, 

's-Hertogenbosch, Netherlands). Separation: Prep (Kinetex EVO, C18 column, 5u, 150 

× 21.2 mm, flow rate: 15 mL/min; Phenomenex B.V., Utrecht, Netherlands), analytical 

(Vision HT, C18 column, 5 u, 150 × 4.6 mm, flow rate: 1 mL/min; Phenomenex B.V., 

Utrecht, Netherlands), in all instances, was carried out over a linear gradient of 10–

95% B over 25 min with an initial 5 min hold at 10% B. HPLC buffers: A—H2O (0.1% 

TFA); B—Acetonitrile (0.1% TFA). UV detection at 254 nm. 

For experiments not involving cells, UV light irradiation was performed using a 

hand-held BLAK-RAY B-100AP high intensity UV lamp (365 nm, 100 W; Fisher Scientific, 

Hampton, NH, USA) encased in a cardboard box. Samples were irradiated in quartz 

cuvettes at a fixed distance of 10 cm from the UV source. For all cell experiments, UV 

light irradiation was performed using a high-power LED (365 nm, 15–17 mW/cm2, 

Roithner Laser Technik GmbH, Vienna, Austria) mounted at a fixed distance of 1 cm 

above the cells. 

3.4.2 Synthesis of 1 

Scheme S1. Synthetic scheme to 1. (i) 4-nitrophenylchloroformate, Et3N, CH2Cl2. (ii) Et3N, DMF.  

MethoxyPEG2000 4-(4-(1-hydroxyethyl)-2-methoxy-5-nitrophenoxy)butanoate (2) 

was synthesized as the method in chapter 2. 

MethoxyPEG2000 4-(2-methoxy-5-nitro-4-(1-(((4-nitrophenoxy)carbonyl)oxy)ethyl) 

phenoxy)butanoate, 3 

To a stirred solution of 2 (500 mg, 0.22 mmol) and 4-nitrophenyl chloroformate (265 
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mg, 1.31 mmol, 6 eq.) in CH2Cl2 (20 mL) was added Et3N (305 μL, 2.19 mmol, 10 eq.). 

The reaction mixture was stirred at room temperature in the dark overnight. 

Following solvent removal in vacuo, purification by column chromatography 

(Gradient: CH2Cl2 to 15% MeOH in CH2Cl2) afforded 3 (278 mg, 0.11 mmol, 52%) as a 

yellow powder. Rf: 0.30 (CH2Cl2:MeOH; 12:1). 1H-NMR (CDCl3, 400 MHz): 8.26 (d, J = 8 

Hz, ArH–o-NO2, 2H); 7.61 (s, ArH–o-NO2, 1H); 7.35 (d, J = 8Hz, ArH–m-NO2, 2H); 7.11 

(s, ArH–m-NO2, 1H); 6.52 (q, J = 8 Hz, CH(CH3)OCOO, 1H); 4.26 (m,COOCH2CH2O, 2H); 

4.14 (t, J = 8 Hz, OOCCH2CH2CH2O, 2H); 4.00 (s, CH3O, 3H); 3.45-3.95 (m, OCH2CH2, 

196H); 3.32  (s, CH3OCH2CH2O,3H);  2.59 (m, CH2CH2CH2O, 2H); 2.19 (m, 

COOCH2CH2O, 2H); 1.78 (d, J = 8 Hz, CH(CH3) OCOO, 3H). 

MethoxyPEG20004-(4-(1-(((3-hydroxy-2-methyl-6-(((1S,3S)-3,5,12-trihydroxy-3-(2- 

hydroxyacetyl)-10-methoxy-6,11-dioxo-1,2,3,4,6,11hexahydrotetracen-1-yl)oxy)tetr 

ahydro-2H-pyran-4yl)carbamoyl)oxy)ethyl)-2-methoxy-5-nitrophenoxy)butanoate, 1 

To a stirred solution of 3 (86 mg, 0.034 mmol) and doxorubicin.HCl (20 mg, 0.037 

μmol) in DMF (500 μL) was added Et3N (47.2 μL, 0.34 mmol, 10 eq.). The reaction 

mixture was stirred at RT in the dark overnight. CH2Cl2 (20 mL) was then added to the 

reaction mixture and the solution washed with brine (15 mL). The organic fraction 

was dried (Na2SO4) and solvent removed in vacuo. Column chromatography (Gradient: 

CH2Cl2 to 2% MeOH in CH2Cl2 to 10% MeOH in CH2Cl2) yielded 1 (58.1 mg, 61%) as a 

red powder. Rf: 0.20 (CH2Cl2:MeOH; 12:1). 1H-NMR (CDCl3, 400 MHz): Partial peak 

assignment annotated in S3. 1H-NMR of DOX with partial peak assignment included in 

S2. MS – despite numerous attempts to characterize this compound (MALDI, ESI), MS 

data was inconclusive – most likely due to compound instability and/or poor 

ionization of this compound during mass spec analysis. Following UV irradiation 

however, the MS of the photolysis products could be clearly detected (Figure S5 and 

S6). These products – nitroso-PEG and DOX – can only arise from the photolysis of 1.      

3.4.3 Preperation and Characterization of Light-Activated DOX-PEG Prodrug 

Micelles  

Micelles of 1 were prepared via thin film hydration followed by sonication. Bath 

sonication (Branson 2510 Ultrasonic Cleaner, Branson Ultrasonics, Danbury, CT, USA) 

was carried out at 50 °C for 5 min. Particle size distributions were determined using a 
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Malvern Zetasizer Nano ZS (Malvern Instruments Ltd, Malvern, UK) equipped with a 

peltier controlled thermostatic holder, a fixed wavelength at 633 nm and scattering 

angle of 173°. DLS measurements were carried out at room temperature. For TEM 

observation, a drop of 1 (300 μM) was placed onto a nitrocellulose membrane 

covered TEM copper grid and dabbed dry through the underside of the grid with a 

tissue. This was then washed three times with ddH2O. A drop of uranyl acetate (2% 

w/v) in H2O was then added and the sample left to dry in the dark. Transmission 

electron microscopy (TEM JEOL 1010; JEOL Ltd., Tokyo, Japan; Nieuw-Vennep, 

Netherlands) was run at an accelerating voltage of 60 kV. 

3.4.4 In vitro Drug Release  

To monitor the release profile of DOX following light irradiation, 1 mL of 1 (300 µM, > 

CMC) in PBS were placed in dialysis tubing (MWCO: 3.5 KDa) and dialyzed against 10 

mL of dialysis buffers (PBS + 0.5% (w/w) Tween 80). At various time intervals, 3.0 mL 

of dialysis buffer was removed and replaced with fresh buffer. The amount of free 

DOX was quantified by UV–Vis absorbance measurements at 480 nm. To monitor light 

activated release of DOX, a sample of 1 was removed from the dialysis tubing at 9 h 

and irradiated for 30 min. This solution was returned to the dialysis tubing and the 

experiment continued. As a positive control, free DOX (300 µM) in PBS was subjected 

to the identical experimental conditions. 

3.4.5 WST Cell Proliferation Assay 

HeLa cells were seeded in 96-well plates at a density of 10000 cells per well and 

incubated overnight. Cells were washed once with PBS, then micelles of 1 (100 μL, 

varying concentrations in 1:1 PBS:DMEM+FCS), free DOX solutions (100 μL varying 

concentrations in 1:1 PBS:DMEM+FCS) or DMEM+FCS alone (100 μL) were added and 

the cells incubated for 12 h. Cells were then washed three times (DMEM+FCS), fresh 

DMEM+FCS added and incubated for a further 24 h. Cell media was removed and 200 

μL Cell Proliferation Reagent; WST-1 (Sigma Aldrich, Zwijndrecht, Netherlands) added 

to each well. Cells were incubated (37 °C) for a further 3 h, according to the supplier 

guidelines. To determine cell viability, absorbance at 450 nm was measured. All 

experiments were carried out in quadruplicate.  
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3.4.6 FACS Analysis 

HeLa cells were incubated with 1 (300 μM in PBS, > CMC) for 30 min then irradiated 

(365 nm, 15–17 mW/cm2) for 15 min. Following irradiation, the solution was carefully 

removed, cells washed with PBS, trypsinized and immediately analyzed by flow 

cytometery. Counting and characterization was performed by measuring 10,000 

events in triplicate and concatenation of this data. For manual gating, the outermost 

ring of the dot plot was selected. Quadrants were manually selected to illustrate 

fluorescence plots. No compensation was required. 

3.4.7 Light Templated DOX Devlivery to Cells 

HeLa cells were seeded in 24-well plates (6 × 104 cells per well) and incubated 

overnight. Cells were washed once with PBS, then micelles of 1 (300 μM in PBS, > 

CMC) added and incubated for 30 min. Next, half of the well was covered with 

aluminum foil followed by UV irradiation (365 nm, 15–17 mW/cm2) from above for 15 

min. Following irradiation, the solution was carefully removed, cells washed (3 × 

DMEM+FCS) and immediately analyzed under the fluorescence microscope. 
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3.6 Appendix  

 

Figure S1. 1H-NMR of 3. 

 

Figure S2. 1H-NMR of Doxorubicin. 
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Figure S3. 1H-NMR of 1. 

 

Figure S4. HPLC trace of 1. Retention time – 17.8 min. UV detection – 214 nm.  
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Figure S5. ESI-MS spectra (raw data) following photolysis of 1 and showing the expected 

photoproducts – DOX and nitroso-benzyl-PEG2000 – as the only significant species present. 

The presence of DOX clusters – [2.DOX]+ and [3.DOX]+ - in the raw spectra arise from ‘soft’ 

elctrospray ionization techniques. 
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Figure S6. Deconvoluted (software: MaxEnt1) mass spectra of nitroso-PEG envelope signals. 
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Figure S7. (left) Time course DLS size distributions of 1 (300 μM in PBS) diluted (1:1) in 

DMEM+FCS. (right) DLS size distributions of 1 (varying concentrations) in PBS. 

 

Figure S8. Cells (bright field) irradiated for varying times (UV-A, 365 nm, 15-17 mWcm-2) and 

imaged immediately. As UV-A irradiation times increase cells become smaller (shrinkage) and 

more rounded, hallmarks of the onset of UV-A induced apoptosis. 
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Figure S9. FACS analysis showing increased uptake of DOX (released from a solution of 1 (300 

μM in PBS)) by HeLa cells with increasing irradiation times. A) Dot plots of HeLa cells after 

t=0 ,5, 10 and 20 min of irradiation; cell population was gated based on FSC-A vs SSC-A (cell 

doublets were gated out using FSC-A vs FSC-H). B) Histograms of HeLa cells after t=0 min (pink) 

t=5 min (blue), t=10 min (orange) and t=20 min (green) irradiation. C) Mean Fluorescence 

Intensity (MFI) of HeLa cells after different irradiation times. Error bars ± SD. 
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Light Induced Modulation of the Very Long Chain Fatty Acid Composition of 

Cell Membranes 

Abstract: Membrane protein function is highly dependent on the properties of the 

surrounding lipid bilayer. Herein, we report a chemical and solvent-free method to enrich 

cellular membranes with very long chain fatty acids (vlcFAs). In this way, we are able to 

modulate cell membrane lipid composition, thickness and potentially membrane protein 

activity. Supplementing cell membranes with vlcFAs is notoriously difficult due to their 

extreme insolubility in aqueous solution. To solve this, we create light sensitive micelles, 

composed of PEG-nervonic acid (FA24:1) conjugates, which spontaneously disassemble in 

the presence of lipid bilayers. Once embedded, light is used to cleave off PEG, leaving 

free nervonic acid within the target membrane. When applied to living cells, released 

nervonic acid was processed by the cell to generate various species of phospholipids with 

elevated amounts of incorporated vlcFAs. 
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4.1 Introduction 

Phospholipid bilayers, as the main constituent of cellular membranes, act as scaffolds 

maintaining structural integrity and correct cellular function. Membrane bilayers are 

involved in numerous cellular processes, regulating bidirectional molecular traffic and 

supporting numerous membrane associated proteins and receptors (e.g. G-protein 

coupled receptors). The activity and function of membrane proteins is heavily 

dependent on the local properties of the lipid bilayer in which they are embedded. 

The transmembrane domains (TMD) of many membrane proteins are highly evolved 

to prefer a specific lipid environment. In turn, slight changes of bilayer thickness, 

fluidity, curvature, and/or lipid headgroup chemistry may lead to destabilization of 

protein structure and affect function and activity.[1,2]  

Very long-chain fatty acids (vlcFAs), with a chain-length of ≥22 carbon atoms, play a 

vital role to many cellular functions including spermatogenesis, skin barrier formation 

and myelin maintenance.[3] Free, unesterified vlcFA can rapidly diffuse across lipid 

bilayers and redistribute among various cellular compartments.[4,5] When 

incorporated within endogenous phospholipids (e.g. sphingo- and 

glycero-phospholipids), vlcFAs are key modulators of cell membrane fluidity and 

thickness, facilitating the formation of lipid rafts/domains within cellular 

membranes.[6] Furthermore, vlcFAs are important precursors of 

inflammation-resolving lipid mediators and several disorders in the synthesis of vlcFAs 

(e.g. elongation of stearic acid to saturated or mono-unsaturated vlcFAs), as well as 

defects in vlcFA metabolism, can lead to severe diseases such as Stargardt disease and 

adrenoleukodystrophy.[3]  

A change in the thickness of a lipid bilayer can create a mismatch in size with the 

hydrophobic TMD of an embedded protein.[7] To minimize unfavorable interactions 

(e.g. exposure of hydrophobic amino acids to water), a change in membrane thickness 

forces a membrane protein to alter its conformation to the most energetically 

favourable orientation, for instance, by tilting and bending the TMDs in the new 

membrane landscape. This in turn can alter the ability of the protein to carry out its 

function and in extreme cases may lead to a complete loss of function.[8] The activity 
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of ion channels, enzymes and substrate transporters have all been shown sensitive to 

changes in lipid membrane thickness.[9–12]  

Membrane thickness depends on cholesterol content and particularly esterified vlcFA 

content of endogenous phospholipids. Delivery of vlcFAs to cells is therefore an 

attractive option to artificially modulate the thickness of cell membranes, and thereby 

the activity of membrane proteins, as acyl-chain remodeling pathways readily 

incorporate exogenous fatty acids into cellular phospholipids.[13,14] However, the 

delivery of vlcFAs to cells is complicated by their extreme insolubility in water. This is 

particularly problematic in the case of vlcFAs with a low degree of unsaturation, e.g. 

nervonic acid (NA, FA24:1). These species immediately form insoluble aggregates 

upon dilution in aqueous media. Our motivation for this study was to find ways of 

solubilizing vlcFAs in aqueous media to enable efficient incorporation into target 

cellular membranes. Once embedded in the plasma membrane, we hypothesized that 

delivered vlcFAs would be taken up into cellular compartments, enter membrane 

remodeling pathways[14] and eventually be incorporated into cellular phospholipids. If 

successful, this would create a larger hydrophobic domain within the bilayer of 

cellular membranes and potentially alter the activity of embedded membrane 

proteins.[1,8] 

Herein, we describe a photo-inducible approach to enrich cell membranes with vlcFAs, 

leading to enrichment of cellular phospholipids with delivered vlcFAs. To achieve this, 

we conjugated NA to poly-ethylene-glycol (PEG) via a photocleavable (o-nitrobenzyl) 

linker (1). These amphipathic constructs self-assemble to form close-packed micelles 

in aqueous solution as illustrated in Figure 1a and 1b. 

These micelles spontaneously disassemble in the presence of model and cell 

membranes, embedding 1 within the target membrane sink (Figure 1c). Once within 

the membrane, photolysis of PEG leaves unesterified NA within the membrane. By 

applying this technique to HEK293 cells we demonstrate increased incorporation of 

esterified vlcFA in cellular phospholipids using lipidomics analysis. 
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Figure 1. Schematic showing the delivery of nervonic acid to cells using light activatable 

micelles. (a) chemical structure of photo-cleavable nervonic acid-PEG (1); (b) the micellar 

structure of PEGylated nervonic acid; (c) incorporation, light activation and biotransformation 

of nervonic acid to vlcPLs and ultimately a thicker cell membrane. 

4.2 Results and discussion 

The synthesis and characterization of photolabile, nervonic acid-o-nitrobenzyl-PEG2000, 

1 (Figure 1a), is described in the Supporting Information (Scheme S1, Figures S1, S2). 

Upon UV light irradiation in PBS, complete photolysis was achieved within 30 min 

(Figure 2a, b). The appearance of a clear isosbestic point at 320 nm in the UV-Vis 

absorption spectra indicates clean photoconversion of 1 to its photoproducts. 

HPLC-ELSD analysis of the photolysis products confirmed the expected release of NA 

(Figure 2c). Self-assembly of 1 in aqueous media resulted in close-packed micelles. 

The size of these micelles was approximately 20 nm in size as determined by electron 
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microscopy (Figure 2d) and dynamic light scattering (DLS, Figure S4). The critical 

micelle concentration (CMC) of 1 was 2.9 μM (Figure S3) and particles were stable up 

to at least 1 mM (Figure S4). 

 

Figure 2. (a) Time evolution of the UV-Vis spectra of a solution of 1 during photolysis (365 nm, 

3-5 mW/cm2); (b) Time evolution of the UV absorbance at 350 nm during photolysis. (c) 

HPLC-ELSD analysis of 1 before (red) and after (blue) UV irradiation. HPLC-ELSD analysis of free 

NA (black) was used to confirm photolysis of 1 to free NA. (d) TEM image (uranyl acetate stain) 

of micelles of 1 (500 μM, approx. 1.31 mg/mL). 

Next, the incorporation of 1 into model phospholipid (POPC) membranes was 

assessed (Figure 3). An aliquot of concentrated micelles of 1 (1 mM, in PBS) were 

mixed with preformed POPC liposomes (large unilamellar vesicles) at a 1:10 molar 

ratio (50 µM 1, and 500 µM POPC lipid, respectively). Successful incorporation of 1 

into the POPC liposome membrane was, in part, confirmed by a small increase in the 
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hydrodynamic radius (rh) of the liposomes (as measured by DLS) prior to light 

activation. This we attribute to the additional PEG corona now presented from the 

outer leaflet of the liposome membrane. As expected, upon light irradiation and 

cleavage of the PEG corona, the rh returned to the original size of the parent POPC 

liposome, and a significant decrease in the surface charge was observed. The latter is 

attributed to the liberated carboxylate functionality of free NA upon UV irradiation. 

These observations confirm successful incorporation of NA into model lipid bilayers by 

our procedure. In contrast, addition of NA (via ethanol injection (i.e. addition of an 

aliquot of a concentrated stock solution of NA in ethanol)) to POPC liposomes 

resulted in no significant change to the liposome surface charge (Figure 3), 

highlighting the difficulties in incorporating highly insoluble vlcFAs into lipid 

membranes by conventional methods. 

 

Figure 3. Incorporation and activation of 1 in model lipid membranes. (a): Cartoon of the 

procedure. (b) Measured hydrodynamic radii (rh) and (c) zeta potentials of micelles of 1 and 

POPC liposomes. From l to r: micelles of 1, unmodified POPC liposomes, POPC liposomes after 

ethanol injection of 1, and, alternatively: POPC liposomes incubated with 1 (10:1 molar ratio), 

followed with subsequent UV light irradiation and photolytic loss of PEG. 

a. 

c. 

b. 
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To verify analogous incorporation of 1 into biological membranes, we prepared 

micelles of 1 containing 1 mol% fluorescently-labeled nervonic acid (NA-Fluo, see 

Supporting Information for synthesis and characterization). When mixed micelles of 1 

and NA-Fluo were incubated with HeLa cells, a homogenous distribution of 

fluorescence across all cells was immediately observed (Figure S5 and S6). This 

indicated NA-Fluo had spontaneously incorporated into cellular membranes during 

the process of dissolution of mixed micelles and subsequent transfer of 1 to cell 

membranes.  

Having established the delivery of NA to cellular membranes by our procedure, we 

next investigated whether HEK293 cells could process free NA, following photolysis of 

1, to generate elevated levels of specific phospholipids with incorporated vlcFAs. First, 

in a control experiment, we tested the potential for UV induced cytotoxicity to cells 

(Figure S8). Interestingly, while untreated cells (in PBS) showed significant UV induced 

cell death (approx. 80% cell viability following 15 min irradiation; determined by WST 

cell viability assay), cells modified with 1 showed no significant UV induced 

cytotoxicity following at least 20 min irradiation. This result is consistent with 

previous observations showing supplemental monounsaturated fatty acids could 

protect cells from oxidant injury.[15] Alternatively, quenching of UV light by 

nitrobenzyl-PEG might have protected the cells. Subsequently, following cell 

membrane incorporation of 1 (100 µM) and subsequent light activation (10 min), cells 

were incubated for 72 h to allow for the processing of free NA and incorporation into 

membrane lipids. After incubation, cells were pelleted and cellular lipids extracted 

and analyzed by thin layer chromatography (Figure S7). Phosphatidylcholine lipids 

(PC) are the most common class of endogenous phospholipids in cells[16] and 

incorporation of vlcFAs into PC lipids, thereby increasing the hydrophobic content, 

leads to reduced retention on the silica TLC plate. Indeed, for cells incubated with 1 

and subsequently irradiated, an upshift in the PC lipid content was observed on the 

TLC plate (Figure S7). Subsequently, from the same samples the relative amounts of 

61 cellular PC, 31 phosphatidyl-ethanolamine (PE), 12 sphingomyelin (SM) and 15 free 

fatty acid (FA) species were analyzed and compared by LC-MS lipidomics (see SI for 

methods).  
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Figure 4a demonstrates the changes, focusing on species with incorporated vlcFA. 

Remarkably, five PC species (PC (22:1/22:1), PC (24:1/24:1), PC(24:1/16:0), 

PC(24:1/16:1) and PC (24:1/18:1)) as well as one PE species (PE(24:1/18:1)) were 

increased significantly at the expense of common PC species (PC(16:0/18:1), 

PC(18:0/18:1), PC(18:1/18:1)) and PE(18:1/18:1). This redistribution demonstrates 

that indeed, due to the procedure, liberated NA had been taken up by the cell and 

incorporated into cellular phospholipids. Thus, part of the NA had been esterified into 

phospholipids by acyl-transferases and/or in de novo synthesis pathways of 

phospholipids. Moreover, a fraction of NA was shortened to erucic acid (FA22:1) 

which was subsequently incorporated to yield among others PC (22:1/22:1). Also the 

profile of SM species had altered. Although these phospholipids represent only a 

minor (<5%) fraction of membrane lipids, those containing vlcFA accumulate into rafts, 

thereby increasing locally the membrane thickness.[17] Remarkably, in the treated cells, 

specific SM species containing vlcFA (i.e. SM (d14:2/20:0), SM (d14:1/26:0), SM 

(d14:1/28:0) and SM (d14:1/28:2) were down-regulated, whereas prevailing SM 

(d18:1/16:0) and SM (d18:1/24:1) remained the same. Possibly, this redistribution of 

SM species compensates for increased levels of vlcFA-PC lipids accumulating into 

membrane rafts, taking over the local membrane thickening function of vlcFA-SM. 

Interestingly, the distribution of free fatty acids remained shifted dramatically 

towards vlcFA in the cells to which NA had been delivered, compared to the control 

(-UV) (Figure 4c). Remarkably, even after 72 h incubation of the cells, still 38 % of the 

circulating FA were presented by NA (compared to 5% in the control), whereas 

common FA such as palmitic acid (FA 16:0) and stearic acid were decreased. 

Interestingly, erucic acid was increased corroborating our above-mentioned 

observation that a fraction of NA was β-oxidized to erucic acid (FA 22:1). It appears 

that the initial high levels of released NA were not toxic for the cells and during the 

incubation only a fraction of the delivered NA had been esterified and/or β-oxidized 

while the cells down-regulated common long-chain fatty acids. This is in line with 

known high affinity of fatty acids to bind to cellular membranes, which easily 

accommodate 2 mole % fatty acids under physiological conditions.[18] In summary, 

these results demonstrate that the distribution of several of lipid species in cells can 

be altered significantly by our procedure of delivery of large amounts of NA. 
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Figure 4. Membrane remodeling in HEK293 cells due to delivery of NA by 1. Changes in the 

distribution of (a) glycero-phospholipid (PC and PE), (b) sphingomyelin (SM) and (c) free fatty 

acid (FA) species, after UV release of PEG and subsequent 72 h incubation of the cells at 37 oC. 
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4.3 Conclusions 

In this chapter, we demonstrate efficient delivery of vlcFAs to cell membranes, 

through the use of light sensitive micelles, composed of PEG-nervonic acid (FA24:1) 

conjugates. In the absence of light, PEG-NA micelles spontaneously disassembled in 

the presence of a cell membrane to leave individual PEG-NA molecules embedded 

within the membrane. Upon light irradiation, PEG is cleaved, leaving free vlcFAs within 

the cell membrane. Subsequent cellular processing of vlcFAs led to elevated levels of 

cellular phospholipids. Our approach overcomes the conventional difficulties 

associated with supplementing cell membranes with highly insoluble vlcFAs and is 

expected to be transferable to the delivery of any vlcFA or other very hydrophobic 

lipid species to cell membranes. This procedure has the potential to open new venues 

in research ranging from studies of membrane protein activities to cellular 

mechanisms of disease-related altered levels of vlcFA. 
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4.4 Experimental 

4.4.1  Materials and Instruments 

Phospholipids used for liposomes, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC), were purchased from Avanti Polar Lipids. All chemical reagents, including 

nervonic acid, were purchased from Sigma Aldrich and used without further 

purification. All solvents were purchased from Biosolve Ltd.  Phosphate buffered 

saline (PBS): 5 mM KH2PO4, 15 mM K2HPO4, 150 mM NaCl, pH 7.4. Silica gel column 

chromatography was performed using silica gel grade 40-63 μm (Merck). TLC analysis 

was performed using aluminum-backed silica gel TLC plates (60F 254, Merck), 

visualization by UV absorption at 254 nm. NMR spectra were measured on a Bruker 

AV-400MHz spectrometer. Chemical shifts are recorded in ppm. Tetramethylsilane 

(TMS) is used as an internal standard. Coupling constants are given in Hz. LCMS 

analysis was performed Jasco HPLC-system coupled to a Perkin Elmer Sciex API 165 

mass spectrometer. MALDI-TOF mass spectra were acquired using an Applied 

Biosystems Voyager System 6069 MALDI-TOF mass spectrometer. 

α-Cyano-4-hydroxycinnamic acid (CHCA) was used as matrix in all cases. Sample 

concentrations were ~0.3 mg/ml. HPLC-ELSD analysis was performed using a 

Shimadzu HPLC setup equipped with two LC-8A series pumps coupled to a Shimadzu 

ELSD-LT II detection system. Separation (Vydac 214 MS C4 column, 5u, 100 × 4.6 mm, 

flow rate: 1 mL/min), in all instances, was carried out over a linear gradient of 10-90% 

B over 20 minutes with an initial 5 min hold at 10% B. HPLC buffers: A – H2O (0.1% 

TFA); B – Acetonitrile (0.1% TFA). The drift tube temperature for ELSD was set at 370C 

and the nitrogen flow-rate at 3.5 bar. UV absorption spectra were measured using a 

Cary 3 Bio UV-Vis spectrometer, scanning from 200 nm to 500 nm at 1 nm intervals. 

Scan rate: 150 nm/min.  

Particle size distributions and zeta potential measurements were obtained using a 

Malvern Zetasizer Nano ZS equipped with a peltier controlled thermostatic holder. 

The laser wavelength was 633 nm and the scattering angle was 173o. To obtain an 

estimation of the hydrodynamic radius, Dh, the Stokes-Einstein relation was used:  
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where, kB is the Boltzmann constant and η is the viscosity of the solvent. DLS 

measurements were carried out at room temperature. Zeta potentials were 

measured at room temperature, at 500 μM total lipid concentration and 10 mM NaCl 

concentration. All reported DLS measurements and zeta potentials are the average of 

three measurements. 

For experiments not involving cells, UV light irradiation was performed using a 

hand-held BLAK-RAY B-100AP high intensity UV lamp (365 nm, 5 mW/cm2) encased in 

a cardboard box. Samples were irradiated in quartz cuvettes at a fixed distance of 10 

cm from the UV source. For all cell experiments, UV light irradiation was performed 

using a high-power LED (365 nm, 15-17 mW/cm2, Roithner Laser Technik, GmbH) 

mounted at a fixed distance of 1 cm above the cells. 

Micelles of 1 were prepared via thin hydration (PBS) and bath sonication (Branson 

2510 Ultrasonic Cleaner, 50 oC, 5 min). POPC liposomes (10 mM) were prepared by via 

thin hydration and extrusion at room temperature (Mini-extruder, Avanti Polar Lipids, 

Alabaster, US). Hydrated lipids were passed 11 times through 2 x Confrim 400 nm 

polycarbonate (PC) membranes (Nucleopore Track-Etch membranes, Whatman), 

followed by 11 times through 2 x 100 nm PC pores. POPC liposomes were used 

immediately after formulation.   

The structure of the micelles of 1 were characterized using (TEM) operated at 70 kV 

TEM transmission electron microscopy (TEM, JEOL 1010, USA). The sample was 

dropped on copper grids with carbon film and washed 3 times with water. All the 

samples were stained with 0.5% uranyl acetate in water for 2 min. Next, the samples 

were dried under a N2 atmosphere in the dark. 

Cells (HeLa and HEK293) were cultivated in Dulbecco’s Modified Eagle’s Medium 

(DMEM), supplemented with 10% fetal calf serum (FCS, iron supplied), 2% 

L-glutamine, 1% penicillin and 1% streptomycin. Cells were cultured in an atmosphere 

of 5% CO2 at 37°C. Medium was refreshed every two days and cells passaged at 70% 

confluence by treatment with trypsin-EDTA (0.05% trypsin). For fluorescence imaging 
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(Figure S5), HeLa cells were seeded (1x105 cells/cm2) in 48-well plates (500 μL, Greiner 

bio-one, Cellstar®) and cultured (in DMEM+FCS) for a further 24 h. Prior to testing, 

culture medium was carefully removed and the cells washed once with PBS. 

Fluorescence microscopy was carried out using an Olympus IX81 fluorescence 

microscope equipped with a filter cube (Excitation wavelength, 470/40 nm; Emmssion 

wavelength, 525/50 nm) or visualization of fluorescein-labeled nervonic acid. For lipid 

analysis, HEK293 cells were seeded 1x106 cells/cm2 in 12 well plates and cultured (in 

DMEM+FCS) overnight. Prior to testing, culture medium was carefully removed and 

the cells washed once with PBS. 

4.4.2 Synthesis of 1 

 
Scheme S1. Synthetic scheme to 1.  

Methoxy-PEG2000-4-(4-(1-hydroxyethyl)-2-methoxy-5-nitrophenoxy)butanoate (2) was 

synthesized as reported in Chapter 2. 

Methoxy-PEG2000-4-(2-methoxy-5-nitro-4-(1-(tetracos-15 enoyloxy) ethyl) phenoxy) 

butanoate (1) 

To a stirred solution of 2 (370 mg, 0.16 mmol) in CH2Cl2 (5 mL) was added DMAP (12.2 

mg, 0.1 mmol), EDCI (57.5 mg, 0.30 mmol), DIPEA (78.3 mL, 0.45 mmol) and nervonic 

acid (92 mg, 0.25 mmol). After overnight stirring under N2, the reaction mixture was 

diluted by EtOAc (50 mL) and washed with sat. NaHCO3 (3 x 50 mL) and brine (50 mL). 

The organic fractions were combined, dried (Na2SO4) and solvent removed under 

vacuum. Column chromatography (Gradient: CH2Cl2 to 10% MeOH in CH2Cl2) afforded 

1 as a light yellow waxy solid (208 mg, 0.08 mmol, 50%). Rf: 0.38 (CH2Cl2:MeOH; 10:1). 

1H-NMR (CDCl3, 400 MHz): 7.60 (s, 1H), 7.02 (s, 1H), 6.49 (q, J = 8 Hz, 1H), 5.37 (t, J = 4 

Hz,  1H), 4.28 (m, 2H), 4.13 (t, J = 4 Hz, 2H), 4.02 (s, 3H), 3.45-3.95 (m, 174H), 3.41 (s, 

3H), 2.60 (t, J = 4 Hz, 2H), 2.35 (m, 2H), 2.23 (m, 2H), 2.03 (m, 4H), 1.63 (d, J = 8 Hz, 

1H), 1.28 (m, 32H), 0.9 (t, J = 6 Hz, 3H). 
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4.4.3 Synthesis of fluorescein-labeled nervonic acid, NA-Fluo 

To a stirred solution of nervonic acid (20 mg, 0.05 mmol) in CH2Cl2 (2 mL) was added 

HCTU (80 mg, 0.2 mmol), DIPEA (70 mL, 0.4 mmol) and fluoresceinamine (70 mg, 0.2 

mmol). After stirring for 5h, the reaction solution was evaporated under vacuum. The 

residue was dissolved in DCM (10 mL) and washed with sat. NaHCO3 (3 x 20 mL) and 

brine (20 mL). Column chromatography (Gradient: CH2Cl2 to 10% MeOH in CH2Cl2), 

afforded fluorescein-labeled nervonic acid as a yellow solid (15 mg, 0.02 mmol, 45%). 

Purity (>90%) was confirmed by HPLC-ELSD (Figure S5). Rf: 0.27 (CH2Cl2:MeOH; 10:1). 

MS-ESI: (m/z) found: 696.2 [M+H]+, expected: 695.42. 

4.4.4 Photolysis of 1 

A solution of 1 (100 μM) in PBS was irradiated (365 nm, 3-5 mW/cm2) for 5 min, 

followed immediately by acquisition of the UV-visible absorption spectra. The same 

sample was then re-irradiated and this cycle repeated for cumulative irradiation time 

points of 10, 20, 30 and 60 min. The products of the photolysis reaction were 

confirmed by HPLC-ELSD analysis. 

4.4.5 Interaction between micelles of 1 and POPC liposomes 

To four solutions of preformed POPC liposomes (10 μL, 10 mM in PBS) were 

independently added a) 90 µl PBS – to give a 1mM of unmodified POPC liposomes, 2 x 

b) 10 µL of micelles of 1 (1 mM) followed by 80 µL of PBS – to give get POPC 

liposomes modified with 1 (1:10 mol ratio; POPC: 1), c) 10 µL of nervonic acid solution 

(1 mM in EtOH). The solutions were pipette mixed and left for 15 min at room 

temperature. UV irradiation (365 nm, 3-5 mW/cm2) of 1 x b) sample was performed 

for 20 min. DLS and zeta potential measurements were taken immediately. 

4.4.6 Delivery micelles of 1 and NA-FA to cells 

For fluorescence imaging and cell viability assays, HeLa cells were seeded (1x105 

cells/cm2) in 48-well plates (500 μL, Greiner bio-one, Cellstar®) and cultured for a 

further 24 h. Prior to testing, culture medium was carefully removed and the cells 

washed once with PBS. Micelles of 1 containing 1% of NA-Fluo were prepared by film 

hydration with PBS and sonication as for non-fluorescent micelles of 1. Fluorescently 
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labeled micelles (500 µM total, 5 µM NA-Fluo, 500 µL) were added to HeLa cells and 

incubated for 20 min. The micelle solution was subsequently removed and cells 

washed with PBS (3x) and re-suspended in DMEM+FCS. Cells were imaged 

immediately under the fluorescent microscope using an Olympus IX81 fluorescence 

microscope equipped with a filter cube (Ex. 470/40; Em. 525/50). 

4.4.7 Lipid analysis of cell lysates with TLC  

For analysis of cellular lipids, HEK293 cells were seeded (8.57x105 cells/cm2) in 12 well 

plates and cultured for a further 24 h prior to the addition of 1 at a final concentration 

of 100 µM. Cells were irradiated (10 min, 365 nm, 15-17 mW/cm2) and incubated for 

a further 72 h. Cells were then scraped and washed twice in ice-cold PBS by 

centrifugation at 2500 g for 10 min at 4°C. 25-50% of the cell pellet was re-suspended 

in CHCl3:MeOH (1:2). To extract cellular lipids, pellets were briefly (bath) sonicated 

before centrifugation at 17000 g for 10 min at 4°C. The supernatant containing 

cellular lipids was resolved by TLC using a mobile phase of CHCl3:MeOH:H2O (65:25:4). 

In this solvent system, the phospholipids phosphatidylcholine, phosphatidylinositol 

and phosphatidylserine co-migrate as one spot (PL). Synthetic 24:1 PC, 22:1 PC and 

POPC were used as standards. TLC analysis was performed using Silica HPTLC plates 

(Millipore Cat no: 1.05644.001), developed by spraying with 10% CuSO4 (w/v) in 8% 

phosphoric acid (v/v) and charring at 95°C overnight on a hot plate. 

4.4.8 Cell viability assay 

HeLa cells were seeded in 96-well plates at a density of 104 cells per well and 

incubated overnight. Cells were washed once with PBS, then micelles of 1 (100 μL, 

varying concentrations in 1:1 PBS:DMEM+FCS), free DOX solutions (100 μL varying 

concentrations in 1:1 PBS:DMEM+FCS) or DMEM+FCS alone (100 μL) were added and 

the cells incubated for 12 h. Cells were then washed three times (DMEM+FCS), 

re-suspended in DMEM+FCS and incubated for a further 24 h. Cell media was 

removed and 200 μL Cell Proliferation Reagent; WST-1 (Sigma) added to each well. 

Cells were incubated (37oC) for a further 3 h, according to the supplier guidelines. To 

determine cell viability, absorbance at 450 nm was measured. All experiments were 

carried out in quadruplicate. 
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4.4.9 Lipidomics  

Lipidomic analysis of HEK293 lipid extracts was performed using a LC-MS/MS based 

lipid profiling method. A Shimadzu Nexera LC-30 (Shimadzu, ‘s Hertogenbosch, The 

Netherlands) was used to deliver a gradient of water/acetonitrile 80:20 v/v (eluent A) 

and water/acetonitrile/2-propanol 1:90:9 v/v (eluent B). Both eluents contained 5 

mM ammonium formate and 0.05% formic acid. The applied gradient, with a column 

flow of 300 µL/min, was as follows: 0 min 40% B, 10 min 100% B, 12 min 100% B. A 

Phenomenex Kinetex C18, 2.7 µm particles, 50 x 2.1 mm (Phenomenex, Utrecht, The 

Netherlands) was used as column. The injection volume was 10 µL. The MS was a 

Sciex TripleTOF 6600 (AB Sciex Netherlands B.V., Nieuwerkerk aan den Ijssel, The 

Netherlands) operated in positive (ESI+) and negative (ESI-) ESI mode, with the 

following conditions: Ion Source Gas 1, 2 and Curtain gas 30 psi, temperature 350˚C, 

acquisition range m/z 100-1200, IonSpray Voltage 5500 V (ESI+) and -4500 V (ESI-), 

declustering potential 80 V (ESI+) and -80 V (ESI-). An information dependent 

acquisition (IDA) method was used to identify lipids, with the following conditions for 

MS analysis: collision energy ±10, acquisition time 250 ms and for MS/MS analysis: 

collision energy ±45, collision energy spread 25, ion release delay 30, ion release 

width 14, acquisition time 40 ms. The IDA switching criteria where set as: for ions 

greater than m/z 300, which exceed 200 cps, exclude former target for 2 s, exclude 

isotopes within 1.5 Da, max. candidate ions 20. 

Before data analysis, raw MS data files where converted with the Reifycs Abf 

Converter (v1.1) to the Abf file. MS-DIAL (v2.74), with the FiehnO (VS27) database, 

was used to align the data and identify the different lipids. PC and PE lipids where 

manually curated to confirm their identity. Due to overlap of triglyceride (TG) species, 

MS-DIAL could not sufficiently identify lipid species, in turn a modified identification 

approach was applied. Initially, MS-DIAL was used to get the total number of carbons 

and double bonds of a TG. This information together with the MS/MS spectrum was 

used to search the glycerolipid MS/MS predicted database on LipidMaps. TG’s with all 

their neutral loss of lipid species fragments matched where assigned as correctly 

identified. 
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4.6 Appendix 

Figure S1. 1H-NMR of 1.  
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Figure S2. Maldi-TOF spectrum of mPEG2000 and 1. (The mass difference between mPEG2000 

and 1 is 630 g/mol which is the exact mass value of the extra part of nitrobenzyl-nervonic 

acid).  
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Figure S3. CMC determined by measuring light scattering intensity (raw count rate) as a 

function of concentration of 1 in PBS. 

 
Figure S4. DLS size measurement of micelles of 1 at varying concentrations in PBS. 
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Figure S5. Brightfield and fluorescence image of HeLa cells following incubation of 1 micelles 

(containing 1 mol% NA-Fluo). 

 

Figure S6. Analytical HPLC trace of purified NA-Fluo. HPLC conditions: Linear gradient of 

10-90% B over 20 minutes with an initial 5 min hold at 10% B. HPLC buffers: A: H2O (0.1% TFA); 

B: Acetonitrile (0.1% TFA). Detection at 254 nm. 
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Figure S7. Thin layer chromatography of lipids extracted from HEK293 cells following 

treatment with 1, In controls, PBS was added. PL: phospholipids (predominantly PC); PA: 

phosphatidic acid; NL: neutral lipids (predominantly cholesterol). The arrow indicates 

formation of slightly more hydrophobic phospholipids, i.e. species with incorporated vclFA.   

 

Figure S8. Cell viability following UV irradiation. 

 

 

 



 

  
 

 

 

 

 

 

Charge-Switchable Liposomes for Drug Delivery in Vitro and in 

Vivo 

Abstract: Surface charge significantly affects how nanoparticles distribute in vivo as well as 

how they are taken up by cells. Herein, we report liposomal drug carriers whose surface 

charge can be rapidly switched in situ and in vivo using light. Prior to light activation, liposomes 

are neutrally charged and freely circulate within the bloodstream of an embryonic zebrafish 

following systemic (i.v.) administration. Upon light activation however, the liposome surface 

charge is rapidly switched from neutral to positively charged leading to rapid cellular 

adsorption and uptake. Switching of surface charge does not disrupt the integrity of the carrier 

membrane and small molecule cargos remain entrapped within liposomes and are taken up by 

cells.   
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5.1 Introduction 

Nanoparticle-based approaches to target drugs to cancer cells have predominantly 

focused on long-circulating formulations designed to passively target tumors via the 

EPR effect. Doxil® and Myocet® are two liposomal-doxorubicin formulations clinically 

approved to treat a variety of human cancers in this way.[1] Doxil® is a PEGylated 

liposomal formulation (ePC:Cholesterol:DSPE-mPEG2000;55:40:5) whereas Myocet® 

(POPC:Cholesterol:55:45) is non-PEGylated.[2] Both formulations are 100-200nm in 

size and demonstrate extended circulation lifetimes (hours – days). The principle 

reason for this is reduced absorption of serum proteins (opsonisation) and avoidance 

of the MPS (i.e. recognition, uptake and clearance by plasma exposed macrophages, 

primarily in the liver and spleen). While Doxil® and Myocet® can efficiently 

accumulate within target tumors, their ability to evade cellular interactions en route 

to the tumor means they do not efficiently interact with target cancer cells. Drug 

delivery in these cases is achieved through passive diffusion of doxorubicin across the 

liposome membrane over time within the tumor.[3] It is often therefore challenging to 

reach therapeutically relevant drug concentrations within tumors. In addition, given 

the fact that drug release occurs extracellular, these technologies are limited to the 

delivery of drugs which themselves can cross target cancer cell membranes. These 

technologies cannot easily be extended to the delivery of larger and/or more 

hydrophilic, membrane impermeable therapies (e.g. proteins and oligonucleotides).    

In contrast, nanoparticles with a cationic surface charge are rapidly internalized by 

cells.[4] This is caused by non-specific adsorption to anionic cell membranes (and/or 

the polyanionic glycocalyx) followed by endocytosis.[5] In addition, it is thought that 

cationic nanoparticles can destabilize endosomal membranes facilitating endosomal 

escape and drug release to the cytosol of the cell.[6] For these reasons, cationic 

nanoparticles have been extensively used as vehicles to deliver oligonucleotides (DNA 

and RNA) to cells in vitro (e.g. transfection agents such as Lipofectamine®).[7] Here, 

they have the added advantage of efficiently condensing/complexing polyanionic 

genetic material. However the non-specific adsorption of cationic nanoparticles to 

cells, together with extensive adsorption of anionic serum proteins (opsonisation),[8] 

has hampered the translation of these technologies in vivo. Efforts to sterically shield 
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nanoparticle cationic surface charge using PEG have been investigated,[9] however 

unpublished work for our group has demonstrated this is an ineffectual method to 

prevent non-specific cellular interactions and therefore the rapid removal of 

nanoparticles from circulation (Figure S2). There are currently no cationic 

nanoparticle-based drug delivery systems approved for clinical use.  

Previous work from our group utilized the embryonic zebrafish as a convenient animal 

model to assess the biodistribution of nanoparticles in vivo, at high (cellular) 

resolution and across a whole living organism.[10] Here, it was found that the surface 

charge of liposomes significantly affects biodistribution. Notably, neutral liposomes 

based on the lipid composition of Myocet® were found to freely-circulate, whereas 

cationic liposomes, based on the lipid composition of EndoTAG-1[11] – a positively 

charged liposomal-paclitaxel formulation currently in phase 3 clinical trials – were 

found to ‘stick’ across the entire endothelium of the fish (Figure S3). For a brief 

description of the embryonic zebrafish and its current applications in biomedical 

research, please see the supporting information.  

Taking advantage of the contrasting biodistribution of differently charged liposomes 

in vivo, we here report an efficient strategy to convert freely circulating neutral 

liposomes to ‘sticky’ cationic liposomes in situ and in vivo using long-wave UV light as 

a trigger. We achieve this through the incorporation of neutrally charged, photocaged 

cholesterol analogues within liposome membranes. Upon light activation, photolysis 

of the photocage reveals a primary amine at the headgroup of cholesterol, which, 

protonated at physiological pH, results in a cationic liposome surface charge (Figure 

1). In contrast to existing light activated liposomal drug delivery systems (DDS), a key 

feature of this system is not only surface charge switching but that this 

transformation does not lead to disruption of the liposome membrane and 

extracellular drug release. This technology provides the basis for the light targeted 

delivery of membrane impermeable cargos to target cells in vivo. A handful of similar 

strategies have been reported for micelle, polymersome and mesoporous silica based 

nanoparticle systems.[12] All, however, rely on endogenous stimuli (both pH and 

enzymatic cleavage), with charge reversal occurring over the time frame of hours to 

days. These systems are therefore limited to applications where a) nanoparticles can 
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efficiently accumulate at the site of disease (e.g. tumor microenvironment) and b) 

there is an exploitable, pathological distinction between diseased and healthy tissue 

(e.g. low pH of tumor microenvironment). 

 

Figure 1. Schematic illustration of charge switchable liposome and its distribution in vivo 

before and after UV irradiation. The caged liposomes are freely circulating in the zebrafish 

prior to UV irradiation, while the cationic liposomes, triggered by UV light, stick to all 

endothelial cells and are endocytosed. 

5.2 Results and discussion 

To ensure sufficient cationic surface charge following photolysis of the o-nitrobenzyl 

photocage, a series of cationic lipids, based on cholesterol, were synthesized and 

tested. These lipids were co-formulated at 1:1 molar ratios with DOPC – to broadly 

match the lipid composition of Myocet®. As cholesterol is known to sit deeper within 
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phospholipid membranes – the hydroxyl headgroup being roughly in line with the 

phosphate group of adjacent phospholipids[13] – a series of spacers, between 

cholesterol and primary amine, were designed to establish the optimal exposure of 

the terminal primary amine. Spacers chosen were glycine (2), PEG-2 (i.e. 2 ethylene 

glycol units; 3) and PEG-4 (i.e. 4 ethylene glycol units; 4), see Scheme 1. 

 

Scheme 1. Structures of three cationic lipids with different spacers, DOPC and DOTAP. 
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From zeta potential measurements, it became clear that increasing the spacer length 

between cholesterol and terminal primary amine leads to a greater surface cationic 

charge (Figure 2a). In the case of DOPC:4 liposomes, a similar cationic surface charge 

was measured as compared to cationic liposomes formulated using the commercially 

available cationic lipid, DOTAP.[14] As expected decreasing the mol% of these cationic 

lipids within the liposome formulation resulted in reduced overall cationic surface 

charge (Figure 2a). 

Next, the biodistribution of liposomes containing each of these three cholesterol 

amine lipids mixed with DOPC (1:1 molar ratio) was assessed following intravenous 

(i.v.) injection in embryonic zebrafish. In all three cases, liposomes showed the 

expected non-specific adsorption across the entire endothelium of the embryonic fish 

(Figure 2b). From these experiments, it was decided that the cholesterol amine spacer 

with the longest (PEG4) spacer would be taken forward, photocaged and assessed as a 

light activated drug delivery platform.  
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Figure 2. (a) Zeta potential of liposomes composed of mixtures of DOPC and cationic lipid: 2, 3 

or 4. (b) Biodistribution of cationic liposomes containing 50 mol% of 2, 3 or 4 injected (i.v.) in 

kdrl:GFP zebrafish embryos (2 days post fertilization, dpf). Embryos stably expressing GFP in all 

endothelial cells. Images acquired 1 hour post-injection (hpi). Whole embryo images (10x 

magnification): liposomes (white); Boxed images (40x magnification): left – blood vessels 

(green), liposomes (red); right: liposomes (white).  

The synthesis and characterisation of photocaged, cholesterol amine (1) is described 

in the Supporting Information. A o-nitrobenzyl protection group was selected as a 

photocage for the amine given its ease of synthesis.[15] Furthermore, it is well 
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characterized, neutral charged and has rapid photolysis kinetics, and can therefore be 

used in numerous biological scenarios. Upon UV light irradiation (365 nm, 15-17 

mW/cm2) of 1 in H2O:MeCN:tBuOH (1:1:1), complete photolysis of the o-Nb 

functionality was achieved within 2 min (see Figure 3a and 3b). The appearance of 

three clear isosbestic points (295 nm and 365 nm) shows clean photoconversion of 1 

to its photoproducts. To confirm that photolysis resulted in the generation of 4 with 

concomitant switching of liposome surface charge, zeta potential measurements of 

DOPC:1 (1:1 mol ratio) liposomes were taken during photolysis (Figure 3c). This 

revealed a rapid switching of surface charge, from slightly anionic (-10 mV) to strongly 

cationic (+25 mV), within 2 min irradiation time. As expected, irradiation of control 

liposomes (100% DOPC) had no effect on surface charge. We are not currently able to 

explain the differences in zeta potential between DOPC:4 liposomes formed following 

complete photolysis of 1 at the liposome surface (+25 mV) and those formulated 

directly as DOPC:4 (+45 mV) liposomes. Importantly, light triggered charge switching 

of the liposome surface did not lead to apparent destabilization of the liposome 

membrane[16] with liposome size and population polydispersity remaining constant 

before and after UV irradiation (Figure 3d). Caged, neutral liposomes (DOPC:1; 1:1) 

were stable for at least 2 days at 37 oC in biologically relevant solutions (buffer + 

serum) while kept in the dark, as the size of liposomes and corresponding 

polydispersity (PDI) barely changed over the time (Figure S9).   
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Figure 3. (a) Time evolution of the UV-VIS spectrum of 1 (100 µM; H2O:MeCN:tBuOH (1:1:1)) 

during UV irradiation (365 nm, 15-17 mW/cm2), time points in seconds; (b) Time evolution of 

the UV absorbance at 270 nm; (c) The zeta potential of caged liposomes (DOPC/1 1:1) and 

DOPC liposomes with prolonged UV irradiation time; (d) The size distributions of caged 

liposomes (DOPC/1 1:1) before and after UV. 

To investigate the biodistribution of DOPC:1 liposomes (containing 1 mol% 

fluorescent probe) before and after light activation, liposomes were injected (i.v.) into 

embryonic zebrafish (approximately 2 dpf) and whole embryo images taken using a 

confocal fluorescent microscope (Figure 4). Prior to light activation, liposomes were 

freely circulating – as evidenced by the homogenous distribution of liposome 

associated fluorescence across the whole embryo – and largely restricted to the 

vasculature of the fish. No significant liposome interactions with either endothelial 

and/or plasma-exposed macrophages were observed. Following UV irradiation (365 

nm, 15-17 mW/cm2, 20 min) of the fish, liposomes – within the same embryo – are 

now clearly seen adsorbed to endothelial cells and across the entire vasculature of 

the fish. Photocaged liposomes in controls where animals were not exposed to light, 



Chapter 5 

136 
 

and imaged at the same time points, remained freely circulating (data not shown). 

From this, we concluded that a) liposomes prior to light activation are freely 

circulating, b) efficient photolysis of lipid 1 can be achieved in situ and in vivo and c) 

charge switching of liposome surface charge lead to the rapid adsorption of liposomes 

to endothelial cells of the fish vasculature. 

 

Figure 4. Biodistribution of caged liposomes (DOPC/1 1:1, containing 0.1% mol membrane dye; 

1mM total lipids) in zebrafish embryos (2 dpf) before (a) and after (b) UV irradiation (365 nm, 

15-17 mW/cm2, 20 min). Images acquired 2 hpi, liposome-associated fluorescence in red. 

Injection (i.v.) volume: 1-2 nL.  

For optimal application as a potential drug delivery system, we next investigated 

whether encapsulated contents remained entrapped within liposomes before, during 

and after UV irradiation. For this, we encapsulated a self-quenching concentration (10 

mM) of the fluorescent dye sulforhodamine B (SR-B),[17] and monitored the release 

(and associated fluorescence de-quenching) before and after UV irradiation (Figure 

5a). From this data, it is clear that the dye remains encapsulated upon charge 

switching of the liposome membrane. Likewise, UV irradiation of control DOPC 

liposomes with encapsulated SR-B, which are insensitive to light activation, showed 
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also no dye release as expected. This confirmed that UV light does not itself physically 

compromise the integrity of liposome membranes. Transmission electron microscopy 

(TEM) imaging of SR-B encapsulated within DOPC:1 liposomes confirmed the presence 

of electron-rich (i.e. high contrast) SR-B within the core of the liposome before and 

after UV irradiation (Figure 5b and 5c). Importantly, these images also show the 

preservation of liposome morphology following charge switching of the liposome 

membrane.   

  

Figure 5. (a) Content leakage test on caged liposomes (DOPC/1 1:1) and DOPC liposomes 

containing sulforhodamine B (10 mM) with UV irradiation (365 nm, 15-17 mW/cm2). Arrow 

indicates the point at which samples were UV irradiated for 20 min. The observed minor drop 

in fluorescence can be attributed to UV irradiation induced photo bleaching. TEM images of 

caged liposomes containing SR-B (10 mM) prior to (b) and after (c) UV irradiation (365 nm, 

15-17 mW/cm2, 20 min). 
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Having established the successful light activated switching of liposome surface charge 

and drug encapsulation, we next investigated the potential for light triggered drug 

delivery to cells in vitro. Again using encapsulated self-quenching concentrations of 

SR-B, DOPC:1 liposomes were incubated with HeLa cells and imaged before and after 

10 min UV irradiation (Figure 6). Prior to light activation, no delivery of SR-B to cells 

was observed, however following UV activation, increasing concentration of SR-B in 

the cells could be seen over time. The release of SR-B into the cell cytosol (and 

consequent de-quenching of fluorescence) requires active uptake of liposomes and 

subsequent endosomal escape. This accounts for the time delay between, presumably 

near instantaneous, liposome-cell membrane interactions following light activation 

and the visualization of released dye within the cell. These experiments confirm that 

liposomes are efficiently taken up by cells following light activation and surface 

charge switching, and that this leads to the successful intracellular delivery of 

membrane impermeable cargos to the cytosol of cells. 

 

Figure 6. Fluorescent images of the cellular uptake of caged liposomes containing SR-B (10 

mM), at 3 and 6 h post incubation, following (a,c) and without (b,d) UV irradiation. The scale 

bar represents 200 µm. 
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Finally, we assessed light triggered drug delivery via charge switching of liposome 

membranes in vivo. For this, we encapsulated propidium iodide (PI, 15 mM), a cell 

impermeable nuclear stain, within fluorescent (DOPE-Atto633, 0.5 mol%) photocaged 

liposomes composed of DOPC:1 (1:1 molar ratio). These liposomes were injected into 

a 2 dpf zebrafish embryo and imaged before and after irradiation in situ (365 nm, 

15-17 mW/cm2, 20 min). Without UV irradiation, caged liposomes freely circulated 

within the blood vessels of the embryonic fish (Figure 7a, blue). Following irradiation 

however, immobile liposomes can now be clearly seen absorbed across the entire 

vascular endothelium of the fish, appearing as distinct fluorescent punctae (Figure 7b, 

blue). Crucially, delivery of encapsulated PI, primarily to endothelial cells, is 

significantly enhanced following light activation and photoswitching of liposome 

surface charge (Figure 7, red). Endothelial cells are long and thin and PI associated 

fluorescence therefore appears to delineate the blood vessel lining. The larger and 

brighter fluorescent cells containing PI are plasma-exposed macrophages. Low level 

uptake of caged liposomes by these cells is observed in the absence of light activation 

(Figure 7a, white arrows). This data confirms that liposomes not only adsorb to cells 

following light activation but are taken up and are able to release the encapsulated 

cargos over time. This paves the way for light directed delivery of membrane 

impermeable therapeutic cargos in vivo.  
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Figure 7. The distribution and cellular uptake of caged liposomes (DOPC/1 1:1 + 0.1% mol 

DOPE-ATTO633; 4 mM total lipids) containing 15 mM encapsulated PI in kdrl:GFP zebrafish 

embryos (2dpf) - before (a) and after (b) UV irradiation (365 nm, 15-17 mW/cm2, 10 min). 

Injection volume: 1-2 nL. Images acquired 2 hpi. Blood vessels (green), liposomes (blue), PI 

(red).  
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5.3  Conclusions  

In this work, we demonstrated successful switching of liposome surface charge in situ 

and in vivo using light as a trigger for activation. Prior to light activation, photocaged 

liposomes showed no interaction with cells in vitro and in vivo (following i.v. injection 

in embryonic zebrafish) and were freely circulating. Upon the light activation, the 

liposome surface charge switched rapidly to become cationic and as a result the 

liposomes adhered to, and were taken up by endothelial cells across the entire 

vasculature of the embryonic fish. Importantly, the encapsulated content was 

retained within the liposome before and after light activation. In this way, we were 

able to successfully demonstrate light targeted drug delivery of membrane 

impermeable cargos to cells in vivo. Compared to existing technologies, this approach 

offers complete (user defined) spatiotemporal control over drug delivery in vivo as 

well as the potential to deliver non-drug like and membrane impermeable therapies 

(e.g. proteins and oligonucleotides). It is important to note that light is used currently 

used in clinical application (e.g. during photodynamic therapy) and the maximal 

tolerable light dose (MTD) in humans is 1500–3700 J.[18] In our experiments, 

embryonic zebrafish are subjected to a light dose of 4.85 J/cm2 (145.5 mJ for the 

whole fish), several orders of magnitude below the MTD limit. In any event, the 

potential phototoxicity could be alleviated by using 2-photon excitation sources to 

obtain better tissue penetration with less harm to normal tissues.[19] 
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5.4 Experimental 

5.4.1  Materials and Instruments 

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-3-trimethylammonium 

-propane (chloride salt) (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

-N-(lissamine rhodamine B sulfonyl) (ammonium salt) (DOPE-LR) were purchased 

from Avanti Polar Lipids. 1,2-dioleyl-sn-glycero-3-phosphoethanolamine-ATTO633 dye 

(DOPE-ATTO633) was purchased from ATTO-TEC GmbH. Cholesterol and all other 

chemical reagents were purchased at the highest grade available from Sigma Aldrich 

and used without further purification. All solvents were purchased from Biosolve Ltd. 

HEPES buffer: 10 mM HEPES, NaOH, pH 7.4. Phosphate buffered saline (PBS): 5 mM 

KH2PO4, 15 mM K2HPO4, 150 mM NaCl, pH 7.4. Sulforhodamine B solution (10 mM, 

pH=7.4) and propidium iodide (15 mM, pH=7.4) were prepared in PBS buffer. Silica gel 

column chromatography was performed using silica gel grade 40-63 μm (Merck). TLC 

analysis was performed using aluminium-backed silica gel TLC plates (60F 254, Merck), 

visualisation by UV absorption at 254 nm and/or staining with KMnO4 solution. NMR 

spectra (1H) were measured on a Bruker AV-400MHz spectrometer. Chemical shifts 

are recorded in ppm. Tetramethylsilane (TMS) is used as an internal standard. 

Coupling constants are given in Hz. Size exclusion chromatography was carried out 

using illustraTM NAPTM SephadexTM G-25 DNA grade pre-made columns (GE 

Healthcare) and used according to the user instructions. 

Particle size distributions were obtained using a Malvern Zetasizer Nano ZS equipped 

with a peltier controlled thermostatic holder. The laser wavelength was 633 nm and 

the scattering angle was 173o. To obtain an estimation of the hydrodynamic radius, 

Dh, the Stokes-Einstein relation was used: 

 

where, kB is the Boltzmann constant and η is the viscosity of the solvent. DLS 

measurements were carried out at room temperature. 
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UV irradiation was performed using a high-power LED (365 nm, 15-17 mW/cm2, 

Roithner Laser Technik GmbH, Vienna, Austria) mounted at a fixed distance of 1 cm 

above the samples. 

Fluorescence measurements for content leakage of liposomes were performed on a 

TECAN Plate Reader Infinite M1000. All experiments were carried out in 96-well plates 

(PP Microplate, 96 well, solid F-bottom (flat), chimney well). For every well the final 

volume was 200 μL. Fluorescent measurements were recorded at 25 oC.  

The structure of the liposomes containing sulforhodamine B (SR-B) was characterized 

using transmission electron microscopy (TEM) operated at 70 kV (JEOL 1010, USA). a 

droplet of the sample was placed on a copper grid coated with a carbon film for 3 

minutes and washed 3 times with water. Next the sample was stained with 0.5% 

uranyl acetate. 

Zeta potentials were measured on a Zetasizer Nano ZS (Malvern) equipped with a 

dip-cell electrode. All samples (in 10 mM HEPES) were measured three times and at 

room temperature. 

Size exclusion chromatography (SEC) was carried out using illustraTM NAPTM 

SephadexTM G-25 DNA grade pre-made columns (GE Healthcare) and used according 

to the user instructions. 

HeLa cells were cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM), 

supplemented with 10% fetal calf serum (iron supplied), 2% L-glutamine, 1% penicillin 

and 1% streptomycin. Cells were cultured in an atmosphere of 5% CO2 at 37°C. 

Medium was refreshed every two days and cells passaged at 70% confluence by 

treatment with trypsin-EDTA (0.05% trypsin). 

Fluorescence microscopy imaging of cells was done using an Olympus IX81 

fluorescence microscope equipped with a filter cube (wavelength settings for SR-B 

Ex/Em: 565/586 nm). 

Fluorescent images of zebrafish were acquired on Leica TCS SP8 confocal laser 

scanning microscope. Leica application suite advanced fluorescence software (LAS AF, 

Leica Microsystems B.V., Rijswijk, The Netherlands) and ImageJ (developed by the 
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National Institutes of Health) were used for image analysis and liposome 

colocalization studies. Wavelength settings for GFP Ex/Em: 485/530 nm (Ex laser: 488 

nm), for propidium iodide Ex/Em: 535/617 nm (Ex laser: 543 nm), for NBD Ex/Em: 

455/530 nm (Ex laser: 488 nm) and for ATTO 633 Ex/Em: 635/653 nm (Ex laser: 635 

nm). 

5.4.2  Synthesis of 1 

Photo-active lipid 1 was synthesized according to the following scheme. 

 

Scheme 1. Synthesis scheme of photo-active lipid 1. 

Synthesis of 5 

Cholesterol (194 mg, 502 µmol, 1.00 eq.), 14-azido-3,6,9,12-tetraoxatetradecanoic 

acid (139 mg, 502 µmol, 1.00 eq.) and a catalytic amount of DMAP (6 mg, 50 µmol, 

0.10 eq.) were dissolved in dry DCM (5 mL). A solution of EDC•HCl (192 mg, 

1.00 mmol, 2.00 eq.) and DIPEA (0.13 mL, 753 µmol, 1.50 eq.) in dry DCM (5 mL) was 

added to the reaction mixture at 0 °C. The solution was stirred for 20 h at room 

temperature. DCM (40 mL) was added and the solution was washed with 1 M 

aqueous hydrochloric acid (2 x 50 mL) and a saturated aqueous sodium chloride 

solution (50 mL). The organic phase was dried over magnesium sulfate and the 

solvent was removed under reduced pressure. The crude product was purified by 

flash-column chromatography (petroleum ether (40 – 60 °C)/ethyl acetate 

1:0 to 4:1 to 3:1 to 2:1) to obtain 5 (127 mg, 197 µmol, 39%) as a white solid. Rf = 0.37 

(Pet. Ether: EtOAc; 1:1). 1H-NMR (400 MHz, CDCl3): δ (ppm) = 5.37 (s, 1H, C=CH), 

4.80 – 4.60 (m, 1H, OCHchol), 4.12 (s, 2H, CH2COO), 3.78 – 3.60 (m, 14H, OCH2CH2O), 
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3.39 (d, J = 2.2 Hz, 2H, CH2N3), 2.33 (d, J = 7.4 Hz, 2H, CH2C=CH), 2.07 – 0.80 (m, 38H, 

Hchol), 0.67 (s, 3H, CH3CCH). HR-MS (ESI+): calc. (C37H63N3O6Na): m/z = 668.46091, 

found: m/z = 668.46063. 

Synthesis of 4 

5 (105 mg, 163 µmol, 1.00 eq.) was dissolved in dry THF (8 mL) and a solution of 1 M 

trimethylphosphine in toluene (0.49 mL, 489 µmol, 3.00 eq.) was added dropwise at 

0 °C. The solution was warmed to room temperature and stirred for 3.5 h. A 1 M 

aqueous sodium hydroxide solution (25 mL) was added and the mixture was stirred 

for 1 h at room temperature. The solution was extracted with DCM (3 x 30 mL), the 

organic phase was washed with a saturated aqueous sodium chloride solution (30 mL) 

and dried over magnesium sulfate. The solvent was removed under reduced pressure. 

The crude product was purified by flash-column chromatography (DCM/MeOH 

1:0 to 99:1 to 97:3 to 95:5 to 9:1, the eluent contained 1% of a 33% aqueous 

ammonia solution) to obtain 4 (37.4 mg, 60.2 µmol, 37%) as a white solid. Rf = 0.21 

(CH2Cl2:MeOH:aq. NH3 (33%); 9:1:0.1). 1H-NMR (400 MHz, CDCl3): δ (ppm) = 5.36 (d, 

J = 3.9 Hz, 1H, C=CH), 4.75 – 4.60 (m, 1H, OCHchol), 4.10 (s, 2H, CH2COO), 3.77 – 3.56 

(m, 14H, OCH2CH2O), 3.50 (t, J = 5.2 Hz, 1H, CH2CH2NH2), 2.85 (t, J = 5.2 Hz, 1H, 

CH2CH2NH2), 2.31 (d, J = 7.8 Hz, 2H, CH2C=CH), 2.07 – 0.83(m, 38H, Hchol), 0.65 (s, 3H, 

CH3CCH). HR-MS (ESI+): calc. (C37H66NO6): m/z = 620.48847, found: m/z = 620.48854. 

Synthesis of 1 

The chloride salt of 4 (39.5 mg, 60.2 µmol, 1.00 eq.) and DIPEA (16 µL, 90.3 µmol, 

1.50 eq.) were dissolved in DCM (3 mL). A solution of 4,5-Dimethoxy-2-nitrobenzyl 

chloroformate (33.2 mg, 120 µmol, 2.00 eq.) in DCM (3 mL) was added at 0 °C and the 

solution was stirred for 18 h at room temperature. DCM (10 mL) was added and the 

solution was washed with a 1 M aqueous hydrochloric acid solution (10 mL) and a 

saturated aqueous sodium chloride solution (10 mL). The organic phase was dried 

over magnesium sulfate and the solvent was removed under reduced pressure. The 

crude product was purified by flash-column chromatography (petroleum ether 

(40 – 60 °C)/ethyl acetate 1:0 to 3:1 to 1:1 to 1:3 to 0:1) to obtain 1 (10.6 mg, 

12.3 µmol, 21%) as a colorless solid. Rf = 0.18 (Pet. Ether: EtOAc; 1:1). 1H-NMR 
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(300 MHz, CDCl3): δ (ppm) = 7.72 (s, 1H, HAr), 7.07 (s, 1H, HAr), 5.70 – 5.58 (m, 1H, NH), 

5.52 (s, 2H, CH2, NVOC), 5.43 – 5.26 (m, 1H, C=CH), 4.79 – 4.59 (m, 1H, OCHchol), 4.11 (s, 

2H, CH2COO), 3.99 (s, 3H, OMe), 3.95 (s, 3H, OMe), 3.77 – 3.65 (m, 4H, OCH2CH2O), 

3.60 (t, J = 4.9 Hz, 2H, NHCH2CH2), 3.44 (dt, J = 5.2, 4.8 Hz, 2H, NHCH2), 2.32 (d, 

J = 7.3 Hz, 2H, CH2C=CH), 2.09 – 0.83 (m, 38H, Hchol), 0.67 (s, 3H, CH3CCH). HR-MS 

(ESI+): calc. (C47H74N2O12Na): m/z = 881.51340, found: m/z = 881.51353. 

5.4.3  Synthesis of 2 

Cationic lipid 2 was synthesized according to the following scheme. 

 

Scheme S2. Synthesis scheme of cationic lipid 2. 

Synthesis of 6 

Cholesterol (500 mg, 1.29 mmol, 1.00 eq.), Fmoc-Gly-OH (577 mg, 1.94 mmol, 

1.50 eq.) and EDC·HCl (744 mg, 3.88 mmol, 3.00 eq.) were dissolved in dry DCM 

(25 mL). A catalytic amount of DMAP (16 mg, 129 µmol, 0.10 eq.) was added and the 

reaction mixture was stirred 24 h at room temperature. DCM (25 mL) was added and 

the solution was washed with a 1 M aqueous hydrochloric acid solution (2 x 50 mL), 

distilled water (50 mL) and a saturated aqueous sodium chloride solution (50 mL). The 

organic phase was dried over sodium sulfate and the solvent was removed under 

reduced pressure. The crude was purified by flash-column chromatography to obtain 

6 (604 mg, 0.91 mmol, 70%) as a colorless solid. Rf = 0.34 (Pet. Ether(40 – 60 °C): 

EtOAc; 4:1). 1H-NMR (400 MHz, CDCl3): δ (ppm) = 7.77 (d, J = 7.5 Hz, 2H, HAr), 7.61 (d, 

J = 7.5 Hz, 2H, HAr), 7.40 (t, J = 7.5 Hz, 2H, HAr), 7.32 (td, J = 7.5, 1.0 Hz, 2H, HAr), 5.38 

(d, J = 4.0 Hz, 1H, C=CH), 5.29 (t, J = 5.4 Hz, 1H, NH), 4.77 – 4.63 (m, 1H, OCHchol), 4.40 

(d, J = 7.1 Hz, 2H, CH2, Fmoc), 4.24 (t, J = 7.1 Hz, 1H, CHFmoc), 3.98 (d, J = 5.4 Hz, 2H, 

CH2NH), 2.34 (d, J = 7.8 Hz, 2H, CH2C=CH), 2.09 – 1.04 (m, 26H, Hchol), 1.02 (s, 3H, 

CH3CC=CH), 0.91 (d, J = 6.5 Hz, 3H, CH3CHCH), 0.87 (d, J = 1.8 Hz, 3H, CH3CHCH3), 0.86 

(d, J = 1.8 Hz, 3H, CH3CHCH3), 0.68 (s, 3H, CH3CCH). 
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Synthesis of 2 

6 (201 mg, 302 µmol) was dissolved in DCM/DEA (1:1, 4 mL) and stirred for 3 h at 

room temperature. The solvent was removed under reduced pressure and DEA 

residues were co-evaporated with methanol (3 x 10 mL). The crude was dissolved in 

DCM and purified by flash-column chromatography (DCM/MeOH 1:0 to 99:1 to 95:5) 

to obtain 2 (87.4 mg, 197 µmol, 65%) as a pale yellow solid. Rf = 0.34 

(CH2Cl2:MeOH; 9:1). 1H-NMR (400 MHz, CDCl3): δ (ppm) = 5.38 (d, J = 3.7 Hz, 1H, 

C=CH), 4.73 – 4.60 (m, 2H, NH2), 3.41 (s, 2H, CH2NH2), 2.32 (d, J = 7.9 Hz, 2H, 

CH2C=CH), 2.06 – 1.04 (m, 26H, Hchol), 1.01 (s, 3H, CH3CC=CH), 0.91 (d, J = 6.3 Hz, 3H, 

CH3CHCH), 0.87 (s, 3H, CH3CHCH3), 0.85 (s, 3H, CH3CHCH3), 0.67 (s, 3H, CH3CCH). 

5.4.4 Synthesis of 3 

Cationic lipid 3 was synthesized according to the following scheme. 

 
Scheme S3. Synthesis scheme of cationic lipid 3. 

Synthesis of 7 

Cholesterol (100 mg, 259 µmol, 1.00 eq.), 2-(2-(Fmoc-amino)ethoxy)ethoxy]acetic 

acid (100 mg, 259 µmol, 1.00 eq.) and cat. amounts of DMAP (6.00 mg, 49.1 µmol, 

0.20 eq.) were dissolved in dry DCM (2 mL). A solution of EDC·HCl (99.2 mg, 517 µmol, 

2.00 eq.) and DIPEA (0.07 mL, 389 µmol, 1.50 eq.) in dry DCM (4 mL) was added 

dropwise to the reaction mixture at 0 °C. The solution was allowed to warm up to 

room temperature and stirred for 18 h. The reaction mixture was diluted with DCM 

(20 mL), washed with 1 M aq. hydrochloric acid (2 x 30 mL), water (30 mL) and brine 

(30 mL). The organic phase was dried over magnesium sulfate and the solvent was 

removed under reduced pressure. The crude was purified by flash-column 

chromatography (petroleum ether (40 – 60 °C)/ethyl acetate 1:0 to 4:1 to 2:1 to 1:1) 

to obtain 7 (125 mg, 166 µmol, 64%) as colorless solid. Rf = 0.21 (CH2Cl2: MeOH; 17:3). 

1H-NMR (400 MHz, CDCl3): δ (ppm) = 7.76 (d, J = 7.5 Hz, 2H, HAr), 7.62 (d, J = 7.4 Hz, 
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2H, HAr), 7.39 (t, J = 7.5 Hz, 2H, HAr), 7.31 (td, J = 7.4, 0.9 Hz, 2H, HAr), 5.52 (t, J = 5.2 Hz, 

1H, NH), 5.32 (d, J = 4.2 Hz, 1H, C=CH), 4.77 – 4.66 (m, 1H, OCHchol), 4.37 (d, J = 7.2 Hz, 

2H, CH2, Fmoc), 4.22 (t, J = 7.2 Hz, 1H, CHFmoc), 4.11 (s, 2H, CH2COO), 3.78 – 3.64 (m, 4H, 

OCH2CH2O), 3.60 (t, J = 5.1 Hz, 2H, NHCH2CH2), 3.43 (q, J = 5.1 Hz, 2H, NHCH2), 2.32 (d, 

J = 7.9 Hz, 2H, CH2C=CH), 2.10 – 1.00 (m, 26H, Hchol), 0.98 (s, 3H, CH3CC=CH), 0.91 (d, 

J = 6.5 Hz, 3H, CH3CHCH), 0.88 (d, J = 1.9 Hz, 3H, CH3CHCH3), 0.86 (d, J = 1.8 Hz, 3H, 

CH3CHCH3), 0.66 (s, 3H, CH3CCH). 

Synthesis of 3 

7 (104 mg, 138 µmol) was dissolved in DCM/DEA (1:1, 4 mL) and stirred for 3 h at 

room temperature. The solvent was removed under reduced pressure and DEA 

residues were co-evaporated with methanol (3 x 30 mL). The crude was dissolved in 

DCM and purified by flash-column chromatography (DCM/MeOH 1:0 to 9:1 to 17:3) to 

obtain 3 (28.4 mg, 53.4 µmol, 39%) as a pale yellow solid. Rf = 0.21 (CH2Cl2:MeOH; 

17:3). 1H-NMR (400 MHz, CDCl3): δ (ppm) = 6.86 (sbr, 2H, NH2), 5.37 (s, 1H, C=CH), 

4.77 – 4.53 (m, 1H, OCHchol), 4.12 (s, 2H, CH2COO), 3.85 (s, 2H, NH2CH2CH2), 3.72 (s, 

4H, OCH2CH2O), 3.26 (s, 2H, NH2CH2), 2.31 (d, J = 7.6 Hz, 2H, CH2C=CH), 2.10 – 1.03 (m, 

26H, Hchol), 1.00 (s, 3H, CH3CC=CH), 0.90 (d, J = 6.0 Hz, 3H, CH3CHCH), 0.86 (s, 3H, 

CH3CHCH3), 0.84 (s, 3H, CH3CHCH3), 0.66 (s, 3H, CH3CCH). 

5.4.5 Photolysis of 1 

The photolysis process of compound 1 was monitored by UV-VIS spectroscopy. A 

solution of 1 (100 µM) in acetonitrile:tert-Butanol:water (1:1:1) was irradiated under 

a LED UV lamp (365 nm, 17 mW) at a fixed distance of 1 cm for 30 seconds and a UV 

spectrum scan was taken. UV absorption spectra were measured using a Cary 3 Bio 

UV-vis spectrometer, scanning from 200 nm to 550 nm at 1 nm intervals, scan rate: 

120 nm/min. Next, the sample was irradiated for different time periods (60, 90, 120, 

150, 180, 270 and 360 seconds) and spectra were measured.  

5.4.6  Liposome preparation 

Liposomes were prepared via extrusion using a mini-extruder (Mini-extruder, Avanti 

Polar Lipids, Alabaster, US). Lipid stock solutions in chloroform were prepared firstly 

with a total lipid concentration of 10 mM. For each sample, the relevant lipid film 
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including membrane dye (DOPE-ATTO633) was formed by evaporating organic 

solvents under N2, and hydrated for 20 min using HEPES buffer. The hydrated lipid 

film was vortexed for at least 1 min to obtain a suspension ([lipid]=10 mM with 0.5 

mol% of DOPE-ATTO633). The solution was extruded 11 times through a 400 nm pore 

membrane to form multilayer vesicles (MLVs) at room temperature. Next the MLVs 

suspension was sequentially extruded 11 times through a 100 nm pore membrane to 

generate liposomes. The size distribution and PDI of prepared liposomes was 

determined by dynamic light scatter (DLS) spectroscopy. 

For liposomes containing sulforhodamine B (SR-B) or propidium iodide (PI), the same 

method was applied, except the hydration buffer was HEPES containing 

sulforhodamine B (10 mM)/propidium iodide (15 mM). A sephadex G25 size exclusion 

column was used to remove unencapsulated dye. 

5.4.7 Content leakage assay 

For content leakage assays, the fluorescence emission of SR-B (10 mM, excitation: 520 

nm, emission: 580 nm) encapsulated liposomes ([lipid]=10 mM) was measured prior 

to UV irradiation for 10 min. The sample was measured again after 20 min of UV 

irradiation.  

5.4.8 In vitro cellular uptake 

For the cellular uptake experiments, cells (2x105 mL-1) were transferred to 48-well cell 

culture plates (500 µL, Greiner bio-one, Cellstar®) and cultured for 24 h. Cage or 

activated liposomes (500 µL, [lipid]=10 mM) solution were added to the cells and 

incubated for 3 or 6 h. Before imaging, the excess of liposomes was removed and the 

cells were washed three times with DMEM medium. 

5.4.9 Zebrafish injection 

Zebrafish (strain AB/TL, line Tg(kdrl:egfp)s843)[20] were handled according to the 

guidelines from the Zebrafish Model Organism Database, the directives of the local 

animal welfare committee of Leiden University and the common Directive 

2010/63/EU of the European Parliament and the Council. Fertilization was performed 

by natural spawning at the beginning of the light period and eggs were raised at 28.5 
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oC in egg water (60 µg/ml Instant Ocean see salts). Liposome solutions were injected 

into zebrafish embryos (2 dpf) according to a modified microangraphy protocol. The 

embryos were anesthetized in 0.01% tricaine and embedded in agarose gel (0.4%) 

containing tricaine. 1 nL volumes were calibrated and injected into the sinus 

venosus/duct of Cuvier. A small pyramidal space, in which the liposome solutions 

([lipid]=4 mM) were injected, was created by penetrating the skin with the glassy 

injection needle and gently pulling it back. The experimental zebrafish was irradiated 

directly under a UV source (365 nm, 15-17 mW/cm2, 10 min) at a distance of 3 cm and 

imaged again. Embryos were excluded from the experiments in case there was no 

backward translocation of venous erythrocytes or when the yolk ball was damaged, 

which would reduce the amount of liposomes in circulation.  

5.4.10 Light actinometry 

The optical power density of the LED light source used was determined using an 

integrating sphere setup. For this, the 365-nm LED (H2A1-365, Roithner Lasertechnik, 

Vienna, Austria), driven by a custom-built LED driver (I = 350 mA), was positioned 

precisely 5 cm above the 6.0 mm aperture of an integrating sphere 

(AvaSphere-30-IRRAD, Avantes, Apeldoorn, The Netherlands). This sphere was 

connected by an optical fibre (FC-UV600-2, Avantes) to a UV-Vis spectrometer 

(AvaSpec-ULS2048L StarLine CCD spectrometer, Avantes). The setup was calibrated 

using a NIST-traceable calibration light source (Avalight-HAL-CAL-ISP30, Avantes). The 

LED was switched on, and allowed to warm up for 1 min, before a spectrum was 

recorded. The obtained spectrum was integrated to obtain the total incident optical 

power density (in mW/cm2). Light dosages (in J) per zebrafish were obtained by 

multiplying the optical power density by the average surface area of a zebrafish (0.03 

cm2), and the irradiation time (600 s). 
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5.6 Supporting information 

5.6.1 Zebrafish embryo, a Developmental Model Organism 

Zebrafish are vertebrates which have been widely used in the scientific study of embryo 

development and gene function.[1] Zebrafish embryos develop rapidly outside of the mother 

with all major organs, such as heart, brain and intestine, functionally developed by 36 hours 

post fertilization (hpf). By 36 hpf, zebrafish embryos have a closed circulatory system whose 

vasculature develops in anatomical form (Figure S1). 

 

Figure S1 The caudal vascular system of zebrafish in the larval stage. The dorsal longitudinal 

anastomotic vessel (DLAV), the intersegmental vessels (ISVs), the extravascular tissue, the 

dorsal aorta, the caudal hematopoietic tissue (CHT) and the caudal vein are indicated. 

There are various advantages of using zebrafish as a model organism system in scientific 

research. 1) The genome of zebrafish has fully sequenced and 70% homologous to humans. In 

the case of genes encoding disease-causing human proteins, this number increases to 82%. 

There have been numerous models of human diseases established in zebrafish.[2] 2) Zebrafish 

are highly fecund, produce large clutches (100-200 embryos) and embryonic development is 

rapid and external of the mother. Testing can be carried out on large sample sets of animals 

and the cost of raising and maintaining zebrafish is much lower than that of mammals. 3) 

Zebrafish embryos are small and transparent allowing the in vivo observation of internal 

development and function, over the entire organism, using simple microscopy setups. The 

utility of zebrafish has been significantly enhanced by the generation of tissue-specific 

fluorescent transgenic zebrafish. 

As a vertebrate model, zebrafish have wide biological applications, such as gene mapping, 

genome mutagenesis, transgenesis, chimeric embryo analysis, protein overexpression or 
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knockdown and chemical screens.[3] Zebrafish mutant phenotypes, identified in forward 

genetic screens, have provided valuable insight into corresponding human disease 

pathophysiology.[4] Likewise high-throughput chemical screens have proved invaluable as 

pre-clinical toxicological tests prior to initial screening in rodent models.[5] 

5.6.2 Additional figures 

 

Figure S2. The distribution of cationic liposomes (DOTAP) and PEGylated cationic liposomes 

(DOTAP/DSPE-PEG2000; 9:1) within a zebrafish embryo. Fluorescently labeled liposomes ([lipid]= 

1 mM, containing 1 mol% Rhod-PE) were injected into the duct of Cuvier of the embryonic fish 

at 54 hpf. Confocal microscopy was performed in a defined region caudal to the yolk extension 

at 1hpi. Image taken from unpublished data.  
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Figure S3. The distribution of neutral liposomes (Myocet) and cationic liposomes (EndoTAG-1) 

in zebrafish embryo. 

 

Figure S4. The 1H-NMR structure of 5. 
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Figure S5. The 1H-NMR structure of 4. 

  

Figure S6. The 1H-NMR structure of 1. 
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Figure S7. The 1H-NMR structure of 2. 

 

Figure S8. The 1H-NMR structure of 3. 
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Figure S9. The size change and PDI of caged liposomes (DOPC/1 1:1) incubated with DMEM 

(+10% FCS) as a function of time. 
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O-Nitrobenzyl groups have been widely used as molecular photocages in both organic 

chemistry[1] and biology[2]. Photocaging a molecule temporarily blocks its function. 

Function is regained upon light irradiation. The ability to precisely control where and 

when light is delivered means it is possible to precisely control where and when a 

photocaged molecule becomes ‘active’. Applied to drug delivery systems, light can be 

used to direct exactly where drugs are released within the body.  

O-Nitrobenzyl groups have been used to cage various therapeutic agents[3], including 

small drug molecules, peptides, proteins and nucleic acids but have also been 

incorporated within more complex, multicomponent drug delivery systems, including 

hydrogels, micelles, liposomes and inorganic nanoparticles.[4] In this thesis, 

o-nitrobenzyl groups are used either as photolabile linkers, connecting polyethylene 

glycol (PEG) to various nanoparticle drug delivery systems (Chapters 2-4), or as 

photocage of specific chemical functionality (Chapter 5). In all cases, the use of 

o-nitrobenzyl enables precise control over where and when systems are ‘activated’.   

In chapter 2, I described a strategy to precisely control membrane fusion of two 

distinct liposome populations. This was achieved by the introduction of a photolabile 

PEG corona on the surface of fusogenic liposomes. This efficiently blocked the 

interaction between two complementary lipopeptides displayed from opposing 

membranes. This work revealed a minimum critical length requirement of PEG 

necessary to effectively shield this peptide-peptide interaction and a direct correlation 

between the time of light irradiation and fusion efficiency. Using high power LED light 

sources, triggered membrane fusion was spontaneous and, by extending our strategy 

to biological scenarios, precise spatiotemporal control of liposome docking to cell 

membranes was demonstrated in vitro. In this case, cells pre-functionalised with 

fusogenic lipopeptides were incubated with PEGylated liposomes containing 

complementary lipopeptides. After light triggered dePEGylation of the liposome 

surface, the spontaneous interaction between complementary lipopeptides resulted 

in the well-defined and light templated accumulation of liposomes at the cell surface. 

This work represents the first demonstration of user-controlled membrane fusion. In 

Nature, membrane fusion is precisely controlled in time and space to ensure correct 

cellular function. The ability to control membrane fusion in this way paves the way for 
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more efficient drug delivery systems, in which liposome-encapsulated drugs are 

delivered, not only with spatiotemporal precision, but potentially directly to the cell 

cytosol, avoiding degradative endocytotic uptake.  

In chapters 3 and 4, the o-nitrobenzyl group was used within two prodrug systems: 

PEG2000-o-nitrobenzyl-doxorubicin (chapter 3) and PEG2000-o-nitrobenzyl-nervonic acid 

(chapter 4). In chapter 3, the prodrug, PEG2000-o-nitrobenzyl-doxorubicin, formed high 

loading (20 wt%) doxorubicin micelles, which upon light activation resulted in rapid 

and quantitative DOX release. Prior to light activation, these prodrug micelles closely 

resembled, in size and surface chemistry, clinically approved liposomal-doxorubicin 

formulations (e.g. Doxil®). These therapeutic liposomes passively target solid tumors 

via the EPR effect. However, unlike these formulations, no premature drug release was 

observed – a factor that can lead to adverse side effects for a patient (e.g. 

cardiomyopathy).  

Upon low power UV irradiation, complete photolysis to pharmacologically ‘active’ DOX 

was achieved within 25 minutes and, in the absence of light, no cytotoxicity was 

observed up to a prodrug concentration of 100 μM. Importantly, the light dose 

required to fully release DOX neither caused significant photoinduced cytotoxicity. 

Upon light activation the cytotoxicity of released DOX correlated with both irradiation 

time and prodrug concentration. To showcase the precision afforded by this system, 

we showed exquisite spatiotemporal control of DOX delivery to cells in culture. This 

system has the potential not only to passively target solid tumors via the EPR effect, 

but by preventing premature drug leakage en route to the tumor while ensuring on 

demand and quantitative release once there, it could result in significantly reduced 

side effects compared to current targeted cancer nanomedicines.   

The lipid composition and thickness of cell membranes has been shown to 

significantly influence the activity of membrane embedded proteins. To generate 

thicker cell membranes, it is necessary to supplement cells with very long chain fatty 

acids (vlcFAs) as biosynthetic precursors of very long chain phospholipids (vlcPLs). The 

delivery of vlcFAs to cells has however been severely hampered by the extreme 

insolubility of these reagent in aqueous solutions. In chapter 4, we overcome this 

issue by synthesizing light sensitive, vlcFA-PEG (PEG2000-o-nitrobenzyl-nervonic acid; 
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FA24:1) amphiphiles which self-assemble into close-packed micelles in aqueous 

solutions. These micelles spontaneously disassembled in the presence of lipid bilayers 

(both liposome membranes and cell membranes) to efficiently embed vlcFA-PEG 

amphiphiles within the target bilayer. Subsequent light irradiation released conjugated 

PEG, leaving free nervonic acid remnant within the membrane. When this experiment 

was performed on cultured cells, free nervonic acid was subsequently processed to 

form cellular phospholipids with increased vlcFA content. This approach offers, for the 

first time, an efficient method to modulate the composition and potentially the 

thickness of cell membranes. In future studies we will assess the effect of vlcPL 

enriched cell membranes on the activity of γ-secretase. This membrane bound 

protease is central to the pathogenic onset of Alzheimer’s disease. As reported, the 

relative amounts of aggregation prone and pathogenic Aβ peptide variants are 

significantly reduced when γ-secretase is embedded in model membranes composed 

of very long chain phospholipids (vlcPLs, e.g. diC24:1, nervonyl).[5] Given the 

opportunity to precisely modulate cell membrane composition and thickness, our 

approach offers an attractive approach to allosterically modulate γ-secretase activity 

and potentially reduce the risk of Alzheimer’s disease.    

Unlike the dePEGylation strategies described in other chapters, in chapter 5, 

o-nitrobenzyl groups were used to photocage the cationic, primary amine headgroups 

of novel lipid reagents to form neutral, photocaged lipids. Liposomes formulated with 

these caged lipids circulated freely following intravenous injection into zebrafish 

embryos. Subsequent photolysis of o-Nb photocages, in situ and in vivo, revealed the 

underlying amine functionality at the liposome surface causing spontaneous switching 

of liposome surface charge from neutral to cationic. This, in turn, led to non-specific 

adsorption of liposomes across the entire vascular endothelium of the embryonic 

zebrafish, uptake by endothelial cells and delivery of liposome-encapsulated contents 

to these cells. By exploiting the contrasting in vivo fate of nanoparticles with opposing 

surface charges, we were able to demonstrate the potential for targeted drug delivery 

without the need for physiological differences between the diseased and healthy state 

(e.g. over expressed receptors, EPR effect etc.). In addition, this is the first example of 

a light sensitive drug delivery system in which the integrity of the drug carrier (i.e. the 
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liposome) is neither compromised nor destroyed upon light activation. Both scenarios 

leading to extracellular drug release. This is an important step if the targeted delivery 

of membrane impermeable cargos (e.g. DNA, peptides and proteins) to cells in vivo is 

to be realized. 

The experimental studies described in this thesis exemplify the use of light as a tool to 

precisely control where and when drug delivery takes place. However, it is poignant to 

also recognize the disadvantages of using light as a therapeutic trigger as well as the 

steps being taken to overcome these limitations. For o-nitrobenzyl groups, optimal 

photolysis occurs on exposure to high energy UV light (365 nm, UV-A). This 

wavelength has limited tissue penetration (100-200 µm) and can also cause significant 

photoinduced cytotoxicity. In taking these technologies forward into the clinic, it will 

be necessary to address these issues. One solution has been the use of fibre optic 

endoscopic techniques to deliver short wavelength blue light deep into tissue. These 

techniques are already routinely used within the clinic for the application of various 

photodynamic therapies.[6] A second option is to use two-photon excitation, where 

two photons of light – each twice the wavelength required for photolysis (i.e. 2 x 730 

nm for o-nitrobenzyl) – are simultaneously used to irradiate the target tissue. Only at 

the exact point of intersection of both photons is enough energy delivered for 

photolysis.[7] The advantages of two-photon excitation come from the use of longer 

wavelength near-infrared light, offering both increased tissue penetration (>1 cm) and 

negligible photoinduced cytotoxicity, as well as the exquisite spatiotemporal control 

afforded by this technique (light activation can be constrained to a volume of just 1 

femtoliter). The main disadvantage is a significant loss in efficiency of photolysis 

efficiency compared to single photon excitation. While we and others have 

successfully demonstrated photolysis of o-Nb groups using 2-photon excitation 

sources, the development of new photocages with improved 2-photon absorption 

profiles will vastly improve the potential applications of this technology in the clinic.[8]  

Each chapter in this thesis describes a new technology aimed at addressing limitations 

of current drug delivery technologies and advancing the current state of the art in 

nanomedicine. This includes: spatiotemporal control of nanoparticle uptake and drug 

delivery (chapter 2), ensuring optimal physiciochemical characteristics and drug 
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retention/release profiles both before and after activation (chapter 3), new methods 

to deliver insoluble drugs (chapter 4) and photo-activated targeting of DDSs in vivo 

(chapter 5) are all addressed in this thesis. Even though, on the current research 

stage, these studies are a proof-of-concept, as research methodology moves ever 

more into living organisms, and as technologies enabling light activation in patients 

continuously improve, these studies become more and more relevant to the ultimate 

goal of clinical application. The future is bright for light targeted nanomedicines!  
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Samenvatting en Perspectiven

O-Nitrobenzyl groepen worden veel gebruikt als moleculaire beschermgroepen die 

met licht verwijdert kunnen worden. Deze zogenaamde photocages worden reeds 

vaak toegepast in zowel de organische chemie[1] als in de biologie[2]. Photocaging 

blokkeert de functionaliteit van een molecuul en deze kan weer verwijdert worden 

door middel van licht met een specifieke golflengte. De mogelijkheid om precies te 

controleren waar en wanneer het beschermde molecuul belicht wordt maakt het 

mogelijk om precies te controleren waar en wanneer een photocaged molecuul 

geactiveerd wordt. Toepassing van photocages bij geneesmiddel bezorgsystemen 

(nanomedicijnen) leidt er toe dat men de afgifte van medicijnen kan controleren door 

middel van licht.  

O-Nitrobenzylgroepen worden gebruikt voor het beschermen/inactiveren van 

verscheidene therapeutica[3], zoals bijvoorbeeld, eiwitten en nucleïne zuren, maar ze 

worden ook toegepast op complexe meercomponentsystemen zoals nanomedicijnen, 

hydrogelen, micellen, liposomen en anorganische nanodeeltjes.[4] In dit proefschrift 

zijn o-nitrobenzyl groepen gebuikt als fotolabiele verbindingsgroep tussen het 

wateroplosbare polymeer polyethyleenglycol (PEG) en verschillende type nano 

medicijnen (Hoofdstukken 2-4), of als lichtactiveerbare beschermgroep voor 

specifieke chemische functionaliteiten (Hoofdstuk 5). In deze voorbeelden leidde het 

gebruik van de o-nitrobenzyl groep tot volledige controle over waar en wanneer een 

nanomedicijn geactiveerd wordt.   

In Hoofdstuk 2, beschrijf ik de strategie om membraanfusie tussen twee 

complementaire  liposoompopulaties te controleren. Dit werd bereikt door de 

introductie van een fotolabiele PEG-corona op het oppervlak van deze fusogene 

liposomen. De PEG-corona blokkeert effectief de interactie tussen twee 

complementaire liposoom populaties. De minimaal noodzakelijke lengte van PEG die 

nodig is om effectief peptide-peptide interacties te verhinderen werd bepaald en er 

bleek een directe correlatie te zijn tussen de tijd van belichting en de mate van 

membraanfusie. Gebruikmakend van een LED lichtbron kon membraanfusie direct 
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geïnitieerd worden. Door deze methode toe te passen bij levende cellen kon de 

interactie met liposomen gecontroleerd worden met controle over waar en wanneer 

deze interactie plaatsvond. Door middel van licht werden de PEG-corona verwijdert 

van het oppervlak van liposomen wat leidde tot de spontane interactie met de cellen 

(voorzien van complementaire lipopeptides) resulterend in de accumulatie van 

liposomen op het cel oppervlak. Dit project is het eerste voorbeeld van 

gecontroleerde membraanfusie door middel van licht. Membraanfusie is in de Natuur 

een sterk gereguleerd proces, in tijd en plaats, om cellulaire functies goed te laten 

verlopen. De beschreven mogelijkheid om membraanfusie te controleren met licht 

maakt het in de toekomst mogelijk om meer efficiënte nanomedicijnen te 

ontwikkelen, gebaseerd op  in liposoom geëncapsuleerde geneesmiddelen die met 

controle over tijd en plaats hun medicijnen kunnen afgeven. Door gebruik te maken 

van membraanfusie worden de medicijnen direct afgegeven in het cytosol van cellen 

waarmee opname door middel van endocytose vermeden wordt wat kan leiden tot 

een meer efficiënte medicijnafgifte.  

In de hoofdstukken 3 en 4 werd de o-nitrobenzyl groep gebruikt in 2 

prodrugsystemen: PEG2000-o-nitrobenzyl-doxorubicine (hoofdstuk 3) en 

PEG2000-o-nitrobenzyl-nervonzuur (hoofdstuk 4). In hoofdstuk 3, vormt de prodrug 

PEG2000-o-nitrobenzyl-doxorubicine micellen welke door lichtactivatie uiteenvallen en 

daardoor snel en kwantitatief doxorubicine (DOX) afgeven. Deze prodrug-micellen 

lijken qua grootte en oppervlakte chemie veel op de voor klinisch gebruik 

goedgekeurde liposoom-doxorubicine formuleringen zoals bijvoorbeeld Doxil®. Dit 

nanomedicijn wordt passief opgenomen in  vaste tumoren via het zogenaamde 

“enhanced permeation and retention” (EPR) effect. Een nadeel van Doxil zijn de 

cardiotoxische neveneffecten die ontstaan door voortijdig verlies van doxorubicine 

buiten de tumor. De hier beschreven prodrug heeft dit probleem niet en is daardoor 

interessant voor verdere studies als medicijn voor de behandeling van vaste tumoren. 

Onder invloed van lage intensiteit UV-straling werd complete fotolyse van de prodrug 

tot het farmacologisch actieve DOX bewerkstelligd binnen 25 minuten. In de 

afwezigheid van licht werd geen cytotoxiciteit waargenomen voor prodrug 

concentraties tot 100 μM. De lichtdosering die nodig is voor de volledige conversie 
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van de prodrug naar DOX volledig leidde niet tot significante foto-geïnduceerde 

cytotoxiciteit. De door licht geactiveerde cytotoxiciteit van de vrijgekomen DOX was 

gecorreleerd met zowel stralingstijd als prodrug concentratie. Spatiotemporele 

controle over de DOX-afgifte aan cellen in kweek kon verkregen worden door middel 

van deze methode. Dit systeem heeft de potentie om zich niet alleen passief te richten 

op de vaste tumoren via het EPR effect, maar ook door het voorkomen van lekkage 

van geneesmiddelen onderweg naar de tumoren. Terwijl de kwantitatieve afgifte 

gewaarborgd blijft, kunnen de bijwerkingen significant vermindert worden in 

vergelijking met huidige generatie goedgekeurde kanker-nanomedicijnen.  

Het is bekend dat de lipide-samenstelling en de dikte van de celmembranen 

significante invloed kan hebben op de activiteit van specifieke membraaneiwitten. De 

celmembraandikte verandert indien cellen vetzuren met extra lange keten (vlcFA) als 

biosynthetische voorlopers van extra lange fosforlipiden (vlcPL) op kunnen nemen. De 

opname van de vlcFA’s wordt echter bemoeilijkt door de extreme onoplosbaarheid 

van deze vetzuren in water. In hoofdstuk 4 werd dit probleem opgelost door het 

synthetiseren van lichtgevoelige vlcFA-PEG (PEG2000-o-nitrobenzyl-nervonzuur; FA24:1) 

amfifiele conjugaten die in water spontaan micellen vormen. Deze micellen worden 

spontaan opgenomen in lipide bilagen (zowel liposoom membranen als cel 

membranen) waardoor vlcFA-PEG in de bilaag komt. Door middel van licht werd de 

binding tussen het vetzuur en PEG verbroken waardoor het vrije nervonzuur 

achterbleef in het (cel)membraan. Afgifte van nervonzuur in gekweekte cellen leidde 

tot de verwerking van dit vetzuur tot cellulaire fosfolipiden met een verhoogd vlcFA 

gehalte. Deze methode is dus een efficiënte manier om de compositie en dus de dikte 

van celmembranen te modificeren. In toekomstige studies willen we de effecten van 

vlcPL verrijkte celmembranen op de activiteit van γ-secretase bepalen. Dit membraan 

gebonden protease speelt een belangrijke rol in het ontstaan van de ziekte van 

Alzheimer. In vitro studies hebben aangetoond dat de concentratie van door 

γ-secretase gevormde pathogene Aβ-peptides sterk vermindert indien γ-secretase 

ingebed is in “dikke” membranen bestaande uit extra lange fosfolipiden (vlcPL, bijv. 

diC24:1, nevon).[5] De hier beschreven mogelijkheid om de celmembraan compositie 

aan te kunnen passen maakt onze aanpak potentieel attractieve om de allosterisch 
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γ-secretase activiteit te moduleren en daarmee het risico op de ziekte van Alzheimer 

te reduceren.  

In tegenstelling tot de dePEGylering strategieën beschreven in de hoofdstukken 2-4 

werd in hoofdstuk 5 de o-nitrobenzyl groep om de lading van liposomen te 

veranderen van neutraal naar kationisch onder invloed van licht. Liposomen 

geformuleerd met beschermde (“caged”) lipiden circuleerden vrij in de bloedvaten 

van zebravis embryo’s. Fotolyse van o-Nb photocages in situ en in vivo resulteerde in 

een verandering van de oppervlaktelading van de liposomen van neutraal naar 

kationisch. Dit op zijn beurt leidde tot niet-specifieke adsorptie van de liposomen in 

alle bloedvaten van de zebravis. De liposomen werden vervolgens opgenomen door 

de endotheel cellen waardoor de inhoud van de liposomen in deze cellen vrijkwam. 

Door het in-situ aanpassen van de oppervlaktelading van liposomen werd dus 

controle gekregen over het in vivo gedrag van deze nanomedicijnen. Daarnaast is dit 

het eerste voorbeeld van een lichtgevoelig nanomedicijn waarvan de integriteit van de 

geneesmiddelen drager (het liposoom) niet aangetast of zelfs vernietigd werd door 

lichtactivatie. Dit is een belangrijke stap om gerichte afgifte van membraan 

ondoordringbare ladingen (bijv. DNA, peptiden en eiwitten) in cellen in vivo te 

realiseren.  

De hoofdstukken beschreven in dit proefschrift laten zien dat licht gebruikt kan 

worden om precieze controle te verkrijgen over waar en wanneer 

geneesmiddelenafgifte plaatsvindt. Het is belangrijk om ook de nadelen van het 

gebruik van licht als activator van therapeutica te zien om daarmee deze beperkingen 

in de toekomst op te kunnen heffen. Voor de in dit proefschrift gebruikte 

o-nitrobenzyl groep vindt optimale fotolyse plaats met energierijk UV licht (365 nm, 

UV-A). Deze golflengte heeft een beperkte  weefsel penetratiediepte (100-200 µm) 

en kan gepaard gaan met significante cytotoxiciteit als neveneffect. Voor het verder 

ontwikkelen van deze technologie om toepassingen in de kliniek mogelijk te maken 

moeten deze kwesties aangepakt worden. Een mogelijke oplossing is het gebruik van 

glasvezel-gebaseerde endoscopische technieken om het licht dieper in het weefsel te 

krijgen. Deze techniek wordt al routinematig gebruikt bij foto-dynamische 

therapieën.[6] Een tweede optie is gebruik te maken van twee-foton excitatie, waarbij 



Summary and perspective 

169 
 

2 licht fotonen combineren om de o-nitrobenzylgroep te activeren.[7] De voordelen 

van twee-foton excitatie zijn het gebruik van nabij-infrarood licht waardoor de 

penetratiediepte van dit licht in het weefsel groter is (>1 cm). Tevens is de 

cytotoxiciteit van het licht verwaarloosbaar. Echter tet grootste nadeel van twee-foton 

excitatie is het significante verlies in fotolyse efficiëntie ten opzichte van één-foton 

excitatie. Daarom is de ontwikkeling van nieuwe photocages met verbeterde 2-foton 

absorptie profielen van groot belang voor deze technologie.[8]  

Elk hoofdstuk in dit proefschrift beschrijft een nieuwe technologie gericht op het 

overkomen van de limitatie van de huidige nanomedicijnen. De beschreven 

onderzoeken zijn op dit moment fundamenteel van aard. Echter doordat dit 

onderzoek steeds meer verschuift richting studies in levende organismen en doordat 

de technologie die lichtactivatie mogelijk maakt in patiënten steeds verder verbetert 

zullen de beschreven onderzoeken steeds relevanter worden om uiteindelijk 

toegepast te worden in klinische toepassingen. Licht-geactiveerde nanomedicijnen 

gaan een schitterende toekomst tegemoet! 
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Abbreviations 

A Alanine 

CD Circular dichroism  

CPE Cholesterol-PEG12-(EIAAIEL)3 

CPK Cholesterol-PEG12-(KIAALKE)3 

DCM Dichloromethane 

DDT Dithiothreitol 

DEA Diethanolamine 

DIPEA N,N-Diisopropylethylamine 

DMAP 4-Dimethylaminopyridine 

DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine 

DOPE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

DOPE-LR 
1,2- dioleoyl-sn-glycero-3-phosphoethanolamine- 

N-(lissamine rhodamine B sulfonyl) 

DOPE-NBD 
1,2-dioleoyl-sn-glycero-3- phosphoethanolamine- 

N-(7-nitro-2-1,3-benzoxadiazol-4-yl) 

DOPE-Atto633 
1,2-dioleyl-sn-glycero-3-phosphoethanolamine- 

ATTO633 

DOPG 
1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) 

(sodium salt) 

DOTAP 
1,2-dioleoyl-3-trimethylammonium -propane  

(chloride salt) 

DSPC 1,2-distearoyl-sn-glycero-3-phosphocholine 

DSPE 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine 

E Glutamate 

EDCI 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 

EDC·HCl 
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide  

hydrochloride 

ELSD Evaporative light scattering detector  

Et3N Triethylamine 

F Phenylalanine 

FACS Fluorescence-activated cell sorting 

FCS Fetal Calf Serum 

G Glycine 

HCTU 2- (6-chloro-1 H -benzotriazole-1-yl) -1,1,3,3-tetramethylaminium 
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hexafluorophosphate 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HPLC   High-performance liquid chromatography 

I Isoleucine 

IC50 Half maximal inhibitory concentration 

K  Lysine 

L        Leucine 

LED      Light-emitting diode 

MeCN    Acetonitrile 

NaBH4 Sodium borohydride 

NMR Nuclear Magnetic Resonance spectroscopy 

OND Oligodeoxynucleotide 

P Proline 

PDI Polydispersity Index 

PBS Phosphate buffered saline 

PEG Polyethylene glycol 

PEI Polyethylenimine 

PLL Poly-L-lysine 

POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

Q Glutamine 

R Arginine 

SEC Size exclusion chromatography 

SR-B Sulforhodamine B 

tBuOH Tert-Butanol 

TEM Transmission electron microscope 

TFA Trifluoroacetic acid 

UV Ultraviolet  

V Valine 

vlcFAs Very long chain fatty acids 

W Tryptophan 
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