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Abstract: Gauss-Bonnet holographic fluid is a useful theoretical laboratory to study the

effects of curvature-squared terms in the dual gravity action on transport coefficients, quasi-

normal spectra and the analytic structure of thermal correlators at strong coupling. To

understand the behavior and possible pathologies of the Gauss-Bonnet fluid in 3+1 dimen-

sions, we compute (analytically and non-perturbatively in the Gauss-Bonnet coupling) its

second-order transport coefficients, the retarded two- and three-point correlation functions

of the energy-momentum tensor in the hydrodynamic regime as well as the relevant quasi-

normal spectrum. The Haack-Yarom universal relation among the second-order transport

coefficients is violated at second order in the Gauss-Bonnet coupling. In the zero-viscosity

limit, the holographic fluid still produces entropy, while the momentum diffusion and the

sound attenuation are suppressed at all orders in the hydrodynamic expansion. By adding

higher-derivative electromagnetic field terms to the action, we also compute corrections to

charge diffusion and identify the non-perturbative parameter regime in which the charge

diffusion constant vanishes.
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1 Introduction

Gauge-string duality has been applied successfully to explore qualitative, quantitative and

conceptual issues in fluid dynamics [1–10]. Although the number of quantum field theories

with known dual string (gravity) descriptions is very limited, their transport and spectral

function properties at strong coupling can in principle be fully determined, thus giving

valuable insights into the behavior of strongly interacting quantum many-body systems.

Moreover, dual gravity methods can be used to determine coupling constant dependence

of a variety of physical quantities with an ultimate goal of interpolating between weak

and strong coupling results and describing, at least qualitatively, the intermediate coupling

behavior in theories of phenomenological interest [11–16].

For generic neutral fluids, there are two independent first-order transport coefficients

(shear viscosity η and bulk viscosity ζ), and fifteen second-order coefficients1 (see e.g. [21]).

For Weyl-invariant or “conformal” fluids, the additional symmetry constraints reduce the

number of transport coefficients to one at first order (shear viscosity η) and five at second

order2 (usually denoted τΠ, κ, λ1, λ2, λ3). The coefficients η, τΠ, λ1, λ2 are “dynamical”,

whereas κ and λ3 are “thermodynamical” in the classification3 introduced in ref. [19]. In

the parameter regime where the dual Einstein gravity description of conformal fluids is

applicable (e.g. at infinite ’t Hooft coupling λ = g2
YMNc and infinite Nc in theories such

as N = 4 SU(Nc) supersymmetric Yang-Mills (SYM) theory in d = 3 + 1 dimensions), the

six transport coefficients (in d space-time dimensions, d > 2) are given by [22]

η = s/4π , (1.1)

τΠ =
d

4πT

(
1 +

1

d

[
γE + ψ

(
2

d

)])
, (1.2)

κ =
d

d− 2

η

2πT
, (1.3)

λ1 =
dη

8πT
, (1.4)

λ2 =

[
γE + ψ

(
2

d

)]
η

2πT
, (1.5)

λ3 = 0 , (1.6)

1The existence of a local entropy current with non-negative divergence implies η ≥ 0, ζ ≥ 0 [17] and

constrains the number of independent coefficients at second order to ten [18]. Alternatively, independent

“thermodynamical” [19] terms in the hydrodynamic expansion can be derived from the generating functional

without resorting to the entropy current analysis [4, 5]. A computerized algorithm determining all tensor

structures appearing at a given order of the hydrodynamic derivative expansion has been recently proposed

in ref. [20]. Modulo constraints potentially arising from the entropy current analysis (not attempted in

ref. [20]), it identifies 68 new coefficients for non-conformal neutral fluids and 20 coefficients for conformal

ones at third order of the derivative expansion.
2There are no further constraints in addition to η ≥ 0 coming from the non-negativity of the divergence

of the entropy current in the conformal case [18].
3Essentially, the coefficient is called “dynamical” if the corresponding term in the derivative expansion

vanishes in equilibrium, and “thermodynamical” otherwise.
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where s is the entropy density, ψ(z) is the logarithmic derivative of the gamma function,

and γE is the Euler-Mascheroni constant. Generically, one expects corrections to these

formulas in (inverse) powers of the parameters such as λ and Nc. For N = 4 SYM at finite

temperature, the leading λ−3/2 corrections to all six coefficients are known [23–30] (see ap-

pendix A, where weak and strong coupling results are discussed). Other coupling constant

corrections to the results at infinitely strong t’Hooft coupling in this theory include correc-

tions to the entropy [31, 32], photon emission rate [33], and poles of the retarded correlators

of the energy-momentum tensor [12, 34, 35]. Leading corrections in 1/N2
c , intimately re-

lated to the issue of hydrodynamic “long time tails”, were discussed in refs. [36–38], and

in refs. [39, 40].

In the regime of strong coupling, theories with gravity dual description appear to

exhibit robust properties of transport coefficients and relations among them. One of such

properties is the universality of shear viscosity to entropy density ratio η/s = 1/4π in the

limit described by a dual gravity with two-derivative action [41–45]. Another one seems to

be the Haack-Yarom relation: following the observation in ref. [46], the linear combination

of the second-order transport coefficients4

H ≡ 2ητΠ − 4λ1 − λ2 (1.7)

was proven to vanish in all conformal theories dual to two-derivative gravity5 [47].

Eqs. (1.2), (1.4), (1.5) show this explicitly. Somewhat surprisingly, the Haack-Yarom

relation continues to hold to next to leading order in the strong coupling expansion, at

least in N = 4 SU(Nc) supersymmetric Yang-Mills theory in d = 3 + 1 dimensions in the

limit of infinite Nc [30], in theories dual to curvature-squared gravity [30], in particular, in

the Gauss-Bonnet holographic liquid6 (perturbatively in the Gauss-Bonnet coupling) [49].

It was shown recently that the result H = 0 continues to hold for non-conformal liquids

along the dual gravity RG flow [50].7 It remains to be seen whether such robustness ex-

tends to higher-order transport coefficients and/or other properties of strongly coupled

finite temperature theories and whether it is related to the presence of event horizons in

dual gravity.8

Monotonicity and other properties of transport coefficients are of interest for stud-

ies of near-equilibrium behavior at strong coupling, in particular, thermalization, and for

attempts to uncover a universality similar to the one exhibited by the ratio of shear vis-

cosity to entropy density. Monotonicity of transport coefficients or their dimensionless

combinations may seem more exotic than the monotonicity of central charges [51, 52] or

the free energy [53, 54], yet it is often an observed property, at least in a given state of

aggregation [41, 55].

4We use notations and conventions of [2]. See appendix B and footnote 91 on page 128 of ref. [8] for

clarification of sign conventions appearing in the literature.
5Note that all transport coefficients in H are “dynamical” in terminology of ref. [19].
6As advertised in ref. [30] and shown below (and, independently, in ref. [48] using fluid-gravity duality

methods), the Haack-Yarom relation does not hold non-pertutbatively in the Gauss-Bonnet coupling.
7It appears that at weak coupling, the relation H = 0 does not hold. We briefly review the results at

weak coupling in appendix A.
8We would like to thank P. Kovtun and M. Rangamani for a discussion of these issues.
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In N = 4 SYM at infinite9 Nc, the shear viscosity to entropy density ratio appears to

be a monotonic function of the coupling [41], with the correction to the universal infinite

coupling result being positive [23, 25],

η

s
=

1

4π

(
1 + 15ζ(3)λ−3/2 + . . .

)
. (1.8)

Subsequent calculations revealed that the corrections coming from higher derivative terms

in the gravitational action can have either sign [56, 57]. For the action with generic curva-

ture squared higher derivative terms

SR2 =
1

2κ2
5

∫
d5x
√
−g
[
R− 2Λ + L2

(
α1R

2 + α2RµνR
µν + α3RµνρσR

µνρσ
)]
, (1.9)

where the cosmological constant Λ = −6/L2, the shear viscosity - entropy density ratio

is10 [56, 57]
η

s
=

1

4π
(1− 8α3) +O

(
α2
i

)
. (1.10)

The sign of the coefficient α3 affects not only viscosity but also the analytic structure of

correlators in the dual thermal field theory [12].

Corrections to Einstein gravity results computed from generic higher-order derivative

terms in the dual gravitational action can be trusted so long as they remain (infinites-

imally) small relative to the leading order result, as they are obtained by treating the

higher-derivative terms in the equations of motion perturbatively. This limitation arises

due to Ostrogradsky instability and other related pathologies such as ghosts associated

with higher-derivative actions [58–61] (see also refs. [62, 63] for a modern discussion of Os-

trogradsky’s theorem, and ref. [64] for an interesting historical account of Ostrogradsky’s

life and work). One may be tempted to lift the constraints imposed by Ostrogradsky’s

theorem by considering actions in which coefficients in front of higher derivative terms

conspire to give equations of motion no higher than second-order in derivatives as happens

e.g. in Gauss-Bonnet gravity in dimension D > 4 or, more generally, Lovelock gravity [65].

Gauss-Bonnet (and Lovelock) gravity has been used as a laboratory for non-perturbative

studies of higher derivative curvature effects on transport coefficients of conformal fluids

with holographic duals [12, 56, 57, 66–72]. In particular, the celebrated result for the shear

viscosity-entropy ratio in a (hypothetical) conformal fluid dual to D = 5 Gauss-Bonnet

gravity [57],
η

s
=

1− 4λGB

4π
, (1.11)

has been obtained non-perturbatively in the Gauss-Bonnet coupling λGB. The result would

imply that there exist CFTs whose viscosity can be tuned all the way to zero in the regime

described by a dual classical (albeit non-Einsteinian) gravity. It was found, however, that

9At large but finite Nc, and large λ, the result for η/s is also corrected by the term proportional to

λ1/2/N2
c [39, 40].

10All second-order transport coefficients for theories dual to the background (1.9) have been computed

in ref. [30].
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for λGB outside of the interval

− 7

36
≤ λGB ≤

9

100
, (1.12)

the dual field theory exhibits pathologies associated with superluminal propagation of

modes at high momenta or negativity of the energy flux in a dual CFT [57, 66–68, 73, 74].

For Gauss-Bonnet gravity in D dimensions (D ≥ 5), the result (1.11) generalizes to [68, 75]

η

s
=

1

4π

[
1− 2(D − 1)

D − 3
λGB

]
(1.13)

and the inequalities corresponding to eq. (1.12) become11 [68, 75]

−(3D − 1)(D − 3)

4(D + 1)2
≤ λGB ≤

(D − 3)(D − 4)(D2 − 3D + 8)

4(D2 − 5D + 10)2
. (1.14)

Given the constraints (1.14) and monotonicity of η/s in (1.13), one may conjecture a GB

gravity bound on η/s [68, 75],

η

s
≥ 1

4π

[
1− (D − 1)(D − 4)(D2 − 3D + 8)

2(D2 − 5D + 10)2

]
, (1.15)

instead of the Einstein’s gravity bound η/s ≥ 1/4π. For 3 + 1-dimensional CFTs, the GB

bound would imply η/s ≥ (0.640)/4π [66]. Recently, the constraints (1.12) were confirmed

and generalized to Gauss-Bonnet black holes with spherical (rather than planar) horizons

by considering boundary causality and bulk hyperbolicity violations in Einstein-Gauss-

Bonnet gravity [76]. Since these causality problems arise in the ultraviolet, one may hope

that treating Gauss-Bonnet gravity as a low energy theory with unspecified ultraviolet

completion would allow one to consider its hydrodynamic (infrared) limit without worrying

about causality violating ultraviolet modes, i.e. that it is in principle possible to cure the

problems in the ultraviolet without affecting the hydrodynamic (infrared) regime (one

may also try to construct a theory with a low temperature phase transition breaking the

link between the hydrodynamic IR and causality breaking UV modes [77]). However, a

reflection on the recent analysis by Camanho et al. [78] of the bulk causality violation in

higher derivative gravity seems to imply that, provided the relevant conclusions of ref. [78]

are correct,12 a reliable treatment of Gauss-Bonnet terms beyond perturbation theory for

the purposes of fluid dynamics is not possible. The Einstein-Gauss-Bonnet action in D = 5

is given by

SGB =
1

2κ2
5

∫
d5x
√
−g
[
R− 2Λ +

λGBl
2
GB

2

(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)]
, (1.16)

where the cosmological constant Λ = −6/L2, and lGB is the scale of the Gauss-Bonnet term

which a priori is not necessarily related to the cosmological constant scale set by L. As

11Curiously, in the D → ∞ limit, the range (1.14) is −3/4 ≤ λGB ≤ 1/4. Note that the black brane

metric is well defined for λGB ∈ (−∞, 1/4] for any D. We shall only consider D = 5 in the rest of the paper.
12See refs. [76, 79–84] for recent discussions.
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argued in ref. [78], the generic bulk causality violations in Gauss-Bonnet classical gravity

can only be cured by including an infinite set of higher spin fields with masses squared

m2
s ∝ 1/λGBl

2
GB. Integrating out these fields to obtain a low energy effective theory would

lead to an infinite series of additional higher derivative terms in the gravitation action.

Schematically, the modified action would have the form

SGB,mod =
1

2κ2
5

∫
d5x
√
−g

[
R− 2Λ +

∞∑
k=1

ck λ
k
GB l

2k
GBRk+1

]
. (1.17)

Considering a specific solution (e.g. a black brane whose scale is set by the cosmological

constant) and rescaling the coordinates x→ x̄ = x/L leads to

SGB,mod =
L3

2κ2
5

∫
d5x̄
√
−ḡ

[
R̄+ 12 +

∞∑
k=1

ck λ̄
k
GB R̄k+1

]
, (1.18)

where13 λ̄GB = λGBl
2
GB/L

2. To suppress contributions (e.g. to transport coefficients) com-

ing from the (unknown) terms with k > 1, one has to assume λ̄GB � 1. This is similar

to the condition ls/L � 1 in the usual top-down holography. Thus, generically one may

expect results such as (1.11) to be potentially corrected by terms O(λ2
GB) and/or higher,

and therefore be reliable only for λGB � 1. It seems, therefore, that one essentially can-

not escape the Ostrogradsky problem (at least not in classical gravity) by engineering a

specific higher-derivative Lagrangian with second-order equations of motion. An alterna-

tive view of the aspects of the analysis in ref. [78] has been advocated in refs. [79, 81]

(see also [80, 82] and [76]). Our approach to these problems will be purely pragmatic:14

we shall a priori ignore any existing or debated constraints on the Gauss-Bonnet cou-

pling and explore the influence of curvature-squared terms on quasinormal spectra and

transport coefficients for all range of the coupling allowing a black brane solution, i.e. for

λGB ∈ (−∞, 1/4] (see section 2). In particular, we are interested in revealing any generic

features the presence of higher-curvature terms in the action may have (as pointed out in

ref. [12], the spectra of R2 and R4 backgrounds exhibit qualitatively similar novel features

not present in Einstein’s gravity). We use the action (1.16) (with lGB = L) to compute

transport coefficients, quasinormal spectrum and thermal correlators analytically and non-

perturbatively in Gauss-Bonnet coupling, fully exploiting the advantage of having to deal

with second-order equations of motion in the bulk. Different techniques will be used to

compute Gauss-Bonnet transport: fluid-gravity duality, Kubo formulae applied to two- and

three-point correlators, and quasinormal modes. We find that only the three-point func-

tions method allows to determine all the coefficients analytically: other approaches face

technical difficulties we were not able to resolve. In a hypothetical dual CFT, constraints

on Gauss-Bonnet coupling considered e.g. in ref. [68] manifest themselves in the superlu-

minal propagation of high-momentum modes for λGB outside of the interval (1.14). In the

far more stringent scenario of ref. [78], one may expect to detect anomalous behavior in

13In considering Gauss-Bonnet black hole solutions, it is convenient to set lGB = L. Then λ̄GB = λGB.
14We would like to thank P. Kovtun for his incessant criticism of using Gauss-Bonnet gravity

in holography.
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the regime of small frequencies and momenta and in transport coefficients. Accordingly,

we shall look for pathologies in the hydrodynamic behavior of the model at finite values

of λGB indicating the lack of ultraviolet completion and the potential need for corrections

coming from the unknown terms in (1.18).

The full non-perturbative set of first- and second-order Gauss-Bonnet transport coef-

ficients can be determined analytically and is given by15

η = sγ2
GB/4π , (1.19)

τΠ =
1

2πT

(
1

4
(1 + γGB)

(
5 + γGB −

2

γGB

)
− 1

2
ln

[
2 (1 + γGB)

γGB

])
, (1.20)

κ =
η

πT

(
(1 + γGB)

(
2γ2

GB − 1
)

2γ2
GB

)
, (1.21)

λ1 =
η

2πT

(
(1 + γGB)

(
3− 4γGB + 2γ3

GB

)
2γ2

GB

)
, (1.22)

λ2 = − η

πT

(
−1

4
(1 + γGB)

(
1 + γGB −

2

γGB

)
+

1

2
ln

[
2 (1 + γGB)

γGB

])
, (1.23)

λ3 = − η

πT

(
(1 + γGB)

(
3 + γGB − 4γ2

GB

)
γ2

GB

)
, (1.24)

where we have defined

γGB ≡
√

1− 4λGB . (1.25)

An alternative way of writing the Gauss-Bonnet second-order coefficients is given by

eqs. (4.19) – (4.23). In the limit of λGB → 0 (γGB → 1), which corresponds to Einstein’s

gravity, one recovers the standard results for infinitely strongly coupled conformal fluids in

3+1 dimensions given by eqs. (A.1) and (A.2) in appendix A. The result for η was obtained

in ref. [57] and the relaxation time τΠ was first found numerically in ref. [67]. Coefficients

τΠ and κ were previously computed analytically in ref. [85], and we have reported λ1, λ2,

λ3 in ref. [86]. To linear order in λGB, the results coincide16 with those found in ref. [49].

Using the results (1.19), (1.20), (1.22), (1.23), we find the Haack-Yarom function in

Gauss-Bonnet gravity

H(λGB) = − η

πT

(1− γGB)
(
1− γ2

GB

)
(3 + 2γGB)

γ2
GB

= −40λ2
GBη

πT
+O

(
λ3

GB

)
. (1.26)

Curiously, H(λGB) ≤ 0 for the Gauss-Bonnet holographic liquid. Whether H(λGB) is

corrected beyond leading order by terms coming from (1.18) remains an open question: a

priori, we do not know if H must vanish beyond the Einstein gravity approximation.

Computing the energy-momentum tensor correlation functions in holographic models

with higher-derivative dual gravity terms, one finds a new pole on the imaginary frequency

15The shear viscosity η as a function of temperature and γGB is given in eq. (2.46).
16The notations used in ref. [49] are related to the ones in this paper by λ0 = ητΠ, δ = 4λGB and

κ2
5 = 8πG5.
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axis. This pole, first found in the quasinormal spectrum analysis of ref. [12], is moving from

the complex infinity closer and closer to the origin as the parameter in front of the higher-

derivative term in the action (such as λGB in eq. (1.16)) increases, and can be approximated

analytically in the small-frequency expansion. The poles of this type appear to be generic

in higher-derivative gravity: they are present in R2 and R4 gravity, and their behavior is

qualitatively similar [12].

Another interesting feature of Gauss-Bonnet holographic liquid is the zero-viscosity

limit. In ref. [87], Bhattacharya et al. suggested the existence of a non-trivial second-order

non-dissipative hydrodynamics, i.e. a theory whose fluid dynamics derivative expansion has

no contribution to entropy production while still having some of the transport coefficients

non-vanishing.17 For conformal fluids, the classification of [87] implies the existence of a

four-parameter family of non-trivial non-dissipative fluids with η = 0 and non-vanishing

coefficients τΠ, κ, λ1 = κ/2, λ2 and λ3. Given the result (1.11), the hypothetical theory

dual to Gauss-Bonnet gravity in the limit of λGB → 1/4 is a natural candidate for a

dissipationless fluid (ignoring for a moment any potential corrections coming from (1.18)).

In the limit of λGB → 1/4 (γGB → 0) we find [86]

ητΠ = 0, λ1 =
3π2T 2

2
√

2κ2
5

, λ2 = 0, λ3 = −3
√

2π2T 2

κ2
5

, κ = − π
2T 2

√
2κ2

5

. (1.27)

At first glance, this result realizes the dissipationless liquid scenario outlined in ref. [87]:

the shear and bulk viscosities are zero while some of the second-order coefficients are not.

However, the relationship κ = 2λ1, which is required for ensuring zero entropy production,

does not hold among the coefficients in (1.27). We therefore conclude that the holographic

Gauss-Bonnet liquid does not fall into the class of non-dissipative liquids discussed in

ref. [87]. This may be a hint that the corrections from (1.18) must indeed be included.

The paper is organised as follows. In section 2 we analyze the finite-temperature two-

point correlation functions of energy-momentum tensor in the theory dual to Gauss-Bonnet

gravity as well as the relevant quasinormal modes in the scalar, shear and sound channels

of metric perturbations, including the new pole on the imaginary axis at finite coupling

λGB. Kubo formulas determine the coefficients η, κ and τΠ. The shear channel quasinormal

frequency is used to confirm the results for η and τΠ, and to find the third-order transport

coefficient θ1. We discuss the limit λGB → 1/4, where the full quasinormal spectrum can

be found analytically, and the limit λGB → −∞. In section 3, we apply the fluid-gravity

duality technique to compute the Gauss-Bonnet transport coefficients. All coefficients

except κ can be determined in this approach. However, due to technical difficulties, all of

them with the exception of η can be found only perturbatively as series in λGB. A more

efficient method of three-point functions is considered in section 4, where all the coefficients

are computed analytically and non-perturbatively, and we also discuss the monotonicity

17The authors of [87] considered an effective field theory approach [88, 89] to non-dissipative uncharged

second-order hydrodynamics. The approach relies on a classical effective action and standard variational

techniques to derive the energy-momentum tensor. It is thus unable to incorporate dissipation. The

inclusion of dissipation into the description of hydrodynamics, using the same effective description, was

analysed in [90, 91].

– 8 –



J
H
E
P
0
3
(
2
0
1
7
)
1
6
6

properties of the coefficients and the zero-viscosity limit. Finally, in section 5 we discuss the

influence of higher derivative terms on charge diffusion in the most general four derivative

Einstein-Maxwell theory. Section 6 with conclusions is followed by several appendices: in

appendix A, a brief summary of second-order transport coefficients in N = 4 SYM at

weak and strong coupling is given. A comparison of notations and conventions used in

the literature on second-order hydrodynamics and, specifically, in the discussion of Haack-

Yarom relation is given in appendix B. In appendix C we outline the procedure of setting

the boundary conditions at the horizon in hydrodynamic approximation. Appendices D

and E contain some technical results.

2 Energy-momentum tensor correlators and quasinormal modes of

Gauss-Bonnet holographic fluid

The coefficients of the four-derivative terms in the Gauss-Bonnet action (1.16) ensure that

the corresponding equations of motion contain only second derivatives of the metric. The

equations are given by

Eµν ≡ Rµν −
1

2
gµνR+ gµνΛ− λGBL

2

4
gµν

(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)
+ λGBL

2
(
RRµν − 2RµαR

α
ν − 2RµανβR

αβ +RµαβγR
αβγ
ν

)
= 0 . (2.1)

The equations (2.1) admit a black brane solution18

ds2 = −f(r)N2
GBdt

2 +
1

f(r)
dr2 +

r2

L2

(
dx2 + dy2 + dz2

)
, (2.2)

where

f(r) =
r2

L2

1

2λGB

1−

√
1− 4λGB

(
1−

r4
+

r4

) . (2.3)

The arbitrary constant NGB will be set to normalize the speed of light at the boundary

(i.e. in the dual CFT) to unity,

N2
GB =

1

2

(
1 +

√
1− 4λGB

)
, (2.4)

and we henceforth use this value. The solution with r+ = 0 corresponds to the AdS

vacuum metric in Poincaré coordinates with the AdS curvature scale squared L̃2 =

L2/f∞ [68], where

f∞ = lim
r→∞

f(r) =
1−
√

1− 4λGB

2λGB

=
2

1 + γGB

. (2.5)

The parameter γGB is defined in eq. (1.25). We shall use λGB and γGB interchangeably, and

set L = 1 in the rest of the paper unless stated otherwise. The Hawking temperature, the

18Exact solutions and thermodynamics of black branes and black holes in Gauss-Bonnet gravity were

considered in [92] (see also refs. [93–97]).
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entropy density and the energy density associated with the black brane background (2.2)

are given, correspondingly, by

T = NGB

r+

πL2
=

r+√
2πL2

√
1 + γGB =

r+

πL̃2

(
1 + γGB

2

)3/2

, (2.6)

s =
2π

κ2
5

(r+

L

)3
=

4
√

2π4L3

κ2
5

T 3

(1 + γGB)3/2
=

16π4L̃3

κ2
5

T 3

(1 + γGB)3 , (2.7)

ε = 3P =
3

4
Ts . (2.8)

The metric (2.2) is well defined for λGB ∈ (−∞, 1/4] (or γGB ∈ [0,∞), with the inter-

val of positive λGB corresponding to the interval γGB ∈ [0, 1)). We note that s/T 3 is a

monotonically decreasing function of γGB in the interval γGB ∈ [0,∞).

The holographic dictionary relating the coupling λGB of Gauss-Bonnet gravity in D

dimensions to the parameters of the dual CFT has been thoroughly discussed in ref. [68]

(see also the comprehensive discussion of the D = 5 case in ref. [98]). For a class of four-

dimensional CFTs (usually characterized by the central charges c and a), there exists a

parameter regime (e.g. λ � N
2/3
c � 1 [56, 68]) in which the dual description is given by

Einstein gravity with a negative cosmological constant plus curvature squared terms treated

as small perturbations, so that e.g. the coefficient α3 in the action (1.9) is α3 ∼ (c−a)/c ∼
1/Nc � 1, as in the discussion of the superconformal N = 2 Sp(Nc) gauge theory with

four fundamental and one antisymmetric traceless hypermultiplets by Kats and Petrov19

[56]. For finite λGB, if a dual CFT exists at all, one may relate the Gauss-Bonnet coupling

to the parameters characterizing two- and three-point functions of the energy-momentum

tensor in the CFT [68]. In particular, the holographic calculation [68] gives the central

charge c

c =
π2L̃3

κ2
5

γGB. (2.9)

Note that the central charge is a monotonically increasing non-negative function of γGB in

the interval γGB ∈ [0,∞), with c = 0 at γGB = 0 (i.e. at λGB = 1/4). Generically, we may

expect λGB to be a function of both λ and Nc at large but finite values of these parameters.

We compute the retarded two-point functions GRµν,ρσ of the energy-momentum tensor

in a hypothetical finite-temperature 4d CFT dual to the Gauss-Bonnet background (2.2)

following the standard holographic recipe [99–102]. Gravitational quasinormal modes of

the background corresponding to the poles of the correlators GRµν,ρσ [99, 102] have been

computed and analyzed in detail as a function of the Gauss-Bonnet parameter λGB in

ref. [12]. The quasinormal spectrum at λGB = 1/4 is computed analytically in section 2.4

of the present paper.

The full gravitational action needed to compute the correlators contains the Gibbons-

Hawking term and the counter-term required by the holographic renormalisation,

S = SGB + SGH + Sc.t., (2.10)

19Other examples, as well as the string theory origins of the curvature-squared terms in the effective

action are discussed in ref. [98].

– 10 –



J
H
E
P
0
3
(
2
0
1
7
)
1
6
6

where SGB is the Gauss-Bonnet action (1.16), the modified Gibbons-Hawking term is

given by

SGH = − 1

κ2
5

∫
d4x
√
−γ
[
K + λGB

(
J − 2Gµνγ Kµν

)]
, (2.11)

and the counter-term action is (see e.g. [103])

Sc.t. =
1

κ2
5

∫
d4x
√
−γ
(
c1 −

c2

2
Rγ

)
, (2.12)

where

c1 = −
√

2
(
2 +
√

1− 4λGB

)√
1 +
√

1− 4λGB

, c2 =

√
λGB

2

(
3− 4λGB − 3

√
1− 4λGB

)(
1−
√

1− 4λGB

)3/2 . (2.13)

Here γµν = gµν − nµnν is the induced metric on the boundary, nµ is the vector normal to

the boundary, i.e. nµ = δµr/
√
grr, Rγ is the induced Ricci scalar and Gµνγ is the induced

Einstein tensor on the boundary. The extrinsic curvature tensor is

Kµν = −1

2
(∇µnν +∇νnµ) , (2.14)

K is its trace and the tensor Jµν is defined as

Jµν =
1

3

(
2KKµρK

ρ
ν +KρσK

ρσKµν − 2KµρK
ρσKσν −K2Kµν

)
. (2.15)

Similarly, J denotes the trace of Jµν .

Due to rotational invariance, we may choose the fluctuations hµν of the background

metric to have the momentum along the z axis, i.e. we can set hµν = hµν(r)e−itω+iqz, which

enables us to introduce the three independent gauge-invariant combinations of the metric

components [102]—scalar (Z1), shear (Z2) and sound (Z3):

Z1 = hxy , (2.16)

Z2 =
q

r2
htx +

ω

r2
hxz , (2.17)

Z3 =
2q2

r2ω2
htt +

4q

r2ω
htz −

(
1−

q2N2
GB

(
4r3 − 2rf(r)

)
2rω2 (r2 − 2λGBf(r))

)(
hxx
r2

+
hyy
r2

)
+

2

r2
hzz . (2.18)

Throughout the calculation, we use the radial gauge hrµ = 0 and the standard dimensionless

expressions for the frequency and the spatial momentum

w =
ω

2πT
, q =

q

2πT
. (2.19)

By symmetry, the equations of motion obeyed by the three functions Z1, Z2, Z3 decou-

ple [102]. Introducing the new variable u = r2
0/r

2, the equation of motion in each of the

three channels can be written in the form of a linear second-order differential equation

∂2
uZi +Ai∂uZi +BiZi = 0 , (2.20)
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where i = 1, 2, 3 and the coefficients Ai and Bi are given in appendix D. For some appli-

cations, especially in fluid-gravity duality, it will be convenient to use yet another radial

variable, v, defined by [57]

v = 1−
√

1− (1− u2) (1− γ2
GB), (2.21)

so that the horizon is at v = 0 and the boundary at v = 1 − γGB. The new coordinate is

singular at zero Gauss-Bonnet coupling, λGB = 0 (γGB = 1), thus the results for λGB = 0,

which are identical to those of N = 4 SYM theory at infinite ’t Hooft coupling and infinite

Nc, have to be obtained independently.

On shell, the action (2.10) reduces to the surface terms,

S = Shorizon + S∂M , (2.22)

where the contribution from the horizon should be discarded [99, 104]. In terms of the

gauge-invariant variables (2.16), (2.17) and (2.18), the part of the action involving deriva-

tives of the fields can be written as

S∂M = lim
ε→0

{
π2T 2

8κ2
5

3∑
i=1

∫
dωdq

(2π)2
Ai(ε, ω, q)Zi(ε,−ω,−q)Z ′i(ε, ω, q) + · · ·

}
, (2.23)

where Z ′ is the derivative of Z(u, ω, q) with respect to the radial coordinate. The functions

Ai include the boundary contributions from the parts SGB and SGH of the action (2.10),

but not from Sc.t.. The ellipsis in eq. (2.23) stands for the boundary terms proportional to

the products hµν(ε,−ω,−q)hρσ(ε, ω, q) arising from all the three parts of the action (2.10).

In the following, we shall only need those terms in our discussion of the scalar sector.20

The explicit expressions for Ai are given by

A1(u,ω,q) =
4π2T 2

N5
GBu

N̄f̄

1−f̄
, (2.24)

A2(u,ω,q) =
1

N5
GBu

N̄f̄
(
1−f̄

)
N̄ f̄q2−

(
1−f̄

)2
w2

, (2.25)

A3(u,ω,q) =
3π2T 2

N5
GBu

(1−4λGB)2 N̄ f̄(1−f̄)3w4[
N̄
(
f̄+f̄2+4λGB−12λGBf̄

)
q2−3(1−4λGB)

(
1−f̄

)2
w2
]2 , (2.26)

where

f̄ = 1−
√

1− 4λGB(1− u2) , N̄ = N2
GB

1− 4λGB

2λGB

,

and Zi(u, ω, q) are the solutions to eq. (2.20) obeying the incoming wave boundary condition

at the horizon and normalized to Z
(0)
i (ω, q) at the boundary at u = ε→ 0 [99], i.e.

Zi(u, ω, q) = Z
(0)
i (ω, q)

Zi(u, ω, q)

Zi(ε, ω, q)
, (2.27)

where Zi(u, ω, q) are the incoming wave solutions to eq. (2.20).

20The full scalar channel onshell action is given by eq. (2.41).
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2.1 The scalar channel

In this section, we extend the analysis of the scalar sector of metric perturbations performed

in ref. [57] to second order in the hydrodynamic expansion. To that order, the retarded two-

point function of the appropriate components of the energy-momentum tensor obtained by

considering a linear response to metric perturbation has the form [2]

GR,lin.resp.
xy,xy (ω, q) = P − iηω + ητΠω

2 − κ

2

(
ω2 + q2

)
+ · · · . (2.28)

Using dual gravity, we compute the retarded Green’s function GRxy,xy analytically for w� 1

and q � 1, and read off the transport coefficients τΠ and κ by comparing the result with

eq. (2.28). A novel feature at finite γGB is the appearance of a new pole of the function

GRxy,xy(ω, q) in the complex frequency plane [12]. The pole is moving up the imaginary axis

with γGB increasing. It is entering the region w� 1 at intermediate values of γGB and thus

is visible in the analytic approximation.

To compute the two-point function in the regime of small frequency, we need a solution

of the scalar channel differential equation (2.20) for w� 1 and q� 1. Using the variable

v defined by the relation (2.21) and imposing the in-falling boundary condition [99] by

isolating the leading singularity at the horizon via

Z1(v) = Z
(b)
1

(
v

2λGB

)−iw/2
(1 + g(v)) , (2.29)

one can rewrite the equation (2.20) as

v (1− v) ∂2
vg(v) + [1 + v + iw (v − 1)] ∂vg(v) + G(v) [g(v) + 1] = 0 , (2.30)

where G is a function of w and q of the form

G(v) = −iw + w2Gw(v) + q2Gq(v) (2.31)

and

Gw(v) =
(v − 1)

[
(4λGB + v(v − 2))3/2 − 8λ

3/2
GB (v − 1)2

]
4v (4λGB + v(v − 2))3/2

, (2.32)

Gq(v) =
(v − 1)

√
λGB

(
1 +
√

1− 4λGB

)
(1 + 8λGB + 3v(v − 2))

2 (4λGB + v(v − 2))3/2
. (2.33)

The constant Z
(b)
1 in eq. (2.29) is the normalization constant. To find a perturbative

solution g(v) for w� 1, q� 1, we introduce a book-keeping expansion parameter µ [102]

and write

g(v) =

∞∑
n=1

µngn(v), (2.34)

where the functions gn satisfy the equations

v (1− v) ∂2
vgn(v) + (1 + v) ∂vgn(v) +Hn(v) = 0. (2.35)
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The functions Hn are determined recursively from G and gm with m < n by

Hn(v) = iw∂v [(1− v) gn−1(v)] +
(
w2Gw(v) + q2Gq(v)

)
gn−2(v), (2.36)

where n ≥ 1. At first order, g0 = 1 and g−1 = 0 which gives H1 = −iw. A solution to

eq. (2.36) can be written in the form

gn(v) = Dn +

∫ v

dv′
(1− v′)2

v′

(
Cn −

∫ v′

dv′′
Hn(v′′)

(1− v′′)3

)
, (2.37)

where Cn and Dn are the integration constants. In particular, for n = 1 we have

g1(v) = D1 −
1

2
C1 (4− v) v +

(
C1 +

iw

2

)
ln v. (2.38)

Factorization (2.29) implies that the functions gn must be regular at the horizon (at v = 0).

In the case of g1, the regularity condition leads to C1 = −iw/2. Furthermore, all gn with

n > 1 must vanish at the horizon (see appendix C). For n = 1, this amounts to setting

D1 = 0. Hence, to linear order in w and q we have

g1(v) =
iw

4
(4− v) v. (2.39)

Repeating the procedure, we find the function g2(v):

g2(v) = w2g
(w)
2 (v) + q2g

(q)
2 (v)

+
w2

4

∫ v (1− v′)2 ln
[
γ2

GB − 1 + v′ −
√

(γ2
GB − 1) (γ2

GB − (1− v′)2)
]

v′
dv′. (2.40)

The functions g
(w)
2 and g

(q)
2 appearing in eq. (2.40) are given by lengthy but closed-form

expressions. Even though we do not have a closed-form expression for the remaining integral

in eq. (2.40), this is irrelevant for the purposes of computing the two-point function in the

hydrodynamic limit, since the existing expression for g2 is sufficient for fixing both the

boundary conditions on g2 itself and for determining the near-boundary expansion of Z1.

More precisely, the integral in eq. (2.40) comes from the outer integration in (2.37) and

does not affect the regularity at the horizon thus allowing to fix the integration constant

C2. The integral in (2.40) can be evaluated order-by-order in the near-boundary expansion

of the integrand and the constant D2 can be re-absorbed into the integration constant.

The full on-shell action (2.22) including the contact terms is given by

S = − PV4 − lim
ε→0

π4T 4

κ2
5

∫
dωdq

(2π)2

[
− 2

√
2 γGB

(1 + γGB)5/2 ε
Z1(ε,−ω,−q)Z ′1(ε, ω, q)

+

(
1

√
2 (1 + γGB)3/2

−
γGB

(
q2 −w2

)√
2(1 + γGB) ε

)
Z1(ε,−ω,−q)Z1(ε, ω, q) + · · ·

]
, (2.41)
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where we used the near-boundary regulator u = ε → 0. Here, the first term is minus the

four-volume V4 times the free energy density (i.e. the pressure P), where

P =

√
2π4T 4

(1 + γGB)3/2 κ2
5

, (2.42)

which is consistent with eqs. (2.8) and (2.7). The ellipsis denotes higher-order terms in w

and q and terms vanishing in the ε→ 0 limit.

The retarded two-point function GRxy,xy(ω, q) can then be computed by evaluating the

boundary action (2.41). Using the solution (2.29) to first order in w and q (i.e. including

only the function g1 in the expansion (2.34)) we find

GRxy,xy(ω, q) =

√
2π4T 4

(1 + γGB)5/2 κ2
5

[
γGB + 1− 4iγGBw

+
8(γGB − 1)(γGB + 2)γGBw

w [γGB(γGB + 2)− 3 + 2 ln 2− 2 ln(γGB + 1)] + 4i

]
. (2.43)

The Green’s function has a pole on the imaginary axis at

w ≡ wg = − 4i

γGB (γGB + 2)− 3 + 2 ln
(

2
γGB+1

) ≈ − 4i

γ2
GB

. (2.44)

The approximation in eq. (2.44) assumes γGB � 1. The pole is absent from the spectrum

at λGB = 0 (γGB = 1) or, rather, it is located at complex infinity. At non-vanishing λGB

of either sign, the pole moves up the imaginary axis with |λGB| increasing. For positive

λGB, it reaches the quasinormal frequency value at λGB = 1/4 in that limit, determined

analytically in section 2.4. For negative λGB, the pole moves up to the origin. Its location

is correctly captured by the small frequency perturbative expansion of the solution g(v)

only for sufficiently large γGB (see figure 1 and ref. [12] for details).

A small frequency expansion of eq. (2.43) is

GRxy,xy(ω, q) =

√
2π4T 4

(1 + γGB)5/2 κ2
5

[
γGB + 1− 2iwγ2

GB(γGB + 1)

]
+O(w2) . (2.45)

A comparison with eq. (2.28) gives the familiar expression for pressure (2.42) and the shear

viscosity [57]

η =

√
2π3T 3L3

κ2
5

γ2
GB

(1 + γGB)3/2
=

4π3T 3L̃3

κ2
5

γ2
GB

(1 + γGB)3 , (2.46)

where we have reinstated L (or L̃) momentarily. To compute the second-order coefficients

τΠ and κ, we need to include the function g2 in the expansion (2.34) and the solution (2.29).

The resulting expressions for g2 and the corresponding Green’s function are very cumber-

some and are not shown here explicitly. The small frequency expansion of the Green’s

function, however, matches the hydrodynamic result (2.28) perfectly. Combining the equa-

tions (2.29), (2.39) and (2.40) and comparing with (2.28), we can read off the coefficients

τΠ and κ given by eqs. (1.20) and (1.21), respectively. They coincide with the expressions

found earlier in ref. [105] by using a different method.
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Figure 1. The poles of the scalar channel Green’s function GR
xy,xy(w, q) in the vicinity of origin

in the complex frequency plane at q = 0.1 and λGB ≈ −7.3125 (corresponding to γGB ≈ 5.5).

The poles found numerically are shown by black circles. The white square shows the analytic

approximation (2.44) to the location of the pole on the imaginary axis.

The full quasinormal spectrum of metric fluctuations in the scalar channel as a function

of γGB has been analyzed in detail in ref. [12]. The spectrum qualitatively differs from the

one at λGB = 0 in a number of ways, depending on the sign of λGB. For λGB > 0, there is

an inflow of new quasinormal frequencies (poles of GRxy,xy(ω, q) in the complex frequency

plane), rising up from complex infinity along the imaginary axis. At the same time, the

poles of the two symmetric branches recede from the finite complex plane as λGB is increased

from 0 to 1/4, and disappear altogether in the limit λGB → 1/4. The spectrum in this limit

coincides with the one obtained analytically at λGB = 1/4 in section 2.4 of the present

paper. For λGB < 0, on the contrary, the poles in the symmetric branches become more

dense with the magnitude of λGB increasing, and the two branches gradually lift up towards

the real axis. They appear to form branch cuts (−∞,−q]∪[q,∞) in the limit γGB →∞. For

small q and very large γGB, this would imply accumulation of poles of the Green’s function

in the region |w| � 1. We have not investigated this limit in detail. Also, as noted above,

there is at least one new pole (seen in figure 1) rising up the imaginary axis. The residue

and the position of the pole wg contribute to the shear viscosity and to the position of the

corresponding transport peak of the spectral function. A qualitatively similar phenomenon

has been observed in the case of N = 4 SYM at large but finite ’t Hooft coupling [12].

2.2 The shear channel

The energy-momentum tensor two-point functions Gzx,zx, Gtx,tx, Gtx,zx in the shear chan-

nel can be expressed through the single scalar function G2 as explained in ref. [102].

For example,21

Gxz,xz(ω, q) =
ω2

2(ω2 − q2)
G2(ω, q) + · · · , (2.47)

21 Our notations Z1, Z2, Z3 correspond to Z3, Z1, Z2 of ref. [102], and the same holds for G1,2,3.
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where the ellipsis represents the contact terms. In holography, the function G2 is deter-

mined by the solution Z2(u, ω, q) (2.27) of the equation (2.20) obeying the appropriate

boundary conditions, and by the relevant part of the on-shell boundary action (2.23).

The retarded correlators in the shear channel are characterized by the presence of the

hydrodynamic diffusive mode whose dispersion relation is given by

ω = −i η

ε+ P
q2 − i

[
η2τΠ

(ε+ P )2
− θ1

2(ε+ P )

]
q4 + · · · , (2.48)

where θ1 is the transport coefficient of the third-order hydrodynamics introduced in

ref. [20]. Higher terms in the momentum expansion of the shear mode depend on the

(unclassified) fourth- and higher-order transport coefficients. Since the Gauss-Bonnet fluid

is Weyl-invariant (”conformal”), we have ε = 3P and thus η/(ε+P ) = (1− 4λGB) /4πT =

γ2
GB/4πT . In holography, the quasinormal mode (2.48) can be found analytically by solving

the equation (2.20) perturbatively for w� 1, q� 1:

w =− iγ
2
GB

2
q2 − i γ

4
GB

16

[
(1 + γGB)2 + 2 ln

(
γGB

2(1 + γGB)

)]
q4 + · · · . (2.49)

The coefficient in front of the term quadratic in momentum coincides with the one predicted

by hydrodynamics of the holographic Gauss-Bonnet fluid with known shear viscosity. Since

the coefficient τΠ is also known (e.g. from eq. (2.28)), the quartic term in (2.49) allows one

to read off the coefficient θ1:

θ1 =
η

8π2T 2
γGB

(
2γ2

GB + γGB − 1
)
. (2.50)

In the dissipationless limit γGB → 0 we have θ1 ∼ γ3
GB → 0. In fact, it can be seen

numerically [12] that the full shear mode (2.48) approaches zero in the limit γGB → 0.

At γGB = 0 (λGB = 1/4), this mode disappears from the spectrum altogether due to the

vanishing residue which is consistent with our analytic results for the spectrum at λGB = 1/4

in section 2.4.

The full quasinormal spectrum was investigated numerically and partially analytically

in ref. [12]. Its behavior as a function of λGB is qualitatively similar to the one in the

scalar channel, with the exception of one curious phenomenon: at fixed q, the new pole

rising up the imaginary axis with (negative) λGB increasing in magnitude, collides with

the hydrodynamic pole (2.48) at some λGB = λcGB(q), and the two poles move off the

imaginary axis. This is interpreted as breakdown of the hydrodynamic regime at a given

q = qc(λGB). Curiously, the range of applicability of the hydrodynamic regime (i.e. the

range q ∈ [0, qc]) increases with the field theory “coupling” (understood as the inverse of

|λGB|) increasing [12].

The retarded correlation functions of the energy-momentum tensor in the shear channel

can be computed from the boundary action (2.23). For the function G2 in eq. (2.47)

we find22

G2(ω, q) = 4
(
ω2 − q2

) π2T 2

8κ2
5

lim
ε→0
A2(ε, ω, q)

Z ′2(ε, ω, q)

Z2(ε, ω, q)
. (2.51)

22As in refs. [100, 102], we ignore possible contact terms coming from Sc.t.. See remarks in appendix A

of ref. [102].
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In the hydrodynamic approximation, to first non-trivial order in w, q, with both w ∼ µ� 1

and q ∼ µ� 1 scaling the same way, the shear channel solution to eq. (2.20) obeying the

incoming wave boundary condition is

Z2(u) =Z
(b)
2

(
1−u2

)−iw/2(
1+

iq2

2w

γ2
GB

1−γGB

(
1−
√
γ2

GB−γ2
GBu

2+u2
)

(2.52)

+
iw

4

[
3−γ2

GB+
(
γ2

GB−1
)
u2−2

√
γ2

GB−γ2
GBu

2+u2+2ln
1+
√
γ2

GB−γ2
GBu

2+u2

2

])
,

where Z
(b)
2 is the normalization constant. We note that in order to obtain the hydrodynamic

dispersion relation (2.49) that includes information about the second and the third order

transport coefficients, we need to find Z2 to one order higher, but using the scaling ω ∼ µ2

and q ∼ µ is sufficient to extract the diffusive pole.

For the correlation function G2 in the regime w� 1, q� 1 we thus find the following

expression

G2 =
2
√

2π3T 3γ2
GB

(1 + γGB)3/2κ2
5

(
ω2 − q2

iω − iω2/ωg − γ2
GBq

2/4πT

)
, (2.53)

where ωg = 2πTwg (see eq. (2.44)). At vanishing Gauss-Bonnet coupling λGB = 0 (γGB =

1) one has |wg| → ∞ and we formally recover23 the standard result for N = 4 SYM

at infinitely strong ’t Hooft coupling and infinite Nc [100, 102] but it should be noted

that the formula (2.53) is accurate only for |wg| � 1, i.e. for sufficiently large γGB. The

correlator (2.53) has two poles with the following dispersion relations, expanded to q2:

ω1 = −i γ
2
GB

4πT
q2, (2.54)

ω2 = ωg + i
γ2

GB

4πT
q2. (2.55)

The first is the usual diffusive pole, corresponding to quadratic part of the dispersion

relation (2.49), while the second pole is a new non-hydrodynamic pole coming from complex

infinity at non-zero λGB. This pole moves up the imaginary axis with γGB increasing and

is responsible for the breakdown of hydrodynamics in the large γGB limit for any fixed

non-zero value of q (see ref. [12] for details).

The above expression for the Green’s function and the dispersion relations are only

valid in a (double expansion) regime in which not only w ∼ q� 1 but also γGB � 1. The

latter condition is required for the gapped mode on the imaginary axis to satisfy |w| � 1.

Note also that the form of the dissipative corrections implies that γGBq � 1. Obviously,

these restrictions are only necessary if we are interested in analytic expressions.

The location of the momentum density diffusion pole confirms the result (1.11) for the

shear viscosity of Gauss-Bonnet holographic fluid. We note that in the limit λGB → 1/4

(γGB → 0) the residue of the diffusion pole vanishes. The full Green’s function can be

determined numerically. The corresponding spectral function in the shear channel for

various values of γGB has been computed numerically in ref. [12].

23Upon the identification N2
c = 4π2/κ2

5.
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2.3 The sound channel

The correlation functions in the sound channel can be expressed through the single scalar

function24 G3 [102]. For example, for the energy density two-point function in the conformal

case we have

Gtt,tt(ω, q) = −4
δ2S∂M

δH
(0)
tt (ω, q)δH

(0)
tt (−ω,−q)

=
2q4

3(ω2 − q2)2
G3(ω, q) + · · · , (2.56)

and similar expressions are available for other components of the energy-momentum tensor

in the sound channel [101, 102]. To compute G3 in holography, one needs the solution

Z3(u, ω, q) (2.27) of the equation (2.20) and the relevant part of the on-shell boundary

action (2.23). As in eq. (2.23), the ellipsis represents the contribution from the contact

terms. The function H
(0)
tt denotes the boundary value of the fluctuation Htt = htt/r

2 =

httu(1 + γGB)/2π2T 2.

The hydrodynamic modes in the sound channel are the pair of sound waves whose

dispersion relation is predicted by relativistic hydrodynamics up to a quartic term in spa-

tial momentum:

ω = ±cs q − iΓ q2 ∓ Γ

2cs

(
Γ− 2c2

sτΠ

)
q3 − i

[
8η2τΠ

9(ε+ P )2
− θ1 + θ2

3(ε+ P )

]
q4 + · · · , (2.57)

where cs = 1/
√

3 is the speed of sound, Γ = 2η/3(ε + P ), ε + P = sT in the absence of

chemical potential, and τΠ, θ1, θ2 are transport coefficients of the second- and third-order

(conformal) hydrodynamics in four space-time dimensions.

Solving the equation (2.20) for Z3 perturbatively for w � 1, q � 1, imposing the in-

coming wave boundary condition at the horizon and the Dirichlet condition at the bound-

ary, we find the hydrodynamic quasinormal mode25

w1,2 =± 1√
3
q− 1

3
iγ2

GBq
2

∓ 1

12
√

3
γGB

(
2 + γ3

GB − 6γ2
GB − 3γGB + 2γGB ln

[
2(1 + γGB)

γGB

])
q3 + . . . . (2.58)

Comparing the expansion (2.58) to the prediction (2.57) of conformal hydrodynamics one

finds the same expressions for the shear viscosity - entropy density ratio and the second-

order transport coefficient τΠ as the ones reported in eqs. (1.19) and (1.20). This agreement

is gratifying but more analytic work is needed to extend the expansion (2.58) to quartic

order and determine the coefficient θ2 of the third-order hydrodynamics. Other features of

the quasinormal spectrum are qualitatively similar to the scalar case and are discussed in

full detail in ref. [12].

24See footnote 21.
25Here it is tacitly assumed that γGB is small enough. For moderate and large γGB, in addition to the

mode (2.58), there exists another mode moving up the imaginary axis with γGB increasing. This mode

enters the hydrodynamic domain w� 1, q� 1 for γGB ∼ 2− 4 and can be seen analytically, as discussed

in ref. [12].
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The coefficients in front of the quadratic, qubic and possibly26 quartic terms in the dis-

persion relation (2.57) vanish in the limit γGB → 0. This limit is hard to study numerically

but it is conceivable that the higher terms vanish as well leaving the linear propagating

mode w = ±q/
√

3. Such a mode, however, is absent in the exact spectrum at γGB = 0 (see

section 2.4).

To first order in the hydrodynamic expansion, the gauge-invariant mode is given by

Z3(u) = Z
(b)
3

(
1− u2

)−iw/2( γ2
GB −

√
γ2

GB − γ2
GBu

2 + u2

(γGB − 1)γ2
GB

√
γ2

GB − γ2
GBu

2 + u2
− 3w2

γ2
GBq

2

+
iw
(
Ξww

2 + Ξqq
2
)

4q2γ2
GB (1− γ2

GB)
√
γ2

GB − (γ2
GB − 1)u2

)
, (2.59)

where

Ξw =− 3
(
γ2

GB − 1
)
U
(
γ2

GB −
(
γ2

GB − 1
)
u2 + 2U − 2 ln(U + 1)− 3 + 2 ln 2

)
, (2.60)

Ξq = (γGB + 1)
(
γ2

GB

(
9γ2

GB − 5 + 2 ln 2
)

+
(
γ2

GB − 1
)
u2
(
−9γ2

GB + U + 2
))

+ (γGB + 1)
(
−U

(
7γ2

GB − 3 + 2 ln 2
)

+ 2
(
U − γ2

GB

)
ln(U + 1)

)
, (2.61)

and we have used U2 = u2 + γ2
GB − u2γ2

GB. The correlation function G3 can then be

computed from

G3(ω, q) = −
48
(
ω2 − q2

)2
ω4

π2T 2

8κ2
5

lim
ε→0
A3(ε, ω, q)

Z ′3(ε, ω, q)

Z3(ε, ω, q)
, (2.62)

giving

G3(ω, q) =
8
√

2π4T 4

(1 + γGB)3/2κ2
5

(
q2 − ωq2/ωg − iγ2

GBω
(
3ω2 − 5q2

)
/4πT

(3ω2 − q2) (1− ω/ωg) + iγ2
GBωq

2/πT

)
. (2.63)

As required by rotational invariance, G1(ω, 0) = G2(ω, 0) = G3(ω, 0) [102]. The contact

term in the on-shell action (2.23) relevant for the computation of Gtt,tt(ω, q) is

S∂M = · · ·+ π2T 2

8κ2
5

∫
dωdq

(2π)2

√
2π2T 2

3(1 + γGB)3/2

29q4 − 30ω2q2 + 9ω4

(ω2 − q2)2 H
(0)
tt (−ω,−q)H(0)

tt (ω, q).

(2.64)

The full retarded energy density two-point function is then

Gtt,tt(ω, q) =
3
√

2π4T 4

(1 + γGB)3/2κ2
5

((
5q2 − 3ω2

)
(1− ω/ωg)− iγ2

GBωq
2/πT

(3ω2 − q2) (1− ω/ωg) + iγ2
GBωq

2/πT

)
. (2.65)

The thermodynamic (equilibrium) contribution has been omitted from this expression. To

this order in the hydrodynamic expansion, the spectrum contains three modes,

ω1,2 = ± 1√
3
q − i γ

2
GB

6πT
q2, (2.66)

ω3 = ωg + i
γ2

GB

3πT
q2. (2.67)

26Possibly, because the expression for θ2 remains unknown.

– 20 –



J
H
E
P
0
3
(
2
0
1
7
)
1
6
6

The first two are the attenuated sound modes (2.58) and the third mode is the gapped mode

similar to those in the scalar and shear channels. As in the shear channel, these results

require the following scalings to be respected: w ∼ q� 1, γGB � 1 and hence, γGBq� 1.

Second-order corrections to the two hydrodynamic sound modes were given by

eq. (2.58). To study the spectrum beyond second-order hydrodynamics and investigate

higher-frequency spectrum, we must again resort to numerics. We note that for better

control over the numerics, it is useful to follow [106] and write

Z3(u) = A [1 + a1u+ · · · ] + (Ah lnu+ B)u2 [1 + b1u+ · · · ] , (2.68)

which is a standard Fröbenius expansion result. The retarded Green’s function is then

proportional to B/A. Because of the logarithmic term in Z3, it is beneficial to the precision

of our numerics to seek the poles of B/A (or zeros of A/B) as opposed to the zeros of A.

Furthermore, the full Green’s function includes information about the values of the residues

at the poles. By writing

B =
1

2
lim
u→0

(
Z ′′3 (u)− 2Ah lnu

)
− 3

2
Ah, (2.69)

we obtain the following expression convenient for the computation of quasinormal modes:

B
A

= lim
u→0

[
Z ′′3 (u)

2Z3(u)
− h lnu− 3

2
h

]
. (2.70)

The coefficient h can be found analytically, h = − (1 + γGB)4 (w2 − q2
)2
/32. For a detailed

discussion of the quasinormal spectrum, see ref. [12]. A comprehensive analysis of the large

spatial momentum asymptotics similar to the one accomplished for the strongly coupled

N = 4 SYM in refs. [107, 108] would be of interest but has not been attempted neither in

ref. [12] nor in the present paper.

2.4 Exact quasinormal spectrum at λGB = 1/4

At λGB = 1/4, the equations of motion (2.20) for all channels simplify drastically. They

reduce to the following system

Scalar channel: Z ′′1 −
2− u

u(1− u)
Z ′1 +

w2 − 3(1− u)q2

4u(1− u)2
Z1 = 0, (2.71)

Shear channel: Z ′′2 −
2− u

u(1− u)
Z ′2 +

w2

4u(1− u)2
Z2 = 0, (2.72)

Sound channel: Z ′′3 −
2− u

u(1− u)
Z ′3 +

w2 + (1− u)q2

4u(1− u)2
Z3 = 0. (2.73)

Solutions to these equations can be written in terms of the hypergeometric function. The

indicial exponents of eqs. (2.71)–(2.73) at the horizon at u = 1 are equal to ±iw/2, as

expected. Curiously, the exponents at the boundary singular point u = 0 are α1,2 = {0, 3}
and not α1,2 = {0, 2}, which are their values for any λGB < 1/4 (and in fact for all

five-dimensional bulk fluctuations dual to operators of conformal dimension ∆ = 4 of a
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3 + 1-dimensional boundary theory). The standard holographic dictionary then implies

that at λGB = 1/4 the dual theory operators scale as the energy-momentum tensor in six

rather than four dimensions. Technically, the reason for this “dimensional transmutation”

is related to the fact that the “standard” terms in the wave equations (2.20) most singular

in the limit u → 0 are multiplied by the coefficients proportional to (1 − 4λGB) and thus

vanish at λGB = 1/4. At this value of the Gauss-Bonnet coupling, the theory becomes

“topological gravity” [109] with a number of curious properties.27 In particular, thermo-

dynamic properties of the black brane solution at λGB = 1/4 are different from the ones

at λGB < 1/4 [110]. The underlying physical reasons and significance of this limit are not

entirely clear to us, although they might be related to the issues discussed in ref. [111] and

refs. [112–114].

We note that the Gauss-Bonnet black brane metric is regular at λGB = 1/4:

ds2 = − r
2

L2

(
1−

r2
+

r2

)
dt2 +

L2

2r2
(

1− r2
+

r2

)dr2 +
r2

L2

(
dx2 + dy2 + dz2

)
. (2.74)

Rescaling the coordinates t, x, y, z and the parameter L, it can be brought into the form

ds2 = − r
2

L2

(
1−

r2
+

r2

)
dt2 +

L2

r2
(

1− r2
+

r2

)dr2 +
r2

L2

(
dx2 + dy2 + dz2

)
. (2.75)

For fluctuations depending on r, t, z only, the metric (2.75) is nothing but the BTZ metric

with TL = TR (see e.g. eq. (4.1) of [99] with ρ− = 0) which explains the emergence of the

hypergeometric equations in the system of equations (2.71)–(2.73). The zero temperature

limit of the metric (2.75) is the standard AdS5 solution in Poincaré patch coordinates.

Note, however, that the action at λGB = 1/4 is obviously not the standard Einstein-Hilbert

action, and thus the fluctuation equations are not the “usual” fluctuation equations around

AdS5 but rather are given by the zero-temperature limit of eqs. (2.71)–(2.73).

The solutions to eqs. (2.71)–(2.73) obeying the incoming wave boundary conditions

are given by

Scalar: Z1 = (1− u)−
iw
2 2F1

[
Ω−

√
4− 3q2

2
,Ω +

√
4− 3q2

2
, 1− iw, 1− u

]
, (2.76)

Shear: Z2 = (1− u)−
iw
2 2F1

[
Ω− 1,Ω + 1, 1− iw, 1− u

]
, (2.77)

Sound: Z3 = (1− u)−
iw
2 2F1

[
Ω−

√
4 + q2

2
,Ω +

√
4 + q2

2
, 1− iw, 1− u

]
, (2.78)

where Ω ≡ −1 − iw
2 . Given the three solutions, the quasinormal spectrum is determined

analytically by imposing the Dirichlet condition Zi(0) = 0 at the boundary. We find

Scalar: w = −i
(

4 + 2n1 −
√

4− 3q2
)
, w = −i

(
4 + 2n2 +

√
4− 3q2

)
, (2.79)

Shear: w = −2i (1 + n1) , w = −2i (3 + n2) , (2.80)

Sound: w = −i
(

4 + 2n1 −
√

4 + q2
)
, w = −i

(
4 + 2n2 +

√
4 + q2

)
, (2.81)

27We thank the referee for bringing refs. [109] and [110] to our attention.
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where n1 and n2 are independent non-negative integers. The numerical study of the Gauss-

Bonnet quasinormal spectrum in ref. [12] shows that in the limit λGB → 1/4 the quasinormal

frequencies approach the ones found above. The spectrum in the shear channel is q-

independent. In the scalar and sound channels, for sufficintly large q the modes cross

into the upper half plane of frequency thus signaling an instability. This is perhaps not

surprising given the causality problems in the boundary theory observed for sufficiently

large spatial momentum in ref. [57] and other publications.

Finally, let us address the questions of what happens to the hydrodynamic poles in the

limit of λGB → 1/4 (γGB → 0). By examining the limit of the sound correlator Gtt,tt(ω, q)

given by eq. (2.65) computed for any generic value of γGB (or the limit of G3 given by

eq. (2.63)), we find a non-vanishing Green’s function with an unattenuated sound mode,

ω = ±q/
√

3. On the other hand, the sound spectrum computed analytically at γGB = 0

(cf. eq. (2.81)) contains no such mode. This situation can be contrasted with the shear

channel: there, the correlator G2 (cf. (2.53)) vanishes in the same limit and there is no

remaining diffusive mode in the spectrum. Consistently, the exact quasinormal spectrum

at γGB = 0 (cf. (2.80)) contains no mode at w = 0, either.

We do not have a full understanding of this phenomenon but can offer the following

comments. Examine more closely the limit γGB → 0 of the sound correlator G3 (2.62).

First, we notice that its Z3-independent prefactor gives different expressions depending on

which of the two limits, γGB → 0 or ε→ 0, is taken first. Namely,

lim
γGB→0

[
lim
ε→0

48
(
ω2 − q2

)2
ω4

π2T 2

8κ2
5

A3(ε, ω, q)

]
=

8
√

2π4T 4

κ2
5

γGB

ε
+ · · · , (2.82)

lim
ε→0

[
lim

γGB→0

48
(
ω2 − q2

)2
ω4

π2T 2

8κ2
5

A3(ε, ω, q)

]
=

72
√

2π4T 4

κ2
5

(
ω2 − q2

)2
(3ω2 − q2)2

γ2
GB

ε2
+ · · · , (2.83)

where the ellipses denote terms subleading in the expansions of ε and γGB around zero.

Now, in the expansion around γGB = 0, the Fröbenius series (2.68) becomes

Z3(u) = A+ · · ·+ Bu2 +

(
A
(
3ω2 − q2

)
144π2T 2γ2

GB

+ · · · −
B
(
ω2 − q2

)
48π2T 2

)
u3 + · · · . (2.84)

By first taking ε and then γGB to zero (the order of limits we took to find G3 in eq. (2.63)),

one again recovers the leading order hydrodynamic expression

G3(ω, q) = −16
√

2π4T 4γGB

κ2
5

B
A

=
8
√

2π4T 4

κ2
5

q2

3ω2 − q2
+ · · · . (2.85)

With the opposite order of limits, the prefactor (2.83) and the solution (2.84) yields

G3 (ω, q) = −3
√

2π2T 2

2κ2
5

(
ω2 − q2

)2
(3ω2 − q2)

(
1−

(
ω2 − q2

)
(ω2 − q2/3)

lim
γGB→0

γ2
GB

B
A

)
, (2.86)

where A and B depend on γGB. What this expression reveals is that it is possible for the

unattenuated sound mode to be a pole of the Green’s function, having entered into the

expression from the prefactor, not the ratio of B/A. Thus, such a pole would not appear

as a part of the quasinormal spectrum.
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2.5 The limit λGB → −∞

It is tempting to investigate the limit λGB → −∞ analytically to confirm the observations

based on numerical simulations. However, taking this limit is problematic for two reasons.

First, on a technical level, the equations of motion for fluctuations contain products of

the type λGB(r − r+) which remain finite for r sufficiently close to the horizon r+, even

at large |λGB|. This can possibly be dealt with by a variable redefinition but the second

problem is more serious. The Kretschmann curvature invariant evaluated on the black

brane solution (2.2) is

RµνρσR
µνρσ ∝ 1

r4
(
r4 (1− 4λGB) + 4r4

+λGB

)3 . (2.87)

For λGB ∈ [0, 1/4], the curvature singularity in eq. (2.87) is at r = 0. However, for λGB < 0

the curvature singularity is located at

r =
r+(

1− 1
4λGB

)1/4
. (2.88)

Thus, as λGB is tuned from 0 to −∞, the curvature singularity moves continuously from

r = 0 to the horizon r = r+ and becomes a naked singularity28 in the limit λGB → −∞.

Because the classical background geometry is singular at the horizon, considering classical

metric fluctuations in the limit λGB → −∞ would be meaningless. In some sense, the

need for an ultraviolet completion of gravity in this limit is in accord with the observations

made in ref. [12] and in the present paper that the regime of large negative λGB qualitatively

corresponds to the regime of weak coupling in the field theory which generically requires

the full dual stringy rather than dual gravity description.

As a curious observation, we note the following. In the large (negative) λGB expansion,

the Ricci scalar evaluated on the solution (2.2) to leading order becomes

lim
λGB→−∞

R =
2
(
15r4r4

+ − 10r8 − 3r8
+

)
L2r2

(
r4 − r4

+

)3/2
√
− 1

λGB

, (2.89)

and the leading order contribution to the Kretschmann scalar is

lim
λGB→−∞

RµνρσR
µνρσ =

4
(
10r16 − 30r12r4

+ + 33r8r8
+ − 12r4r12

+ + 3r16
+

)
L4r4

(
r4 − r4

+

)3 (
1

−λGB

)
. (2.90)

In fact, all three curvature scalars that appear in the Gauss-Bonnet term, RµνρσR
µνρσ,

RµνR
µν and R2, are singular at r = r+ and scale as 1/λGB, while their combination that

appears in the action remains finite and independent of r:

lim
λGB→−∞

(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)
= − 120

λGBL4
. (2.91)

28The appearance of naked singularities in the solutions of Lovelock gravity has been investigated in

ref. [115].
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As as result of these scalings, the Einstein-Gauss-Bonnet action (1.16) to leading order in

λGB reduces to the Gauss-Bonnet term and the cosmological constant Λ = −6/L2:

lim
λGB→−∞

SGB =
λGBL

2

4κ2
5

∫
d5x
√
−g
[
R2 − 4RµνR

µν +RµνρσR
µνρσ − 4Λ

λGBL2

]
. (2.92)

This theory has a black brane solution that coincides with the λGB → −∞ limit of the

solution (2.2),

ds2 =
√
−λGB

− r̃2

L2

√
1−

r̃4
+

r̃4
dt2 +

L2

r̃2

√
1− r̃4

+

r̃4

dr̃2 +
r̃2

L2

(
dx2 + dy2 + dz2

) , (2.93)

where we have introduced a rescaled radial coordinate r = (−λGB)1/4 r̃.

3 Gauss-Bonnet transport coefficients from fluid-gravity correspondence

From the analysis of quasinormal spectra and retarded two-point functions in section 2,

we were able to determine non-perturbative expressions for the Gauss-Bonnet transport

coefficients η, τΠ, κ (and also θ1 of the third-order hydrodynamics). To find the remaining

transport coefficients, one can use either the fluid-gravity correspondence or the Kubo for-

mulae applied to three-point functions. In this section, we shall use the fluid-gravity meth-

ods [3, 116]. Previously, fluid-gravity approach has been used to determine the shear vis-

cosity [117] and second-order hydrodynamic coefficients [49] of Gauss-Bonnet holographic

liquid perturbatively in λGB.

Fluid-gravity correspondence uses the fact that the bulk metric perturbations hµν
source the energy-momentum tensor Tµν in the generating functional of the boundary

quantum field theory [118, 119]. Gravitational bulk action should thus be able to capture

all of the energy-momentum properties of the dual theory. The procedure for computing

the holographic energy-momentum tensor, inspired by the old prescription of Brown and

York [120], was proposed in ref. [121]. One expects then that in the appropriate variables a

gradient expansion of the bulk metric should capture the hydrodynamic gradient expansion

of the dual field theory’s energy-momentum tensor.

Following ref. [116], we write the Gauss-Bonnet black brane background solution (2.2)

in the Eddington-Finkelstein coordinates,

ds2 = −r2f(br)dv2 + 2NGBdvdr + r2dxidxi , (3.1)

where NGB is given by eq. (2.4). We set L = 1 for convenience and defined b ≡ 1/r+ to be

consistent with the notations used in ref. [116]. The function f(br) is

f(br) =
N2

GB

2λGB

[
1−

√
1− 4λGB

(
1− 1

b4r4

)]
. (3.2)

The energy-momentum tensor is given by the expression

Tµν =
r2

κ2
5

[
Kµν −Kγµν + λGB (3Jµν − Jγµν) + c1γµν + c2G

(γ)
µν

]
, (3.3)

where all the ingredients are defined just below eq. (2.13).
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The next step is to boost the brane solution (3.1) along a space-time dependent velocity

four-vector ua(x), where

ua =
1√

1− β2

(
1, βi

)
, (3.4)

with i = 1, 2, 3 corresponding to the spatial boundary coordinates. Note that xa =

(v, x, y, z) in Eddington - Finkelstein coordinates. The boosted black brane metric, which

we denote by g
(0)
µν , becomes

ds2
(0) =− 2NGBua (xc) dxadr − r2f (b (xc) r)ua (xc)ub (xc) dxadxb

+ r2∆ab (xc) dxadxb. (3.5)

Generically, the metric (3.5) is no longer a solution of the Einstein-Gauss-Bonnet equations

of motion (2.1). In fluid-gravity correspondence, assuming a slow-varying dependence of

the coefficients on the coordinates xa and making a gradient expansion, one imposes the

equations of motion (2.1) as the condition each term in the expansion must satisfy. We

make a gradient expansions in the derivatives of the fields βi (xa) and b (xa) to second order,

in agreement with the boundary theory’s standard second-order hydrodynamic gradient

expansion in velocity and temperature fields (see e.g. appendix B). To second order, the

metric will have the form

gµν = g(0)
µν + εg(1)

µν + ε2g(2)
µν , (3.6)

where g
(0)
µν and g

(1)
µν are expanded up to terms involving two derivatives of b and βi inclusive.

We shall use ε as a book-keeping parameter in the derivative expansion.

The procedure of solving equations (2.1) order by order is greatly simplified, if one

notices that it is sufficient to solve the equations of motion locally around some point

xa = Xa. The global metric can be obtained from these data alone [116]. The local

expansions of the fields b and βi are given by

b = b(0)|Xa + εxa∂ab(0)|Xa + εb(1)|Xa +
ε2

2
xaxb∂a∂bb(0)|Xa + ε2xa∂ab(1)|Xa , (3.7)

βi = βi(0)|Xa + εxa∂aβ
i
(0)|Xa +

ε2

2
xaxb∂a∂bβ

i
(0)|Xa . (3.8)

We choose to work in a local frame at the origin, Xa = 0, where

b0 = 1 and βi = 0. (3.9)

Furthermore, it is consistent to choose a gauge with βi(1) = 0 at xa = Xa [116].

3.1 First-order solution

The most general expression for the first-order metric g
(1)
µν can be conveniently written in

a scalar-vector-tensor form

ds2
(1) =

k1(r)

r2
dv2 − 3NGBh1(r)dvdr +

2

r2

(
3∑
i=1

ji1(r)dxi

)
dv

+ r2h2(r)
(
dx2 + dy2 + dz2

)
+ r2Aabdxadxb, (3.10)
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where xi = (x, y, z), k1 and h1 are scalars, ji1 is a three-vector and Aab is a tensor. As

discussed above, we proceed by using the expanded forms of b and βi given in (3.7) and (3.8)

to write the order-ε metric as gµν = g
(0)
µν +εg

(1)
µν . Then the equations of motion (2.1) generate

the following set of constraints and dynamical equations:

Scalar :

Constraint 1: r2f0(r)Evr +NGBEvv = 0, (3.11)

Constraint 2: r2f0(r)Err +NGBEvr = 0, (3.12)

Dynamical equation 1: Err = 0, (3.13)

Vector :

Constraint 3: r2f0(r)Eri +NGBEvi = 0, (3.14)

Dynamical equation 2: Eri = 0, (3.15)

Tensor :

Dynamical equation 3: Eij = 0. (3.16)

First, we solve the Dynamical equation 1 in (3.13) for h1(r). We then use Constraint

2 in (3.12) which relates k′1(r) to h1(r) to solve for k1(r). Constraints 1 and 3 in (3.11)

and (3.14) give

∂vb0 =
1

3
∂iβ

i and ∂ib0 = ∂vβ
i. (3.17)

Finally, we can solve the remaining Dynamical equations 2 and 3 in (3.15) and (3.16) to

find j1(r) and the tensor Aab which contains information about shear viscosity.

The global first-order metric, gµν = g
(0)
µν + εg

(1)
µν , can be written as a sum [116],

ds2 =

6∑
n=1

An, (3.18)

where the six line elements An are defined as

A1 = −2NGBuadx
adr, A2 = −r2f0(br)uaubdx

adxb, (3.19)

A3 = r2∆abdx
adxb, A4 = 2r2bF0(br)σabdx

adxb, (3.20)

A5 =
2

3
NGBruaub∂cu

cdxadxb, A6 = −NGBru
c∂c (uaub) dx

adxb. (3.21)

The last step is to find the function F0(r) entering eq. (3.20). This function is part of the

tensor Aab satisfying eq. (3.16). Explicitly, the second-order differential equation for F0 is

∂

∂r

[(
r5 − r7√

1− (1− r4) γ2
GB

)
∂F0

∂r

]
=

(
1− γ2

GB

) (
5−

(
5− 3r4

)
γ2

GB

)
r4

2
√

2
√

1 + γGB (1− (1− r4) γ2
GB)3/2

. (3.22)

A pleasant feature of fluid-gravity duality is that the kernel (the part involving the deriva-

tives) of dynamical equations remains the same for all unknown functions at all orders in

the gradient expansion. This was manifest in eq. (2.35) and we expect the same from the

– 27 –



J
H
E
P
0
3
(
2
0
1
7
)
1
6
6

equations such as eq. (3.22). A solution to eq. (3.22) regular at the horizon and vanishing

at the boundary is given by

F0(r) =
1

8
√

2

{
(1 + i)

(
1− γ2

GB

)1/4
[(1− i) arctanh(γGB) + π − (1− i)γGB]

(1− γGB)1/4(1 + γGB)3/4

+
γ

3/2
GB Γ

(
1
4

)2
2F1

[
1
4 , 1; 1

2 ; 1
1−γ2

GB

]
√
π(1− γGB)1/4(1 + γGB)3/4

+
1− γ2

GB − iπr4 + 2r2
√

1− (1− r4) γ2
GB√

γGBr4

+
1√

1 + γGB

ln

(1 + r)2
(
1 + r2

) (
r2 −

√
1− (1− r4) γ2

GB

)
r4
(
r2 +

√
1− (1− r4) γ2

GB

)


− 2√
1 + γGB

arctan(r) +
4r
√

1− γ2
GB√

1 + γGB

F1

[
1

4
,−1

2
, 1;

5

4
;− γ2

GBr
4

1− γ2
GB

, r4

]}
, (3.23)

where F1(a, b, b′; c;w, z) is the Appell hypergeometric function of two variables and where

2F1(a, b; c; z) is the Gauss hypergeometric function. The expansion of the Appell function

at r →∞ (explicitly written here for 0 < γGB < 1) can be found by using the theorems in

ref. [122]:

F1

[
1

4
,−1

2
, 1;

5

4
;− γ2

GBr
4

1− γ2
GB

, r4

]
= −

Γ
(

1
4

)
Γ
(

5
4

)
2F1

[
1
4 , 1; 1

2 ; 1
1−γ2

GB

]
√
π

(
γ2

GB

1− γ2
GB

)3/4
1

r

+

(
γ2

GB

1− γ2
GB

)1/2
1

r2
+

27
(
8− γ2

GB

)
Γ
(
−3

4

)3
2048
√
πγ

5/2
GB (1− γ2

GB)7/4 Γ
(

1
4

) (3.24)

×
{(

1− γ2
GB

)(
2F1

[
−3

4
, 1;

1

2
;

1

1− γ2
GB

]
+ 2

)
+ 3γ2

GB 2F1

[
1

4
, 1;

1

2
;

1

1− γ2
GB

]}
1

r5
+ · · · .

The result (3.24) allows us to find the expansion of F0(r) near the boundary,

F0(r) =

√
1 + γGB

2
√

2r
− γGB

√
1 + γGB

8
√

2r4
+O

(
r−5
)
, (3.25)

valid to order O(r−4) which is sufficient for the purposes of computing the boundary

energy-momentum tensor. Substituting F0(r) into the first-order metric gµν(1) and computing

the energy-momentum tensor (3.3) with the full first-order solution we recover the non-

perturbative result for the shear viscosity η presented in (2.46).

3.2 Second-order solution

The second-order correction g
(2)
µν is computed in a similar way: first, we perturb g

(0)
µν + εg

(1)
µν

to second order in derivative expansion and then find g
(2)
µν requiring that the Einstein-

Gauss-Bonnet equations of motion (2.1) are satisfied.

To find the second-order transport coefficients non-perturbatively, we would need to

solve differential equations with the differential operator given by the left-hand side of

eq. (3.22) and the right-hand sides involving integrals over the Appell function (3.24).

This program faces a certain technical challenge, and we were not able to find closed-form
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expressions for the transport coefficients in this way. It is possible, however, to obtain

terms of the perturbative expansion of transport coefficients in γGB and thus check the

fully non-perturbative results (1.20), (1.22), (1.23) found by using the method of three-

point functions (see ref. [86] and section 4), as well as perturbative results by Shaverin [49].

A convenient ansatz for the line element of the second-order metric g
(2)
µν is suggested

by the tensor structure of second-order hydrodynamics (see e.g. appendix B):

ds2
(2) =

k2(r)

r2
dv2 − 3NGBh2(r)dvdr +

2

r2

(
3∑
i=1

ji2(r)dxi

)
dv

+ r2h2(r)
(
dx2 + dy2 + dz2

)
+ r2

3∑
n=0

Pn(r)Bn, (3.26)

where xi = (x, y, z), k2 and h2 are scalars, ji2 is a three-vector. We have also defined

B0 =

(
〈Dσab〉 +

1

3
σab (∇ · u)

)
dxadxb, (3.27)

B1 = σ c
〈a σb〉c dx

adxb, (3.28)

B2 = σ c
〈a Ωb〉c dx

adxb, (3.29)

B3 = Ω c
〈a Ωb〉c dx

adxb. (3.30)

At this point, we can focus only on the four functions Pn, n = {0, 1, 2, 3}, which will give

us the four second-order coefficients, λ0 ≡ ητΠ, λ1, λ2 and λ3, respectively. Since the

boundary theory is defined in flat space-time, this procedure will not allow us to find the

coefficient κ. Furthermore, we know that in Landau frame there are no other transport

coefficients coming from either the scalar or the vector sector. Still, we need to use the

constraint equation r2f0(r)Err + NGBEvr = 0 and the dynamical equation Err = 0 to

eliminate h2, k2 and their derivatives from the dynamical equations for Pn.

The remaining differential equations for Pn can be solved perturbatively to an arbi-

trarily high order in λGB. Here we outline what we believe is the most efficient way to

extract information from the functions Pn necessary to recover the four transport coeffi-

cients λ0,1,2,3. First, the functions Pn are expanded in series near the boundary as

Pn(r) =
∞∑
i=1

p
(i)
n

ri
. (3.31)

Then the metric (3.26) with Pn expanded as in eq. (3.31) is substituted into the full second-

order metric, and the energy-momentum tensor (3.3) is computed. The main observation

is that in the limit r → ∞, finite contributions to Tµν only depend on the coefficients of

Pn proportional to r−4, i.e. Tµν depends on p
(4)
1 , p

(4)
2 , p

(4)
3 and p

(4)
4 .

In order to find the four coefficients, we use the fact that all four differential equations

for Pn(r) can be written in the form of eq. (3.22), i.e. as

∂r [Q(r)∂rPn(r)]−Rn(r) = 0, (3.32)
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where Q and R expanded to the desired order in λGB, and the function Q is the same in all

four cases. The differential equations can be formally solved, as in eq. (2.37), by writing

Pn(r) = Dn +

∫ r

dr′
1

Q(r′)

(
Cn −

∫ r′

dr′′Rn(r′′)

)
. (3.33)

Fortunately, in eq. (3.33) it is sufficient to take the inner integral over r′′ whose integrand

depends on F0(r) expanded to the desired order of λGB. Integration constants Cn are fixed

by requiring regularity at the horizon. The coefficients Dn may remain undetermined since

we only need the specific terms in the r →∞ expansion. Thus, using the expansion (3.31)

in the differential equations (3.33) we find all p
(4)
n . For example, from the equation obeyed

by P0 we obtain

p
(1)
0

r2
+

2p
(2)
0

r3
+

3p
(3)
0

r4
+

1

r5

[
4p

(4)
0 +

(
−1 +

ln 2

2

)
+

(
19

4
− ln 2

)
λGB +

(
1

8
− ln 2

)
λ2

GB + . . .

]
+O

(
r−6
)

= 0 (3.34)

which allows us to find p
(4)
0 to the desired order in λGB by setting to zero the coefficient in

front of r−5.

3.3 Transport coefficients

Once the coefficients p
(4)
n are known, the full second-order metric can be used to determine

the expansion of the energy-momentum tensor (3.3) near r →∞ and read off the transport

coefficients ητΠ, λ1, λ2 and λ3 from the coefficients of tensors (3.27)–(3.30). The results

are in exact agreement with the corresponding terms of the λGB-expansions of the four

non-perturbative second-order transport coefficients given by eqs. (1.20), (1.22), (1.23)

and (1.24), as well as with those computed in ref. [49] to linear order.29

The conclusion of this section is that fluid-gravity duality applied to Gauss-Bonnet

holographic fluid allows to determine all the transport coefficients of second-order hydro-

dynamics, except κ, but only the shear viscosity η is determined non-perturbatively in

λGB: the coefficients τΠ and λ1,2,3 are found only as series in λGB, due to technical prob-

lems related to evaluating integrals of Appell function. Finally, we note that within the

fluid-gravity approach one is able to check the Haack-Yarom relation order by order in λGB

and find that it is violated at quadratic order as shown in eq. (1.26).

4 Gauss-Bonnet transport from three-point functions

The full non-perturbative expressions for the Gauss-Bonnet transport coefficients can be

found by computing the three-point functions30 of the energy-momentum tensor in the

29In matching those expressions, one should recall that the horizon scale r+ in the fluid/gravity calculation

is promoted to a field b(r), with b0 fixed by eq. (3.9).
30In holography, the first equilibrium real-time three-point and four-point functions in strongly coupled

N = 4 SYM at finite temperature were computed in refs. [123–125].
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hydrodynamic approximation and using the Kubo-type formulae derived in refs. [29, 126,

127]. The retarded three-point functions are defined following the recipes of the Schwinger-

Keldysh closed time-path formalism [128, 129]. Part of the material in this section has some

overlap with refs. [30, 86] and is included here for convenience and continuity.

4.1 An overview of the method

In the Schwinger-Keldysh formalism, given a Lagrangian L [φ, h], where φ collectively de-

notes matter fields and h is a metric perturbation around a fixed background g, the degrees

of freedom are doubled: φ → φ±, g → g±, h → h±, where the index ± labels the fields

defined either on a “+”-time contour running from t0 towards the final time tf > t0 or the

“−”-time contour, where the time runs from tf backwards to t0. When the theory is con-

sidered at finite temperature T = 1/β, the two real-time contours can be joined by a third,

imaginary time, contour running between tf and tf − iβ. Fields defined on this imaginary

time contour will be denoted by ϕ. The generating functional of the energy-momentum

tensor correlation functions is given by

W
[
h+, h−

]
= ln

∫
Dφ+Dφ−Dϕ exp

{
i

∫
d4x+

√
−g+L

[
φ+(x+), h+

]
−
∫ β

0
d4yLE [ϕ(y)]− i

∫
d4x−

√
−g−L

[
φ−(x−), h−

]}
. (4.1)

For all fields, it will be convenient to use Keldysh basis φR = 1
2 (φ+ + φ−) and φA = φ+−φ−.

Upon computing the variation, classical expectation values obey φ+ = φ−. Thus, all fields

with an index A will vanish and one can define T ab ≡ T abR :〈
T abR (x)

〉
= − 2i√

−g
∂W

∂hA ab(x)

∣∣∣∣
h=0

. (4.2)

The expectation value of TR at x = 0 can be expanded as〈
T abR (0)

〉
= GabR (0)− 1

2

∫
d4xGab,cdRA (0, x)hcd(x)

+
1

8

∫
d4xd4y Gab,cd,efRAA (0, x, y)hcd(x)hef (y) + . . . , (4.3)

where GRAA... denote the fully retarded Green’s functions [130] obtained by31

Gab,cd,...RA... (0, x, . . .) =
(−i)n−1(−2i)n∂nW

∂hA ab(0)∂hR cd(x) . . .

∣∣∣∣
h=0

= (−i)n−1
〈
T abR (0)T cdA (x) . . .

〉
, (4.4)

where the ellipses indicate further insertions of ∂hR in the expression with the derivatives

as well as the T abA insertions into the n-point function on the right-hand side of eq. (4.4).

We follow refs. [29, 126] and use Kubo formulae for pressure and transport coefficients

of a conformal fluid derived by exciting fluctuations of the relevant metric components.

31See e.g. ref. [126].
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Choosing the spatial momentum along the z direction, one turns on hxy, hxz and hyz
perturbations to obtain

η = i lim
p,q→0

∂

∂q0
Gxy,xz,yzRAA (p, q), (4.5)

2ητΠ − κ = lim
p,q→0

∂2

∂ (p0)2G
xy,xz,yz
RAA (p, q), (4.6)

λ1 = ητΠ − lim
p,q→0

∂2

∂p0∂q0
Gxy,xz,yzRAA (p, q). (4.7)

By turning on hxy, htx and hty components, we find

λ3 = 4 lim
p,q→0

∂2

∂pz∂qz
Gxy,tx,tyRAA (p, q), (4.8)

κ = lim
p,q→0

∂2

∂ (pz)2G
xy,tx,ty
RAA (p, q), (4.9)

and, finally, by considering hxy, hty and hxz perturbations, we obtain

λ2 = 2ητΠ − 4 lim
p,q→0

∂2

∂p0∂qz
Gxy,ty,xzRAA (p, q). (4.10)

A consistency check on our calculations is provided by the following two Kubo formulae

which both give the expression for pressure:

P = lim
p0→0

lim
q0→0

Gxy,xz,yzRAA (p, q) = − lim
pz→0

lim
qz→0

Gxy,tx,tyRAA (p, q). (4.11)

Note that our definitions of transport coefficients are the same as in ref. [2] (see appendix B

for a digest of notations and conventions used in the literature).

4.2 The three-point functions in the hydrodynamic limit

The three-point functions are computed by solving the Einstein-Gauss-Bonnet equations

of motion (2.1) to second order in relevant perturbations,

gµν → gµν + εr2h(1)
µν + ε2r2h(2)

µν , (4.12)

where the book-keeping parameter ε is used to indicate the order of perturbation. The

Dirichlet condition h
(2)
µν = 0 is imposed at the boundary [29]. Once the bulk solutions

are found, one should take the triple variation of the on-shell action with respect to the

boundary values h
(b)
µν = h

(1)
µν (r →∞) to find the correlators. A simplifying feature of this

procedure is that since equations of motion are solved to order ε2, only the boundary term

contributes to the three-point function, and hence no bulk-to-bulk propagators appear in

the calculation.

To compute the three-point functions used in the Kubo formulae above, we need to

turn on the following sets of metric perturbations:

1) hxy = hxy(r)e
−i(p0+q0)t, hxz = hxz(r)e

−ip0t, hyz = hyz(r)e
−iq0t, (4.13)

2) hxy = hxy(r)e
i(pz+qz)z, htx = htx(r)eip

zz, hty = hty(r)e
iqzz, (4.14)

3) hxy = hxy(r)e
−ip0t+iqzz, hxz = hxz(r)e

−ip0t, hty = hty(r)e
iqzz. (4.15)
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Here, we outline the steps leading to obtaining the three-point function Gxy,xz,yzRAA . First,

we find the bulk solutions for h
(1)
xy , h

(1)
xz and h

(1)
yz imposing the standard incoming wave

boundary condition at the horizon and the condition h
(1)
µν = h

(b)
µν at the boundary. As in

section 2.1, it will be convenient to work with the radial variable v defined by eq. (2.21).

Since the metric fluctuations in the set (4.13) are independent of the spatial momentum,

all three of them obey the same32 differential equation (2.20), and thus h
(1)
xy , h

(1)
xz and h

(1)
yz

will have the same functional dependence on v. Moreover, we can use the solution to the

equation already obtained in section 2.1, with q set to zero and the relevant frequencies,

p0 + q0, p0 and q0, inserted instead of w, respectively. Thus, for h
(1)
xy we find the expression

h(1)
xy (v) =h(b)

xy

(
v

2λGB

)− i(p0+q0)
4πT

[
1+

i(p0+q0)

8πT
(4−v)v+

(p0+q0)2

4π2T 2
g

(w)
2 (v)

+
(p0+q0)2

16π2T 2

∫ v (1−v′)2 ln
[
γ2

GB−1+v′−
√

(γ2
GB−1)(γ2

GB−(1−v′)2)
]

v′
dv′

]
, (4.16)

and similar formulas for h
(1)
xz and h

(1)
yz . We can deal with the remaining integral in

eq. (4.16) in the same way as in section 2.1, by integrating order-by-order in the near-

boundary expansion.

Next, we need to look for the second-order solution h
(2)
xy , which includes the first-order

metric back-reaction. The differential equation again has the form of eq. (2.35) and can be

solved using the same methods. The relevant part of the solution takes the following form:

h(2)
xy = h(b)

xz h
(b)
yz

(
v

2λGB

)−i(p0+q0)/(4πT ) p0q0

4π2T 2
h(v), (4.17)

with a complicated and unilluminating expression for h(v) not shown here explicitly.

With the second-order solution in hand, we substitute the resulting formula for gµν +

εr2h
(1)
µν + ε2r2h

(2)
µν into the expression for the holographic energy-momentum tensor (3.3) to

compute T xy. Finally, taking derivatives with respect to h
(b)
xz and h

(b)
yz , we obtain Gxy,xz,yzRAA :

Gxy,xz,yzRAA (p,q) =

√
2π4T 4

(1+γGB)3/2κ2
5

−i
(
p0+q0

)√2π3T 3

κ2
5

γ2
GB

(1+γGB)3/2

+
(p0)2+(q0)2

2

 π2T 2

2
√

2κ2
5

(γGB+1)
(
γGB

(
γ2

GB+γGB−2
)
+2
)
+2γ2

GB ln
[

γGB

2(1+γGB)

]
(1+γGB)3/2


+p0q0

 π2T 2

4
√

2κ2
5

(
−3γ2

GB+2γGB+11
)
γ2

GB−6+2γ2
GB ln

[
γGB

2(1+γGB)

]
(1+γGB)3/2

 . (4.18)

The other three-point functions, Gxy,tx,tyRAA and Gxy,ty,xzRAA , are computed using the same

procedure, with the differential equations always taking the form of (2.20). The only

difference is that we cannot impose the in-falling boundary conditions on perturbations htx
or hty in eq. (4.14), and similarly on hty in eq. (4.15), because they only fluctuate in the

32Using the explicit expressions for the coefficients Ai and Bi given in appendix D, one can check that

at vanishing spatial momentum they are the same in all channels.
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z-direction and not time. Regularity then demands setting htx = hty = 0 at the horizon.

Consequently, hxy in eq. (4.14) also needs to vanish at the horizon.33

4.3 Second-order transport coefficients and the zero-viscosity limit

Having computed in the hydrodynamic approximation the three-point functions Gxy,xz,yzRAA ,

Gxy,tx,tyRAA and Gxy,ty,xzRAA , we can use the Kubo formulae to compute pressure (4.11), shear

viscosity (4.5) and all second-order transport coefficients (4.6) – (4.10). The result for

pressure coincides with the one in eq. (2.42), and the shear viscosity is confirmed to be

given by eq. (2.46). For the second-order transport coefficients we find (L = 1):

ητΠ =
π2T 2

4
√

2κ2
5

γGB

(1 + γGB)
3
2

[
(1 + γGB)

(
5γGB + γ2

GB − 2
)
− 2γGB ln

(
2 (1 + γGB)

γGB

)]
, (4.19)

κ =
π2T 2

√
2κ2

5

(
2γ2

GB − 1√
1 + γGB

)
, (4.20)

λ1 =
π2T 2

2
√

2κ2
5

(
3− 4γGB + 2γ3

GB√
1 + γGB

)
, (4.21)

λ2 = − π2T 2

2
√

2κ2
5

γGB

(1 + γGB)
3
2

(
(1 + γGB)

(
2− γGB − γ2

GB

)
+ 2γGB ln

[
2 (1 + γGB)

γGB

])
, (4.22)

λ3 = −
√

2π2T 2

κ2
5

(
3 + γGB − 4γ2

GB√
1 + γGB

)
. (4.23)

Alternatively, the coefficients λ1, λ2, λ3 can be expressed in terms of the shear viscosity,

as in eqs. (1.20) – (1.21). In the absence of the Gauss-Bonnet term in the action, i.e. for

λGB = 0 (γGB = 1), the results reduce to those obtained for N = 4 SYM [2, 116]:

ητΠ =
η (2− ln 2)

2πT
, λ1 =

η

2πT
, λ2 = −η ln 2

πT
, λ3 = 0, κ =

η

πT
. (4.24)

In the limit of zero viscosity, i.e. for λGB = 1/4 (γGB = 0), we find

ητΠ = 0, λ1 =
3π2T 2

2
√

2κ2
5

, λ2 = 0, λ3 = −3
√

2π2T 2

κ2
5

, κ = − π
2T 2

√
2κ2

5

. (4.25)

Thus, three of the five second-order transport coefficients do not vanish in the limit of

zero viscosity. However, the criteria for the liquid to be dissipationless (i.e. producing no

entropy) analyzed in ref. [87],

η = 0, κ = 2λ1 , 2ητΠ − 4λ1 − λ2 = 0 , (4.26)

are not satisfied in this limit [86].

The five second-order coefficients λn = {ητΠ, λ1, λ2, λ3, κ} (represented by the di-

mensionless ratios, λnκ
2
5/4π

2T 2) are shown as functions of λGB in figure 2. While λ1 is

positive-definite for all λGB, other coefficients can have either sign.

33The full expressions for the other two three-point functions are very cumbersome and will not be written

here explicitly. For an example of a technically simpler but conceptually identical calculation in N = 4

SYM theory, see refs. [29, 30].
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- 1
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1

4

λGB

-1

1

λn κ5
2 / 4 π2 T2

λn:
η τΠ

λ1

λ2

λ3

κ

Figure 2. Second-order coefficients λn = {ητΠ, λ1, λ2, λ3, κ} of Gauss-Bonnet holographic liquid,

in units of 4π2T 2/κ2
5, as functions of λGB.

The derivatives of the coefficients with respect to λGB are shown in figure 3. The

coefficients λ3 and κ are monotonically decreasing functions of λGB as can be seen from

κ2
5

4π2T 2

∂λ3

∂λGB

= − 1 + 15γGB + 12γ2
GB

2
√

2γGB(1 + γGB)3/2
< 0, (4.27)

κ2
5

4π2T 2

∂κ

∂λGB

= − 1 + 8γGB + 6γ2
GB

4
√

2γGB(1 + γGB)3/2
< 0, (4.28)

whereas the coefficients ητΠ, λ1 and λ2 are not.

5 Charge diffusion from higher-derivative Einstein-Maxwell-Gauss-

Bonnet action

Can first-order transport coefficients other than shear viscosity be tuned to zero with a

suitable choice of higher derivative bulk terms, and can this be done simultaneously with

tuning to zero the viscosity? In this section, we compute non-perturbative corrections to

the well known result for the U(1) charge diffusion constant at infinite coupling [100] in

a hypothetical boundary theory dual to Einstein-Maxwell-Gauss-Bonnet gravity with the

charge neutral black brane background (2.2).

5.1 The four-derivative action

We are interested in the four-derivative Einstein-Maxwell-Gauss-Bonnet action whose equa-

tions of motion involve at most second derivatives. Such theories were previously considered

in refs. [131, 132], and in the context of an effective target-space heterotic string theory
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∂ λGB
( λn κ5

2 / 4 π2 T2 )

λn:
η τΠ

λ1

λ2

λ3

κ

Figure 3. Derivatives of the second-order coefficients λn = {ητΠ, λ1, λ2, λ3, κ} with respect to λGB,

in units of 4π2T 2/κ2
5, as functions of λGB.

action in [133].34 The higher-derivative Maxwell terms may appear as a result of compacti-

fication, e.g. of a higher-dimensional Gauss-Bonnet action. Here we construct the necessary

action directly.

We begin by considering the Einstein-Maxwell-Gauss-Bonnet theory with the most

general four-derivative Maxwell field Lagrangian,

S =
1

2κ2
5

∫
d5x
√
−g [R− 2Λ + LGB] +

∫
d5x
√
−gLA, (5.1)

where Λ = −6/L2, the Gauss-Bonnet Lagrangian LGB is given by eq. (1.16), and

LA =−1

4
FµνF

µν+α4RFµνF
µν+α5R

µνFµρF
ρ
ν +α6R

µνρσFµνFρσ+α7 (FµνF
µν)2

+α8∇µFρσ∇µF ρσ+α9∇µFρσ∇ρFµσ+α10∇µFµν∇ρFρν+α11F
µνFνρF

ρσFσµ. (5.2)

The coupled equations of motion for gµν and Aµ following from the action (5.1) are written

in appendix E. To make third- and fourth-order derivatives of the fields vanish in the

equations of motion (E.1), we must impose the following constraints on the coefficients αn

α4 = α6, 8α4 + α5 − 4α6 = 0, (5.3)

4α4 + α5 − 2α8 − α9 = 0, 2α8 + α9 + α10 = 0. (5.4)

The second constraint in (5.4) also ensures that all higher-order derivatives vanish from

the Maxwell’s equations (E.2). The constraints can be solved by setting

α6 = α4, α5 = −4α4, α9 = −2α8, α10 = 0. (5.5)

34See [134] for a discussion of field redefinitions in higher derivative Einstein-Maxwell theories.
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Coefficients α7 and α11 are left undetermined by this procedure. The vector field La-

grangian becomes

LA =− 1

4
FµνF

µν + β1L
2 (RFµνF

µν − 4RµνFµρF
ρ
ν +RµνρσFµνFρσ)

+ β4L
2∇µFρσ (∇µF ρσ − 2∇ρFµσ) + β2L

2 (FµνF
µν)2 + β3L

2FµνFνρF
ρσFσµ, (5.6)

where we have defined the dimensionless couplings β1 ≡ α4/L
2, β2 ≡ α7/L

2, β3 ≡ α11/L
2

and β4 ≡ α8/L
2. To simplify the Lagrangian further, we notice that the term proportional

to β4 can be rewritten as

∇µFρσ (∇µF ρσ − 2∇ρFµσ) = −2∇µ∇ρAσ
(
Rλµρσ +Rλρσµ +Rλσµρ

)
Aλ = 0, (5.7)

hence the entire expression vanishes due to the cyclic property of the Riemann tensor.

Thus the Lagrangian LA leading to second-order equations of motion is given by

LA =− 1

4
FµνF

µν + β1L
2 (RFµνF

µν − 4RµνFµρF
ρ
ν +RµνρσFµνFρσ)

+ β2L
2 (FµνF

µν)2 + β3L
2FµνFνρF

ρσFσµ. (5.8)

Therefore, there are altogether four parameters, λGB, β1, β2 and β3, entering the second-

order equations of motion of the theory. One may wonder if a black hole (brane) solution

with non-perturbative values of these parameters exists. The black brane metric (2.2) is

automatically a solution of the theory when Aµ = 0. It is also possible to find perturba-

tive corrections in β1, β2 and β3 to the five-dimensional AdS-Reissner-Nordström metric.

However, we were not able to find a generalization of the solution (2.2) with non-trivial Aµ
and fully non-perturbative non-vanishing β1, β2 and β3.35

5.2 The U(1) charge diffusion constant

To compute the charge diffusion constant in a hypothetical neutral liquid dual to the bulk

action constructed in the previous section we follow the procedure outlined in [102]. We

begin by perturbing the trivial Aµ = 0 background vector field as Aµ → Aµ + εaµ and

writing the electromagnetic field strength corresponding to the linearized perturbation as

F = εda. Given the trivial background Aµ = 0, the metric fluctuations decouple from aµ
and can be set to zero.36

In the equations of motion, the terms proportional to α7 and α11 (i.e. β2 and β3)

only contribute to quadratic or higher orders in the expansion in ε. Hence, they will not

contribute to the charge diffusion constant. The linearized equations obeyed by aµ read

∇νFµν = 4β1L
2∇ν

(
RFµν +RµνρσFρσ −RµρF ν

ρ +RνρF µ
ρ

)
. (5.9)

35An asymptotically AdS black hole solution to the theory considered in this section with β1 = 0 was

found in an integral form and studied in [131]. Unfortunately, for β 6= 0 the equations are significantly

more complicated. In particular, in the relevant metric ansatz, ds2 = −e2λdt2 + e2νdt2 + . . ., the relation

λ = −ν is no longer true.
36Charge diffusion in a three dimensional boundary theory, including the β1 term, was computed in a

neutral Einstein-Hilbert black brane background in [135].
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Vector field fluctuations can be decomposed into transverse and longitudinal modes, with

charge diffusion coming from the low-energy hydrodynamic excitations in the longitudinal

sector. By choosing the spatial momentum along the z-direction, the relevant gauge-

invariant variable in the longitudinal sector is

Z4 = qa0 + wa4. (5.10)

We use the variable u = r2
+/r

2, with the boundary at u = 0 and horizon at u = 1. Then

we impose the incoming wave boundary condition required for the calculation of retarded

correlators [99] by writing

Z4 =
(
1− u2

)−iw/2Z4(u) , (5.11)

where the function Z4(u) regular at the horizon can be found perturbatively in µ� 1, with

q and w scaling as w → µ2w and q → µq. We find it useful to introduce a new variable

w, so that u =
√

w2 − γ2
GB/
√

1− γ2
GB. The boundary is now at w = γGB and horizon at

w = 1. At order O(µ0), the function Z4 can be written as Z4 = C1 + C2 z(w), where z(w)

is a solution of the equation

d2z

dw2
−

48β1

(
w3 − γ2

GB

)
− γ2

GB

(
1− γ2

GB

)
w (w2 − γ2

GB) (1− γ2
GB + 48β1(1− w))

dz

dw
= 0. (5.12)

We solve for z(w) and impose the boundary conditions z(γGB) = 1 and z(1) = 0. The

constant C2 can then be expressed as a function of C1, w, q and other parameters of

the theory by substituting z(w) into the original differential equation, expanding to order

O(µ2) and imposing regularity at the horizon.

The hydrodynamic quasinormal mode can be found by solving the equation Z4(w, q) =

0 at the boundary for w. The dispersion relation has the form

w = −iDq2 +O(q4) , (5.13)

where D is the charge diffusion constant of the dual theory. For the Gauss-Bonnet coupling

in the interval λGB ∈ [0, 1/4] (1 ≥ γGB ≥ 0) we find37

D =
(1 + γGB)(1 + 2β)

(
β +

√
β2 − γ2

GB

)
6(β − 1)

[
β
(
β +

√
β2 − γ2

GB

)
− γ2

GB

]{√(1− γ2
GB) (β2 − γ2

GB) ln

[
γGB

1 +
√

1− γ2
GB

]

−
(
β − γ2

GB

)
ln

[
γGB

β +
√
β2 − γ2

GB

]}
, (5.14)

where β ≡ 1 + 48β1 and γGB ≡
√

1− 4λGB.

We can now consider various limits. For the two-derivative Maxwell field in Gauss-

Bonnet background, i.e. for β1 = 0 (β = 1), we find the expression

D =
1

2

(
1 +

√
1− 4λGB

)
. (5.15)

37It is also possible to write an explicit formula for D in the interval λGB < 0 (γGB > 1) but here we are

mostly interested in the dissipatinless limit λGB → 1/4.
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For N = 4 SYM theory, where λGB = 0 and β1 = 0, eq. (5.15) reproduces the well-known

result [100],

D = 1. (5.16)

In the zero viscosity limit λGB = 1/4 (γGB = 0), eq. (5.15) gives

D = 1/2. (5.17)

In the presence of higher-derivative vector-field terms in the Lagrangian (5.8), we find the

diffusion constant in the two important limits of λGB to be

λGB = 0 : D =

(
1 + 32β1

4
√

6
√
β1 (1 + 24β1)

)
ln

[
1 + 48β1 +

√
(1 + 48β1)2 − 1

]
, (5.18)

λGB = 1/4 : D =

(
1 + 32β1

96β1

)
ln (1 + 48β1) . (5.19)

From eq. (5.19) one can see that for λGB = 1/4, the diffusion constant D remains a real

function of the parameter β1 as long as β1 > −1/48 and, moreover, this function is strictly

positive for all β1 in that interval. In this sense, we cannot have vanishing shear viscosity

and diffusion constant simultaneously. The diffusion constant can vanish for other values of

λGB: for example, D = 0 for β1 = −1/32. However, such a solution for D is not smoothly

connected to the theory which has a vanishing shear viscosity. More precisely, for any

β1 = −1/32 + ε, where ε� 1, D is complex near γGB = 0.

6 Conclusions

Together with refs. [12, 30, 86], the present paper is an attempt at a comprehensive in-

vestigation of the second-order transport properties, energy-momentum tensor correlation

functions and quasinormal spectrum in the Gauss-Bonnet holographic fluid in D = 3 + 1

dimensions non-perturbatively in Gauss-Bonnet coupling λGB. The existence of a strongly

coupled CFT dual to classical non-Einsteinian gravity such as Gauss-Bonnet gravity at

finite λGB would be an interesting alternative to the standard scenario of gauge-gravity

duality. However, the work of Camanho et al. [78] appears to cast a serious doubt on such

a possibility, reducing the status of the curvature-squared terms to that of a perturbative

correction. At the same time, we have not found any obvious pathology in hydrodynamic

properties of the hypothetical dual field theory at finite λGB.

The curvature-squared terms are interesting even as corrections to the Einstein’s grav-

ity description of a dual field theory, the second-order nature of the Gauss-Bonnet equations

of motion making it easier to search for the new features such as the extra poles of the

correlators not seen at λGB = 0. The analysis of gravitational quasinormal spectrum in

ref. [12] and in the present paper shows that the analytic structure of dual thermal correla-

tors is qualitatively different depending on the sign of λGB (understood as inverse coupling),

with the λGB < 0 case showing “normal” (e.g. qualitatively similar to N = 4 SYM at finite

’t Hooft coupling and infinite Nc and having a potential to connect to the kinetic regime)
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features, and the λGB > 0 case demonstrating various anomalies (whose precise meaning

remains to be understood, possibly invoking various monotonicity arguments).38 On the

other hand, constraints on λGB may come from different considerations such as the recent

argument for λGB > 0 in ref. [83] based on unitarity. Fortunately, corrections coming from

R2 and R4 higher derivative terms seem to be very similar [12] in uncovering a qualitative

picture of transport and other properties at large but finite coupling.
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A Second-order transport coefficients of N = 4 SYM at weak and strong

coupling

For the finite-temperature N = 4 SU(Nc) supersymmetric Yang-Mills (SYM) theory in d =

3 + 1 dimensions in the limit of infinite Nc and infinite ’t Hooft coupling λ = g2
YMNc, first-

and second-order transport coefficients were computed, correspondingly, in [137] and [2,

116] using methods of gauge-gravity and fluid-gravity dualities:

η =
π

8
N2
c T

3 , (A.1)

τΠ =
(2− ln 2)

2πT
, κ =

η

πT
, λ1 =

η

2πT
, λ2 = −η ln 2

πT
, λ3 = 0 . (A.2)

Coupling constant corrections to the coefficients (A.1), (A.2) can be determined from the

higher-derivative terms in the low-energy effective action of type IIB string theory

S =
1

2κ2
5

∫
d5x
√
−g
(
R+

12

L2
+ γW

)
, (A.3)

38As shown in ref. [12], for λGB > 0 (i.e. for η/s < 1/4π), the two symmetric branches of non-

hydrodynamic quasinormal modes gradually move out to complex infinity with λGB increasing in the interval

[0, 1/4]. This implies that the relaxation times associated with the modes, τR = 1/ |Im (ω)|, tend to zero,

thereby violating any conjectured lower bound on τR [136]. Furthermore, new quasinormal modes ap-

pear along the imaginary axis, approaching the analytically known results from section 2.4 in the limit

λGB → 1/4, which can cause an instability in the system at a finite spatial momentum above certain critical

value. Hydrodynamic poles move towards the real axis with vanishing dissipative parts in the limit.
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where γ = α′3ζ(3)/8, L is the AdS curvature scale, and the ratio α′/L2 is related to the

value of the ’t Hooft coupling λ in N = 4 SYM via α′/L2 = λ−1/2. The effective five-

dimensional gravitational constant is connected to Nc by κ5 = 2π/Nc. The term W is

given in terms of the Weyl tensor Cµνρσ by

W = CαβγδCµβγνC
ρσµ
α Cνρσδ +

1

2
CαδβγCµνβγC

ρσµ
α Cνρσδ. (A.4)

Corrections to all first and second-order transport coefficients are known [23–30]:

η =
π

8
N2
c T

3

(
1 +

135ζ(3)

8
λ−3/2 + . . .

)
, (A.5)

τΠ =
(2− ln 2)

2πT
+

375ζ(3)

32πT
λ−3/2 + . . . , (A.6)

κ =
N2
c T

2

8

(
1− 5ζ(3)

4
λ−3/2 + . . .

)
, (A.7)

λ1 =
N2
c T

2

16

(
1 +

175ζ(3)

4
λ−3/2 + . . .

)
, (A.8)

λ2 = −N
2
c T

2

16

(
2 ln 2 +

5 (97 + 54 ln 2) ζ(3)

8
λ−3/2 + . . .

)
, (A.9)

λ3 =
N2
c T

2

16
25ζ(3)λ−3/2 + . . . . (A.10)

Leading order results for the third order coefficients θ1 and θ2 entering the hydrodynamic

dispersion relations are known as well [20]:

θ1 =
N2
c T

32π
+O(γ) , (A.11)

θ2 =
N2
c T

384π

(
22− π2

12
− 18 ln 2 + ln2 2

)
+O(γ) . (A.12)

Additional explicit results for the linear combinations of N = 4 SYM third order coef-

ficients can be found in ref. [20]. Other coupling constant corrections to the results at

infinitely strong t’Hooft coupling in finite temperature N = 4 SYM include corrections to

the entropy [31, 32], photon emission rate [33], and poles of the retarded correlator of the

energy-momentum tensor [34].

In N = 4 SYM at weak coupling, the shear viscosity has been computed in ref. [138].

The second-order transport coefficients in various theories at weak coupling (QCD with

either 0 or 3 flavours, QED, λφ4) were determined by York and Moore [139]. In conformal

kinetic theory (at weak coupling) one finds 2ητΠ + λ2 = 0 [2, 139, 140]. Curiously, in

the theories considered in [139] the Haack-Yarom relation (1.7) at weak coupling can be

expressed as

H =
4η2

ε+ P
(C1 − C2) , (A.13)

where ε and P are energy density and pressure, correspondingly, and C1 and C2 are theory-

specific constants (e.g. C1 ≈ 6.10517, C2 ≈ 6.13264 for λφ4 theory). It appears that at

weak coupling one finds H 6= 0 also in other (nearly conformal) examples [141]. It would be
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interesting to compute H(λ) directly in N = 4 SYM at weak coupling. Another interesting

finding of ref. [139] is that at weak coupling the coefficients κ and λ3 vanish to order∝ T 2/λ4

(but may be non-zero at ∝ T 2/λ2). We note that λ3 = 0 in the limit λ → ∞ but has a

non-trivial coupling dependence as can be seen from (A.10).

B Notations and conventions in formulas of relativistic hydrodynamics

For the convenience of the reader, here we compare notations and sign conventions used in

the present paper with those used in refs. [2, 30, 47, 49, 87, 116, 139].

Notations and conventions used in the present paper and in refs. [2, 30, 139].

The energy-momentum tensor of a neutral conformal relativistic fluid considered in the

Landau frame is written as

T ab = εuaub + P∆ab + Πab, (B.1)

where ∆ab ≡ gab+uaub, pressure P and energy density ε are related by the conformal fluid

equation of state in four dimensions, P = ε/3, and

Πab = −ησab + ητΠ

[
〈Dσab〉 +

1

d− 1
σab (∇ · u)

]
+ κ

[
R〈ab〉 − (d− 2)ucR

c〈ab〉dud

]
+ λ1σ

〈a
cσ
b〉c + λ2σ

〈a
cΩ

b〉c + λ3Ω〈acΩ
b〉c, (B.2)

where D ≡ ua∇a. We use the following definitions (in our case, d = 4)

A〈ab〉 ≡ 1

2
∆ac∆bd (Acd +Adc)−

1

d− 1
∆ab∆cdAcd ≡ 〈Aab〉, (B.3)

where by construction the resulting tensors are transverse, uaA
〈ab〉 = 0, traceless, gabA

〈ab〉 =

0, and symmetric. The tensor σab is a symmetric, transverse and traceless tensor involving

first derivatives of the velocity field

σab = 2〈∇aub〉. (B.4)

The vorticity Ωµν is defined as an anti-symmetric, transverse and traceless one-derivative

tensor

Ωab =
1

2
∆ac∆bd (∇cud −∇duc) . (B.5)

The Haack-Yarom relation in our notations reads

2ητΠ − 4λ1 − λ2 = 0 , (B.6)

whereas the conformal kinetic theory result [139] is

2ητΠ + λ2 = 0 . (B.7)
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Notations and conventions used in refs. [87, 116]. We label the objects used in

refs. [87, 116] with the letter “R”, e.g.

σµνR = PµαP νβ∂(αuβ) −
1

3
∂αu

α , (B.8)

where Pµν = ηµν+uµuν , a(αbβ) = (aαbβ+aβbα)/2, a[αbβ] = (aαbβ−aβbα)/2. The vorticity

is defined as

ωµνR = −1

2
PµαP νβ (∂αuβ − ∂βuα) . (B.9)

It is clear that σRµν = 1
2σµν and ωRµν = −Ωµν . The energy-momentum tensor is written as

Tµν = εuµuν + pPµν + Πµν , (B.10)

where

Πµν = − ησµνR + · · ·+ λR2 σ
〈µ
λ,Rω

ν〉λ
R + · · · . (B.11)

Therefore, λR2 = −2λ2. Similar relations hold for other coefficients. In summary,

η = ηR , (B.12)

ητΠ =
1

2
τR , (B.13)

κ = κR1 =
1

2
κR , (B.14)

λ1 =
1

4
λR1 , (B.15)

λ2 = −1

2
λR2 , (B.16)

λ3 = −λR3 . (B.17)

The Haack-Yarom relation reads

2τR − 2λR1 + λR2 = 0 (B.18)

or, equivalently, for liquids with λR1 = κR (i.e. κ = 2λ1 in our notations)

2τR − 2κR + λR2 = 0 . (B.19)

The conformal kinetic theory result [139] in these notations reads

2τR − λR2 = 0 . (B.20)

Notations and conventions used in refs. [47, 49]. In ref. [47], the tensor σµνHY is

defined as

σµνHY = 2〈∇µuν〉 (B.21)
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and the vorticity ωµνHY is

ωµνHY =
1

2
PµλP νσ (∇λuσ −∇σuλ) , (B.22)

which coincides with the definitions in [2, 30, 139]. The term in the expression for the

energy-momentum tensor multiplying λHY2 ,

Tµν = λHY2 σ
〈µ
λ,HY

ω
λν〉
HY + · · · , (B.23)

is different in the order of indices from the one used in [2, 30, 139], where T ab = λ2 σ
〈a
cΩb〉c+

. . . , and, since vorticity is antisymmetric, we could have concluded that λ2 = −λHY2 (?).

Then the original Haack-Yarom relation as stated in ref. [47],

2ηHY τHYΠ − 4λHY1 − λHY2 = 0 , (B.24)

would translate to our notations as (all other coefficients coincide with ours)

2ητΠ − 4λ1 + λ2 = 0 (incorrect) (B.25)

which does not agree with eq. (B.6) and is difficult to reconcile e.g. with the explicit results

for N = 4 SYM given by (A.1)–(A.2). We believe that there is a typo in ref. [47], either

in the arrangement of indices (it should be the same as in [2, 30, 139]) or, alternatively, in

the definition of vorticity (it should have an extra minus sign in front), or perhaps in the

sign in front of λ2 in the equation (B.24). The same observation has been recently made

in ref. [8]. Correcting this typo, we have λ2 = λHY2 and then notations in [47] would give

the same signs of transport coefficients as the ones in refs. [2, 30, 139].

We note that in the paper by Shaverin and Yarom [49], the notations for σµνSY , vorticity

ωµνSY and their coupling λSY2 σ
〈µ
α,SYω

αν〉
SY are the same as in ref. [47]. The relations between

our transport coefficients (i.e. the ones in [2, 30, 139]) and the ones used in [49] are

ηSY = η , (B.26)

λSY0 = ητΠ , (B.27)

λSY1 = λ1 , (B.28)

λSY2 = −λ2 , (B.29)

λSY3 = λ3 . (B.30)

The Haack-Yarom relation as written in [49] reads

−2λSY0 + 4λSY1 − λSY2 = 0 , (B.31)

which translates in our notations into eq. (B.6), as expected.

C Boundary conditions at the horizon in the hydrodynamic regime

In this appendix, we clarify the procedure of imposing the incoming wave boundary con-

dition at the horizon on a (gauge-invariant) fluctuation Z given by a perturbative series
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in the hydrodynamic regime (w � 1 and q � 1). Consider such a solution Z1 near the

horizon u = 1:

Z1 = (1− u)−iw/2F (u,w) , (C.1)

where q is ignored for simplicity. Here, the function F (regular at u = 1 by Fröbenius

construction) is found perturbatively as a series in w� 1,

F (u,w) = F0(u) + wF1(u) + w2F2(u) + · · · , (C.2)

where Fi(u) satisfy the equation of motion obeyed by Z to a given order in w, with

Fi(1) = Si for i ≥ 0, and Si are constants independent of u and w. Now consider another

solution, Z2, near u = 1,

Z2 = (1− u)−iw/2C(w)G(u,w) , (C.3)

where C(w) is a function of w only, and G is found perturbatively by solving the differential

equation obeyed by Z by a series in w� 1,

G(u,w) = G0(u) + wG1(u) + w2G2(u) + · · · , (C.4)

G0(1) = 1, Gi(1) = 0 for i > 0 . (C.5)

Now, the solution Z1 with its boundary condition at the horizon can always be written as

Z2 with the appropriate choice of the function C(w). Indeed, expanding C(w) in Taylor

series at w = 0, C(w) = C(0) + C ′(0)w + . . ., we get

Z2 = (1− u)−iw/2

{
G0(u)C(0) + w

[
G0(u)C ′(0) +G1(u)C(0)

]
(C.6)

+ w2

[
1

2
G0(u)C ′′(0) +G1(u)C ′(0) + C(0)G2(u)

]
+O(w3)

}
.

Comparing Z2 and Z1 at u = 1, we identify C(0) = S0, C ′(0) = S1, and so on. In other

words, nontrivial boundary conditions at the horizon for functions Fi of the solution Z1

can be understood as coefficients of the small-w expansion of a multiplicative factor C(w).

Since in holography we work with bulk solutions normalized to one at the boundary, i.e.

fk(u) = Z(u)/Z(ε), such a multiplicative factor cancels. This justifies always using the

expansion (C.4) with the boundary conditions (C.5).

D The coefficients Ai and Bi of the differential equation (2.20)

Scalar channel

A1 = − 1

u
− u

[
1

(γ2
GB − 1) (1− u2)2 + 1− u2

+
1

(1− u2)
√
γ2

GB − (γ2
GB − 1)u2

]
, (D.1)

B1 =
(γGB − 1)(γGB + 1)2

(
3
(
γ2

GB − 1
)
u2 − γ2

GB

) (
−γ2

GB +
(
γ2

GB − 1
)
u2 + U

)
4u (γ2

GB − (γ2
GB − 1)u2)3/2 (−γ2

GB + (γ2
GB − 1)u2 + 2U − 1)

q2

+

(
γ2

GB − 1
)2 (−γ2

GB +
(
γ2

GB − 1
)
u2 + U

)
4u(U − 1)

√
γ2

GB − (γ2
GB − 1)u2 (−γ2

GB + (γ2
GB − 1)u2 + 2U − 1)

w2, (D.2)
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Shear channel

A2 = −
2γ4

GB(γGB + 1)
[

1
2

(
1− γ2

GB

) (
u2 − 1

)
(U − 2) + U − 1

]
u(U − 1)U3 [γ2

GB(γGB + 1)(U − 1)q2 − (γ2
GB − 1)U2w2]

q2 (D.3)

−

(
1− γ2

GB

) (
γ4

GB +
(
1− γ2

GB

)2
u4 − 2

(
1− γ2

GB

)
u2
(
U − γ2

GB

)
− γ2

GBU
)

u(U − 1)U [γ2
GB(γGB + 1)(U − 1)q2 − (γ2

GB − 1)U2w2]
w2, (D.4)

B2 =
γ2

GB(γGB + 1)(U + 1)

4u (u2 − 1)U2
q2 +

(
U2 + 2U + 1

)
4u (u2 − 1)2 w2, (D.5)

Sound channel

A3 =
3

2u
+

3(γGB−1)
[(
γ2

GB−1
)
u2−γ2

GB

][(
γ2

GB−1
)
u2(5U−7)−5γ2

GB(U−1)
]

2u(U−1)U2D1
w2

+

(
γ2

GB−1
)2
u4
(
−3γ2

GB+5U−7
)
+γ2

GB

(
γ2

GB−1
)
u2
(
18γ2

GB−13U+10
)

2u(U−1)U2D1
q2

−
15γ4

GB

(
γ2

GB−2U+1
)

2u(U−1)U2D1
q2, (D.6)

B3 =

(
γ2

GB−1
)2

D0

{
12(γGB−1)2γ2

GB(γGB+1)q2u5−4(γGB−1)γ2
GBq

2u3
(
3γ2

GB−7U+4
)

+
(
γ2

GB−1
)3

q2u6
(
3(γGB−1)w2+q2

)
−u2γ2

GB

(
γ2

GB−1
)[
q4
(
γ2

GB+2U
)
+(γGB−1)q2w2

(
9γ2

GB−4U
)
−6(γGB−1)2Uw4

]
+
(
γ2

GB−1
)2
u4
[
q4
(
3γ2

GB(U−2)+U
)
+2(γGB−1)q2Uw2−3(γGB−1)2Uw4

]
−3γ4

GB

[
q4
(
γ2

GB(U−2)+U
)
+2(γGB−1)q2w2

(
U−γ2

GB

)
+(γGB−1)2Uw4

] }
, (D.7)

where we have defined

D1 ≡
(
γ2

GB − 1
)
u2
(
3(γGB − 1)w2 + q2

)
+ 3γ2

GB

(
q2(U − 1)− (γGB − 1)w2

)
,

D0 ≡ 4(γGB − 1)u(U − 1)2U3D1. (D.8)

In the above expressions, we used U2 = u2 + γ2
GB − u2γ2

GB, as well as the dimensionless

frequency and momentum (2.19), where the Hawking temperature is given by eq. (2.6).

Sometimes it is preferable to use the original radial coordinate r. For convenience, we write

here the equation for the scalar fluctuation Z1 in this variable:

P2Z
′′
1 + P1Z

′
1 + P0Z1 = 0, (D.9)

where the coefficients are given by

P2 = rf
(
λGBf

′ − r
)
, (D.10)

P1 = rf ′
(
λGBf

′ − r
)
− 3rf + λGBf

(
rf ′′ + 2f ′

)
, (D.11)

P0 =
2

f
(
1 +
√

1− 4λGB

)[rω2
(
λGBf

′ − r
)
−
(

1 +
√

1− 4λGB

)
f2
(
λGBf

′′ − 1
)

+
1

2

(
1 +

√
1− 4λGB

)
f
(
f ′′
(
r2 − λGBq

2
)
− 2λGBf

′2 + 4rf ′ + q2 − 12r2
)]
, (D.12)
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where f(r) is given by eq. (2.3). To solve eq. (D.9) with the incoming wave boundary

condition at the horizon, it is convenient to write the solution as

Z1 = f̃(r)−iw/2 (1 + g(r)) , (D.13)

where

f̃(r) =
1

2λGB

[
1−

√
1− 4λGB

(
1− (r+/r)

4
)]

. (D.14)

This coordinate is more convenient for taking the limit of zero temperature.

E Equations of motion of Einstein-Maxwell-Gauss-Bonnet gravity

The equations of motion of Einstein-Maxwell-Gauss-Bonnet gravity following from the

action (5.1) form a system of two coupled PDEs:

Rµν−
1

2
gµνR+gµνΛ = T GB

µν +2κ2
5T Aµν , (E.1)

∇νFµν = 4α4∇ν (RFµν)+2α5∇ν
(
RµρF ν

ρ −RνρF µ
ρ

)
+4α6∇ν

(
RαβµνFαβ

)
+8α7∇ν

(
FαβF

αβFµν
)
−4α8∇ν�Fµν−2α9∇ν∇ρ (∇µF ρν−∇νF ρµ)

+2α10∇ν (∇ν∇ρF ρµ−∇µ∇ρF ρν)+8α11∇ν (F νρFρσF
σµ) . (E.2)

Here, the gravitational energy-momentum tensor term is given by

T GB
µν =

λGBL
2

4
gµν

(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)
− λGBL

2
(
RRµν − 2RµαR

α
ν − 2RµανβR

αβ +RµαβγR
αβγ
ν

)
, (E.3)

and the Maxwell field contribution has the form

T Aµν =−1

8

(
gµνF

2−4FµλF
λ
ν

)
+
α4

2

[
gµνRF

2−4RFµαF
α
ν −2RµνF

2+2∇µ∇νF 2−2gµν�F
2
]

+
α5

2

[
gµνR

αβFαλF
λ
β −4RµαFνβF

αβ−2RαβF
α
µ F β

ν −�(FµαF
α
ν )

−gµν∇α∇β
(
FαλF

βλ
)

+∇α∇µ
(
FνβF

αβ
)

+∇α∇ν
(
FµβF

αβ
)]

+
α6

2

[
gµνR

αβγδFαβFγδ−6RµαβγF
α
ν F βγ−4∇β∇α (FµαFνβ)

]
+
α7

2

[
gµν
(
F 2
)2−8F 2FµλF

λ
ν

]
+
α8

2

[
gµν∇αFβγ∇αF βγ−2∇µFαβ∇νFαβ−4∇αFµβ∇αF β

ν +4∇α
(
∇µFαβFνβ

)
+4∇α

(
∇αF β

µ Fνβ

)
−4∇α

(
∇µF β

ν Fαβ

)]
+
α9

2

[
gµν∇αFβγ∇βFαγ−2∇αFµβ∇βF α

ν −4∇µFαβ∇αF β
ν +2∇α

(
∇αF β

µ Fνβ

)
+2∇α

(
∇µFαβFνβ

)
−2∇α

(
Fαβ∇νF β

µ

)]
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+
α10

2

[
gµν∇αFαγ∇βFβγ−2gµν∇α

(
Fαγ∇βFβγ

)
−4∇µFνβ∇αFαβ−2∇αFµα∇βFνβ

+4∇µ
(
Fνβ∇αFαβ

)
+4∇α

(
Fµα∇βFνβ

)]
+
α11

2

[
gµνF

αβFβγF
γδFδα−8FµαFνβF

αγF βγ

]
. (E.4)
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