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ABstRACt

Reporting absolute risks in survival analysis for main endpoints and subgroups have 
been recommended by the STROBE and CONSORT guidelines but too often this recom-
mendation is neglected. Clinical studies often use the Cox proportional hazard regression 
model to estimate effect sizes and to adjust for confounders. This may explain why there is 
a predominance for reporting relative risks in clinical studies. In this article, we present the 
Aalen additive hazards model, a less well known but easy to apply additive survival model to 
calculate absolute risks. This model directly estimates absolute risk differences and provides 
the opportunity to include covariates in the model, to address confounding factors and test 
for interaction, similar to the Cox proportional hazards model. As an example, we use data 
from the Tamoxifen Exemestane Adjuvant Multinational (TEAM) study to report on the 
effect of age on breast cancer related mortality in absolute risks using the Aalen additive 
hazards model and relative risks using the Cox proportional hazards model. We discuss 
the interpretation of both risk estimates and demonstrate that the effect of age on breast 
cancer mortality among subgroups changes depending on the relative or absolute model. 
We conclude that the additive hazards model is more representative for clinical practice and 
provides a better interpretation of the impact of age on breast cancer mortality for clinicians 
and patients.  
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intRoduCtion

Most clinical papers report on effect sizes of exposures and treatments as relative risks, 
reinforcing the strength of the (causal) relation.1,2 However, for an individual the interpreta-
tion of a relative risk is ambiguous, as the absolute risk is not taken into account.3 Earlier we 
reported that among women who suffer from breast cancer, those 75 years or older were at 
a 1.63-fold higher risk to die from cancer compared to women younger than 65 years.4 The 
question that immediately that is immediately raised is; ‘1.63 times what?’. The key question 
for an older patient is whether she should be worried about this increased likelihood to 
die from breast cancer, and for the treating physician it is essential to ascertain whether 
additional treatment would be effective to reduce the risk with resultant significant clinical 
benefit. 

When reporting the impact of a clinical intervention, the Number Needed to Treat (NNT) 
and Number Needed to Harm (NNH) are commonly used composite estimates that integrate 
information on both the absolute risk and the relative change of that risk. Observational 
studies report on the natural history of the disease and not primarily on outcomes of an 
intervention. For this reason it is counter-intuitive to report on the impact of risk factors as 
the number needed to treat, or to harm. The ‘STrengthening the Reporting of OBservational 
studies in Epidemiology’ (STROBE) consensus report recommends reporting outcomes as 
both relative and absolute measures of effect.5 It is sobering that despite these sound meth-
odological arguments effect sizes in observational studies are almost exclusively reported as 
relative risks serving the etiologic interpretations of the findings but not the clinical impact 
on individuals.1 

Observational studies often rely on survival analyses and use Cox proportional hazard re-
gression to correct for confounding factors.6 This preferred choice of methods may explain 
why there is a predominance for reporting relative risks in observational studies. There is 
however no methodological barrier for applying alternative models that regress additional 
hazards and allow for entering additional covariates to adjust for confounding. Here, we 
present the Aalen additive hazards model, a less well known but easy to apply additive sur-
vival model to calculate absolute risks. Similar to the Cox proportional hazards model, this 
model directly estimates absolute risk differences and provides the opportunity to include 
covariates in the model, address confounding factors and test for interaction.7 We present 
an example from the Tamoxifen Exemestane Adjuvant Multinational (TEAM) study report-
ing on the effect of age on breast cancer mortality in absolute risks next to standard relative 
risks to enable a better understanding of the clinical impact. Furthermore, we provide a 
short tutorial introducing programming this model in the R statistics software.
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Methods 

data 
The TEAM study was designed as a randomized controlled trial including postmenopausal 
patients with estrogen receptor and/or progesterone positive breast cancer. Patients were 
included between January 2001 and January 2006 and randomized to receive exemestane 
for five years, or a sequential treatment regimen of tamoxifen followed by exemestane for 
a total of five years. Further details of this study are extensively described elsewhere.8 After 
five years of follow up there were no differences in any of the primary end points between 
the two treatment arms,8 and thereafter the total cohort is used for observational research 
into exploring determinants for, and outcomes of breast cancer. 

For the present analysis, patients were categorized in three categories of age at diagnosis (< 
65 years, 65-74 years and ≥ 75 years).9 First, the effect of age on mortality from breast cancer 
was examined in the complete cohort of patients. Second, the effect of age was examined in 
subgroups of patients with specific prognostic markers of breast cancer mortality, i.e. tumor 
size and lymph node status.10 Tumor size was divided into two categories: < 2 cm and ≥ 2 cm 
whereas lymph node status was defined as negative (no regional lymph node metastasis) or 
positive (one or more positive regional lymph nodes). The follow-up was defined as the time 
from inclusion in the study to death from breast cancer, death from other causes or time of 
censoring at the end of follow-up. Cause of death was indicated on a case report form and 
categorized into ten pre-specified groups and verified by the central datacenter. If a patient 
was diagnosed with metastatic breast cancer prior to or at time of death, cause of death was 
categorized as death from breast cancer.  

survival models 
Time to event models estimate the probability of experiencing an event in the next unit of 
time. The so-called hazard at time t can be modelled either on a relative (multiplicative) or 
an absolute (additive) scale. For the present analyses, we applied the most commonly used 
multiplicative (Cox) and additive survival model (Aalen).7 Both models include a baseline 
hazard, which follows a non-parametric time-dependent function. The Cox proportional 
hazards model than estimates on - a multiplicative scale - the increase of the hazard in the 
group of interest when compared to the hazard in the reference group. This is referred to as 
the hazard ratio (HR) and estimates a proportional measure of the strength of the relation. 
In the Aalen model, the additional hazard in the group of interest is modelled as a linear 
function on the unspecified baseline hazard of the reference group and when applied to 
human cohorts the resulting effect estimates (β) can directly be interpreted as the additional 
number of people experiencing the event per unit of time. Both models allow for adding 
additional covariates to correct for confounding. Taken together, the Aalen additive model 
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represents an additive semi-parametric technique for survival analysis that is at least as 
flexible as the Cox model. 

statistical and computational aspects
The statistical software programme R has the package “timereg” which has extensive ca-
pabilities for estimating and analyzing additive hazard models and is easily applicable for 
researchers who are familiar with the software.7,11 For those unfamiliar with the R software, 
a tutorial for using the model is provided in the supplemental materials. We studied the ef-
fect of age on mortality from breast cancer in the complete cohort and subgroups of patients 
with specific prognostic disease characteristics. To this end, we used the Cox proportional 
hazard regression to estimate hazard ratio’s, and estimated the absolute risk difference in 
mortality from breast cancer using the Aalen additive hazard regression. Hazard ratios 
indicated the relative increase of mortality when compared to the reference group whereas 
risk differences are presented as the additional number of deaths per 1000 person years. As 
potential confounders we included country, histological grade, tumor stage, lymph node 
status, progesterone receptor status, most extensive surgery, radiotherapy, chemotherapy 
and endocrine therapy. Interaction as deviation from relative effects in the Cox propor-
tional hazards model and interaction as deviation from absolute effects in the Aalen addi-
tive model were tested.  

All statistical tests were two-sided and P-values of less than 0.05 were considered statisti-
cally significant. Proportional differences were compared using a Pearson χ2 test. Median 
follow up and interquartile range (IQR) were calculated using the reversed Kaplan Meier 
estimate.12 All analyses were performed in R Software (version 3.0.0) using the “survival” 
and ”timereg” packages.13 

Results 

9766 women diagnosed with breast cancer were included in the TEAM study; 5349 were 
younger than 65 years, 3060 patients were aged 65 to 74 years and 1357 patients were aged 
75 years or older. Table 1 shows baseline characteristics at time of diagnosis for the three age 
groups separately.  Median follow-up was 5.1 years (IQR 4.1-5.9). 

Increasing age was associated with a higher risk of dying from breast cancer; cumulative 
mortality from breast cancer at five years increased from 5.1% in patients younger than 65 
years, to 5.8% in patients aged 65 to 74 years and 8.3% in patients aged 75 ≥ years (Table 2). 
Five years after inclusion, patients aged ≥ 75 years at baseline were at a 1.7-fold higher risk 
of dying from breast cancer than patients aged under 65 years, in absolute numbers this cor-
responds to an additional number of 6.2 deaths from breast cancer per 1000 patient years.  
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Table 1 Patient characteristics by age at diagnosis

< 65 years 65-74 years ≥ 75 years

P value 
    n=5349 n=3060 n=1357  

n % n % n % 
Histological grade and differentation 0.065

G1, well 911 17.0 550 18.0 216 15.9
G2, moderate 2581 48.3 1537 50.2 679 50.0
G3, G4, poor 1377 25.7 732 23.9 329 24.2
Unknown 480 9.0 241 7.9 133 9.8

Tumor size (cm) <0.001
< 2 3298 61.7 1806 59.0 593 43.7
≥ 2 2037 38.1 1247 40.8 764 56.3
Unknown 14 0.3 7 0.2 0 0.0

N stage 0.117
Negative 2800 52.3 1623 53.0 690 50.8
Positive 2518 47.1 1418 46.3 651 48.0
Unknown 31 0.6 19 0.6 16 1.2

Estrogen receptor <0.001
Positive 5219 97.6 3022 98.8 1344 99.0
Negative 128 2.4 35 1.1 13 1.0
Unknown 2 0.0 3 0.1 0 0.0

Progesterone receptor 0.534
Positive 4029 75.3 2268 74.1 1004 74.0
Negative 915 17.1 554 18.1 255 18.8
Unknown 405 7.6 238 7.8 98 7.2

Country <0.001
The Netherlands 1428 26.7 852 27.8 473 34.9

Germany 871 16.3 454 14.8 146 10.8

  United Kingdom/Ireland 696 13.0 413 13.5 166 12.2
Greece 110 2.1 71 2.3 26 1.9
France 722 13.5 403 13.2 105 7.7
United States 1159 21.7 695 22.7 378 27.9
Japan 98 1.8 66 2.2 20 1.5
Belgium/Luxembourg 265 5.0 106 3.5 43 3.2

Most extensive surgery <0.001
Mastectomy 2120 39.6 1372 44.8 841 62.0
Wide local excision 3223 60.3 1685 55.1 515 38.0
Unknown 6 0.1 3 0.1 1 0.1

Radiotherapy <0.001
Yes 3980 74.4 2030 66.3 687 50.6
No 1331 24.9 994 32.5 651 48.0
Unknown 38 0.7 36 1.2 19 1.4

Chemotherapy <0.001
Yes 2742 51.3 700 22.9 71 5.2
No 2607 48.7 2357 77.0 1284 94.6
Unknown 0 0.0 3 0.1 2 0.1

Endocrine therapy 0.384
Tamoxifen followed by exemestane 2667 49.9 1546 50.5 655 48.3
Exemestane 2682 50.1 1514 49.5 702 51.7
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When stratified for tumor size, cumulative mortality from breast cancer at five years was 
higher in the older age groups, both in patients with small and large tumors (Table 2). 
Among patients with small tumors, mortality from breast cancer was 2.0-fold higher in 
patients aged over 75 years when compared to those under 65 years, while among patients 
with large tumors a similar age difference associated with a 1.6-fold increased mortality risk.  
A comparison of these relative risks suggests that the effect of increasing age is less strong in 
patients with larger tumors. On an absolute scale however, this age difference corresponds 
to an additional number of 5.1 deaths per 1000 patient years in patients with small tumors, 
whereas there was an additional number of 9.0 deaths per 1000 patient years in patients 
with large tumors. Apparently, the impact of increasing age is more pronounced in patients 
with larger tumors. 

When stratified for lymph node status, cumulative mortality from breast cancer at five years 
was higher in the older age groups, both in patients with negative and positive lymph node 
status (Table 2). Among patients with a negative lymph node status, older age was associated 
with a 1.7-fold increased risk of dying from breast cancer and this was not different for 
patients with a positive lymph node. These relative risk estimates suggest that the effect of 
increasing age on mortality from breast cancer is not dependent on lymph node status. On 
an absolute scale however, the corresponding absolute risk differences were an additional 
number of 3.1 deaths per 1000 patient years in patients with lymph node negative disease, 
whereas there was an additional number of 10.8 deaths per 1000 patient years in those with 
lymph node positive disease. Apparently, the impact of increasing age is more pronounced 
in patients with a positive lymph node status. 

Figure 1A presents a forest plot of the age specific relative risks of mortality from breast can-
cer when all patients were analyzed as one group and in subgroups stratified for tumor size 
and lymph node status. Comparing the relative risks from top to bottom, the age specific 
risk estimates are similar in the whole group when compared to the risk estimates in strata 
of tumor size and lymph node status. The comparison of the relative risks does not provide 
arguments for effect modification. Statistical testing for interaction provided p-values of 
0.85 for tumor size and 0.99 for lymph node status respectively.

Figure 1B presents a forest plot of the age specific risk differences in mortality from breast 
cancer when all patients were analyzed together, and in subgroups separately. Comparing 
the risk differences from top to bottom, the age specific risk differences are smaller in those 
with smaller tumors and in those with a negative lymph node status. The risk differences are 
largest in those with a positive lymph node status. Statistical testing for interaction provided 
p-values of 0.14 for tumor size and 0.05 for lymph node status respectively.
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A

B

Figure 1 Forrest plots presenting relative risks and absolute risks of dying from breast cancer
A) Relative risk of dying due to breast cancer by age group in all patients and by tumor size and lymph 
node status B) Additional number of deaths (per 1000 person years) of dying due to breast cancer in all 
patients and by tumor size and lymph node status
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disCussion

Using the outcomes of a large cohort of women with breast cancer, we show that the relative 
risk of dying from breast cancer increases with increasing age. The relative risk increase 
is similar for those with favorable and unfavorable prognostic characteristics, erroneously 
suggesting that the impact of increasing age is independent of prognosis. At the same time, 
we show that the additional number of older women who die from breast cancer is higher 
among women with a poor prognosis when compared to those with a good prognosis. This 
extra number of patients (per unit of time) affected by the risk factor under study incorpo-
rates both the baseline risk (or hazard) and relative risk increase (or hazard ratio) and thus 
provides a better estimate of the clinical impact. 

Clinicians prefer to target patients for whom the clinical impact of an intervention will be 
high. Although this may appear very straight forward, this crucial piece of information is 
lost when reporting relative risk estimates only. A significant age interaction was observed 
between lymph node negative and lymph node positive status in the additive model, while 
this interaction was not observed in the relative model. Indeed, it is well-known that prov-
ing statistical interaction depends on the underlying scale of the measurement.14 When only 
relative risk measures would have been reported, clinicians may have concluded that the 
effect of age is not depending on the lymph node stage. However, when also presenting risk 
differences the clinical perspective changes: the significant age interaction that was observed 
indicates that older age inflicts more harm in patients with lymph node positive disease. It 
may urge clinicians to specifically address additional interventions in older patients with a 
more severe stage of disease.  

Reporting risk differences together with relative risks will increase the understanding of 
clinical impact of effect sizes found in observational studies and will help target subgroups 
who benefit most from interventions. For no obvious reason, the Aalen additive model 
that we have applied here, has not been applied frequently in medical research. The ap-
pendix provides the codes how to program the analyses in R. In line with our findings, other 
scholars who applied the Aalen model made clear that comparing the difference in absolute 
risk gave rise to new perspectives on effect the effect of risk factors or interventions when 
compared to reporting relative risks only.3,15,16

In cohort studies, absolute outcomes are most often reported as cumulative incidences. 
Although they provide a relevant estimate of absolute effect, there is no possibility to ac-
count for confounding variables. As shown in this paper, the additive hazard model, as 
any other regression model, provides the opportunity to include covariates in the model 
and to address confounding factors. Furthermore, the possibilities to test for statistical 
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interaction are similar to the Cox proportional hazards model. Last, absolute effect of risk 
factors within subgroups can easily be visualized using traditional forest plots to further 
improve the understanding of the findings. It is sobering that the outcome produced by the 
Aalen additive model, the additional number of people affected per unit of time, is not yet 
embraced with enthusiasm.

In conclusion, we have presented an easily applicable model to estimate absolute effect 
measures in time to event analysis while preserving the possibility to adjust for confounders 
and test for statistical interaction. We have shown that interpretation of effect of risk fac-
tors among subgroups can change depending on the relative or absolute scale of the effect 
measure due to variation in underlying baseline risk. This should be taken into account 
when evaluating clinical impact of risk factors. 

Cooperative investigators of the teAM study
Annette Hasenburg, Yasuo Hozumi, Steve Jones, Christos Markopoulos, Elma Meershoek-
Klein Kranenbarg, Johan WR Nortier, Robert Paridaens, Daniel Rea, Caroline Seynaeve, 
Jean-Michel Vannetzel 
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