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Dynamical solutions are always of interest to people in gravity theories. We derive a series of generalized
Vaidya solutions in the n-dimensional de Rham-Gabadadze-Tolley massive gravity with a singular
reference metric. Similar to the case of the Einstein gravity, the generalized Vaidya solution can describe
shining/absorbing stars. Moreover, we also find a more general Vaidya-like solution by introducing a more
generic matter field than the pure radiation in the original Vaidya spacetime. As a result, the above
generalized Vaidya solution is naturally included in this Vaidya-like solution as a special case. We
investigate the thermodynamics for this Vaidya-like spacetime by using the unified first law and present the
generalized Misner-Sharp mass. Our results show that the generalized Minser-Sharp mass does exist in this
spacetime. In addition, the usual Clausius relation δQ ¼ TdS holds on the apparent horizon, which
implicates that the massive gravity is in a thermodynamic equilibrium state. We find that the work density
vanishes for the generalized Vaidya solution, while it appears in the more general Vaidya-like solution.
Furthermore, the covariant generalized Minser-Sharp mass in the n-dimensional de Rham-Gabadadze-
Tolley massive gravity is also derived by taking a general metric ansatz into account.

DOI: 10.1103/PhysRevD.95.084002

I. INTRODUCTION

Massive gravities are significant and fundamental exten-
sions of the Einstein gravity, but, in opposition to our
intuition, to endow a mass to the graviton is not an easy
problem. In 1939, Fierz and Pauli first introduced the linear
massive gravity theory [1]. Note that a massless graviton
has only two polarizations, and a sound massive gravity
theory generally has 5 degrees of freedom. However, the
surplus 3 degrees of freedom have been proven to be
intractable when the mass of graviton vanishes in the linear
massive gravity [2]. To overcome this problem, one tries to
introduce the nonlinear massive gravities, but a more
serious problem, the Boulware-Deser ghost problem,
appears [3]. Recently, the so-called de Rham-Gabadadze-
Tolley (dRGT) massive gravity, which is a nonlinear
massive gravity theory and has been shown to be ghost
free, was proposed [4–6,7,8]. Note that in the dRGT model
the reference metric is full rank, but a singular reference
metric is also important [9], and the ghost problem in it is
investigated in Refs. [10,11]. Moreover, according to the
AdS=CFT correspondence [12–14], many clues have

shown that the massive graviton in the bulk is related to
some interesting effects of the dual field which resides on
the UV boundary of an asymptotical anti-de Sitter (AdS)
spacetime, i.e., the effects like a lattice to deduce the
momentum dissipation [9,15–17]. Much research about the
dRGT massive gravity has been done [9–11,15–31].
Among this research, one interesting issue is to find out

exact solutions in the dRGT massive gravity [18–24].
Usually, we assume some symmetries of the spacetime
when we seek a new solution. The translation invariance
along a timelike Killing vector is one of the most important
symmetries, but in some violent astrophysical processes, or
when the mass of the matters surrounding the central
celestial bodies are not negligible, such an assumption
may no longer be reliable. However, finding an exact
dynamical solution describing these realistic processes has
proven to be an intricate issue.
Vaidya found an important dynamical toy model for a

spherically symmetric spacetime [32],

ds2 ¼ −
�
1 −

2MðvÞ
r

�
dv2 þ 2dvdrþ r2dΩ2

2; ð1Þ

whereMðvÞ is the mass parameter, dΩ2
2 is the metric of the

2-sphere, and the stress tensor of the matter field is given by
Tab ¼ μlalb. Here, la ¼ ðdvÞa in the above coordinates
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ðv; r; xiÞ, and μ is the energy density. This solution is well
known as the Vaidya solution. Note that the Vaidya solution
describes a spherically symmetric spacetime sourced by
massless particles (not quanta of the Maxwell field which
are called the pure radiation). In addition, since MðvÞ is an
undetermined function in the Vaidya metric, in principle, it
can describe an arbitrary spherically symmetric energy flow
from the central star. When MðvÞ ¼ constant, it comes
back to the Schwarzschild spacetime, and whenMðvÞ ¼ 0,
it degenerates to the Minkowski spacetime. It should be
emphasized that the Vaidya solution is an important
solution since it encodes some essential properties of the
dynamical spherically symmetric spacetimes, while
remaining simple enough to handle. Therefore, in our
paper, the first task is to generalize the above Vaidya
solution to a more general case, i.e., the exact generalized
Vaidya and Vaidya-like solutions in the n-dimensional
spacetime with maximally symmetric (n − 2)-subspace in
the dRGT massive gravity. The metric ansatz reads

ds2 ¼ −fðv; rÞdv2 þ 2dvdrþ r2γijdxidxj; ð2Þ

where γij is the metric on a (n − 2)-dimensional constant
curvature space N with its sectional curvature k ¼ �1; 0,
and the two-dimensional T spanned by ðv; rÞ has the metric
hab. In addition, during obtaining the generalized dynami-
cal solutions, we first adopt the pure radiation as the matter
field. Then, we extend the matter field to a more general
case [33,34] and then obtain a generalized Vaidya-like
solution, in which the generalized Vaidya solution is
included as a special case. For the generalized Vaidya
solution in dRGT massive gravity, we find that it is
consistent with the result in some previous works in which
the corresponding static solution has been found [18].
As important progress, black hole thermodynamics

(more generally gravithermodynamics) significantly
boosts our understanding of gravity theory. It is even treated
as a critical probe of the quantum gravity theory.
Gravithermodynamics is well established in stationary
spacetime. For dynamical spacetimes, there is still no
generally accepted theory yet. The first difficulty is that
somekey physical concepts, including temperature, entropy,
horizon, etc., become subtle. The seconddifficulty is that it is
hard to define a reversible process in a dynamical spacetime.
However, some research has shown that the unified first law
is a nice approach in gravithermodynamics if the spacetime
has a maximally symmetric subspace, since usually it can be
directly derived from the field equation itself [10,34–38] in
such spacetimes. Thus, one can apply it in a dynamical
spacetime without essential obstructions for these space-
times. In our paper, we apply the unified first law to
investigate the thermodynamics of the above generalized
dynamical solutions in dRGTmassive gravity. Note that the
Misner-Sharp mass is a significant quantity in the unified
first law. In Einstein’s general relativity, the Misner-Sharp

mass always exists [10,34–38]. In addition, since it encodes
rich information of the corresponding gravity field [39],
one can obtain a series of exact solutions through thermo-
dynamic approaches from the Misner-Sharp mass [40].
However, the generalizedMisner-Sharpmassmay be absent
in some modified gravity like fðRÞ gravity [41,42].
In our case, by using the unified first law, we find that the

generalized Misner-Sharp mass does exist for the above
generalized dynamical solutions and obtain the first law of
thermodynamics on the apparent horizon for these gener-
alized dynamical solutions. In addition, the usual Clausius
relation δQ ¼ TdS holds on the apparent horizon, which
implies that the dRGT massive gravity is in a thermody-
namic equilibrium state [10,41,43,44]. It should be empha-
sized that the existence of the Misner-Sharp mass in some
special solutions does not always imply the existence of it
in the corresponding gravity theory. For example, the
Misner-Sharp mass exists in the Friedmann-Robertson-
Walker (FRW) solution and static solution in fðRÞ gravity.
However, it does not always exist in a general spherically
symmetric spacetime in fðRÞ gravity [41,42]. Essentially,
the generalized Misner-Sharp mass is a conserved charge
of the spacetime corresponding to the Kodama vector
(reduced to a Killing one in stationary spacetime), which
depends on the gravity theory in consideration [36,41,42].
The integrability of such a conserved charge, and thus the
existence of the generalized Misner-Sharp mass, is a
nontrivial problem. Therefore, we need further study the
existence of the generalizedMisner-Sharp mass in a general
spacetime with maximally symmetric subspaces. We show
that the generalized Misner-Sharp mass in the n-dimen-
sional dRGT massive gravity indeed exists, and the
covariant form has also been obtained; i.e., the result is
not constrained to any special solution.
This paper is organized as follows. In Sec. II, we first

obtain the generalized Vaidya solution in the dRGTmassive
gravity and then consider a more general matter field to
obtain a generalized Vaidya-like solution. In Sec. III, we use
the unified first law to investigate the thermodynamics of
these generalized dynamical solutions. Our results show that
the generalizedMisner-Sharp mass exists in these solutions.
In Sec. IV, we further derive the covariant generalized
Misner-Sharp mass for the n-dimensional dRGT massive
gravity by considering the more general metric ansatz and
matter fields. Finally, we draw the conclusions and dis-
cussions in Sec. V.

II. GENERALIZED DYNAMICAL SOLUTIONS
IN THE N-DIMENSIONAL MASSIVE GRAVITY

In this section, we explore the generalized dynamical
solutions in the n-dimensional dRGT massive gravity. The
action of the dRGT massive gravity in an n-dimensional

spacetime with a cosmological constant Λ ¼ − ðn−1Þðn−2Þ
2l2

reads [9,18]
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S ¼ 1

16πG

Z
dnx

ffiffiffiffiffiffi
−g

p �
Rþ ðn − 1Þðn − 2Þ

l2

þm2
X4
i

ciU iðg; fÞ
�
; ð3Þ

where f is a constant symmetric tensor, which is usually
called the reference metric; ci and l are constants; and U i
are symmetric polynomials of the eigenvalues of the n × n
matrix Kμ

ν ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαfαν

p
,

U1 ¼ ½K�;
U2 ¼ ½K�2 − ½K2�;
U3 ¼ ½K�3 − 3½K�½K2� þ 2½K3�;
U4 ¼ ½K�4 − 6½K2�½K�2 þ 8½K3�½K� þ 3½K2�2 − 6½K4�: ð4Þ

The square root in K means ð ffiffiffiffi
A

p Þμνð
ffiffiffiffi
A

p Þνλ ¼ Aμ
λ and

½K� ¼ Kμ
μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαfαμ

p
.

From the action and considering the matter fields, the
equations of motion are

Gμν ≡ Rμν −
1

2
Rgμν −

ðn − 1Þðn − 2Þ
2l2

gμν þm2χμν

¼ 8πGTμν; ð5Þ

where

χμν ¼ −
c1
2
ðU1gμν −KμνÞ −

c2
2
ðU2gμν − 2U1Kμν þ 2K2

μνÞ

−
c3
2
ðU3gμν − 3U2Kμν þ 6U1K2

μν − 6K3
μνÞ

−
c4
2
ðU4gμν − 4U3Kμν þ 12U2K2

μν

− 24U1K3
μν þ 24K4

μνÞ: ð6Þ

In this article, we will investigate the generalized
dynamical solutions in the n-dimensional spacetime with
a maximally symmetric inner space in the dRGT massive
gravity, and the metric ansatz is just (2). For this metric
ansatz, we take the reference metric as in Ref. [18],

fμν ¼ diagð0; 0; c20γijÞ; ð7Þ

with c0 is a positive constant. Thus,

½K� ¼ n − 2

r
c0; ½K2� ¼ n − 2

r2
c20;

½K3� ¼ n − 2

r3
c30; ½K4� ¼ n − 2

r4
c40; ð8Þ

where the symmetric polynomials become

U1 ¼
ðn − 2Þc0

r
; ð9Þ

U2 ¼
ðn − 2Þðn − 3Þc20

r2
; ð10Þ

U3 ¼
ðn − 2Þðn − 3Þðn − 4Þc30

r3
; ð11Þ

U4 ¼
ðn − 2Þðn − 3Þðn − 4Þðn − 5Þc40

r4
; ð12Þ

and the corresponding components of Gμν are

Gv
v ¼ Gr

r ¼ Λþ n − 2

2

�ðrn−3fÞ0 − ðn − 3Þrn−4k − c1c0m2rn−3 − ðn − 3Þc2c20m2rn−4 − ðn − 3Þðn − 4Þc3c30m2rn−5

rn−2

−
ðn − 3Þðn − 4Þðn − 5Þc4c40m2rn−6

rn−2

�
; ð13Þ

Gi
j ¼ δij

�
Λþ ðrn−3fÞ00 − ðn − 3Þðn − 4Þrn−5k − ðn − 3Þc1c0m2rn−4 − ðn − 3Þðn − 4Þc2c20m2rn−5

2rn−3

−
ðn − 3Þðn − 4Þðn − 5Þc3c30m2rn−6 − ðn − 3Þðn − 4Þðn − 5Þðn − 6Þc4c40m2rn−7

2rn−3

�
; ð14Þ

Gr
v ¼

−ðn − 2Þ _f
2r

; ð15Þ
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Gv
r ¼ 0; ð16Þ

where a prime/overdot denotes the derivative with respect
to r=v. In the following, we investigate two cases by
considering different matter fields. In the first case, the
generalized Vaidya solution is derived by the pure radiation
in analogy to the Vaidya solution in the Einstein gravity. In
the second case, we consider a more generic source matter

than the usual pure radiation to obtain a more general
dynamical solution, i.e., a generalized Vaidya-like solution.

A. Special case: Generalized Vaidya solution

For the pure radiation, the stress-energy tensor is given
by Tab ¼ μlalb, where la ¼ ðdvÞa is expressed in the
coordinates ðv; r; xiÞ in (2). The components of the field
equation (5) corresponding to the metric (2) present

Gv
v ¼ Gr

r ¼ Λþ n − 2

2
×

�ðrn−3fÞ0 − ðn − 3Þrn−4k − c1c0m2rn−3 − ðn − 3Þc2c20m2rn−4 − ðn − 3Þðn − 4Þc3c30m2rn−5

rn−2

−
ðn − 3Þðn − 4Þðn − 5Þc4c40m2rn−6

rn−2

�
¼ 0; ð17Þ

Gi
j ¼ δij ×

�
Λþ ðrn−3fÞ00 − ðn − 3Þðn − 4Þrn−5k − ðn − 3Þc1c0m2rn−4 − ðn − 3Þðn − 4Þc2c20m2rn−5

2rn−3

−
ðn − 3Þðn − 4Þðn − 5Þc3c30m2rn−6 − ðn − 3Þðn − 4Þðn − 5Þðn − 6Þc4c40m2rn−7

2rn−3

�
¼ 0; ð18Þ

Gr
v ¼

−ðn − 2Þ _f
2r

¼ 8πGμ; ð19Þ

Gv
r ¼ 0: ð20Þ

Note that the components Gi
j are not independent,

because they are a linear combination of the terms of Gv
v

and ∂rGv
v,

Gi
j ¼ δij½Gv

v þ r∂rGv
v=ðn − 2Þ�

¼ δij

�
1

ðn − 2Þrn−3 ∂rðrn−2Gv
vÞ
�
: ð21Þ

Therefore, Gi
j ¼ 0 do not yield independent equations.

From the above equation in (17), we can easily obtain
the generalized Vaidya solution in the n-dimensional dRGT
massive gravity,

fðv; rÞ ¼ kþ r2

l2
−
MðvÞ
rn−3

þ c0c1m2

n − 2
rþ c20c2m

2

þ ðn − 3Þc30c3m2

r
þ ðn − 3Þðn − 4Þc40c4m2

r2
;

ð22Þ

with

μ ¼ −
ðn − 2Þ _f
16πGr

¼ ðn − 2Þ _MðvÞ
16πGrn−2

; ð23Þ

which can be obtained by inserting (22) into (19), andMðvÞ
is the mass parameter. Our solution is consistent with the
result in some previous works like Ref. [18]. Since ifMðvÞ
is independent of v, i.e., a constant, and hence fðv; rÞ can
be written as fðrÞ, then after the transformation in the
metric ansatz (2)

dv ¼ dtþ 1

fðrÞ dr; ð24Þ

the above solution (22) comes back to the static solution in
n-dimensional spacetime found in Ref. [18].

B. General case: Generalized Vaidya-like solution

Now, we further generalize the above generalized Vaidya
solution in the dRGT massive gravity to a more general
case. For a general discussion of the stress-energy form
constrained by the energy conditions in the Vaidya-type
solutions, see Ref. [45]. Note that for the metric (2) and the
reference metric (7) we have Gr

r ¼ Gv
v, so the energy-

momentum tensor of the matter field should satisfy
Tr
r ¼ Tv

v. Certainly, the pure radiation matter discussed
above satisfies the constraint. In fact, it is Tr

r ¼ Tv
v ¼ 0.

Therefore, if we relax this condition to Ti
i ¼ σTr

r ¼ σTv
v

(where σ is a constant, and the equation does not sum over
i), then from the equation ∇μT

μ
ν ¼ 0 or the explicit

expressions of Gμ
ν in Eqs. (13) to (15), we can derive

∂vTv
v þ ∂rTr

v þ
n − 2

r
Tr
v ¼ 0 ð25Þ
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and

∂rTv
v þ

ðn − 2Þð1 − σÞ
r

Tv
v ¼ 0: ð26Þ

So, for the pure radiation matter with Tr
r ¼ Tv

v ¼ 0, one
finds that Tr

v has to be proportional to 1=rn−2, which is
consistent with the above generalized Vaidya case
in Eq. (23).
Therefore, for the more general case Tr

r ¼ Tv
v ≠ 0 for the

matter field, and hence from Eq. (26), Tr
r and Tv

v should
satisfy

Tr
r ¼ Tv

v ¼ CðvÞr−ðn−2Þð1−σÞ; ð27Þ

where CðvÞ is a function of v. In addition, the off-diagonal
part of the energy-momentum tensor Tμ

ν, i.e., the compo-
nent Tr

v, has to satisfy Eq. (25). Now, Eq. (17) is modified
as

Gv
v ¼ 8πGCðvÞr−ðn−2Þð1−σÞ: ð28Þ

Integrating this equation, we obtain the expression of
fðv; rÞ,

fðv; rÞ ¼ kþ r2

l2
þ c0c1m2

n − 2
rþ c20c2m

2 þ ðn − 3Þc30c3m2

r

þ ðn − 3Þðn − 4Þc40c4m2

r2

−
MðvÞ
rn−3

þ 16πG
ðn − 2Þrn−3 CðvÞΘðrÞ; ð29Þ

where MðvÞ is an arbitrary function of v, and
ΘðrÞ ¼ R

drrðn−2Þσ. In detail, when σ ¼ −1=ðn − 2Þ,

ΘðrÞ ¼ lnðrÞ; ð30Þ

and in other cases,

ΘðrÞ ¼ rðn−2Þσþ1

ðn − 2Þσ þ 1
: ð31Þ

Note that the parameter σ and functions mðvÞ and CðvÞ
should satisfy some consistency relations if one imposes
some energy condition for the energy-momentum tensor. In
addition, from Eq. (15), we have

Tr
v ¼ ~μ ¼ ðn − 2Þ _MðvÞ

16πGrn−2
−

_CðvÞΘðrÞ
rn−2

; ð32Þ

which is also consistent with Eq. (25). Therefore, we have
also obtained the stress tensor of the matter field in this
more general case. More precisely, we can further write the
stress tensor of the matter field in this more general case as

Tab ¼ ~μlalb − Pðlanb þ nalbÞ þ σPqab; ð33Þ

where na is a null vector which satisfies lana ¼ −1.
In coordinates ðv; r; xiÞ, la ¼ ðdvÞa and na ¼ f=2ðdvÞa−
ðdrÞa, while the tensor qab is a projection operator given by
qab ¼ gab þ lanb þ lbna, and the quantity P is the radial
pressure with the form P ¼ CðvÞr−ðn−2Þð1−σÞ. In addition,
the metric (2) can be put into the form gab ¼ hab þ qab,
where

hab ¼ −lanb − lbna ð34Þ

is the metric of two-dimensional spacetime T spanned by
the coordinates ðv; rÞ. Certainly, in the coordinates
ðv; r; xiÞ, the line element of hab can be expressed as
−fðv; rÞdv2 þ 2dvdr. Therefore, Eq. (29) together with
Eq. (33) is a more general case with the new dynamical
solution, which we call the generalized Vaidya-like sol-
ution. Obviously, the above generalized Vaidya solution is a
special case of this generalized Vaidya-like solution
with CðvÞ ¼ 0.

III. THERMODYNAMICS OF THE GENERALIZED
DYNAMICAL SOLUTIONS

In this section, we will investigate thermodynamics
of the above generalized dynamical solutions in the
dRGT massive gravity by using the unified first law,
and we concentrate on the generalized Vaidya-like solution
obtained in the more general case, since it naturally
includes the generalized Vaidya solution as a special case.
According to the unified first law, similar to the case of the
Einstein gravity [35], one can formally cast Eq. (5) of the
gravitational field into the form

dMeff ¼ AΨadxa þWdV; ð35Þ

where A ¼ Vkrn−2 and V ¼ Vkrn−1=ðn − 1Þ are the area
and volume of the (n − 2)-dimensional constant curvature
space N with radius r, W is called work density defined
as W ¼ −habTab=2, and Ψa is the energy supply vector
with the definition Ψa ¼ Tb

a∂brþW∂ar. Here, Tab is the
projection of the stress tensor Tμν of matter into hab.
After substituting the explicit forms of generalized

dynamical solutions in the dRGT massive gravity (29)
and (33), we can explicitly obtain the following quantities:

W ¼ −P; Ψa ¼ ~μla; ð36Þ

AΨadxa þWdV ¼ Vkrn−2 ~μdv − PVkrn−2dr

≡ Xðv; rÞdvþ Yðv; rÞdr: ð37Þ

It is easy to check,
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∂Xðv; rÞ
∂r ¼ ∂Yðv; rÞ

∂v ; ð38Þ

which ensures that dMeff is a closed form and thus qualified
as the generalized Misner-Sharp mass for the above
generalized dynamical solutions in the dRGT massive
gravity. Moreover, the generalized Misner-Sharp mass
can be easily obtained in this case,

Meff ¼ Vk

�ðn − 2ÞMðvÞ
16πG

− CðvÞΘðrÞ
�
: ð39Þ

Next, we will use the unified first law and generalized
Misner-Sharp mass (39) to investigate the thermodynamics
of the above generalized dynamical solutions on the
apparent horizon rA, where rA is defined as the trapped
surface hab∂ar∂br ¼ 0. In our case, we can easily obtain
that the location of the apparent horizon rA is fðv; rÞ ¼ 0 in
Eq. (29). On the apparent horizon, the energy flow across
the apparent horizon is [10,34,37,38]

δQ ¼ dMeff jrA ¼ AΨadxajr¼rA

¼ AΨvdv ¼ −
ðn − 2ÞVkrn−3A

16πG
_fðrAÞdv: ð40Þ

On the other hand, the temperature of generalized
dynamical solution is T ¼ κ

2π, where the surface gravity

κ defined on the apparent horizon is κ ¼ DaDar ¼
1

2
ffiffiffiffiffi
−h

p ∂
∂xμ ð

ffiffiffiffiffiffi
−h

p
hμν∂vrÞ ¼ f0ðrAÞ=2 [10,34–38]. Here, Da

is the covariant derivative associated with metric hab. In

addition, the entropy of the apparent horizon is S ¼ A
4G ¼

Vkrn−2A
4G [18]. Therefore,

TdS ¼ κ

2π
dS ¼ ðn − 2ÞVkrn−3A

16πG
f0ðrAÞ_rAdv: ð41Þ

After using the simple relation f0ðrAÞ_rA ¼ − _fðrAÞ derived
from fðrA; vÞ ¼ 0, we can easily obtain that the usual
Clausius relation δQ ¼ TdS does hold on the apparent
horizon of the generalized dynamical solution, which
indicates that the dRGT massive gravity is an equilibrium
state [44]. Note that this result is consistent with the
investigation in Ref. [10] by taking the FRW universe into
account. In addition, it should be emphasized that the usual
Clausius relation δQ ¼ TdS does not always hold on the
apparent horizon. For example, the usual Clausius relation
does not hold for the fðRÞ gravity, which can be treated as
the effects of the nonequilibrium of the spacetime
[41,43,44]. Therefore, after taking Eq. (41) and the
Clausius relation into account, the unified first law in
Eq. (35) on the apparent horizon can be rewritten as

dMeff ¼ TdSþWdV; ð42Þ

which is just the first law of thermodynamics for the
generalized Vaidya-like solution. Note that the work
density W in Eq. (42) is nonzero for the generalized
Vaidya-like solution, which makes another difference from
the generalized Vaidya solution, of which W ¼ 0.

IV. GENERALIZED MISNER-SHARP MASS FOR
THE N-DIMENSIONAL MASSIVE GRAVITY

Note that the Misner-Sharp mass is a quantity depending
on not only the symmetry in the solution, i.e., usually just
defined in a spacetime with a maximally symmetric sub-
space, but also the underlying gravity theory. Hence, the
existence of the Minser-Sharp mass in a special solution
with a maximally symmetric subspace does not always
guarantee its existence in the gravity for the general
solutions with the same maximally symmetric subspace,
for example, the fðRÞ gravity [41,42]. Therefore, we
should further investigate the existence of the Misner-
Sharp mass in a general spacetime with a maximally
symmetric subspace. Moreover, in order to investigate
the generalized Misner-Sharp mass for the n-dimensional
dRGT massive gravity, we usually write down the more
general metric ansatz in a double-null coordinate as
follows:

ds2 ¼ −2e−φðu;vÞdudvþ r2ðu; vÞγijdxidxj: ð43Þ

Here, γij is the metric on the maximally symmetric sub-
space same as in Eq. (2). In the coordinates (43), the rhs of
Eq. (35) reads

AΨadxa þWdV ¼ Aðu; vÞduþ Bðu; vÞdv; ð44Þ

where

Aðu; vÞ ¼ Vkrn−2eφðr;u Tuv − r;v TuuÞ; ð45Þ

Bðu; vÞ ¼ Vkrn−2eφðr;v Tuv − r;u TvvÞ: ð46Þ

Here, a comma denotes a partial derivative. Substituting
Eq. (35) into Eq. (44), we reach

F≡ dMeff ¼ Aðu; vÞduþ Bðu; vÞdv: ð47Þ

The components of the field equation (5) in the coordinates
(43) read
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8πGTuu ¼ −ðn − 2Þφ;u r;u þr;uu
r

;

8πGTvv ¼ −ðn − 2Þφ;v r;v þr;vv
r

;

8πGTuv ¼
−Λ
eφ

þ n − 2

2eφr
ð2r;uv eφ þ c1c0m2Þ þ ðn − 2Þðn − 3Þðkþ 2eφr;u r;v þc2c20m

2Þ
2eφr2

þ ðn − 2Þðn − 3Þðn − 4Þc3c30m2

2eφr3
þ ðn − 2Þðn − 3Þðn − 4Þðn − 5Þc4c40m2

2eφr4
: ð48Þ

Obviously, a well-defined Meff in Eq. (47) requires F is a closed form dF ¼ 0, which means

A;v dv∧duþ B;u du∧dv ¼ 0: ð49Þ

Then, we obtain the constraint for a well-defined Meff ,

A;v ¼ B;u: ð50Þ

Substituting Eq. (48) into Eqs. (45) and (46), we obtain

Aðu; vÞ ¼ Vk

8πG

�
−Λr;u rn−2 þ ðn − 2Þrn−3eφr;u r;vu þ

k
2
ðn − 2Þðn − 3Þrn−4r;u þðn − 2Þðn − 3Þeφr;v r;2u rn−4

þ eφrn−3ðn − 2Þðr;u r;v þr;v r;uv Þ þ
ðn − 2Þrn−3r;u c1c0m2

2
þ ðn − 2Þðn − 3Þrn−4r;u c2c20m2

2

þ ðn − 2Þðn − 3Þðn − 4Þrn−5r;u c3c30m2

2
þ ðn − 2Þðn − 3Þðn − 4Þðn − 5Þrn−6r;u c4c40m2

2

�
;

Bðu; vÞ ¼ Vk

8πG

�
−Λr;v rn−2 þ ðn − 2Þrn−3eφr;v r;vu þ

k
2
ðn − 2Þðn − 3Þrn−4r;v þðn − 2Þðn − 3Þeφr;u r;2v rn−4

þ eφrn−3ðn − 2Þðr;v r;u þr;u r;uv Þ þ
ðn − 2Þrn−3r;v c1c0m2

2
þ ðn − 2Þðn − 3Þrn−4r;v c2c20m2

2

þ ðn − 2Þðn − 3Þðn − 4Þrn−5r;v c3c30m2

2
þ ðn − 2Þðn − 3Þðn − 4Þðn − 5Þrn−6r;v c4c40m2

2

�
: ð51Þ

Using the above explicit forms of Aðu; vÞ and Bðu; vÞ, we find that the above constraint is automatically satisfied for the
n-dimensional dRGT massive gravity, which guarantees that Meff is well defined. Thus, directly integrating (35) presents
the generalized Misner-Sharp mass in the n-dimensional dRGT massive gravity,

Meff ¼
Z

Aðu; vÞduþ
Z �

Bðu; vÞ − ∂
∂v

Z
Aðu; vÞdu

�
dv

¼ Vkðn − 2Þ
16πG

rn−3
�
r2

l2
þ kþ 2eφr;u r;v þ

c0c1m2

n − 2
rþ c20c2m

2 þ ðn − 3Þc30c3m2

r
þ ðn − 3Þðn − 4Þc40c4m2

r2

�
: ð52Þ

Note that, here, the second term in the first line of Eq. (52) in fact vanishes, and we have fixed an integration constant so that
Meff reduces to the Misner-Sharp mass in the Einstein gravity when the graviton mass parameter m goes to zero.
Furthermore, the above generalized Misner-Sharp mass can be rewritten in a covariant form as

Meff ¼
Vkðn − 2Þ
16πG

rn−3
�
ðk − hab∂ar∂brÞ þ

r2

l2
þ c0c1m2

n − 2
rþ c20c2m

2 þ ðn − 3Þc30c3m2

r
þ ðn − 3Þðn − 4Þc40c4m2

r2

�
: ð53Þ

For the special case in the above generalized dynamical solution (29), one can check that the result in Eq. (39) is consistent
with the generalized Misner-Sharp mass in Eq. (53). And Eq. (53) is the general definition of the generalized Misner-Sharp
mass in the n-dimensional spacetime with maximally symmetric subspace in the dRGT massive gravity.
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V. CONCLUSION AND DISCUSSION

In this paper, through considering the pure radiation and
a more general case as the matter fields, we obtain the
generalized dynamical solutions in the n-dimensional
dRGT massive gravity, which naturally includes the gen-
eralized Vaidya solution. By using the unified first law and
the Misner-Sharp mass, we investigate thermodynamics for
these solutions. Besides obtaining the first law of thermo-
dynamics for these generalized dynamical solutions on the
apparent horizon, we also check that the generalized
Misner-Sharp mass exists for them. Generally, a solution
has a much higher symmetry than the theory itself. The
existence of the Misner-Sharp mass in a special solution
does not imply the existence of it in the general case. For
example, the Misner-Sharp mass exists in the FRW
solutions and static solutions in fðRÞ gravity. However,
it does not always exist in a general spherically symmetric
spacetime in fðRÞ gravity. In view of this situation, we
further investigate the generalized Misner-Sharp by taking
the general metric ansatz and matter field into account and
find that the generalized Misner-Sharp mass really exists in
a covariant form.
Note that in the massive gravity theory a reference metric

is required. However, the theory itself does not determine
the concrete form of the reference metric. This uncertainty
makes the theory become arbitrary in some degree, while it
delivers extra conveniences in some cases. For example,
there is no Schwarzschild solution in the unitary gauge
(Minkowskian reference metric), and thus to match the tests
in the Solar System, a chameleon mechanism is necessary.
Recently, Li et al. found that the Schwarzschild solution
can be obtained if one gives up the unitary gauge [46].
Other solutions have also been found by choosing a
different reference metric, for example, the rotating black

hole solution in the dRGT massive gravity [47]. Therefore,
it is an interesting issue to find other solutions in the dRGT
massive gravity by considering different reference metrics.
In addition, it was found recently that the dynamics of

black holes and black branes are greatly simplified in the
limit of a large number of spacetime dimensions N [48].
Therefore, more properties for the black holes and black
branes in the large-N limit will also be an interesting issue
to further investigate. Furthermore, according to the
AdS=CFT correspondence, the Vaidya dynamical black
branes in Eq. (22) can be related to the thermalization
processes of the strongly coupled fields [49,50], i.e.,
thermalization processes of the quark-gluon plasma pro-
duced in ultrarelativistic heavy-ion collisions at the
Relativistic Heavy Ion Collider and the (LHC).
Therefore, the underlying dual physics of our Vaidya-like
dynamical black brane in Eq. (29) is also an interesting
issue to be explored further.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Grants No. 11575083,
No. 11565017, No. 11105004, No. 11075106, and
No. 11275128), the Program for Professor of Special
Appointment (Eastern Scholar) at Shanghai Institutions
of Higher Learning, National Education Foundation of
China under Grant No. 200931271104, the Fundamental
Research Funds for the Central Universities (Grant
No. NS2015073), and the Open Project Program of
State Key Laboratory of Theoretical Physics, Institute of
Theoretical Physics, Chinese Academy of Sciences, China
(Grant No. Y5KF161CJ1). In addition, Y. P. Hu is very
thankful for the support from the Sino-Dutch scholarship
program under the China Scholarship Council (CSC).

[1] M. Fierz and W. Pauli, Proc. R. Soc. A 173, 211 (1939).
[2] K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012).
[3] D. G. Boulware and S. Deser, Phys. Rev. D 6, 3368 (1972).
[4] C. de Rham, Living Rev. Relativ. 17, 7 (2014).
[5] C. de Rham and G. Gabadadze, Phys. Rev. D 82, 044020

(2010).
[6] C. de Rham, G. Gabadadze, and A. J. Tolley, Phys. Rev.

Lett. 106, 231101 (2011),
[7] S. F. Hassan and R. A. Rosen, Phys. Rev. Lett. 108, 041101

(2012),
[8] S. F. Hassan, R. A. Rosen, and A. Schmidt-May, J. High

Energy Phys. 02 (2012) 026.
[9] D. Vegh, arXiv:1301.0537.

[10] Y. P. Hu and H. Zhang, Phys. Rev. D 92, 024006 (2015).
[11] H. Zhang and X. Z. Li, Phys. Rev. D 93, 124039 (2016).

[12] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);
Int. J. Theor. Phys. 38, 1113 (1999).

[13] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys.
Lett. B 428, 105 (1998).

[14] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[15] M. Blake, D. Tong, and D. Vegh, Phys. Rev. Lett. 112,

071602 (2014).
[16] A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli, and D.

Musso, J. High Energy Phys. 09 (2014) 160.
[17] Y. P. Hu, H. F. Li, H. B. Zeng, and H. Q. Zhang, Phys. Rev.

D 93, 104009 (2016).
[18] R. G. Cai, Y. P. Hu, Q. Y. Pan, and Y. L. Zhang, Phys. Rev. D

91, 024032 (2015).
[19] S. H. Hendi, S. Panahiyan, and B. E. Panah, J. High Energy

Phys. 01 (2016) 129; S. H. Hendi, B. E. Panah, and

YA-PENG HU, XIN-MENG WU, and HONGSHENG ZHANG PHYSICAL REVIEW D 95, 084002 (2017)

084002-8

https://doi.org/10.1098/rspa.1939.0140
https://doi.org/10.1103/RevModPhys.84.671
https://doi.org/10.1103/PhysRevD.6.3368
https://doi.org/10.12942/lrr-2014-7
https://doi.org/10.1103/PhysRevD.82.044020
https://doi.org/10.1103/PhysRevD.82.044020
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/PhysRevLett.108.041101
https://doi.org/10.1103/PhysRevLett.108.041101
https://doi.org/10.1007/JHEP02(2012)026
https://doi.org/10.1007/JHEP02(2012)026
http://arXiv.org/abs/1301.0537
https://doi.org/10.1103/PhysRevD.92.024006
https://doi.org/10.1103/PhysRevD.93.124039
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1103/PhysRevLett.112.071602
https://doi.org/10.1103/PhysRevLett.112.071602
https://doi.org/10.1007/JHEP09(2014)160
https://doi.org/10.1103/PhysRevD.93.104009
https://doi.org/10.1103/PhysRevD.93.104009
https://doi.org/10.1103/PhysRevD.91.024032
https://doi.org/10.1103/PhysRevD.91.024032
https://doi.org/10.1007/JHEP01(2016)129
https://doi.org/10.1007/JHEP01(2016)129


S. Panahiyan, J. High Energy Phys. 05 (2016) 029; S. H.
Hendi, N. Riazi, and S. Panahiyan, arXiv:1610.01505.

[20] S. H. Hendi, B. E. Panah, and S. Panahiyan, J. High Energy
Phys. 11 (2015) 157; Classical Quantum Gravity 33,
235007 (2016).

[21] Y. P. Hu, X. X. Zeng, and H. Q. Zhang, Phys. Lett. B 765,
120 (2017).

[22] M. S. Volkov, Classical Quantum Gravity 30, 184009
(2013).

[23] G. Tasinato, K. Koyama, and G. Niz, Classical Quantum
Gravity 30, 184002 (2013).

[24] E. Babichev and R. Brito, Classical Quantum Gravity 32,
154001 (2015).

[25] J. Xu, L. M. Cao, and Y. P. Hu, Phys. Rev. D 91, 124033
(2015).

[26] L. M. Cao and Y. Peng, Phys. Rev. D 92, 124052 (2015);
L. M. Cao, Y. Peng, and Y. L. Zhang, Phys. Rev. D 93,
124015 (2016).

[27] R. A. Davison, Phys. Rev. D 88, 086003 (2013).
[28] M. Blake and D. Tong, Phys. Rev. D 88, 106004

(2013).
[29] R. A. Davison, K. Schalm, and J. Zaanen, Phys. Rev. B 89,

245116 (2014).
[30] A. Adams, D. A. Roberts, and O. Saremi, Phys. Rev. D 91,

046003 (2015).
[31] T. Q. Do, Phys. Rev. D 93, 104003 (2016); 94, 044022

(2016).
[32] P. C. Vaidya, Proc. Indian Acad. Sci. (Math. Sci.) 33, 264

(1951); R. W. Lindquist, R. A. Schwartz, and C.W. Misner,
Phys. Rev. 137, B1364 (1965).

[33] A. E. Dominguez and E. Gallo, Phys. Rev. D 73, 064018
(2006).

[34] R. G. Cai, L. M. Cao, Y. P. Hu, and S. P. Kim, Phys. Rev. D
78, 124012 (2008).

[35] S. A. Hayward, Phys. Rev. D 49, 6467 (1994); 49, 831
(1994); 53, 1938 (1996); Classical Quantum Gravity 15,
3147 (1998).

[36] H. Maeda and M. Nozawa, Phys. Rev. D 77, 064031 (2008).

[37] R. G. Cai and S. P. Kim, J. High Energy Phys. 02 (2005)
050.

[38] R. G. Cai, L. M. Cao, and Y. P. Hu, J. High Energy Phys. 08
(2008) 090.

[39] H. Zhang, Universe 3, 30 (2015).
[40] H. Zhang, S. Hayward, X. H. Zhai, and X. Z. Li, Phys. Rev.

D 89, 064052 (2014); H. Zhang and X. Z. Li, Phys. Lett. B
737, 395 (2014); H. Zhang, D.-J. Liu, and X.-Z. Li, Phys.
Rev. D 90, 124051 (2014); D. He and Q.-y. Cai, Sci. China
Phys. Mech Astron. 60, 04011 (2017); H. W. Tan, J. B.
Yang, T. M. He, and J. Y. Zhang, Commun. Theor. Phys. 67,
41 (2017).

[41] R. G. Cai, L. M. Cao, Y. P. Hu, and N. Ohta, Phys. Rev. D
80, 104016 (2009).

[42] H. Zhang, Y. Hu, and X. Z. Li, Phys. Rev. D 90, 024062
(2014).

[43] M. Akbar and R. G. Cai, Phys. Rev. D 75, 084003 (2007);
Phys. Lett. B 635, 7 (2006); 648, 243 (2007).

[44] C. Eling, R. Guedens, and T. Jacobson, Phys. Rev. Lett. 96,
121301 (2006); T. Jacobson, Phys. Rev. Lett. 75, 1260
(1995).

[45] A. Wang and Y. Wu, Gen. Relativ. Gravit. 31, 107
(1999).

[46] P. Li, X. z. Li, and P. Xi, Phys. Rev. D 93, 064040 (2016);
Classical Quantum Gravity 33, 115004 (2016).

[47] E. Babichev and A. Fabbri, Phys. Rev. D 90, 084019 (2014).
[48] R. Emparan, R. Suzuki, and K. Tanabe, Phys. Rev. Lett.

115, 091102 (2015); R. Emparan, K. Izumi, R. Luna, R.
Suzuki, and K. Tanabe, J. High Energy Phys. 06 (2016) 117.

[49] V. Balasubramanian, A. Bernamonti, J. de Boer, N.
Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Schäfer,
M. Shigemori, and W. Staessens, Phys. Rev. Lett. 106,
191601 (2011).

[50] V. Balasubramanian, A. Bernamonti, J. de Boer, N.
Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Schäfer,
M. Shigemori, and W. Staessens,Phys. Rev. D 84, 026010
(2011); V. Balasubramanian and S. F. Ross, Phys. Rev. D
61, 044007 (2000).

GENERALIZED VAIDYA SOLUTIONS AND MISNER-SHARP … PHYSICAL REVIEW D 95, 084002 (2017)

084002-9

https://doi.org/10.1007/JHEP05(2016)029
http://arXiv.org/abs/1610.01505
https://doi.org/10.1007/JHEP11(2015)157
https://doi.org/10.1007/JHEP11(2015)157
https://doi.org/10.1088/0264-9381/33/23/235007
https://doi.org/10.1088/0264-9381/33/23/235007
https://doi.org/10.1016/j.physletb.2016.12.028
https://doi.org/10.1016/j.physletb.2016.12.028
https://doi.org/10.1088/0264-9381/30/18/184009
https://doi.org/10.1088/0264-9381/30/18/184009
https://doi.org/10.1088/0264-9381/30/18/184002
https://doi.org/10.1088/0264-9381/30/18/184002
https://doi.org/10.1088/0264-9381/32/15/154001
https://doi.org/10.1088/0264-9381/32/15/154001
https://doi.org/10.1103/PhysRevD.91.124033
https://doi.org/10.1103/PhysRevD.91.124033
https://doi.org/10.1103/PhysRevD.92.124052
https://doi.org/10.1103/PhysRevD.93.124015
https://doi.org/10.1103/PhysRevD.93.124015
https://doi.org/10.1103/PhysRevD.88.086003
https://doi.org/10.1103/PhysRevD.88.106004
https://doi.org/10.1103/PhysRevD.88.106004
https://doi.org/10.1103/PhysRevB.89.245116
https://doi.org/10.1103/PhysRevB.89.245116
https://doi.org/10.1103/PhysRevD.91.046003
https://doi.org/10.1103/PhysRevD.91.046003
https://doi.org/10.1103/PhysRevD.93.104003
https://doi.org/10.1103/PhysRevD.94.044022
https://doi.org/10.1103/PhysRevD.94.044022
https://doi.org/10.1007/BF03173260
https://doi.org/10.1007/BF03173260
https://doi.org/10.1103/PhysRev.137.B1364
https://doi.org/10.1103/PhysRevD.73.064018
https://doi.org/10.1103/PhysRevD.73.064018
https://doi.org/10.1103/PhysRevD.78.124012
https://doi.org/10.1103/PhysRevD.78.124012
https://doi.org/10.1103/PhysRevD.49.6467
https://doi.org/10.1103/PhysRevD.49.831
https://doi.org/10.1103/PhysRevD.49.831
https://doi.org/10.1103/PhysRevD.53.1938
https://doi.org/10.1088/0264-9381/15/10/017
https://doi.org/10.1088/0264-9381/15/10/017
https://doi.org/10.1103/PhysRevD.77.064031
https://doi.org/10.1088/1126-6708/2005/02/050
https://doi.org/10.1088/1126-6708/2005/02/050
https://doi.org/10.1088/1126-6708/2008/08/090
https://doi.org/10.1088/1126-6708/2008/08/090
https://doi.org/10.1103/PhysRevD.89.064052
https://doi.org/10.1103/PhysRevD.89.064052
https://doi.org/10.1016/j.physletb.2014.09.010
https://doi.org/10.1016/j.physletb.2014.09.010
https://doi.org/10.1103/PhysRevD.90.124051
https://doi.org/10.1103/PhysRevD.90.124051
https://doi.org/10.1007/s11433-016-0454-5
https://doi.org/10.1007/s11433-016-0454-5
https://doi.org/10.1088/0253-6102/67/1/41
https://doi.org/10.1088/0253-6102/67/1/41
https://doi.org/10.1103/PhysRevD.80.104016
https://doi.org/10.1103/PhysRevD.80.104016
https://doi.org/10.1103/PhysRevD.90.024062
https://doi.org/10.1103/PhysRevD.90.024062
https://doi.org/10.1103/PhysRevD.75.084003
https://doi.org/10.1016/j.physletb.2006.02.035
https://doi.org/10.1016/j.physletb.2007.03.005
https://doi.org/10.1103/PhysRevLett.96.121301
https://doi.org/10.1103/PhysRevLett.96.121301
https://doi.org/10.1103/PhysRevLett.75.1260
https://doi.org/10.1103/PhysRevLett.75.1260
https://doi.org/10.1023/A:1018819521971
https://doi.org/10.1023/A:1018819521971
https://doi.org/10.1103/PhysRevD.93.064040
https://doi.org/10.1088/0264-9381/33/11/115004
https://doi.org/10.1103/PhysRevD.90.084019
https://doi.org/10.1103/PhysRevLett.115.091102
https://doi.org/10.1103/PhysRevLett.115.091102
https://doi.org/10.1007/JHEP06(2016)117
https://doi.org/10.1103/PhysRevLett.106.191601
https://doi.org/10.1103/PhysRevLett.106.191601
https://doi.org/10.1103/PhysRevD.84.026010
https://doi.org/10.1103/PhysRevD.84.026010
https://doi.org/10.1103/PhysRevD.61.044007
https://doi.org/10.1103/PhysRevD.61.044007

