

Canonical and non-canonical Wnt signaling in hematopoiesis and lymphocyte development

Famili, F.

Citation

Famili, F. (2018, May 30). Canonical and non-canonical Wnt signaling in hematopoiesis and lymphocyte development. Retrieved from https://hdl.handle.net/1887/63077

Version: Not Applicable (or Unknown)

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/63077

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The following handle holds various files of this Leiden University dissertation: http://hdl.handle.net/1887/63077

Author: Famili, F.

Title: Canonical and non-canonical Wnt signaling in hematopoiesis and lymphocyte

development

Issue Date: 2018-05-30

CHAPTER 2

HIGH LEVELS OF CANONICAL WNT SIGNALING LEAD TO LOSS OF STEMNESS AND INCREASED DIFFERENTIATION IN HEMATOPOIETIC STEM CELLS

Farbod Famili, ¹ Martijn H. Brugman, ¹ Erdogan Taskesen, ² Brigitta E.A. Naber, ¹ Riccardo Fodde, ³ and Frank J.T. Staal¹,

¹Department of Immunohematology and Blood Transfusion, Leiden University

Medical Center, 2300 Leiden, the Netherlands

²Department of Clinical Genetics, VU University, 1081 Amsterdam, the Netherlands

³Department of Pathology, Erasmus Medical Center, 3000 Rotterdam, the

Netherlands

Stem Cell Reports j Vol. 6 j 652–659 j May 10, 2016

Summary

Canonical Wnt signaling regulates the self-renewal of most if not all stem cell systems. In the blood system, the role of Wnt signaling has been the subject of much debate but there is consensus that high Wnt signals lead to loss of reconstituting capacity. To better understand this phenomenon, we have taken advantage of a series of hypomorphic mutant *Apc* alleles resulting in a broad range of Wnt dosages in hematopoietic stem cells (HSCs) and performed whole-genome gene expression analyses. Gene expression profiling and functional studies show that HSCs with APC mutations lead to high Wnt levels, enhanced differentiation, and diminished proliferation but have no effect on apoptosis, collectively leading to loss of stemness. Thus, we provide mechanistic insight into the role of APC mutations and Wnt signaling in HSC biology. As Wnt signals are explored in various in vivo and ex vivo expansion protocols for HSCs, our findings also have clinical ramifications.

Introduction

In many tissues, including the blood, intestine and skin, old cells are eliminated and replenished by newly developed cells from a small pool of stem cells. This rare population of stem cells is located in a specific microenvironment, the niche, and gives rise to several different lineages of abundant daughter cells (Mendez-Ferrer et al., 2010). The signals controlling the various stem cell fates (self-renewal, differentiation, quiescence, apoptosis, and others) are beginning to be elucidated. A number of evolutionary conserved pathways are important for the development and maintenance of adult stem cells, including Notch, bone morphogenic protein, hedgehog, fibroblast growth factor, transforming growth factor- β , and Wnt signals (Blank et al., 2008). Among these pathways, the Wnt pathway is seen as a dominant factor in self-renewal of many types of adult stem cells (Reya and Clevers, 2005). Compared with the convincing studies on the role of Wnt signaling in adult stem cells in skin and gut, a role for Wnt in adult hematopoietic stem cells (HSCs) has proved much more difficult to demonstrate (reviewed in Luis et al., 2012). In studies reporting an important role for Wnt signaling in blood cells, Wnt seemed to be required for normal HSC self-renewal and therefore for efficient reconstitution after transplantation (Luis et al., 2011).

Several types of Wnt signaling can be discerned often referred to as the canonical or Wnt/ β -catenin pathway and the non-canonical pathways (reviewed extensively in Staal et al., 2008). In the absence of Wnt ligands, cytoplasmic levels of β -catenin are kept very low through the action of a protein complex (the so-called destruction complex) that actively targets β -catenin for degradation. This complex is composed of two negative regulatory kinases, including glycogen synthase kinase 3β (GSK- 3β) and at least two anchor proteins that also function as tumor suppressor proteins, namely Axin1 or Axin2 and APC (adenomatous polyposis coli). APC and Axin function as negative regulators of the pathway by sequestering β -catenin in the cytoplasm. Hence, inactivating mutations in Apc lead to higher β -catenin protein accumulation among other important events controlled by APC. Activation of the pathway by Wnt leads to inactivation of the destruction complex allowing buildup of β -catenin and its migration to the nucleus. In the nucleus, β -catenin binds to members of the TCF/LEF transcription factor family, thereby converting them from transcriptional repressors into transcriptional activators.

Initial attempts to overexpress a constitutively active form of β -catenin in HSCs led to an increase in proliferation and repopulation capacity upon transplantation into lethally irradiated mice (Reya et al., 2003). However, later studies using conditional overexpression of a stabilized form of β -catenin led to a block in multilineage differentiation, and the exhaustion of long-term HSCs (Kirstetter et al., 2006; Scheller et al., 2006). This resulted in anemic mice and eventually led to lethality, i.e., the opposite effect when compared with

the improved transplantation setting reported earlier. These studies have created confusion concerning the importance of Wnt in maintaining numbers and integrity of HSCs. Similarly, not all loss-of-function studies have produced clear phenotypes. The Mx-Cre system has been used to drive deletion of β -catenin (Zhao et al., 2007) or both β -catenin and its homolog y-catenin (Koch et al., 2008; Jeannet et al., 2008). However, no defects were reported in HSC function or cells within lymphoid tissues. Surprisingly, in vivo reporter assays revealed that the canonical Wnt signaling pathway was still active in HSCs despite the absence of both β- and y-catenin (Jeannet et al., 2008). This could imply the existence of an alternative factor or generation of a hypomorphic allele permitting low levels of Wnt signaling that would negate hematopoietic defects. Heroic efforts to knock out the *Porcn* gene during hematopoiesis, which encodes an acyltransferase (porcupine) necessary for acylation of Wnts, enabling their secretion and binding to the frizzled receptors, have not resulted in hematopoietic defects; however, there also were no changes in Wnt signaling (Kabiri et al., 2015). The reasons for this are presently unknown, but incomplete deletion or the lack of need for Wnt secretion have been suggested (Oostendorp, 2015). This demonstrates the high complexity and difficulty in generating bona fide null mutants for canonical Wnts in the hematopoietic system. Together with studies in which Wnt activity in HSCs was reported to be close to zero (Fleming et al., 2008; Luis et al., 2009; Zhao et al., 2007), these findings suggest that complete absence of Wnt signaling is detrimental to HSC function, but that up to a quarter of normal activity is sufficient for normal function. Our recent findings suggest that these very different results in both gain- of-function and loss-of-function studies can be largely explained by differences in levels of Wnt signaling achieved in different experimental circumstances. That is, when Wnt signaling is slightly enhanced over normal levels, HSCs show improved reconstitution capacity. However, when HSCs express high levels of Wnt signaling, they completely fail to reconstitute irradiated recipient mice (Luis et al., 2011). Thus, different levels of activation of the pathway can account for the discrepancies in previous studies (Malhotra and Kincade, 2009).

Results

Gene Expression Profiling and Correlation with Wnt Dosage

Previously, we have used a combination of two different hypomorphic alleles and a conditional deletion allele of the Apc gene resulting in a gradient of five distinct levels of Wnt signaling in vivo. In the Apc1572T and Apc1638N alleles, amino acid residues 1572 and 1638 have been targeted resulting in different levels and lengths of truncated Apc proteins, consequently leading to different levels of Wnt pathway activation. Deletion of Apc exon 15 within the Apc15lox allele was performed ex vivo by using a Cre-recombinase encoding retrovirus (Figure 1A). LSK cells from wild-type (WT) mice (Apc1/+) transduced with the same viral construct were employed as controls for all experiments. Transduced cells were sorted and employed for gene expression profiling by Affymetrix genome-wide microarrays. In the current report, we focused on the differences between WT LSK cells, which efficiently reconstitute recipient mice, and the LSK cells with increased Wnt signaling activity (Apc1572T, Apc1638N, and the Apc15lox mutant alleles). Biological triplicates were used for each condition. As WT HSCs have low but detectable and slightly variable levels of Wnt signaling, and they form the basis for comparison of all other conditions, we used six replicates for WT HSCs.

Principal component analysis showed clear separation of the triplicate arrays per genotype corresponding to the different Wnt signaling levels (Figure 1B). Hierarchical clustering of the top 50 differentially expressed genes also revealed a clear separation of the different Wnt signaling clusters (Figure 1C).

Biological Processes Correlated with High Wnt Levels in HSC

Focusing on the most differentially expressed genes, a heat-map was constructed that clearly reveals the differences between WT and Apc^{15lox} HSCs (Figure 2A). We used the gene expression data of all available probe sets across the 15 APC samples and applied Barnes-Hut t-distributed stochastic neighbor embedding (t-SNE) to map each individual gene or probe set into a 2D space. The 2D landscape illustrates genes/probe sets with similar behavior (Figure 2B). Genes that have highly correlated expression profiles will be located in close proximity in the map, whereas uncorrelated expression profiles should be far apart in the t-SNE map. Genes that follow the increase in Wnt signaling cluster in a set of genes composed of known Wnt target genes, such as Axin2, Tcf7, and Lef1 (Figures 2C–2F). Genes that are anti-correlated with increased Wnt signaling can also be discerned and include *Ccr9* and *Cd3q* (Figures 2G–2I).

Figure 1. Definition of a High Wnt Stem Cell Signature.

(A) Experimental setup. LSK cells from various APC mutant mice were sorted from bone marrow, transduced with Cre-GFP retrovirus and GFP-transduced cells were again sorted and used for further experiments. (B) Principal component analysis plots of all 15 biological samples used in this study. The percentage of variance captured by each of the first three principal components is indicated. (C) Hierarchical clustering of the various APC mutants and WT HSCs indicating the top 50 differentially expressed genes and changes in gene expression.

The differential gene expression as detected by microarray analysis was validated using digital Q-PCR (Figure S1A). Checking the biological processes involved in the differences between low and high Wnt signaling, we observed gene sets found in Wnt and Notch signaling but also differentiation into monocytes, myeloid cells, and B lymphocytes (Figure S1B). No differences were observed in apoptosis or cell-cycle-related genes. We confirmed these findings by specifically selecting published gene sets for these processes and checking whether clustering with the published gene sets correlated with the Apc mutants. The differentially expressed genes we found were highly enriched in the B lymphoid and myeloid differentiation sig-natures but not for pro-apoptotic or anti-apoptotic genes (Figures S1B, S2, and S3).

Figure 2. t-SNE Landscape of APC Mutants.

(A and B) t-SNE maps of all probe sets. Red colored lines are differentially expressed genes, green are in cluster 15, yellow show both binding (ΓCF1/TCF7 or β-catenin), and differential expression. Text labels are shown only for the latter. (C and G) Cluster 2 and 1 identified in t-SNE. (D–F, H, and I) Selected genes with their expression in the various Apc mutants.

Apc Mutants Causing High Levels of Wnt Signaling Inhibit Proliferation but Do Not Change Apoptosis

Ming et al. (2012) reported that HSCs with high Wnt signals have increased apoptosis due to a high level of Wnt signaling and impaired self-renewal in HSCs. In their study, an activated form of β -catenin was used resulting in increased Wnt signaling in HSCs to the same level as the *Apc*1638N mutant used here. We therefore also used a constitutively active β -catenin conditional allele targeted the same way as the conditional 15lox APC ^{-/-} LSK cells to check the *Axin2* levels as readout for the Wnt signaling dosage. The β -catenin (Δ Ex3) allele (Harada et al., 1999) gave 21-fold higher *Axin2* levels in LSK cells compared with WT LSK cells transduced with GFP-Cre, whereas the 1638N resulted in 23-fold and the Apc15lox ~50-fold higher *Axin2* mRNA levels. Thus, the *Axin2* levels and hence activation of the Wnt pathway

were similar. However, our gene expression analysis did not show any significant differentially expressed genes associated with apoptosis. In order to study the putative involvement of apoptosis with a more functional approach, we performed two different apoptosis assays. First, we assessed apoptosis by annexin V/7-amino-actinomycin (7-AAD) staining of the ex vivo transduced LSK cells from Apc WT and Apc 15lox/15lox (Figure 3A). At the beginning of culture, there was almost no apoptosis in both groups (~4% at day 0). After 3 days of culture, the percentage of annexin V^{\dagger} apoptotic cells increased to ~16%. However, no difference was observed between the Apc WT and knockout (KO) groups. Next, we performed caspase-3 staining in order to assess the apoptosis rate of ex vivo transduced LSK cells (Figure 3B). Similar to previous assays, there was hardly any caspase-3 positivity at the beginning of the culture, while it was elevated after 3 days of culture. However, again no difference was observed between the two groups. Subsequently, we analyzed the proliferation status of the transduced LSK cells by labeling the cells with proliferation dye EF670 (Figure 3C). While cells did not proliferate at the beginning of culture (filled gray histogram), Apc WT LSK cells proliferated around 4-fold more than Apc KO LSK cells. Therefore, although a high level of Wnt signaling does not affect apoptosis, it decreases proliferation of LSK cells after 3 days of culture.

High Wnt HSCs Show Enhanced Myeloid and B Lymphoid Differentiation Capacity

Our gene expression analysis revealed that LSK cells with high levels of Wnt induce upregulation of B and myeloid-associated genes (Figure S2). In order to confirm this observation functionally, we performed in vitro B and myeloid differentiation assays using the OP9 stromal cell line (Figure 4). LSK cells were sorted, transduced with the Cre-GFP retrovirus, and cultured for 14 days on OP9 cells. *Apc* lox15 LSK cells developed to granulocytes (CD11b⁺ Gr1⁺) with around 2-fold higher frequency, and developed to B cell line-age (B220⁺ CD19⁺) with around 2.5-fold higher frequency compared with WT LSK cells. Thus, we confirmed by functional assays that Apc mutations leading to a high level of Wnt signaling enhance differentiation toward B and myeloid lineages.

Figure 3. High Levels of Wnt Signaling Do Not Affect Apoptosis.

(A and B) Sorted BM LSK from Apc WT and 15lox/15lox were transduced with Cre virus and cultured for 2 days to fulfill Cre recombination activity. After culturing for 2 days (day 0) and 5 days (day 3), cells were harvested and stained with annexin V/7-AAD (left graph) or active caspase-3 (right graph). Error bars represent the SD of three replicates of one independent experiment. (C) Sorted BM LSK from Apc WT and 15lox/15lox were transduced with Cre virus, cultured for 2 days and labeled with 5 mM proliferation dye EF670 or with DMSO. The left plot depicts representative histogram plots and the right graphs show the percentage of non-proliferative cells (A), proliferative cells (B), and ratio of A/B. Error bars represent the SD of three samples from individual mice in one independent experiment. Two independent experiments were done with similar outcome. *p < 0.05 and **p < 0.01 (Mann-Whitney U test).

Figure 4. High Levels of Wnt Signaling Enhances Multilineage Differentiation.

Transduced LSK cells from Apc WT and 15lox/ 15lox were co-cultured with OP9 stromal cell line for 14 days, then were harvested, and assessed by flow cytometry for myeloid (CD11b and Gr1+) and B cell development (B220 and CD19+). Error bars represent the SD of six samples from individual mice from two independent experiments. Asterisks indicate statistical significance as follows: *p < 0.05, and **p < 0.01 (Mann-Whitney U test).

Discussion

The Wnt signaling pathway has emerged as the dominant self-renewal pathway for various adult-type stem cells and is required for maintenance of embryonic as well as induced pluripotent stem cells. In the hematopoietic system, only mild increased Wnt dosages result in higher stem cell activity; indeed the overall Wnt signaling levels in HSC are much lower than those found in intestinal, skin, or mammary gland stem cells. Nevertheless, complete loss of Wnt signaling leads to defective self-renewal as shown in secondary transplantations. This had led to interest in the use of Wnt signaling or factors that modulate Wnt signaling, such as prostaglandin E2 (PGE2) (Goessling et al., 2009) or GSK-3b inhibitors (Huang et al., 2012), for expansion of HSCs ex vivo.

We previously demonstrated that Wnt signaling functions in a strictly controlled dosage-dependent fashion (Luis et al., 2011). As also shown by several other laboratories (Kirstetter et al., 2006; Ming et al., 2012) (Scheller et al., 2006), high Wnt levels in HSCs eventually lead to stem cell exhaustion and lack of reconstitution of irradiated recipients. In the current study, we used gene expression profiling to understand why *Apc* mutations that lead to high Wnt signaling (among other defects) in HSCs would lead to loss of repopulating capacity. Our results show, both at the genetic level and in functional assays, increased differentiation, diminished proliferation, and no effects on apoptosis. The much stronger differentiation toward mature blood lineages coupled with loss of HSC proliferation (see also Figure S4) is expected to lead to lower reconstitution by HSCs. Collectively, these data explain the lack of maintaining bona fide stemness in *Apc* exon 15 deleted HSCs. Thus, instead of increased apoptosis of HSCs, here we offer another explanation for the loss of reconstitution capacity induced by high Wnt levels.

An alternative interpretation of our data is that the observed consequences of Apc mutant alleles are not Wnt but rather APC dependent. Apc encodes for a multifunctional protein involved in a broad spectrum of cellular functions (Gaspar and Fodde, 2004). To date, most Apc mutant mouse models are characterized by tumor phenotypes that depend completely on Wnt dosage. Apc1638T, the only targeted Apc mutation that does not affect Wnt signaling at all, results in homozygous viable and tumor-free animals, notwith-standing the deletion of the C-terminal third of the protein containing many functional domains (Smits et al., 1999, 2000). Deletion of only a few amino acids encompassing crucial Axin-binding motifs results in Wnt signaling activation, tumor formation, and lack of reconstitution by HSCs, as we have shown before (Luis et al., 2011). Finally, mutations affecting other members of the Wnt pathway, such as Gsk3 β and β -catenin, result in levels of signaling activation and hematopoietic defects that are fully in agreement with our results (Goes-sling et al., 2009; Huang et al., 2009, 2012; Lane et al., 2010). Therefore, the

most likely explanation is that specific levels of Wnt signaling are the major determinant of the observed differential effects on hematopoiesis. In addition, recent studies using recombinant Wnt3a also showed a dose dependent effect on HSC biology (Famili et al., 2015) where high Wnt3a leads to loss of human HSC proliferation in vitro (Duinhouwer et al., 2015), underscoring the differential effects we also have observed with the different *Apc* alleles and correlating exactly with the Wnt dosages caused by these mutations.

The finding that the Apc 15lox mutant leading to high Wnt signaling levels is associated with increased numbers of differentiated cells is not unprecedented. In the intestine, Wnt signaling induces maturation of Paneth cells that contain active β -catenin and Tcf4 (van Es et al., 2005), confirming that high Wnt signaling levels can drive differentiation processes.

Other investigators have used a different system to increase Wnt signals in HSCs, namely overexpression of an oncogenic, constitutively active form of β -catenin (Ming et al., 2012). They showed an increase in apoptosis using annexin V/propidium iodide staining from 10% in WT LSK cells to 35% in high Wnt LSK cells. The reasons for the differences with our results could be due to differences in the systems used, although both are expected to lead to high Wnt signaling levels. Possibly activated β -catenin also negatively affects cell adhesion and homing properties thereby decreasing exposure to important survival signals leading to increased apoptosis. It is also noteworthy that enhanced survival signals are needed to have HSCs survive in the oncogenic β -catenin system. In addition, Li et al. (2013) have shown that Apc regulates the function of HSCs largely through β -catenin-dependent mechanisms, thus demonstrating that, in both systems, canonical Wnt signaling is the major factor.

Whatever the exact mechanism, it is clear that Wnt signaling levels need to be strictly controlled. It is well possible that somewhat higher Wnt levels, which are detrimental to stemness, can be tolerated if HSC survival is enhanced, which then would lead to better self-renewal at this somewhat higher Wnt signaling dose. For instance PI3K/Akt signaling (Perry et al., 2011), as well as expression of Bcl2 (Reya et al., 2003) can provide such signals. Apparently, high Wnt signaling levels can be tolerated in HSC in combination with activation of other survival pathways. Intriguingly, the high Wnt levels in combination with oncogene activation in acute myeloid leukemia seem to allow the Wnt pathway to function as a self-renewal factor for leukemic stem cells (Wang et al., 2010), whereas high Wnt levels cannot do so in normal HSCs. The different localization of normal versus malignant HSCs in the bone marrow niche (Lane et al., 2011) may also contribute to this differential outcome of high Wnt dosage and opens up a therapeutic window targeting leukemic but not normal stem cells.

Experimental procedures

Mice

Mice were bred and maintained in the animal facilities of Leiden University Medical Center, in accordance with legal regulations in the Netherlands and with the approval of the Dutch animal ethical committee.

Microarray Analysis

In this study, we measured the genome-wide gene expression profiles in 21 APC C57BI/6 mouse samples using Affymetrix mouse 430 2 microarrays for four different conditions; six APC WT, three APC 15lox/1572T, three APC 15lox/1638N, and three APC 15lox/ 15lox mice. 40,000–70,000 sorted LSK cells were stimulated over-night in serum-free medium (STEMCELL Technologies) supplemented with cytokines and transduced by spinoculation with MSCV-Cre-IRES-GFP. Subsequently, Cre-GFP-expressing LSK cells were isolated using flow cytometric cell sorting and collected for RNA expression. RNA of more than 10,000 cells was amplified and processed using the Encore Biotin module and hybridized to Affymetrix mouse 430 2.0 Genechip arrays. Differential expressed genes were determined using Limma, and genes were considered to be differentially expressed if mRNA levels differ with p < 0.05 after multiple test correction using Holm. The dataset associated with this study has been deposited at GEO: GSE79495.

Flow Cytometry

Cells were stained in fluorescence-activated cell sorting buffer at 4 °C, washed, and measured either on a Canto I or an Aria (BD Biosciences). Data were analyzed using FlowJo software (Tree Star).

Proliferation, Apoptosis, and Differentiation Assays

For apoptosis, cells were harvested after 2 days (day 0) or 5 days (day 3) of culture, and stained with either 7-AAD/annexin V (BD Bioscience), or phycoerythrin-active caspase-3 apoptosis kit (BD Pharmingen). For the proliferation assay, cells were labeled with 5 mM Cell Proliferation Dye eFluor 670 (eBioscience) at day 0. Subsequently, cells were harvested at day 3 and were assessed for proliferation. For differentiation assays, LSK cells were transduced at day 0 and transferred onto confluent monolayers of OP9 WT. After 14 days, cells were harvested and assessed by flow cytometry for B and myeloid lineage differentiation.

Acknowledgments

We thank Edwin de Haas for expert cell sorting and Paul Roozen for initiating this project. We thank Bjorn Clausen for help with the constitutive activated β -catenin allele. This work was supported in part by a TOP grant from The Netherlands Organization for Health Research and Development (ZonMw Project 40-00812-98-09050), a grant from the Dutch government to the Netherlands Institute for Regenerative Medicine (NIRM, grant no. FES0908), and JSH/ EHA fellowship to M.H.B.

Received: October 22, 2015

Revised: April 7, 2016 Accepted: April 11, 2016 Published: May 10, 2016

Supplemental Information

Supplemental Experimental procedures

Mouse bone marrow (BM) cells were isolated from femurs and tibiae, which were crushed in a mortar and filtered through 70 µm filters. The cells were stained using biotinylated lineage antibodies (MAC-1/CD11b, B220/CD45R, CD3e, CD4, NK1.1, Gr1, Ter119), Streptavidin PE, CD117 APC and Sca1 PECy7. LSK cells were isolated using a BD Aria II SORP cell sorter (Beckton-Dickinson) and were collected in Stemspan (Stem Cell Technologies), supplemented with mFlt3L (50 ng/ml), rmSCF (100 ng/ml) and rmTPO (10 ng/ml, all cytokines purchased from R&D sytems. The cells were incubated for 16 hr at 37°C and 5% CO2. LSKs from Apc 15 Lox heterozygous mice with mildly elevated Wnt levels were shown to perform better in reconstitution experiments but are not integral part of the current study, as only subtle changes in gene expression were found.

Retroviral Production and Transduction

MSCV-Cre-IRES-GFP plasmid was kindly provided by H. Nakauchi (Institute of Medical Science, University of Tokyo, Japan) and viruses were generated with the Phoenix-packaging cell line. 40,000–70,000 sorted LSKs were stimulated overnight in serum-free medium (StemCell Technologies) supplemented with cytokines (100 ng/ml rmSCF, 10 ng/ml rmTPO, and 50 ng/ml rmFlt3L; from R&D) and transduced by spinoculation (800 x g, 2 hours, 32°C) with titrated amounts of virus with Retronectin (Takara Bio Inc.). Cells were cultured for 2 additional days. Subsequently, Cre-GFP expressing LSK cells were isolated using flow cytometry cell sorting and collected for RNA expression. For in vitro assays including apoptosis, proliferation and differentiation assays bulk of transduced and un-transduced cells were used.

RNA amplification

RNA was isolated from the sorted transduced cells using Qiagen RNEasy micro columns (Qiagen, Hilden, Germany). RNA of more than 10,000 cells were then amplified using the Ovation RNA amplification system v2(Nugen Inc., San Carlos, CA, USA), processed using the Encore Biotin module (Nugen) and hybridized to Affymetrix mouse 430 2.0 Genechip arrays. Data is available at the NCBI Gene Expression Omnibus (GEO), accession number GSE79495.

Gene expression normalization. Gene expression data was measured in two batches. Raw data is normalized per batch with Robust Multi-Array Average (RMA), and batch correction is applied using Combat. Intensity values were mean centered per probe set. Gene symbols are mapped using MM9. As a result of the normalization, probe-intensity values follow a normal distribution for which intensities higher than 0 are up-regulated, and intensities lower than 0 are down-regulated. Principal component analysis and pairwise

correlations across the 21 samples showed the expected results; wild-type and mutants, t1572, n1638, and Knock-Out samples are different from each other in the PCA-space and correlation map.

Gene expression analysis. Differential expressed genes for the APC samples are determined by using Limma, and genes are considered to be differential expressed between the two selected groups if mRNA levels differ with P<0.05 after multiple test correction using Holm.

ChIP-Seq normalization. In this study we used massively parallel sequenced DNA-fragments bound by the transcription factors, TCF1, TCF7, and β -catenin. All the sequencing data is aligned using Burrows-Wheeler transformation (BWA), according MM9. We used several literature sources (Li et al., 2013a; Steinke et al., 2014; Zhang and Li, 2008; Zhang et al., 2000) (Wu et al., 2012).

ChIP-Seq analysis. Binding of transcription factors is determined by utilizing Hypergeometric Analysis of Tilling arrays (HATSEQ). A binding event was called when fragments are enriched based on default parameter settings, i.e., FWER significance level < 0.05, and a bandwidth (fragment size) of 300bp. We mapped the significantly detected binding sites to RefSeq genes in UCSC mm9 database (genome.ucsc.edu). A gene was designated as the target gene if the peak was present within 5000bp upstream of the transcription start site or inside of the gene.

For TCF1 (in mature CD8 T cells, accession number GSM1258235), we detected 591 significantly enriched regions (ranges between 104bp-1048bp, median: 233bp) by comparing it to control IgG using sorted post-select DP and CD4+8lo thymocytes1 (accession number GSM1258236). The detected regions could subsequently be mapped to 116 unique genes. For the two TCF1 experiments in murine thymocytes (GSM1285796 for TCF1-CAT and GSM1133644 for TCF1), we detected 732 (size ranges between 102bp- 2632bp, median: 237bp), and 2600 (102bp-2632bp, median: 237bp) significant binding regions respectively after comparing to control TCF1-CAT-INPUT (GSM1285797) and TCF1-INPUT (GSM1133645) respectively. The detected regions could subsequently be mapped to respectively 131, and 653 unique genes (Table S2). The third analyzed ChIP-Seg data set was the binding of TCF7 (GSM773994). For TCF7 we detected 6395 significant binding regions (size ranges between 103bp-5840bp, median: 341bp) by comparing it to one control (input DNA of TCF7). These regions are subsequently mapped to 2015 genes (Table S2). The fourth public data set that we analyzed were three Beta-Catenin experiments, two with biotinylation and one based on FLAG-tag technology. As a background four different controls are used per experiment (2 with Beta-Catenin biotin without GSK and two GSK input samples). This resulted in

respectively 990, 385, and 671 significant binding regions for Beta-Catenin-Biotin-rep1, Beta-Catenin-Biotin-rep2, and Beta-Catenin- Flag-rep1 and were mapped to 121, 49, and 79 genes (Table S2). Binding sites have median size of 336bp, 385bp, and 320bp.

To test the validity of the detected binding regions of each experiment, we expected an overrepresentation of WNT-associated genes. To test this, we overlaid the mapped genes with known WNT-associated genes (n=1136) from the Molecular Signature Database (MSigDB, v4.0), and detected that all seven ChIP-seq experiment showed a significant enrichment for binding in close vicinity of WNT-associated genes (P<0.05, Table S1) based on the hypergeometric test. As an example, all seven experiments showed binding of in the transcriptional start site of *Axin2* (Figure S4A), whereas TCF1, and Beta-Catenin experiments showed also binding for *Lef1* (Figure S4A).

Pathway Analysis. Pathway analysis is performed by utilizing the Molecular Signature Database (MSigDB, v4.0) for the detection of enriched curated gene sets (C2), motif gene sets (C3), computational gene sets (C4), GO gene sets (C5), oncogenic signatures (C6), and immunologic signatures (C7). Gene sets and signatures are considered statistically significant when the P-value, derived from the hypergeometric test, is less or equal than 0.05 after correcting for multiple testing using Holm.

Mice

Mice were bred and maintained in the animal facilities of Leiden University Medical Center, in accordance with legal regulations in The Netherlands and with the approval of the Dutch animal ethical committee. C57Bl/6-CD45.1 (Ly5.1) and C57Bl/6-CD45.2 (Ly5.2) mice were obtained from the Jackson Laboratory. Mice carrying targeted mutations on Apc were previously described (Fodde et al., 1994; Robanus-Maandag et al., 2010; Smits et al., 1999) and continuously backcrossed to C57Bl/6 background.

Flow Cytometry

The following antibodies were obtained from BD Biosciences (San Diego, CA): anti CD11b-PE (M1/70), anti CD19-APC (ID3) and anti CD117 (2B6). For Lineage depletion these markers were used: CD3 (145-2C11), CD4 (L3T4), CD8 (53-6.7), CD11b (M1/70), Gr1 (RB6-8C5), B220 (Ra3-6B2), Ter119 (Ly76) and Nk1.1 (PK136) biotin and subsequently were stained with streptavidin eFluor 450 (48-4317) from eBioscience. The following antibodies were also purchased from eBiosiences: B220 PE-Cy7 (RA3-6B2), Gr1 eFluor 450 (RB6-8C5) and Sca1 PE-Cy7 (D7). Cells were stained in Fluorescence activated cell sorter (FACS) buffer (PBS, 2% bovine serum albumin, 0.1% sodium azide) for 30 min at 4 °C. Ultimately, Cells were washed and measured either on a Canto I, or an Aria (BD Biosciences). Data were analyzed using FlowJo software (Tree Star, Ashland, OR, USA).

Proliferation, apoptosis and differentiation assays

 5×104 sorted BM LSKs from APC WT and APC 15lox/15lox mice were transduced with titrated amount of CRE viruses in stemspan with FTS cytokines as previously described. For apoptosis assay harvested cells after 2 days (Day 0) or 5 days (Day 3) of culture, cells were stained with either 7AAD/AnnexinV (BD Bioscience), or PE-Active caspase-3 apoptosis kit (BD pharmingen) according to the manufacturer's instruction. For proliferation assay, cells were labelled with 5 uM Cell Proliferation Dye eFluor® 670 (eBioscience) at Day 0. Subsequently, cells were harvested at Day 3 and were assessed by flow cytometry for proliferation.

For differentiation assay 2 \times 104 BM LSKs were used and transduced cells at Day 0 were transferred onto confluent monolayers of OP9 WT and cocultured for additional 14 days with AlphaMEM 10% FCS containing 50 ng/ml rmSCF, 10 ng/ml rmFlt3L and 10 ng/ml rmIL-7 (all cytokines from R&D). After 7 days cells were harvested and transferred onto new monolayer of OP9 cells, and half of the medium were replaced every 3-4 days. Finally, after 14 days of coculture cells were harvested and assessed by flow cytometry for B and myeloid lineage differentiation.

Supplemental Figures

Suppl. Fig 1a: Validation of differential gene expression by Q-PCR. Sorted LSK cells were cultured and transduced with CRE-GFP as described in the supplemental experimental procedures. RNA was isolated and used for analysis by Q-PCR for the indicated Wnt target genes.

Suppl. Fig 1b: Biological processes associated with clusters 1 and 2. For details see text

Suppl. Fig 2: High Wnt signaling is associated with differentiation into monocytes and B lymphocytes based on published gene sets.

Suppl. Fig 3: No differences in apoptosis and cell cycle in high Wnt signature when compared to published gene sets.

Table S1			
Gene-set	Pathway	P _{BY} ≤0.05	Genes ANXA1.APCDD1.CCR9.CD160.CDC23.GPR34.IL2RB.MY05A.NTRK3.PDCD1.PLAGL1.PRSS23.PTP
All Curated gene sets	MATSUDA_NATURAL_KILLER_DIFFERENTIATION	6.58E-06	RE PVR SH3RGRI 2 SYTI 2 TCE7 TILL P3 YCL 1 7C3H12C
All Curated gene sets	PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_UP	0.0002209	ANTXR1,CD93,CLU,DCLK1,FN1,FSTL1,IL18,LAMC1,PLA2G4C,RAI14,TMEM163,TNS1 BEND5,CHST2,CLU,CRISPLD2,EPAS1,GPR155,ITGA2,PHLDA1,PLAGL1,PRSS23,RHOJ,ROBO1,TF
All Curated gene sets	LIU_PROSTATE_CANCER_DN	0.0002209	CP2L1.TMEM35.TNS1.WIF1.ZCCHC14
All Curated gene sets	ONDER_CDH1_TARGETS_2_DN	0.0002209	ALDH1A3,CD83,CDK5R1,EPAS1,FGD6,FST,GJB5,IGSF3,IL18,ITGA2,KLF5,PTPRF,ROBO1,TFCP2L1 ,THBD,TNFRSF25,TPD52L1
All Curated gene sets	DELYS_THYROID_CANCER_UP	0.0006965	ALDH1A3.ANXA1.CHST2.DPP4.ENTPD1.FN1.IGSF3.ITGA2.MED13.NRP2.NT5E.P4HA2.PRSS23.PT
All Curated gene sets	ST WNT BETA CATENIN PATHWAY	0.001009	PRF,S100A5,STX3 APC AXIN2 DKK2 FSTI 1 NKD1 WIF1
All Curated gene sets	SANA_TNF_SIGNALING_DN	0.001009	APC,AXIN2,DKK2,FSTL1,NKD1,WIF1 ANTXR1,ANXA1,CLU,EPAS1,GIMAP6,NT5E,PHLDA1,RHOJ
All Curated gene sets	GOZGIT_ESR1_TARGETS_DN	0.001305	ABHD2,CLU,DCLK1,FETUB,GFRA1,GPC4,MB21D2,MYO5A,PPAP2A,PRSS23,RASGRP1,RNF144B, SDK1,SH3BGRL2,SHROOM3,SIPA1L2,SYTL2,THBD,THSD4
All Curated gene sets	CUI_TCF21_TARGETS_2_UP	0.001305	ANTXR1,APCDD1,ARSB,BMP4,BMPER,CLU,DCLK1,EMID1,FN1,GAS2L3,HUNK,KLF5,LYPD6B,NKD 1,NRP2
All Curated gene sets	GAVIN_PDE3B_TARGETS	0.001305	1,NRP2 ENTPD1,IL18,LAMC1,NT5E,SYTL2 ADAM22,ANXA1,BMP4,BMPER,CRISPLD2,ELFN1,EMID1,FN1,FREM2,FST,FSTL1,GPC4,IL18,ISM1,
All Curated gene sets	NABA_MATRISOME	0.003449	ADAM22,ANXA1,BMP4,BMPER,CRISPLD2,ELFN1,EMID1,FN1,FREM2,FST,FSTL1,GPC4,IL18,ISM1, KY,LAMC1,P4HA2,S100A5,SCUBE3,THSD4,WIF1,XCL1
All Curated gene sets	KEGG_WNT_SIGNALING_PATHWAY	0.00359	APC,AXIN2,CAMK2D,DKR2,LEF1,NFATC2,NKD1,TCF7,WIF1 CAND2,CDC109B,FSTL1,L18,LYPD6B,PACSIN1,PRSS23,TNFRSF19
All Curated gene sets	CERVERA_SDHB_TARGETS_1_UP KINSEY TARGETS OF EWSR1 FLII FUSION DN	0.00359	CAND2,CCDC109B,FSTL1,IL18,LYPD6B,PACSIN1,PRSS23,TNFRSF19
All Curated gene sets All Curated gene sets	CHARAFE BREAST CANCER LUMINAL VS BASAL DN	0.005222	CAMK2D,DCLK1,DLC1,FAM63A,FN1,FSTL1,LAMC1,MB21D2,NT5E,PHLDA1,PRSS23,SIPA1L2 ADA.ALDH1A3.ANTXR1.ANXA1.CD14.FST.FSTL1.IL18.IL7R.KLF5.LAMC1.NT5E.PHLDA1.ZC3H12C
All Curated gene sets	RIGGI_EWING_SARCOMA_PROGENITOR_DN	0.003282	ABHD2.ALDH1A3.BACE1.BMP4.CLU.FST.NRP2.PHLDA1.TNFRSF19
All Curated gene sets All Curated gene sets	SANSOM WNT PATHWAY REQUIRE MYC	0.008652	AXIN2.LEF1.NKD1.TCF7.TNFRSF19.WIF1
	PASQUALUCCI_LYMPHOMA_BY_GC_STAGE_UP	0.008714	ADA,ANTXR1,ENTPD1,IRF4,NUDT4,OSBPL1A,PHLDA1,PVR,SH3BGRL2,SHROOM3,TULP3 AXIN2,CD14,CHST2,EFHD1,EXTL3,FAM63A,GFRA1,GPC4,IL2RB,KIF5C,LEF1,MYO5A,PDCD1,STX3
All Curated gene sets	BYSTRYKH_HEMATOPOIESIS_STEM_CELL_QTL_TRANS	0.008714	SULTIAI,TEK,TFCP21,THBD,TULP3,XCL1 ARHGAP28,ARSB,BMP4,BMPER,FST,GPC4,IL18,NT5E,TEK
All Curated gene sets All Curated gene sets	GAUSSMANN_MLL_AF4_FUSION_TARGETS_F_UP GAVIN FOXP3 TARGETS CLUSTER P4	0.009692 0.01055	ARHGAP28,ARSB,BMP4,BMPER,FST,GPC4,IL18,NT5E,TEK CCDC109B,CD83,EPAS1,IL2RB,LYPD6B,PLAGL1.SH3BGRL2
All Curated gene sets	KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION	0.01033	CCR2 CCR9 FDAR II 17RB II 18 II 2RB II 7R TNERSE19 TNERSE25 XCI 1
All Curated gene sets	DODD_NASOPHARYNGEAL_CARCINOMA_UP	0.01525	ABHD2,ALDH1A3,ANXA1,APCDD1,ATP13A4,BACE1,BDH1,BEND5,CAND2,CLU,EDAR,EPAS1,FAM 63A,FMN1,IL18,KLF5,LYPD6B,PRKAA2,PRSS23,SH3BGRL2,SMPD3,SNX31,SYTL2,TNFRSF19,TNS 1,TUBB3
All Curated gene sets	CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_1	0.01646	BMPER,CCDC101,CRISPLD2,DLC1,EFHD1,FREM2,GFRA1,ITGA2,MB21D2,MYO5A,PRSS23,SYTL2, THSD4 TPD52L1
All Curated gene sets	SMID BREAST CANCER NORMAL LIKE UP	0.01763	CCR2.CD3G.CLU.DPP4.GIMAP6.IL7R.LEF1.NT5E.SNCAIP.THBD.TNFRSF25.WIF1.XCL1
All Curated gene sets All Curated gene sets	SMIRNOV_CIRCULATING_ENDOTHELIOCYTES_IN_CANCER_UP WALLACE_PROSTATE_CANCER_RACE_UP	0.01851 0.01852	B4GALT5,CD14,CD93,CLU,EPAS1,PRSS23,THBD,TNS1 CCDC109B,CD83,CD93,CLU,DLC1,GIMAP6,IL7R,RASGRP1,THBD,TMEM35
All Curated gene sets		0.02286	CARD11,CCR2,CD3G,CLU,DPP4,IL17RB,IL18,IL2RB,TUBB3,XCL1
All Curated gene sets	AMIT_EGF_RESPONSE_480_HELA	0.02337	ABHD2,DCLK1,FST,ITGA2,NUDT4,PTPRF,PVR,TUBB3 ADAM22,ANXA1,BMP4,ELFN1,FREM2,FST,FSTL1,GPC4,IL18,ISM1,KY,P4HA2,S100A5,SCUBE3,WI
All Curated gene sets	NABA_MATRISOME_ASSOCIATED	0.03018	F1.XCL1
All Curated gene sets	REACTOME_IMMUNE_SYSTEM	0.03141	BTLA, CAMK2D, CARD11, CCR2, CD14, CD160, CD3G, CDC23, IL18, IL2RB, IL7R, IRF4, OSBPL1A, PDCD1, PVR, RAP1GAP2, RASGRP1, RNF144B
All Curated gene sets	FULCHER_INFLAMMATORY_RESPONSE_LECTIN_VS_LPS_UP	0.03141	ABHD2,CD93,CHST2,FN1,IL7R,IRF4,MB21D2,MYO5A,NRIP3,P4HA2,PHLDA1,RAI14,RASGRP1,THB
All Curated gene sets	SCHAFFER PROSTATE DEVELOPMENT 48HR UP	0.03313	ALDH1A3,ANXA1,BDH1,CLU,CRISPLD2,EDARADD,GPR155,NT5E,PPFIBP2,SULT1A1,TFCP2L1,TP
All Curated gene sets	KIM MYC AMPLIFICATION TARGETS DN	0.03313	D52L1,WIF1 DCLK1 GAS2L3 II 17RB KLF5 NEATC2 SHROOM3
All Curated gene sets	LIM_MAMMARY_STEM_CELL_UP KEGG_BASAL_CELL_CARCINOMA	0.04392	ANTXR1,EDARADD,EPAS1,FST,ISM1,LAMC1,NRP2,NT5E,PPAP2A,RHOJ,THSD1,TNS1,WIF1
All Curated gene sets All Curated gene sets	KEGG_BASAL_CELL_CARCINOMA	0.04862 0.04862	APC,AXIN2,BMP4,LEF1,TCF7 ANTXR1,CD14,CLU,ENTPD1,EPAS1,GPR34,IL7R,TMEM163
All Curated gene sets	TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_8D_DN LINDGREN_BLADDER_CANCER_CLUSTER_2B	0.0488	CRISPI D2 FEHD1 ENTRO1 II 78 LEE1 MYO5A NRP2 TRC108 TCE7 THRD TNS1
All Curated gene sets	NUYTTEN_EZH2_TARGETS_UP	0.0488	CRISPLD2,EFHD1,ENTPD1,ILTR,LEF1,MY05A,NRP2,TBC1D8,TCF7,THBD,TNS1 ANXA1,AXIN2,B4GALT5,BACE1,CDC109B,D083,FGD6,FN1,GPR155,NT5E,P4HA2,PLAGL1,PRRG 1) PIPRF ROBOL STX3 TCF7 THSD1 7/23H19/2
All Curated gene sets All Curated gene sets	NUYTTEN_EZH2_TARGETS_UP SCHAEFFER_PROSTATE_DEVELOPMENT_48HR_DN	0.0488 0.0488	1,PTPRF,ROBO1,STX3,TCF7,THSD1,ZC3H12C ANTXR1,CD83,CHDH,DKK2,GAS2L3,HUNK,LYPD6B,NRP2,P4HA2,PRTG,RHOJ,SIPA1L2
			1,PTPRF,ROBO1,STX3,TCF7,THSD1,ZC3H12C
All Curated gene sets	SCHAEFFER_PROSTATE_DEVELOPMENT_48HR_DN	0.0488	1,PTPRF,ROBO1,STX3,TGF7,THSD1,ZCSH2C ATTXR1.CDS8,CDHD,DKX2,GASZI,3.HUNK_LYPD6B,NPD2,P4HA2,PRTG,RHOJ,SIPA1L2 ADA,CCR2,CCR9,CD14,CD3G,CD83,CDK5R1,CLU,DPP4,ENTPD1,FN1,IL18,IL2RB,IL7R,P4HA2,PDC D1,XCL1 ADA,CCR2,CCR9,CD14,CD3G,CD83,CDK5R1,CLU,DPP4,FN1,IL18,IL2RB,IL7R,P4HA2,PDCD1,TEK,
All Curated gene sets Computational gene sets Computational gene sets	SCHAEFFER PROSTATE_DEVELOPMENT_48HR_DN MODULE_46 MODULE_75	0.0488 2.83E-06 2.83E-06	1.PTPBR-ROBO1.5TA3,TCF.7THSD1.2CSH12C ADACCRET.ROBO1.5TA3,TCF.7THSD1.2CSH12C ADACCRET.CGR.CGR.CGR.CGR.CGR.CGR.CGR.CGR.CGR.CGR
All Curated gene sets Computational gene sets	SCHAEFFER_PROSTATE_DEVELOPMENT_48HR_DN MODULE_46	0.0488 2.83E-06	1,PTBER FOBOL 15TA3,TGF 7,THSD1 ZCSH12C ADA CCRE ZCGR 2GC 15TA 2GC 14TA 2GC 14TA 2GC 15TA 2G
All Curated gene sets Computational gene sets Computational gene sets	SCHAEFFER PROSTATE_DEVELOPMENT_48HR_DN MODULE_46 MODULE_75	0.0488 2.83E-06 2.83E-06	ILPITER FORBOLISTAS, ICET, THISDI ZCSHILIZE ANTARIC COBS. CONDID MOXIC, GASCI SILIMIC, LYPOEB NRP2. P4HA2. PRTG. RHOJ. SIPA ILIZ ADA. CORZ. CORS. COTHA. CDSS. CDBS. CDRSS. ICELLU. DIPPA. ENTROTI, FINI. ILIS. ILZRIB. LITR. P4HA2. PDC ADA. CCRZ. CORS. CDI. CDSS. CDBS. CDRSS. ICELLU. DIPPA. FINI. ILIS. LEZR. BLITZ. P4HA2. PDC D1. TEK. XCLI ACTIVA. PAGE SACEL CACNAMIS. CACNAMID. CARDITI. CORS. CORS. CDBS. CDC. SLIC. ENTROTI, GROVE A. GRIPSIA. LITRB. LIZBIS. ITGAS. NITRS. PRICEI, PTPRER. RDBD. LISHICOMIS. STALS. STALS. TEK. TEB. A. GRIPSIA. LITRB. LIZBIS. ITGAS. NITRS. PRICEI, PTPRER. RDBD. LISHICOMIS. STALS. STALS. TEK. A. GRIPTIC LICENAMIS. CACNAMIS. CACNAMID. CARDITI. CORS. CORS. CDMS. GROVE. GROVE. CORS. CDMS. GROVE. A. GRIPTIO. LIPCA. GRIPTIA. GRIPTIA. GRADITI. CRES. TO CASC. CORS. CDMS. GROVE. CORS. CDMS. GROVE. A. GRIPTIO. LIPCA. GRIPTIA. GRIPTIA. GRADITI. CRES. TO CASC. CORS. CDMS. GROVE. CORS. CDMS. GROVE. A. GRIPTIO. LIPCA. GRIPTIA. GRIPTIA. GRADITI. CRES. TO CASC. CORS. CDMS. GROVE. CORS. CDMS. GROVE. A. GRIPTIO. LIPCA. GRIPTIA. GRIPTIA. GRADITI. CRES. CDMS.
All Curated gene sets Computational gene sets Computational gene sets Gene ontology (GO)	SCHAEFER PROSTATE_DEVELOPMENT_46HR_DN MODULE_46 MODULE_75 PLASMA_MEMBRANE_PART	0.0488 2.83E-06 2.83E-06 0.000438	1,PTPRF, ROBOL 5T/S, 1CPT, 71:B01 ZCSH12C ADA CCR2 CCR8 CD14 (DD3C, CD821; LUINCLYPDEB NRP2, P4HA2 PRTG, RHOJ SIPA1L2 ADA CCR2 CCR8 CD14 (DD3G, CD83; CDKSR1, CULJ DPP4, ENTPD1; FN1, L18, L12RB, L17R, P4HA2 PDC) 1XCL1 ADA CCR2 CCR8 (DD14 (DD3G, CD83, CDKSR1, CULJ DPP4, ENTPD1; FN1, L18, L12RB, L17R, P4HA2 PDC), TEK, KSL1 ACTIN2 APP, BACE 1, CACNA1B, CACNA1D, CARD11, CCR2, CCR9, CD166, CD83, DCLK1, ENTPD1, GPC ACPIRAL L17RB, L278B, L1GA2, NTRK2, PRRG1 PTPRF, ROBO1, SHROOMS, STXS, SYTL2, TEK, THBD. T NERSEZ ENTPO1, DRC ACRES 1, CACNA1B, CACNA1D, CARD11, CCR2, CCR9, CD14, CD180, CD83, CDKSR1, DCLK ENTPO1, DRC ACRES 1, CACNA1B, CACNA1D, CARD11, CCR2, CCR9, CD14, CD180, CD83, CDKSR1, DCLK ENTPO1, DRC ACRES 1, CACNA1B, CACNA1D, CARD11, CCR2, CCR9, CD14, CD180, CD83, CDKSR1, DCLK ENTPO1, DRC ACRES 1, CACNA1B, CACNA1D, CARD11, CCR2, CCR9, CD14, CD180, CD83, CDK4, ENTPO 1, GPC ACRES 1, CACNA1B, CACNA1D, CARD11, CCR2, CCR9, CD14, CD180, CD83, CDK4, ENTPO 1, GPC A, GPR34, L17RB, L278B, LTGA2, NTRX, PPAPAP, PRRG1, PTPRF, ROBO1, SHROOMS, STXS, SYTL 2, TEK, THBO, LTRRS, L278B, LTGA2, NTRK3, PPAPAP, APRRG1, PTPRF, ROBO1, SHROOMS, STXS, SYTL 2, TEK, THBO, LTRRS, L278B, LTGA2, NTRK3, PPAPAP, APRRG1, PTPRF, ROBO1, SHROOMS, STXS, SYTL 2, TEK, THBO, LTRRS, L278B, LTGA2, NTRK3, PPAPAP, APRRG1, PTPRF, ROBO1, SHROOMS, STXS, SYTL 2, TEK, THBO, LTRRS, L278B, LTGA2, NTRK3, PPAPAP, APRRG1, PTPRF, ROBO1, SHROOMS, STXS, SYTL 2, TEK, THBO, LTRRS, L278B, LTGA2, NTRK3, PPAPAP, APRRG1, PTPRF, ROBO1, SHROOMS, STXS, SYTL 2, TEK, THBO, LTRRS, L278B, LTGA2, NTRK3, PPAPAP, APRRG1, PTPRF, ROBO1, SHROOMS, STXS, SYTL 2, TEK, THBO, LTRRS, L278B, LTGA2, NTRK3, PPAPAP, APRRG1, PTPRF, ROBO1, SHROOMS, STXS, SYTL 2, TEK, THBO, LTRRS, L278B, LTGA2, NTRK3, PPAPAP, APRRG1, PTPRF, ROBO1, SHROOMS, STXS, SYTL 2, TEK, THBO, LTRRS, L278B, LTGA2, NTRK3, PPAPAP, APRRG1, PTPRF, ROBO1, SHROOMS, STXS, SYTL 2, TEK, THBO, LTRRS, L278B, LTGA2, NTRK3, PPAPAPAPA, PRRG1, PTPRF, ROBO1, SHROOMS, STXS, SYTL 2, TEK, THBO, LTRRS, L278B, LTGA2, NTRK3, PPAPAP
All Curated gene sets Computational gene sets Computational gene sets Gene ontology (GO) Gene ontology (GO)	SCHAEFFER PROSTATE_DEVELOPMENT_46HR_DN MODULE_46 MODULE_75 PLASMA_MEMBRANE_PART MEMBRANE	0.0488 2.83E-06 2.83E-06 0.000438 0.0006684	1,PTPER FO8D 1.5TA3,TCF.7THSD1.ZCSH12C ADACCER CORR CORRECT C
All Curated gene sets Computational gene sets Computational gene sets Gene ontology (GO) Gene ontology (GO) Gene ontology (GO)	SCHAEFFER PROSTATE_DEVELOPMENT_48HR_DN MODULE_46 MODULE_75 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE MEMBRANE MEMBRANE_PART SIGNAL_TRANSDUCTION	0.0488 2.83E-06 2.83E-06 0.000438 0.0006684 0.0007698 0.001722	1, PIPER FO8D 1.5T/3, ICP.7, THISD 1.2C3-H12C ADA CORP. COR
All Curated gene sets Computational gene sets Computational gene sets Gene ontology (GO) Gene ontology (GO) Gene ontology (GO) Gene ontology (GO)	SCHAEFER PROSTATE_DEVELOPMENT_48HR_DN MODULE_46 MODULE_76 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE MEMBRANE MEMBRAN	0.0488 2.83E-06 2.83E-06 0.000438 0.0006684 0.0007698 0.001722 0.007247 0.01613	ILPITER FORBOLISTAS, ICET, THISDI ZCSHILGZ ANTARIC COSS LOUD MONG CASS LINKS, LYPICE STREET, PRIVALE PRICE RHOU SIPA ILL ADA CORZ. CORS. COHA, COSS, COSS, CONSST, CLUDIPPIA, ENTROTIF IN ILL. ISL. ZERB. LITZ. PRIVALE PLAN ADA CCRZ. CORS. COHA, COSS, COSS, CONSST, CLUDIPPIA, ENTROTIF IN ILL. ISL. ZERB. LITZ. PHANAZ PDCO. TEK. KCLI ACTIVAZPO. BACE I. CACNAI B. CACNAI D. CARD III. CRE. ZCORS, COTA, BOOK, COSS, SOLKI, ENTROI J. GREY ACTIVAZPO. BACE I. CACNAI B. CACNAI D. CARD III. CRE. ZCORS, COTA, BOOK, SOLKI, ENTROI J. GREY ACTIVAZPO. BACE I. CACNAI B. CACNAI D. CARD III. CRE. ZCORS, COTA, BOOK, DOS. COSS, COSS, COST, COST, COST, COST, COSS, COST,
All Curated gene sets Computational gene sets Computational gene sets Gene ontology (GO)	SCHAEFFER PROSTATE_DEVELOPMENT_48HR_DN MODULE_46 MODULE_75 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE MEMBRANE MEMBRANE_PART SIGNAL_TRANSDUCTION	0.0488 2.83E-06 2.83E-06 0.000438 0.0006684 0.0007698 0.001722	ILPITER FORBOLISTAS, ICET, THISDI ZCSHILGE ANTART COBS JOHN DINGS (ASSIS) HUNCLY PDEB NRP2. PHA2. PRTG RHOJ SIPA IL2 ADA CORZ CORS, COTHA CODS COBS. CORS. CONSTRUCTION FINE ILST BLLZRE LLTR. PHA2. PDC DACID COLOR. ACCES. COCRES. COTHA CODS COBS. CORS. COLOR PHASE ENTROP IT SHILL IS LLZRE LLTR. PHA2. PDC DACID ACTIVA POE BACET CACNAHIS, CACNAHIO, CARDITI CORS. COERS. COLOR SO CUST. ENTROPI GPC 4. AGPRISA, ILTRBE LIZBS, ITGAZ, NTRKAS, PRRGS IPTERE ROBOLISH ROOMS, STAS, SYTUZ. TEK. THIBD. T NRESP25 ACTIVA POE ACCEST LACANAHIS, CACNAHIO, CARDITI CORS. COERS. COLOR COBS. COLOR SO COSS. COSS. COLOR SO COSS. COS
Al Curated gene sets Computational gene sets Computational gene sets Gene ontology (GO)	SCHAEFER PROSTATE_DEVELOPMENT_48HR_DN MODULE_46 MODULE_46 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE MEMBRANE MEMBRANE MEMBRANE MEMBRANE_PART SIGNAL_TRANSDUCTION RESPONSE_TO_EXTERNAL_STIMULUS RECEPTOR_ACTIVITY HALLMARK_ESTROGEN_RESPONSE_EARLY	0.0488 2.83E-06 2.83E-06 0.000438 0.0006684 0.0007698 0.001722 0.007247 0.01613 0.00613	ILPIPER FOBOLISTAS, ICET, THISDI ZCSHILGZ ANTARI COBS J. COND. DIXCG. SALES, LUNC, LYPOS B. NRP2, PHA2, PRTG. RHOJ. SIPA 1L2 ADA. CORE, CORE, CORE, CODIA, COSG. COBS, CORS, COLLU, DPPA, ENTPOT, LTH 1L. ILLZRB. LLTP. RHA2, PDC DIX. CLI ADA. CORE, CORE, CODIA, COSG. COBS, CORS, COLLU, DPPA, ENTPOT, LTH 1L. ILLZRB. LLTP. RHA2, PDC DIX. CLI ADA. CORE, CORE, CORNAIS, CACNASTO, CASDIS, ICEC, COSB, CD186, CD83, DCLK, ENTPOT, GPC 4, GPR34, L175B, L28B, LTGA2, NTRAS, PRRG I, PTPRF, POBOL, SHROOMS, STX, SYTLZ, TEK, THBD, T. NRSF25 ACTN2, APC, BACEL, CACNAS, CACNASTO, CARDIS, CORE, CD14, CD146, CD35, DC148, ENTPOT, GPC ACTN2, APC, BACEL, CACNAS, CACNASTO, CARDIS, CD46, CD46, CD46, CD47, C
As Curated gene sets Computational gene sets Computational gene sets Camputational gene sets Gene ontology (GO)	SCHAEFER PROSTATE_DEVELOPMENT_48HR_DN MODULE_46 MODULE_47 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE MEMBRANE MEMBR	0.0488 2.83E-06 2.83E-06 0.000438 0.0006684 0.0007247 0.01613 0.006397 0.006397	ILPITER FORBOLISTAS, ICET, THISDI ZCSHI12C. ADA CORP. CORP. COPIA CONTROL THE
As Curated gene sets Computational gene sets Computational gene sets Gene ontology (GC) Hallmark gene sets Hallmark gene sets Hallmark gene sets	SCHAEFER PROSTATE_DEVELOPMENT_48HR_DN MODULE_46 MODULE_47 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE MEMBRANE MEMBR	0.0488 2.83E-06 2.83E-06 0.000438 0.0007698 0.001722 0.007247 0.01613 0.01613 0.004103 0.006397 0.006397	ILPITER FROBOLISTAS, ICET, THISDI, ZCSHILGZ ANTART, COSS, OLION DIANG, CASS, 14, LINK, LYPGES, NRP2, P4HA2, PRTG, RHOJ, SIPA IL2 ADA, CORP. CO
As Curated gene sets Computational gene sets Computational gene sets Gene ontology (GO) Hallmark gene sets	SCHAEFER PROSTATE_DEVELOPMENT_48HR_DN MODULE_46 MODULE_46 MODULE_75 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE PLASMA_MEMBRANE MEMBRANE	0.0488 2.83E-06 2.83E-06 0.000438 0.0006684 0.0007247 0.01613 0.006397 0.006397	ILPITER FORBOLISTAS, ICET, THISDI ZCSHILGZ ANTARIC COBS LOUD HOXC, GASS LINKE, VEPDES NRP2 PHIA2 PRTG RHOJ SIPA IL2 ADA CORZ CORROLD HOXC, GASS LINKE, VEPDES NRP2 PHIA2 PRTG RHOJ SIPA IL2 ADA CORZ CORROLD COSS, COBS, CORS ICE, LUDPPA, ENTPOTIFR ILTIS, LIZBBLITZ, PAHA2 PDC ADA CCR2 CORROLD COSS, COBS, COSS, COSS, COLLUPPA, ENTPOTIFR ILTIS, LIZBBLITZ, PHIA2 PDC AOTE ADA CORZ CORROLD COSS,
As Curated gene sets Computational gene sets Computational gene sets Gene ontology (GO) Hallmark gene sets	SCHAEFER PROSTATE DEVELOPMENT, 46HR, DN MODULE, 46 MODULE, 46 MODULE, 47 MODULE, 47 MEMBRANE PLASMA_MEMBRANE, PART MEMBRANE PLASMA_MEMBRANE MEMBRANE MEMBRAN	0.0488 2.83E-06 2.83E-06 0.000438 0.0006684 0.0007698 0.001722 0.007247 0.01613 0.006397 0.006397 0.00103	ILPITER FROBOLISTAS, ICET, THISDI ZCSHILIZE ANTARIC COSS JOHO DIANG, GASS JUMIC LIMING LYPOSE NRP2. P4HA2. PRTG. RHOJ. SIPA 11.2 ADA CORZ. CORS. COTHA COSS, CORS. CONSIGNED, LUD DPP4. ENTPOT JETH ILISIA. LEZRE LLTR. PHHA2. PDC ADA CORZ. CORS. COTHA, COSS, CORS. CONSIGN. LUD DPP4. ENTPOT JETH ILISIA. LEZRE LLTR. PHHA2. PDC ADA CORZ. CORS. COTHA, COSS, COSS, CONSIGN. LOCARD LOCARD LATER, LLTR. BL. LEZRE LLTR. PHHA2. PDC AGNERAL LLTR. BL. LEZRE JTGAZ. NTRK. S. PRICE, JETPER F. ROBOL SHROOMS, STALS, STALZ. TEK. THEO. T. KRESZS AND LLTR. LEZRE JTGAZ. NTRK. S. PRICE, JETPER F. ROBOL SHROOMS, STALS, STALZ. TEK. THEO. T. KRESZS AND LATER LLTR. BL. LEZRE JTGAZ. NTRK. S. PRICE, COSS, DOTHA GO HER COSS, CONSIGN. LATER LLTR. BL. LEZRE L
As Curated gene sets Computational gene sets Computational gene sets Gene ontology (GC) Hallmark gene sets	SCHAEFFER PROSTATE DEVELOPMENT, 48HR, DN MODULE, 46 MODULE, 47 MODULE, 47 MODULE, 47 MODULE, 48 MODULE, 47 MEMBRANE, PART MEMBRANE, PART MEMBRANE PLASMA_MEMBRANE, PART MEMBRANE PLASMA_MEMBRANE MEMBRANE	0.0488 2.83E-06 0.000438 0.0006684 0.001722 0.007247 0.01613 0.01613 0.06639 0.004103 0.006397 0.006397 0.006397 0.006397 0.006397 0.001054 0.001054	ILPIDER FORBOLISTAS, ICET, THISDI, ZCSHILGZ ADA CORP.
As Curated gene sets Computational gene sets Computational gene sets Computational gene sets Gene ontology (GO) Hallmark gene sets	SCHAEFFER PROSTATE DEVELOPMENT, 48HR, DN MODULE, 46 MODULE, 47 MODULE, 47 MODULE, 47 MODULE, 48 MODULE, 47 MEMBRANE, PART MEMBRANE, PART MEMBRANE PLASMA_MEMBRANE, PART MEMBRANE PLASMA_MEMBRANE MEMBRANE	0.0488 2.83E-06 0.000438 0.0006684 0.0007698 0.001722 0.0017247 0.01613 0.001613 0.00163 0.0010307 0.006397 0.006397 0.006397 0.0163 0.001054 0.001054 0.001054 0.001054	ILPITER FORBOLISTAS, ICET, THISDI ZCSHILIZE ANTARIC COBS LOUD MONG CASS LA HUNC LYPIGE NRP2 PAHA2 PRTG RHOJ SIPATLIZ ADA CORZ CORRO COMA CODS, COBS, CORS, CONSTRUCTION PROFESSION FOR LINE LINE LINE LINE PAHA2 PDC ADA CORZ CORRO COMA CODS, COBS, CORS, CONSTRUCTION FINE LINE LINE LINE PAHA2 PDC ON THE ACTIVATION OF A CORRO CORRO COMBO, CORRO
As Curated gene sets Computational gene sets Computational gene sets Gene ontology (GO) Hallmark gene sets	SCHAEFER PROSTATE DEVELOPMENT, 48HR, DN MODULE, 46 MODULE, 46 MODULE, 47 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE PLASMA_MEMBRANE MEMBRANE MEM	0.0488 2.83E-06 0.000438 0.0006684 0.0007698 0.001722 0.007247 0.01613 0.004103 0.006397 0.006397 0.006397 0.01054 0.001054 0.001054 0.001054 0.001054 0.001054 0.001054 0.001054 0.001054 0.001054 0.001054 0.001054 0.001054 0.001054	ILPITER FORBOLISTAS, ICET, THISDI ZCSHILIZE ANTARIC COBS LOUND LONG, CASS LINKE, VEPOGE NRP2 P4HA2 PRTG RHOJ SIPATLIZ ADA CORZ CORRO, COTA CODS, COBS. CORSON, COLL DEPPA ENTROTIFM ILES LIZEBLE IN PAHA2 PDC ADA CORZ CORS, COTA CODS, COBS. CORSON, COLL DEPPA ENTROTIFM ILES LIZEBLE PAHA2 PDC OT, TEX. XCL1 ACTIVATED, CORRO, COLLA CODS, COBS. CORSON, COLL DEPPA ENTROTIFM ILES BLEER, LIZEBLE PAHA2 PDC OT, TEX. XCL1 ACTIVATED, CORRO, COLLA CODE, CORSON, CORSON, CORSON, COLLA CENTROT, GREEN, CORRO, CORSON, COLLA CENTROT, GREEN, CORRO, CORSON, CORSON, CORSON, CORRO, CORRO, CORSON, CORRO, CORR
As Curated gene sets Computational gene sets Computational gene sets Cene ontology (GO) Gene ontology (GO) Hallmark gene sets	SCHAEFER PROSTATE_DEVELOPMENT_48HR_DN MODULE_46 MODULE_46 MODULE_47 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE PLASMA_MEMBRANE MEMBRANE MEMBRAN	0.0488 2.83E-06 0.000438 0.000684 0.0007698 0.001722 0.007247 0.01613 0.004103 0.006397 0.006397 0.006397 0.01094 0.001094 0.001094 0.001094 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344	ILPITER FORBOLISTAS, ICET, THISDI ZCISHIZE ADA CORP. CORP. CONT.
Al Curated gene sets Computational gene sets Computational gene sets Computational gene sets Gene ontology (GO) Gene ontology (SCHAEFER PROSTATE DEVELOPMENT, 48HR, DN MODULE, 46 MODULE, 45 PLASMA, MEMBRANE, PART MEMBRANE PLASMA, MEMBRANE PLASMA, MEMBRANE M	0.0488 2.83E-06 2.83E-06 0.000438 0.0006684 0.0007698 0.001722 0.007247 0.01613 0.006397 0.006397 0.006397 0.006397 0.001054 0.001054 0.001054 0.003444 0.003344 0.003344 0.003344 0.003343 0.003343 0.003343 0.003343 0.003343 0.003343 0.003343 0.003343 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344 0.003344 0.003346 0.00340 0.0	ILPITER FORBOLISTAS, ICET, THISDI ZCSHILIZE ADA CORE, CORE, COTHA CORS, CORS, CORS, CORS, CORE, CORP. ADA CORE, CORE, COHA, COSS, CORS, CORS, CORS, CORS, CORP. ADA CORE, CORE, COHA, COSS, CORS, CORS
Al Curated gene sets Computational gene sets Computational gene sets Gene ontology (GO) G	SCHAEFER PROSTATE_DEVELOPMENT_48HR_DN MODULE_46 MODULE_46 MODULE_46 PLASMA_MEMBRANE_PART PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE MEMBRANE PLASMA_MEMBRANE MEMBRANE_PART SIGNAL_TRANSDUCTION RESPONSE_TO_EXTERNAL_STIMULUS RECEPTOR_ACTIVITY HALLMARK_STRANSGOR_RESPONSE_EARLY HALLMARK_CANTOGEN_RESPONSE_EARLY HALLMARK_CANTOGEN_RESPONSE_EARLY HALLMARK_CANTOGEN_RESPONSE_MARLY HALLMARK_CANTOGEN_RESPONSE_MARLY HALLMARK_CANTOGEN_RESPONSE_MARLY MALLMARK_CANTOGEN_RESPONSE_MARLY MALLMARK_CANTOGEN_RESPONSE HALLMARK_CANTOGEN_RESPONSE MALLMARK_CANTOGEN_RESPONSE MALLMARK_CANTOGEN_RESPONSE MALLMARK_CANTOGEN_RESPONSE MALLMARK_CANTOGEN_RESPONSE MALLMARK_CANTOGEN_RESPONSE MEMORY VS_SECONARY CHRONIC_LOM_INF_COB_TOGEN_ GESENBEZ_PRIMARY VS_SECONARY CHRONIC_COM_INF_COB_TOGEN_ GESENBEZ_PRIMARY VS_SECONARY CHRONIC_LOM_INF_COB_TOGEN_ GESENBEZ_PRIMARY VS_SECONARY CHRONIC_COM_INF_TOR_TOME_ GESENBEZ_PRIMARY VS_SECONARY CHRONIC_COM_INF_TOME_ GESTARD_TOME_TOME_ GESTARD_TOME_TOME_TOME_ GESTARD_TOME_TOME_TOME_TOME_ GESTARD_TOME_TOME_TOME_TOME_TOME_TOME_TOME_TOME	0.0488 2.83E-06 2.83E-06 0.000438 0.000684 0.0007698 0.001722 0.007247 0.01613 0.00613 0.006397 0.0063	ILPITER FORBOLISTAS, ICET, THISDI ZCSHILIZE ANTARIC COBS LOUND LONG ZGAST JUMIC LYPGES NRP2 P4HA2 PRTG RHOJ SIPATLIZ ADA CORZ CORG, COTHA COSS, COBS. CONSCRICTUD DPP4 ENTPOLIFATILISIA LIZRIBLIZE, PAHA2 PDC ADA CORZ CORG, COTHA COSS, COBS. CONSCRICTUD DPP4 ENTPOLIFATILISIA LIZRIBLIZE, PAHA2 PDC OT, TEX. NCL 1 ACTIVAL PAHA2 PDC CORG. COST, CO
Al Curated gene sets Computational gene sets Computational gene sets Camputational gene Camputati	SCHAEFER PROSTATE_DEVELOPMENT_48HR_DN MODULE_46 MODULE_46 MODULE_46 PLASMA_MEMBRANE_PART PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE MEMBRANE PLASMA_MEMBRANE MEMBRANE_PART SIGNAL_TRANSDUCTION RESPONSE_TO_EXTERNAL_STIMULUS RECEPTOR_ACTIVITY HALLMARK_STRANSGOR_RESPONSE_EARLY HALLMARK_CANTOGEN_RESPONSE_EARLY HALLMARK_CANTOGEN_RESPONSE_EARLY HALLMARK_CANTOGEN_RESPONSE_MARLY HALLMARK_CANTOGEN_RESPONSE_MARLY HALLMARK_CANTOGEN_RESPONSE_MARLY MALLMARK_CANTOGEN_RESPONSE_MARLY MALLMARK_CANTOGEN_RESPONSE HALLMARK_CANTOGEN_RESPONSE MALLMARK_CANTOGEN_RESPONSE MALLMARK_CANTOGEN_RESPONSE MALLMARK_CANTOGEN_RESPONSE MALLMARK_CANTOGEN_RESPONSE MALLMARK_CANTOGEN_RESPONSE MEMORY VS_SECONARY CHRONIC_LOM_INF_COB_TOGEN_ GESENBEZ_PRIMARY VS_SECONARY CHRONIC_COM_INF_COB_TOGEN_ GESENBEZ_PRIMARY VS_SECONARY CHRONIC_LOM_INF_COB_TOGEN_ GESENBEZ_PRIMARY VS_SECONARY CHRONIC_COM_INF_TOR_TOME_ GESENBEZ_PRIMARY VS_SECONARY CHRONIC_COM_INF_TOME_ GESTARD_TOME_TOME_ GESTARD_TOME_TOME_TOME_ GESTARD_TOME_TOME_TOME_TOME_ GESTARD_TOME_TOME_TOME_TOME_TOME_TOME_TOME_TOME	0.0488 2.83E-06 2.83E-06 0.000438 0.0006684 0.001722 0.007247 0.01613 0.001693 0.001693 0.006397 0.006397 0.006397 0.006397 0.006397 0.001054 0.001055 0.001055 0.001055 0.001055 0.001055 0.001055 0.001055 0.001055	ILPITER FORBOLISTAS, ICET, THISDI ZCISHIZE ADA CORP. CORP. CONT.
Al Curated gene sets Computational gene sets Computational gene sets Computational gene sets Gene ontology (GO) Hallmark, gene sets Hallmark gene	SCHAEFER PROSTATE DEVELOPMENT, 48HR, DN MODULE, 46 MODULE, 46 MODULE, 47 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE PLASMA_MEMBRANE MEMBRANE ME	0.0488 2.83E-06 2.83E-06 0.000438 0.0006684 0.0007698 0.001722 0.007247 0.01613 0.004103 0.006397 0.006397 0.006397 0.006397 0.01636 0.001054 0.001054 0.001054 0.001054 0.001055 0.00105	ILPITER FORBOLISTAS, ICET, THISDI ZCSHILIZO AND RETURN FORBOLISTAS, ICET, THISDI ZCSHILIZO ADA CORE, CORRIGORIO ADOS, CORS, CONSCIDULD PPA, ENTROTISTA ILEGISLATE, PRIHAZ POR ADA CORE, CORRIGORIO ADOS, CORS, CONSCIDULD PPA, ENTROTISTA ILEGISLATE, PRIHAZ POR ADA CORE, CORRIGORIO ADOS, CORS, CORS, COLUD PPA, ENTROTISTA ILEGISLATE, PRIHAZ POR ACTIVAZAPO, BAGELICACNA ILEGISLATE, CORS, CORS, COLUD PPA, ENTROTISTA ILEGISLATE, PRIHAZ POR ACTIVAZAPO, BAGELICACNA ILEGISLATE, PRIHAZ P
As Curated gene sets Computational gene sets Computational gene sets Cene ontology (GO) Gene ontology (GO) Hallmark gene sets H	SCHAEFER PROSTATE DEVELOPMENT, 48HR, DN MODULE, 46 MODULE, 46 MODULE, 47 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE PLASMA_MEMBRANE MEMBRANE ME	0.0488 2.85E-06 2.85E-06 0.000438 0.0006884 0.0007698 0.001722 0.007247 0.01613 0.006897 0.006897 0.006897 0.001054 0.0005897 0.01007696 0.000597 0.0010760	ILPIDER FORBOLISTAS, ICET, THISDI ZCSHILGZ ADA CORE, CORR, COTH, CODS, CORS, CORS, CONS, CORP, CAPIA, PERTOR FIND, SIPA ILL ADA CORE, CORR, COTH, CODS, CORS, CORS, CONS, COLLUD, DPP4, ENTPOT, FINI, ILTS, ILLERB, LIZER, LIZER, PAHAZ, PDC ADA CORE, CORR, COTH, CODS, CORS, CORS, COLLUD, DPP4, ENTPOT, FINI, ILTS, ILLERB, LIZER, LIZER, PAHAZ, PDC ACTIVAZAP, CARCEL, CACNAH, EL, CACNAH, CACHALI, CORP, COPB, COPB, COPB, CODB, COLLUS, ENTPOT, GPC A, GPRSAL, LITER, LIZER, LITAGA, NITRAS, PREG, ETPER, ROBOL, SHROOMS, STAS, STYLZ, TEX, THED. T. REFSEZS ACTIVAZAP, CARCEL, CACNAH, EL, CACNAH, CACNAH, CACHALI, CORP, COPB, CO
Al Curated gene sets Computational gene sets Computational gene sets Camputational gene sets Gare ontology (GO) Gene ontology (SCHAEFER PROSTATE DEVELOPMENT, 46HR, DN MODULE, 46 MODULE, 46 MODULE, 47 MODULE, 48 MODULE, 48 MODULE, 48 MODULE, 49 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE PLASMA_MEMBRANE MEMBRANE MEMBRANE PLASMA_MEMBRANE MEMBRANE MEMBRA	0.0488 2.85E-06 0.000438 0.000438 0.000438 0.000438 0.0007698 0.0007698 0.001722 0.007247 0.01613 0.006397 0.00639 0.00639 0.00639 0.00639	ILPITER FORBOLISTAS, ICET, THISDI ZCSHILG. ANTARIC COSS LOUND LONG, GASS LINKINC LYPGES NRP2 PAHA2 PRTG RHOJ SIPA IL2 ADA CORZ CORG, COTHA COSS, CORS, CONSCINCTULIDEPH, ENTED LIFK ILTRIB. LIZER LIZE PAHA2 PDC ADA CORZ CORG, COTHA COSS, CORS, CONSCINCTULIDEPH, ENTED LIFK ILTRIB. LIZER LIZE PAHA2 PDC ADA CORZ CORG, COTHA COSS, CORS, CONSCINCTULIDEPH, ENTED LIFK ILTRIB. LIZER LIZER PAHA2 PDC AGRESA LITERAL LIZER LITAGA, CONSTITUTION, CORG CORS, CORG,
As Curated gene sets Computational gene sets Computational gene sets Gene ontology (GO) Hallmark gene sets	SCHAEFER PROSTATE DEVELOPMENT, 48HR, DN MODULE, 46 MODULE, 46 MODULE, 46 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE_PART MEMBRANE_PART SIGNAL_TRANSDUCTION RESPONSE_TO_EXTERNAL_STIMULUS RECEPTOR_ACTIVITY HALLMARK, ESTROGEN_RESPONSE_EARLY HALLMARK, ESTROGEN_RESPONSE_EARLY HALLMARK, COMPANIANON HALLMARK, COMPANIANON HALLMARK, COMPANIANON HALLMARK, COMPANIANON HALLMARK, COMPANIANON HALLMARK, COMPANIANON HALLMARK, COMPELMENT SESTIMATE SERTIO, CATELLY BURNON LOW, MP. COR SESTIMATE SERVICE AND THE MODERNIANON LOW, MP. COR TOLL UP. MOSE/MOSE SENSE LIVES CONTENTS ON THE MODOR TOLL UP. MOSE/MOSE SENSE LIVES CONTENTS ON THE MODOR TOLL UP. MOSE/MOSE SENSE LIVES CONTENTS ON THE MODOR TOLL UP. MOSE/MOSE SENSE LIVES CONTENTS ON THE MODOR TOLL UP. MOSE/MOSE SENSE LIVES CONTENTS ON THE MODOR TOLL UP. MOSE/MOSE LIVES CONTENTS ON THE MODOR TOLL UP. MOSE/MOSE LIVES CONTENTS ON THE MODOR TOLL UP. MOSE/MOSE CONTENTS ON THE MOSE CONTENTS ON THE MODOR TOLL UP. MOSE/MOSE CONTENTS ON THE MOSE CONTENTS ON THE MODOR TOLL UP. MOSE MOSE CONTENTS ON THE MOSE CONTENTS ON THE MODOR TOLL UP. MOSE MOSE CONTENTS ON THE MOSE CON	0.0488 2.85E-06 2.85E-06 0.000438 0.0007698 0.001722 0.007247 0.001613 0.001613 0.001630	ILPITER FROBOLISTAS, ICET, THISDI ZCSHILIZE ANTARIC COSS COHOL MONG CASS LIMING LYPOES NRP2 PHA2 PRTG RHOJ SIPATILIZ ADA COREZ CORG, COTHA COSS, CORS. CONSCIPATION, DEPARTMENT FAILLISTRELLIZE PHA2 PDC ADA ACCREZ CORG, COTHA COSS, CORS. CONSCIPATION, CONS
Al Curated gene sets Computational gene sets Computational gene sets Computational gene sets Gene ontology (GO) Hallmark gene sets Hallmark gene s	SCHAEFER PROSTATE DEVELOPMENT, 48HR, DN MODULE, 46 MODULE, 46 MODULE, 47 PLASMA, MEMBRANE, PART MEMBRANE PLASMA, MEMBRANE PLASMA, MEMBRANE	0.0488	ILPITER FORBOLISTAS, ICET, THISDI ZCSHILIZC ADA CORE, CORE, DOUBLE DONG, CORS. JUNIO, LEVEN PER SERVE PRIOR
As Curated gene sets Computational gene sets Computational gene sets Gare ontology (GO) Gene ontology (GO) G	SCHAEFER PROSTATE DEVELOPMENT, 48HR, DN MODULE, 46 MODULE, 48 MODULE, 49 PLASMA, MEMBRANE, PART MEMBRANE PLASMA, MEMBRANE PLASMA, MEMBRANE	0.0488 2.83E-06 0.000438 0.000438 0.000438 0.000438 0.0007698 0.001722 0.007247 0.01613 0.001614 0.001	ILPITER FORBOLISTAS, ICET, THISDI ZCISHIZE ADA CORP. CORR. COMP. CONS. CORS. CORS. CONSTRUCTION PRINTED FINE ILEI LEZRBLITZ PHANZ PLOCA ADA CORP. CORR. CONTA CODS. CORS. CORS. CONSTRUCTION PRINTED FINE ILEI LEZRBLITZ PHANZ PLOCA ADA CORP. CORR. CONTA CODS. CORS. CORS. CONSTRUCTION PRINTED FINE ILEI LEZRBLITZ PHANZ PLOCA ACTIVAZAPO. BACEL CACNAIS. CACKARIOL. CARROLI CORP. CORS. CORR. CORR. CORP.
Al Curated gene sets Computational gene sets Computational gene sets Computational gene sets Gene ontology (GO) Halimark gene sets	SCHAEFER PROSTATE DEVELOPMENT, 48HR, DN MODULE, 46 MODULE, 46 MODULE, 46 MODULE, 47 PLASMA_MEMBRANE_PART MEMBRANE PLASMA_MEMBRANE PLASMA_MEMBRANE MEMBRANE	0.0488 2.85E-06 2.85E-06 0.000438 0.0007688 0.001722 0.007247 0.001633 0.01613 0.001634 0.001634 0.001636 0.001636 0.001637 0.01638 0.001637 0.01638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638 0.001638	ILPITER FORBOLISTAS, ICET, THEOLIZCHIEG. ADA CORE, CORE, COTHA, CODIS, CORS, CONSEN, CILLUPPIA, ENTPOLISY, LINE, LINE, ADALIZA ADA CORE, CORE, COTHA, CODIS, CORS, CONSEN, CILLUPPIA, ENTPOLISY, LINE, LINE, ADALIZA ADA, CORE, CORE, COTHA, CODIS, CORS, CONSEN, CILLUPPIA, ENTPOLISY, LINE, LINE, ADALIZA ADA, CORE, CORE, COTHA, CODIS, CORS, CONSEN, CILLUPPIA, ENTPOLISY, LINE, ADALIZA ACTIVALAPO, EAGLET, CACNAHIS, CACNAHIO, CARDHI, CORE, CORR, COLTRO, CORS, COLLE, ENTPOLISY, CALLERY, AND ADALIZA AGRICAL LITRES, LIZBI, ITAGA, NITRIA, PRROS I STPRER, ROBOLIS, TRANS, STAS, SYTLE, TENTHOLIT, TENTHOLIT, CORE, CORR, COLTRO, CORS, COLTRO, CORRO, CORRO, COLTRO, CORRO, CORRO, COLTRO, CORRO, COLTRO, CORRO, COLTRO, CORRO, COLTRO, CORRO, CORRO

Table S2				
Experiment	Study	Significantly detected binding regions	Mapped to genes within 5Kb from TSS	P-value, Significance with WNT-associated genesets from MsigDB
TCF1	GSE52070	591	116	0.033
TOF4 (==2)	GSE46662	732 in Sample 1	131	0.050
TCF1 (n=2)	GSE46662	2600 in Sample 2	653	9.395E-04
TCF7	GSE31221	6395	2015	0.017
		990 in Sample 1	121	2.273E-04
Beta-Catenin (n=3)	GSE43565	385 in Sample 2	49	9.564E-04
		671 in Sample 3	79	0.004

Suppl. Fig 4b: Differentially expressed genes from the gene expression profiles of heteroxygote samples against 15721,1638N, and full KO, and detected in A. 157 differential expressed Suppl. Fig 4a: Tg and beta catenin binding sites in the Lef1 and Axin2 promoters based on literature data mining of CHIP-Seq data

genes with P<0.05 and B. the representation of 55 unique gene sets (see also Table S3)

Table S3

Table S3			
Gene-set	Pathway	P _{BY} <0.05	Genes
WNT gene sets All Curated gene sets	WNT_BOIERS_2013_LYMPHOID ST_WNT_BETA_CATENIN_PATHWAY	0.01053	CCR9,LEF1,TCF7 APC AXIN2 DKK2 FSTI 1 NKD1 WIF1
All Curated gene sets	RIGGI_EWING_SARCOMA_PROGENITOR_DN	0.0006029	ALDH1A3,BACE1,BMP4,CLU,EBF1,FST,NRP2,PHLDA1,TNFR
All Curated gene sets	SANSOM_WNT_PATHWAY_REQUIRE_MYC	0.001274	SF19 AXIN2 LEF1 NKD1 TCF7 TNERSE19 WIF1
All Curated gene sets	LIU_PROSTATE_CANCER_DN	0.001274	BEND5,CHST2,CLU,EPAS1,ITGA2,NDNF,PHLDA1,PRSS23,R
All Curated gene sets	LIO_PROSTATE_CANCER_DIN	0.001655	OBO1,TFCP2L1,WIF1,ZCCHC14
All Curated gene sets	MATSUDA_NATURAL_KILLER_DIFFERENTIATION	0.001855	ANXA1,APCDD1,CCR9,CD160,EBF1,NTRK3,PDCD1,PRSS23 .SH3BGRL2.TCF7.TULP3.ZC3H12C
All Curated gene sets	KINSEY_TARGETS_OF_EWSR1_FLII_FUSION_DN	0.001979	DCLK1,EBF1,FAM63A,FSTL1,IL17RD,MB21D2,NT5E,PHLDA1 .PRS23.SIPA1L2
All Curated gene sets	KUMAR_TARGETS_OF_MLL_AF9_FUSION	0.001979	ANXA1,CCR9,CD83,EBF1,EXTL3,GPC4,IL7R,IRF4,LEF1,TCF7 ,TNFRSF19
All Curated gene sets	CUI_TCF21_TARGETS_2_UP	0.003067	ANTXR1,APCDD1,ARSB,BMP4,CLU,DCLK1,HUNK,KLF5,LYP
All Curated gene sets	CHARAFE_BREAST_CANCER_LUMINAL_VS_BASAL_DN	0.003672	D6B,NKD1,NRP2 ADA,ALDH1A3,ANTXR1,ANXA1,FST,FSTL1,IL7R,KLF5,NT5E,
All Curated gene sets	DODD_NASOPHARYNGEAL_CARCINOMA_UP	0.003672	PHLDA1,ZC3H12C ALDH1A3,ANXA1,APCDD1,ATP13A4,BACE1,BDH1,BEND5,C LU,EBF1,EDAR,EPAS1,FAM63A,KLF5,LYPD6B,PRKAA2,PRS
	DELVO TUVDOD ONIGED UD	0.003672	S23,SH3BGRL2,TNFRSF19,TUBB3,UST,WWC1 ALDH1A3,ANXA1,CHST2,DPP4,IGSF3,ITGA2,MED13,NRP2,N
	DELYS_THYROID_CANCER_UP		T5E,PRSS23,STX3 ALDH1A3,CD83,EPAS1,FST,IGSF3,ITGA2,KLF5,ROBO1,TFC
-	ONDER_CDH1_TARGETS_2_DN	0.004116	P2L1,THBD,WWC1
All Curated gene sets	SANA_TNF_SIGNALING_DN	0.004116	ANTXR1,ANXA1,CLU,EPAS1,NT5E,PHLDA1
All Curated gene sets All Curated gene sets	KEGG_WNT_SIGNALING_PATHWAY KEGG_BASAL_CELL_CARCINOMA	0.004871 0.005932	APC,AXIN2,DKK2,LEF1,NKD1,TCF7,WIF1 APC AXIN2 BMP4 LEF1 TCF7
			ANXA1,ARHGAP28,BACE1,DKK2,DPP4,EBF1,EPAS1,MED13,
All Curated gene sets	CUI_TCF21_TARGETS_2_DN	0.006368	NT5E,PPAP2A,SH3BGRL2,SHROOM3,SNCAIP,THBD
All Curated gene sets	BYSTRYKH_HEMATOPOIESIS_STEM_CELL_QTL_TRANS	0.01287	AXIN2,CHST2,EFHD1,EXTL3,FAM63A,GPC4,KIF5C,LEF1,PD CD1,STX3,SUI,T1A1,TECP2I,1,THBD,TUI,P3
All Curated gene sets	GAUSSMANN_MLL_AF4_FUSION_TARGETS_F_UP	0.0141	ARHGAP28,ARSB,BMP4,FST,GPC4,IL17RD,NT5E
All Curated gene sets	CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_DN	0.01879	ANTXR1,ANXA1,CHST2,FST,FSTL1,IL7R,NT5E,PHLDA1,RAI1
All Curated gene sets	GOZGIT_ESR1_TARGETS_DN	0.03962	4,ZC3H12C CLU,DCLK1,FETUB,GPC4,MB21D2,PPAP2A,PRSS23,RASGR
All Curated gene sets	ENK UV RESPONSE EPIDERMIS DN	0.04184	P1,SH3BGRL2,SHROOM3,SIPA1L2,THBD ANXA1,APC,CD83,ITGA2,PHLDA1,PPAP2A,PRSS23,RAI14,R
		0.04194	OBO1,THBD
All Curated gene sets All Curated gene sets	WNT_SIGNALING PID_PS1_PATHWAY	0.04194	APC,LEF1,NKD1,TCF7,WIF1 APC DKK2 NKD1 WIF1
All Curated gene sets	SENESE_HDAC1_AND_HDAC2_TARGETS_UP	0.04605	DCLK1,DKK2,EXTL3,IL7R,NRIP3,PHLDA1,WWC1
All Curated gene sets	KIM_MYC_AMPLIFICATION_TARGETS_DN	0.04605	DCLK1,IL17RB,IL17RD,KLF5,SHROOM3
Motif gene sets	TTGTTT_V\$FOX04_01	3.15E-05	ANXA1,APC,AXIN2,BDH1,BMP4,CCDC109B,CD83,EBF1,EDA R,EXTL3,FAM63A,FST,FSTL1,IL7R,IRF4,ITGA2,KCNIP2,KLF5, NKD1,NRP2,NTRK3,RNF214,ROBO1,SNCAIP,TNFRSF19,XK RX,ZCCHC14
Motif gene sets	CTTTGA_V\$LEF1_Q2	0.0003071	ATP13A4,BACE1,CD160,CPB1,FAM63A,FST,GPC4,KY,LEF1, MB21D2,MED13,NKD1,NRP2,ROBO1,SLC22A23,SNCAIP,TC F7.TNFRSF19.XKRX
Motif gene sets	CAGGTG_V\$E12_Q6	0.001973	ACTN2,AXIN2,BACE1,BMP4,CD83,CPB1,EBF1,EDAR,EPAS1, EXTL3,FST,IGSF3,ITGA2,KCNIP2,LEF1,LYPD6B,MB21D2,NRI P3,NRP2,NTRK3,SH3BGRL2,SNCAIP,TCF7,UNC45B,UST,W WC1
Motif gene sets	V\$TCF4_Q5	0.005048	FAM63A,FST,GPC4,KY,NKD1,NRP2,TCF7,TNFRSF19
Motif gene sets	TGGAAA_V\$NFAT_Q4_01	0.006748	ANTXR1,BMP4,DCLK1,DKK2,EBF1,EFHD1,FST,FSTL1,IGSF3, IL17RB,IL7R,IRF4,ITGA2,KCNIP2,KLF5,MED13,SH3BGRL2,S NCAIP,TMEM163,TNFRSF19,XKRX
Motif gene sets	TATTATA,MIR-374	0.01408	ARHGAP28,BACE1,CHST2,EDAR,MED13,RNF214,UST,ZCC
Motif gene sets	TGCCAAR_V\$NF1_Q6	0.01468	HC14 AHSG,AXIN2,DCLK1,KY,LEF1,MB21D2,MED13,NRP2,NTRK3,
Motif gene sets	RTAAACA_V\$FREAC2_01	0.02911	RAI14,ROBO1,XKRX AXIN2,BMP4,FST,FSTL1,IRF4,KY,NTRK3,ROBO1,SNCAIP,TC
			F7,TNFRSF19,UNC45B,UST ANXA1,BACE1,CCR9,CD160,CD83,CHST2,FSTL1,IL7R,TUBB
Oncogenic signatures	CAMP_UP.V1_DN	5.78E-06	3,ZCCHC14
Oncogenic signatures	AKT UP.V1 DN	0.04519	AXIN2.EDARADD.TNFRSF19.TULP3.WIF1,ZC3H12C ADA.AXIN2.CCDC109B.DPP4.EDARADD.IL17RB.IL7R.PDCD
Immunologic signature	GSE24142_EARLY_THYMIC_PROGENITOR_VS_DN2_THYMOCYTE_DN	0.001121	1,TUBB3
Immunologic signature	GSE20366_EX_VIVO_VS_DEC205_CONVERSION_NAIVE_CD4_TCELL_UP	0.007534	ACTN2,CD160,EPAS1,GPR114,IL17RB,RASGRP1,THBD,XKR
	GSE10325_LUPUS_CD4_TCELL_VS_LUPUS_BCELL_UP	0.01556	ANXA1,CCDC109B,DPP4,IL7R,LEF1,TCF7,ZCCHC14
Immunologic signature	GSE14350_IL2RB_KO_VS_WT_TREG_DN	0.01556	CCDC109B,CD160,CD83,KY,NT5E,PDCD1,ZC3H12C
Immunologic signature	GSE24142_EARLY_THYMIC_PROGENITOR_VS_DN3_THYMOCYTE_DN	0.01556	ADA,CCDC109B,IL7R,LEF1,PDCD1,TUBB3,TULP3
Immunologic signature Immunologic signature	GSE24142_EARLY_THYMIC_PROGENITOR_VS_DN2_THYMOCYTE_ADULT_DN GSE26495_NAIVE_VS_PD1HIGH_CD8_TCELL_UP	0.01556 0.01556	AXIN2,CCDC109B,EDARADD,IL17RB,IL7R,LEF1,PPAP2A BDH1,BEND5,EDAR,EFHD1,LEF1,NT5E,PPAP2A
Immunologic signature	GSE26495_NAIVE_VS_PD1HIGH_CD8_TCELL_UP	0.01556	BDH1,BEND5,EDAR,EFHD1,LEF1,NT5E,PPAP2A
Immunologic signature	GSE30962_PRIMARY_VS_SECONDARY_CHRONIC_LCMV_INF_CD8_TCELL_DN	0.01556	AHSG,ANXA1,EPAS1,GPR114,PRKAA2,RASGRP1,TMEM163
Immunologic signature	GSE3982_BCELL_VS_CENT_MEMORY_CD4_TCELL_DN	0.01556	DPP4.IL7R.ITGA2.NDNF.PHLDA1.PRKAA2.TCF7
Immunologic signature	GSE7460_TCONV_VS_TREG_LN_DN	0.01556	CD83,DPP4,IRF4,NT5E,PPAP2A,SH3BGRL2,ZC3H12C
Immunologic signature	GSE7460_TCONV_VS_TREG_THYMUS_DN	0.01556	CCDC109B,CD83,IGSF3,KIF5C,NRP2,PPAP2A,SH3BGRL2
Immunologic signature	GSE7852_TREG_VS_TCONV_THYMUS_UP	0.01556	CCDC109B,CD83,IGSF3,KIF5C,PDCD1,PPAP2A,SH3BGRL2
Hallmark gene sets	HALLMARK_WNT_BETA_CATENIN_SIGNALING	0.002609	AXIN2,LEF1,NKD1,TCF7
Hallmark gene sets	HALLMARK_COAGULATION	0.002609	ANXA1,CLU,DPP4,ITGA2,PRSS23,THBD
Hallmark gene sets Hallmark gene sets	HALLMARK_IL2_STAT5_SIGNALING HALLMARK KRAS SIGNALING DN	0.007102 0.007102	CD83,IRF4,NT5E,PHLDA1,PPAP2A,SH3BGRL2 CHST2,CPB1,EDAR,EFHD1,PDCD1,TFCP2L1
Hallmark gene sets	HALLMARK_ESTROGEN_RESPONSE_EARLY	0.04111	FAM63A,IL17RB,PRSS23,RASGRP1,WWC1
Hallmark gene sets	HALLMARK_COMPLEMENT	0.04111	ACTN2,CLU,DPP4,KCNIP2,RASGRP1

References

- Blank U., Karlsson G., Karlsson S. Signaling pathways governing stem-cell fate. Blood. 2008;111:492– 503.
- Duinhouwer L.E., Tuysuz N., Rombouts E.W., Ter Borg M.N., Mastrobattista E., Spanholtz J., Cornelissen J.J., Ten Berge D., Braakman E. Wnt3a protein reduces growth factor-driven expansion of human hematopoietic stem and progenitor cells in serum-free cultures. PLoS One. 2015;10:e0119086.
- Famili F., Naber B.A., Vloemans S., De Haas E.F., Tiemessen M.M., Staal F.J. Discrete roles of canonical and non-canonical Wnt signaling in hematopoiesis and lymphopoiesis. Cell Death Dis. 2015;6:e1981.
- 4. Fleming H.E., Janzen V., Lo Celso C., Guo J., Leahy K.M., Kronenberg H.M., Scadden D.T. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell. 2008;2:274–283.
- Gaspar C., Fodde R. APC dosage effects in tumorigenesis and stem cell differentiation. Int. J. Dev. Biol. 2004;48:377–386.
- Goessling W., North T.E., Loewer S., Lord A.M., Lee S., Stoick-Cooper C.L., Weidinger G., Puder M., Daley G.Q., Moon R.T. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell. 2009;136:1136–1147.
- 7. Harada N., Tamai Y., Ishikawa T., Sauer B., Takaku K., Oshima M., Taketo M.M. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 1999;18:5931–5942.
- Huang J., Zhang Y., Bersenev A., O'Brien W.T., Tong W., Emerson S.G., Klein P.S. Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice. J. Clin. Invest. 2009;119:3519–3529.
- Huang J., Nguyen-McCarty M., Hexner E.O., Danet-Desnoyers G., Klein P.S. Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat. Med. 2012;18:1778–1785.
- 10. Jeannet G., Scheller M., Scarpellino L., Duboux S., Gardiol N., Back J., Kuttler F., Malanchi I., Birchmeier W., Leutz A. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142–149.
- Kabiri Z., Numata A., Kawasaki A., Edison, Tenen D.G., Virshup D.M. Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells. Blood. 2015;126:1086–1094.
- 12. Kirstetter P., Anderson K., Porse B.T., Jacobsen S.E., Nerlov C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat. Immunol. 2006;7:1048–1056.
- 13. Koch U., Wilson A., Cobas M., Kemler R., Macdonald H.R., Radtke F. Simultaneous loss of and {gamma}-catenin does not perturb hematopoiesis or lymphopoiesis. Blood. 2008;111:160–164.
- 14. Lane S.W., Sykes S.M., Al-Shahrour F., Shterental S., Paktinat M., Lo Celso C., Jesneck J.L., Ebert B.L., Williams D.A., Gilliland D.G. The Apc(min) mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS. Blood. 2010;115:3489–3497.
- 15. Lane S.W., Wang Y.J., Lo Celso C., Ragu C., Bullinger L., Sykes S.M., Ferraro F., Shterental S., Lin C.P., Gilliland D.G. Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood. 2011;118:2849–2856.
- 16. Li W., Hou Y., Ming M., Yu L., Seba A., Qian Z. Apc regulates the function of hematopoietic stem cells largely through beta-catenin-dependent mechanisms. Blood. 2013;121:4063–4072.
- 17. Luis T.C., Weerkamp F., Naber B.A., Baert M.R., de Haas E.F., Nikolic T., Heuvelmans S., De Krijger R.R., van Dongen J.J., Staal F.J. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood. 2009;113:546–554.

- Luis T.C., Naber B.A., Roozen P.P., Brugman M.H., de Haas E.F., Ghazvini M., Fibbe W.E., van Dongen J.J., Fodde R., Staal F.J. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell. 2011;9:345–356.
- Luis T.C., Ichii M., Brugman M.H., Kincade P., Staal F.J. Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia. 2012;26:414– 421.
- Malhotra S., Kincade P.W. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell. 2009;4:27–36.
- Mendez-Ferrer S., Michurina T.V., Ferraro F., Mazloom A.R., Macarthur B.D., Lira S.A., Scadden D.T., Ma'ayan A., Enikolopov G.N., Frenette P.S. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–834.
- Ming M., Wang S., Wu W., Senyuk V., Le Beau M.M., Nucifora G., Qian Z. Activation of Wnt/betacatenin protein signaling induces mitochondria-mediated apoptosis in hematopoietic progenitor cells. J. Biol. Chem. 2012;287:22683–22690.
- 23. Oostendorp R.A. Secretion of Wnts is dispensable for hematopoiesis. Blood. 2015;126:1051–1052.
- Perry J.M., He X.C., Sugimura R., Grindley J.C., Haug J.S., Ding S., Li L. Cooperation between both Wnt/{beta}-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell selfrenewal and expansion. Genes Dev. 2011;25:1928–1942.
- 25. Reya T., Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–850.
- Reya T., Duncan A.W., Ailles L., Domen J., Scherer D.C., Willert K., Hintz L., Nusse R., Weissman I.L. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423:409–414.
- Scheller M., Huelsken J., Rosenbauer F., Taketo M.M., Birchmeier W., Tenen D.G., Leutz A. Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nat. Immunol. 2006;7:1037–1047.
- Smits R., Kielman M.F., Breukel C., Zurcher C., Neufeld K., Jagmohan-Changur S., Hofland N., van Dijk J., White R., Edelmann W. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev. 1999;13:1309–1321.
- Smits R., Hofland N., Edelmann W., Geugien M., Jagmohan-Changur S., Albuquerque C., Breukel C., Kucherlapati R., Kielman M.F., Fodde R. Somatic Apc mutations are selected upon their capacity to inactivate the beta-catenin downregulating activity. Genes Chromosomes Cancer. 2000;29:229– 239.
- Staal F.J., Luis T.C., Tiemessen M.M. WNT signalling in the immune system: WNT is spreading its wings. Nat. Rev. Immunol. 2008;8:581–593.
- 31. van Es J.H., Jay P., Gregorieff A., van Gijn M.E., Jonkheer S., Hatzis P., Thiele A., van den Born M., Begthel H., Brabletz T. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat. Cell Biol. 2005;7:381–386.
- 32. Wang Y., Krivtsov A.V., Sinha A.U., North T.E., Goessling W., Feng Z., Zon L.I., Armstrong S.A. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327:1650–1653.
- 33. Zhao C., Blum J., Chen A., Kwon H.Y., Jung S.H., Cook J.M., Lagoo A., Reya T. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell. 2007;12:528–541.