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It is well known that the black hole can have temperature and radiate the particles with black body 
spectrum, i.e. Hawking radiation. Therefore, if the black hole is surrounded by an isolated box, there is 
a thermal equilibrium between the black hole and radiation gas. A simple case considering the thermal 
equilibrium between the Schwarzschild black hole and radiation gas in an isolated box has been well 
investigated previously in detail, i.e. taking the conservation of energy and principle of maximal entropy 
for the isolated system into account. In this paper, following the above spirit, the effects of massive 
graviton on the thermal equilibrium will be investigated. For the gravity with massive graviton, we 
will use the de Rham–Gabadadze–Tolley (dRGT) massive gravity which has been proven to be ghost 
free. Because the graviton mass depends on two parameters in the dRGT massive gravity, here we just 
investigate two simple cases related to the two parameters, respectively. Our results show that in the first 
case the massive graviton can suppress or increase the condensation of black hole in the radiation gas 
although the T –E diagram is similar as the Schwarzschild black hole case. For the second case, a new T –E
diagram has been obtained. Moreover, an interesting and important prediction is that the condensation 
of black hole just increases from the zero radius of horizon in this case, which is very different from the 
Schwarzschild black hole case.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Among the studies on the black hole physics, a significant 
progress is the discovery that the black hole can have temperature 
and radiate the particles with black body spectrum, i.e. Hawking 
radiation [1]. Note that, before the discovery of Hawking radiation, 
there have already been several clues that the black hole may ex-
ist the thermodynamics like a thermal system. For example, the 
area A of the horizon of a general black hole could never decrease 
found by Hawking [2], which is even argued to relate to the en-
tropy of black hole by Bekenstein [3]. Moreover, four mechanical 
laws can be found for the stationary black hole, which are very 
similar as the thermodynamical laws of thermal system [4]. After 
the discovery, one will find that the four mechanical laws are just 
the four laws of thermodynamics for a stationary black hole sys-
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tem, and hence the thermodynamics of a stationary black hole is 
constructed.

It should be pointed out that the Hawking radiation is a quan-
tum effect, since the black hole usually absorbs particles classically. 
Therefore, one simple consequent question is that whether there 
is an equilibrium between the black hole and radiated particles 
if the black hole is surrounded by an isolated box, i.e. an equi-
librium between the absorbed and radiated particles [5]. For the 
radiated particles, usually they can be considered as the radia-
tion gas whose energy and entropy are well known. Therefore, the 
above question can be also equivalent to whether there is a stable 
condensation of a black hole among the radiation gas in an isolated 
box. For the simple case, the condensation of a black hole is just 
the Schwarzschild black hole, which has been well investigated 
in detail in the pioneer work by G.W Gibbons and M.J Perry [5]. 
Their most impressive results are that indeed there is an equilib-
rium between the Schwarzschild black hole and radiation gas in an 
isolated box. Moreover, the equilibrium condition has been analyti-
cally obtained after taking the conservation of energy and principle 
of maximal entropy for the isolated system into account [5].
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In this paper, we would like to investigate the effect of mas-
sive graviton on this equilibrium. A simple motivation is that the 
massive gravity has attracted many attentions recently [6,7]. It has 
been found that the massive gravity can be not only a theoreti-
cal proposal, but also a possibility to interpret the dark matter and 
dark energy problem [6,7]. In addition, according to the AdS/CFT 
correspondence, the effect of massive graviton in the bulk gravity 
can be related to the effects from the lattice in the dual field the-
ory, i.e. deducing the momentum dissipation of electrons [8–12]. 
It should be emphasized that the extension from Einstein’s gravity 
to a massive gravity with massive graviton is difficult. The reason 
is that many massive gravity theories suffer from the instability 
problem of the Boulware–Deser ghost [6,7,13,14]. Recently, the so 
called de Rham–Gabadadze–Tolley (dRGT) massive gravity has been 
proposed [15,16], which is a nonlinear massive gravity theory and 
has been found to be ghost free [17–19]. Many studies about the 
dRGT massive gravity have been also done [8–12,17–34]. There-
fore, we will use the dRGT massive gravity to investigate the effect 
of massive graviton on the equilibrium between the black hole and 
thermal radiation gas in an isolated box.

Note that, there is a so-called reference metric fμν in the dRGT 
massive gravity. During the original proof of ghost-free in the dRGT 
massive gravity, the reference metric is assumed to be invert-
ible [17]. However, the later studies show that the dRGT massive 
gravity with a degenerate reference metric is also ghost-free [8,18,
19]. Furthermore, the dRGT massive gravity with a degenerate ref-
erence metric has been found to have many applications in the 
AdS/CFT correspondence. For example, the degenerate reference 
metric is usually chosen to break the diffeomorphism invariance of 
bulk spacetime in the spatial directions. According to the AdS/CFT 
correspondence, the dual field theory in the boundary has a con-
served energy but no conserved momentum currents, which can 
further correspond to the dissipation of momentum to obtain a fi-
nite DC conductivity [8–10,30]. Therefore, the dRGT massive gravity 
with a degenerate reference metric has been also widely investi-
gated recently. For instance, the Schwarzschild-like black hole so-
lution and its thermodynamics were studied in [8,18,20,22,28,32]. 
The counterterm of this massive gravity with a degenerate ref-
erence metric has also been obtained in [29]. In our paper, for 
simplicity, we just take the Schwarzschild-like black hole in the 
dRGT massive gravity with a degenerate reference metric into ac-
count [20–27]. After considering the conservation of energy and 
principle of maximal entropy for the isolated system, we have in-
vestigated the effects of massive graviton on the equilibrium. Note 
that, since the graviton mass just depends on two parameters in 
the four dimensional spacetime case, and hence in our paper we 
only consider two simple cases which are related to the two pa-
rameters, respectively. Furthermore, these two simple cases can be 
analytically investigated. The main interesting results are that the 
T –E diagram is similar as the Schwarzschild black hole case in 
the first case, which is further predicted that the massive graviton 
can suppress or increase the condensation of black hole among 
the radiation gas, i.e. dependent on the value of the other param-
eter c2. For the second case, a new T –E phase diagram has been 
obtained. Moreover, an interesting and important prediction is that 
the condensation of black hole just increases from the zero radius 
of horizon in this case, which is very different from the first case 
or the Schwarzschild black hole case.

The rest of our paper is organized as follows. In Sec. 2, we 
give a brief introduction to the pioneer work by G.W Gibbons and 
M.J Perry as a warmup to make the whole paper more readable 
and complete. In Sec. 3, we use the dRGT massive gravity to in-
vestigate the effects from massive graviton on the equilibrium, and 
consider two simple cases which can be analytically investigated 
in detail. Sec. 4 is devoted to the conclusion and discussion.
Fig. 1. The diagram of function f (x) with respect to x by choosing different con-
stants y.

2. Warmup: equilibrium between the Schwarzschild black hole 
and radiation gas in an isolated box

Suppose that there is an isolated box of volume V containing 
the radiation gas, and the total energy for this isolated system is E
(more details of this box can be seen in Ref. [5]). For the radiation 
gas, the energy and entropy are well known as

E g = aV T 4, S g = 4

3
aV T 3, (1)

where a is the Stefan’s constant, and the subscript g is related to 
the radiation gas. For the Schwarzschild black hole,

ds2 = −(1− 2M

r
)dt2 +(1− 2M

r
)−1dr2 +r2(dθ2 +sin2θdϕ2), (2)

its energy and Bekenstein–Hawking entropy are

Es = M, Ss = A

4
= 4π M2, (3)

where A is the area of event horizon located at rh = 2M , and 
c = G = h̄ = kB = 1 have been assumed for the convenience here 
and in the following. Therefore, if there is a condensation of the 
Schwarzschild black hole among the radiation gas, the total energy 
and entropy inside the isolated box will be

E = M + aV T 4, S = 4π M2 + 4

3
aV T 3, (4)

where the volume of black hole has been neglected.
Note that, for this isolated system, the total energy E should 

be conserved, and hence the stable equilibrium state should have 
the maximal total entropy S . After setting x = M/E and y =
(1/3π)(aV /E5)1/4, one will find that maximizing the total entropy 
S is equal to maximizing the function

f (x) = x2 + y(1 − x)3/4, (5)

where the range of independent variable x is [0, 1].
For convenience, we have drawn a simple diagram for this func-

tion f (x) with respect to x by choosing different constants y in the 
Fig. 1.

The main conclusions are:
(1) For y > 1.4266, the function f (x) is monotonically decreas-

ing and there are no turning points, thus the maximum value of 
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Fig. 2. The T –E diagram in the Schwarzschild case.

f (x) is at x = 0, which means that the equilibrium configuration is 
just the pure radiation and there is no black hole.

(2) For 1.4266 > y > yc = 1.0144, there are two turning points, 
a local minimum for x < 4/5 and a local maximum for x > 4/5. 
However, the global maximum of f (x) is still given by x = 0, which 
means that the equilibrium configuration is still the pure radiation.

(3) For y < yc = 1.0144, there are also two turning points, 
but the global maximum of f (x) is given by x > xc = 0.97702, 
which means that the stable equilibrium configuration consists 
of the Schwarzschild black hole and black-body radiation, and 
the temperature of radiation will be same as the temperature of 
Schwarzschild black hole T = 1/(8π M).

In addition, if one fixes the volume V of the isolated box and 
the Stefan’s constant a, the T –E diagram of this isolated system 
has been drawn by G.W Gibbons and M.J Perry in the Fig. 2. In 
this figure, the solid line represents the stable equilibrium state, 
while the dotted lines represent unstable state and the dash line 
represents the pure black hole state.

From this figure, one can easily see that there is only the 
pure radiation if the total energy E is low, since the constant 
y = (1/3π)(aV /E5)1/4 is very high, which is also consistent with 
the physics that the black hole will not be formed if the energy 
density is not high enough. However, when the total energy E
becomes more, the constant y will decrease down to the critical 
value yc = 1.0144. If more energy E is added, the black hole will 
be condensed among the radiation gas, i.e., the stable equilibrium 
configuration consists of the Schwarzschild black hole and black-
body radiation. Therefore, there is an upper temperature bound 
Tmax for this isolated system with fixed volume V

Tmax = 1

(3π ycaV )1/5
, (6)

while the upper temperature bound or critical temperature of 
black hole is

Tc = 1

8πxc
(3π yc)

4/5(aV )−1/5. (7)

It should be emphasized that this temperature of black hole Tc is 
usually not equal to the temperature of the rest of radiation gas 
during its condensation, i.e. usually lower than the temperature of 
radiation gas, and hence this configuration state is in fact not sta-
ble. Therefore, the black hole will become bigger, and finally the 
isolated system will reach the stable configuration state, i.e., the 
temperature of condensed black hole is equal to the temperature 
of radiation gas. Note that, during this non-equilibrium process, 
this isolated system with fixed volume V will keep the same total 
energy Ec = aV T 4

max , and its temperature will decrease to the final 
value Tcrit , i.e. the temperature of this isolated system in the stable 
configuration state and Tcrit < Tc < Tmax . After Ec < E , the tem-
perature of this isolated system in the stable configuration state 
will be lower than Tcrit . Note that, an interesting prediction is 
that the radius of horizon is nonzero when the condensation of 
a Schwarzschild black hole occurs among the radiation gas.

3. Effects from massive graviton on the equilibrium between the 
black hole and radiation gas in an isolated box

In this section, we will investigate the effects from massive 
graviton on the equilibrium between the black hole and radiation 
gas in an isolated box. Note that, since the graviton is massive, 
the condensed black hole among the radiation gas is usually not 
the Schwarzschild black hole, which should be considered under 
the massive gravity theory. For the massive gravity theory, here 
we just use the dRGT massive gravity which has been proven to 
be ghost free. Therefore, we will first give a short introduction 
to the dRGT massive gravity and its Schwarzschild-like black hole 
solution, i.e. the spherically static black hole solution in the vac-
uum. Then, also using the conservation of energy and principle of 
maximal entropy for an isolated system, we will investigate the 
equilibrium between the Schwarzschild-like black hole and radia-
tion gas in an isolated box. Since there are two parameters related 
to the graviton mass in the Schwarzschild-like black hole solution, 
here we just consider two simple cases related to the two parame-
ters, which can be found to be analytically investigated. Moreover, 
we will find that these two simple cases can also express the in-
teresting results. For example, the T –E diagram is similar as the 
Schwarzschild case in the first case, while it is different in the sec-
ond case.

3.1. The dRGT massive gravity and its Schwarzschild-like black hole 
solution

The action of the dRGT massive gravity in an (n +2)-dimension-
al spacetime with the cosmological constant � = − (n+1)n

2�2 is usu-
ally read as [8,15,16,20]

S = 1

16πG

∫
dn+2x

√−g

[
R + n(n + 1)

L2
+ m2

4∑
i

ciUi(g, f)

]
,

(8)

where f is a fixed symmetric tensor usually called the reference 
metric, L is the radius of AdSn+2 spacetime; ci are constants, m
stands for the graviton mass parameter, and Ui are symmetric 
polynomials of the eigenvalues of the (n + 2) × (n + 2) matrix 
Kμ

ν ≡ √
gμαfαν :

U1 = [K],
U2 = [K]2 − [K2],
U3 = [K]3 − 3[K][K2] + 2[K3],
U4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4]. (9)

The square root in K means (
√

A)
μ
ν(

√
A)νλ = Aμ

λ and [K] =
K μ

μ = √
gμαfαμ . After making variation of the action with respect 

to the metric, the equations of motion (EoM) turns out to be

Rμν − 1

2
Rgμν − n(n + 1)

2L2
gμν + m2χμν = 8πGTμν, (10)

where

χμν = − c1

2
(U1 gμν −Kμν) − c2

2
(U2 gμν − 2U1Kμν + 2K2

μν)

− c3
(U3 gμν − 3U2Kμν + 6U1K2

μν − 6K3
μν)
2
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− c4

2
(U4 gμν − 4U3Kμν + 12U2K2

μν − 24U1K3
μν

+ 24K4
μν). (11)

Since the background we are going to consider is (3 + 1) dimen-
sion, and thus a general black hole solution in the vacuum has 
been found in [20]

ds2 = − f (r)dt2 + dr2

f (r)
+ r2hijdxidx j, (12)

f (r) = k + r2

L2
− m0

r
+ c1m2r

2
+ c2m2, (13)

where hijdxidx j is the line element for the 2-dimensional spheri-
cal, flat or hyperbolic space with k = 1, 0 or −1 respectively, and 
m0 is related to the mass of the black hole. The reference metric 
now can have a special choice

fμν = diag {0,0,hij}. (14)

The Hawking temperature of this black hole solution can be easily 
found

T B H = ( f (r))′

4π

∣∣∣∣
r=rh

= 1

4πrh

(
k + 3r2

h

L2
+ c1m2rh + c2m2

)
, (15)

where rh is the event horizon of the black hole, i.e. the largest root 
of equation f (rh) = 0.

In our case, we are just interested in the Schwarzschild-like 
black hole solution with zero cosmological constant, therefore, the 
corresponding solution in (13) is

f (r) = 1 − 2M

r
+ c1m2r

2
+ c2m2, (16)

while its temperature, energy and entropy are

T B H = 1

4πrh
(1 + c1m2rh + c2m2), (17)

E = M, S = πr2
h . (18)

Note that, there are two parameters c1 and c2 related to the gravi-
ton mass in (16), which can deduce the expression of entropy to 
be complicated. This complication will be further amplified during 
maximizing the total entropy of the isolated system, which can de-
duce the difficulty to analytically investigate the condition of phase 
transition, i.e. condensation of the Schwarzschild-like black hole 
among the radiation gas in an isolated box. Therefore, we will just 
consider two simple cases in the following, which have been found 
to be analytically investigated and also contained the interesting 
results.

3.2. The first simple case: c1 = 0

For the case c1 = 0, we can obtain the location of horizon

rh = 2M

c2m2 + 1
. (19)

After the assumption of the condition c2m2 + 1 > 0, a positive 
radius of the black hole horizon can be obtained, and the to-
tal energy and entropy of the isolated system consisting of a 
Schwarzschild-like black hole and radiation gas can be easily cal-
culated

S = πr2
h + 4

3
aV T 3 = 4π M2

(c2m2 + 1)2
+ 4

3
aV T 3, (20)

E = M + aV T 4. (21)
Fig. 3. The T –E diagram in the dRGT massive gravity with c1 = 0 and c2 < 0.

After introducing two parameters: x = M/E , y = (aV /E5)1/4 ×
(c2m2 + 1)2/3π , we will find that maximizing entropy S is also 
equal to maximizing the function

f (x) = x2 + y(1 − x)3/4. (22)

Note that, this function is just same as the Schwarzschild case 
in (5), and the only difference is that the parameter y has been 
affected by the graviton mass. Therefore, the main conclusions 
are also same as the Schwarzschild case. But yet, just due to the 
same function and conclusions, an interesting result can be further 
found, i.e. effects from graviton mass on the equilibrium by com-
parison with the Schwarzschild case for the critical energy Ec .

For this case c1 = 0 in the massive gravity, its corresponding 
critical energy is

E ′
c =

{[
(c2m2 + 1)2

3π yc

]4

aV

} 1
5

, (23)

while the critical energy in the Schwarzschild case is

Ec =
{[

1

3π yc

]4

aV

} 1
5

. (24)

Obviously, if c2 < 0 and 0 < c2m2 + 1 < 1, we will obtain E ′
c < Ec , 

which means that the graviton mass can increase the condensation 
of black hole with the same isolated box with fixed volume V . On 
the other hand, if c2 > 0, then c2m2 + 1 > 1 and E ′

c > Ec , which 
means that the graviton mass can suppress the condensation of 
black hole. Note that, these interesting predictions can be also seen 
in the T –E diagram under the fixed volume V of the isolated box, 
where we have drawn the diagram in the case c1 = 0, c2 < 0 in 
the Fig. 3. In this figure, T ′

max and T ′
crit represent the two different 

turning points respectively compared with the Schwarzschild case, 
while the T –E diagram in the other case c1 = 0, c2 > 0 has not 
been drawn since it is very similar with this diagram.

3.3. The second simple case: c2m2 + 1 = 0

For this case with c2m2 + 1 = 0, the radius of horizon rh is also 
simple

rh =
√

4M

c1m2
, (25)

where c1 > 0 has been assumed to obtain a positive radius of hori-
zon. Then, the total energy and entropy of the isolated system can 
be calculated
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S = πr2
h + 4

3
aV T 3 = 4π M

c1m2
+ 4

3
aV T 3, (26)

E = M + aV T 4. (27)

From Eq. (27), we can obtain T = ( E−M
aV

)1/4
which is substituted 

into Eq. (26). Hence, we will have

S = 4π M

c1m2
+ 4

3
aV T 3

= 4π E

c1m2

[
M

E
+ 1

3π

(
aV

E

)1/4

c1m2
(

1 − M

E

)3/4
]

. (28)

Similarly, after introducing two parameters: x = M/E , y = (aV /

E)1/4c1m2/(3π), we will find that maximizing entropy S is equal 
to maximizing the function

f (x) = x + y(1 − x)3/4. (29)

For this function f (x) in (29), the main conclusions are:
(1) For y > 4

3 , the function f (x) is monotonically decreasing, 
thus the maximum value of f (x) is at x = 0, which means that 
the stable equilibrium configuration is just the pure radiation and 
there is no black hole.

(2) For 0 < y < 4
3 , there is just one turning point, a maximum 

at specific xc = 1 −
(

3
4 y

)4
, which means that the stable equilib-

rium configuration consists of the Schwarzschild-like black hole 
and black-body radiation.

If the volume V of the isolated box is fixed, the above con-
clusions can also have the corresponding physical meaning in the 
following. Suppose that we add more energy E into the isolated 
box with a fixed volume V from E = 0, the stable equilibrium 
configuration is just the pure radiation until the parameter y =
(aV /E)1/4c1m2/3π decreases to the critical value yc = 4

3 . After 
adding more energy, the y will become smaller than yc = 4

3 , and 
then the black hole will be condensed among the radiation gas, i.e., 
the stable equilibrium configuration consists of the Schwarzschild-
like black hole and black-body radiation. Therefore, there is also a 
critical energy

Ec = aV

(
c1m2

4π

)4

, (30)

and the corresponding temperature for this isolated system is

Tmax = c1m2

4π
. (31)

Note that, in this case with c2m2 + 1 = 0, a very interesting and 
impressive result is that the above temperature is just same as the 
temperature of Schwarzschild-like black hole condensed in (17):

Th = 1

4πrh
(1 + c1m2rh + c2m2) = c1m2

4π
, (32)

which means that the temperature of this isolated system will 
keep same after more energy E is added into, and there is no 
non-equilibrium process after the condensation of the black hole 
in this case. Therefore, after the total energy Ec < E , the stable 
equilibrium configuration consists of the Schwarzschild-like black 
hole and black-body radiation, and the main change is just that 

the maximum point xc = 1 −
(

3
4 y

)4
will become bigger and closer 

to 1 from 0, i.e., the percentage of black hole’s energy in the to-
tal energy will become bigger. A most interesting and impressive 
prediction is that the radius of horizon will become bigger from 
zero when the Schwarzschild-like black hole is condensed among 
Fig. 4. The T –E diagram in the dRGT massive gravity with c2m2 + 1 = 0 and c1 > 0.

the radiation gas, which is very different from the Schwarzschild 
case or the above case. This difference can be also clearly seen in 
the corresponding new T –E diagram with fixed volume V in this 
case, which has been drawn in the Fig. 4.

4. Conclusion and discussion

In this paper, we mainly investigate the effects from massive 
graviton on the equilibrium between the black hole and radia-
tion gas in an isolated box. Since the graviton is massive, the 
underlying gravity theory should be massive gravity, and hence 
the condensed black hole among the radiation gas will usually 
not be the Schwarzschild black hole. Therefore, we have taken the 
dRGT massive gravity into account, i.e. a ghost free massive gravity, 
while the Schwarzschild-like black hole solution in this dRGT mas-
sive gravity has already been found and investigated much. After 
using the conservation of total energy and maximizing the total 
entropy for this isolated system, we find that two parameters c1
and c2 are crucial to investigate the effects from massive graviton 
on the equilibrium analytically. For simplicity, we just consider two 
simple cases which can be found to have analytical investigations 
on the conditions of phase transition or the T –E phase diagram. 
Moreover, some interesting and new results have been obtained, 
too. For example, in the first case with c1 = 0, although the T –E
phase diagram is similar as the Schwarzschild case, however, we 
can further conclude that the graviton mass can suppress or in-
crease the condensation of black hole which is dependent on the 
value of c2. For the other case with c2m2 +1 = 0, a new T –E phase 
diagram turns out. Moreover, an interesting and important predic-
tion is that the condensation of black hole just increases from the 
zero radius of horizon in this case, which is very different from the 
Schwarzschild black hole case.

A direct interesting question is whether there are other analyt-
ical investigations for different choices of c1 and c2. In addition, 
since the Birkhoff’s theorem may be broken in the dRGT massive 
gravity, more cases can be considered, i.e. other static black hole 
condensed among the radiation gas [25–27]. While the information 
of the reference metric fμν needs be also carefully investigated, 
since the different reference metric may also deduce the different 
static black hole in the massive gravity [25–27]. Furthermore, the 
c1 and c2 are just proposed as two constants in the dRGT mas-
sive gravity, thus there is no further information for these two 
parameters in this gravity. Therefore, maybe some experiments or 
astronomical phenomena can be related to test the dRGT massive 
gravity and further extract the information of these two parame-
ters. For example, the Laser Interferometer Gravitational-Wave Ob-
servatory (LIGO) experiment detects the gravitational waves, and 
the gravitational wave will not travel as the light if the graviton is 
massive. Another possible effect from the massive graviton comes 
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from the accretion disk of black hole-a common astronomical phe-
nomenon. On the other hand, the cosmological constant can be 
also taken into account during the investigations on the equilib-
rium. For the positive cosmological constant, since our universe 
may be the de Sitter spacetime during its inflation time or late 
time with acceleration, and hence the cosmological horizon can be 
naturally considered as the wall of the isolated box. For the nega-
tive cosmological constant, the static black hole solutions are usu-
ally asymptotical to the Anti-de Sitter spacetime, which have been 
found to have many interesting results, such as the well-known 
Hawking–Page transition [35]. Moreover, according to the AdS/CFT 
correspondence, the static black hole solutions asymptotical to the 
Anti-de Sitter spacetime can have many interesting results on the 
dual field theory, such as the holographic superconductor in the 
holographic duality in the condensed matter physics [36]. In ad-
dition, the isolated box may be considered as the cutoff surface 
related to the energy scale of renormalization group (RG) flow for 
the strongly coupling holographic fluid [37–41]. Therefore, during 
the investigations on the equilibrium between the black hole and 
radiation gas in an isolated box, it will be also an interesting is-
sue to be further studied by taking the cosmological constant into 
account.
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