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1 LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
{k.yang,m.t.m.emmerich,a.h.deutz}@liacs.leidenuniv.nl

2 CISUC, Department of Informatics Engineering, University of Coimbra,
Polo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal

cmfonsec@dei.uc.pt

http://moda.liacs.nl

Abstract. The Expected Hypervolume Improvement (EHVI) is a fre-
quently used infill criterion in surrogate-assisted multi-criterion opti-
mization. It needs to be frequently called during the execution of such
algorithms. Despite recent advances in improving computational effi-
ciency, its running time for three or more objectives has remained in
O(nd) for d ≥ 3, where d is the number of objective functions and n is
the size of the incumbent Pareto-front approximation. This paper pro-
poses a new integration scheme, which makes it possible to compute the
EHVI in Θ(n log n) optimal time for the important three-objective case
(d = 3). The new scheme allows for a generalization to higher dimen-
sions and for computing the Probability of Improvement (PoI) integral
efficiently. It is shown, both theoretically and empirically, that the hid-
den constant in the asymptotic notation is small. Empirical speed com-
parisons were designed between the C++ implementations of the new
algorithm (which will be in the public domain) and those recently pub-
lished by competitors, on randomly-generated non-dominated fronts of
size 10, 100, and 1000. The experiments include the analysis of batch
computations, in which only the parameters of the probability distrib-
ution change but the incumbent Pareto-front approximation stays the
same. Experimental results show that the new algorithm is always faster
than the other algorithms, sometimes over 104 times faster.

Keywords: Expected hypervolume improvement · Time complexity ·
Surrogate-assisted multi-criterion optimization · Efficient global opti-
mization · Probability of improvement

1 Introduction

Surrogate-assisted multi-criterion optimization (SAMCO) uses approximations
to the objective functions in order to quickly assess the potential quality of a can-
didate solution. In the context of SAMCO, the Expected Hypervolume Improve-
ment (EHVI) is frequently used as an infill or pre-selection criterion [1–8],
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and is a straightforward generalization of the single-objective expected improve-
ment (EI). It is called multiple times because, in each iteration of SAMCO,
either an optimum of the EI needs to be found, as in the case of Bayesian global
optimization1 [10], or, in surrogate-assisted evolutionary algorithms, it is used to
pre-assess the quality of the individuals of a larger population.

Informally, the EHVI for a problem with d objectives is defined as follows [4]:
Given an incumbent approximation to a Pareto front of size n, the EHVI is an
integral that measures the expected increase of the Hypervolume Indicator, given
a predictive multivariate Gaussian distribution on the d-dimensional objective
space stemming, for instance, from a Gaussian process or Kriging Approxima-
tion, the outcome at a yet unevaluated design point. It, therefore, measures the
expected quantity by which the Pareto-front approximation would improve, if
that design point were evaluated. Both the mean values and variances of the
objective function value predictions are considered.

Although the EHVI is interesting due to its theoretical properties, as shown
by Wagner et al. [11], it has been critizised in the same paper for the com-
putational effort required for its exact computation. This is a problem, as
many SAMCO algorithms require a large number of EHVI computations to
be performed in every iteration. Since the announcement of exact computation
schemes [12], significant progress has been made, resulting in faster computation
schemes [8,13,14]. Notably, in 2-D, the computation time could be improved from
O(n3 log n)–using a straightforward integration scheme, with a grid partitioning
and repeated hypervolume computations for each grid cell – to asymptotically
optimal Θ(n log n) in [13] using a stripe partitioning and a multi-layered inte-
gration scheme. However, despite significant efficiency improvements [8,14], the
running time of the best-known algorithms for d ≥ 3 has remained in O(nd).

This paper shows that the new integration technique proposed in [13] can
be generalized to d ≥ 3, yielding a new algorithm with asymptotically optimal
time complexity in Θ(n log n). This improves existing upper bounds by a factor
of O(n2/ log n). Moreover, it is shown that similar approaches provide asymp-
totically optimal time algorithms for the Probability of Improvement, i.e. the
probability that a point will be non-dominated, and the Truncated Hypervolume
Improvement (TEHVI) [15].

The paper is structured as follows: Sect. 2 discusses the problem in the wider
context of surrogate-assisted multi-criterion optimization, and Sect. 3 provides
the necessary definitions. In Sect. 4 the new algorithm for 3-D EHVI calculation
is discussed, including the analysis of its complexity. Experimental results on test
data are reported in Sect. 5, including a speed comparison to other algorithms
proposed in the literature [8,14]. Section 6 discusses how the new algorithm can
be modified for solving the related problems of PoI and TEHVI. Section 7 draws
the main conclusions and discusses future work.

1 Also called Efficient Global Optimization [9].



Computing 3-D Expected Hypervolume Improvement and Related Integrals 687

2 Relevance and Related Work

In the context of single-objective optimization, the expected improvement was
firstly proposed by Mockus et al. [10]. They assumed that the objective func-
tion, say f : R

q → R, q ≥ 1, is a realization of a Gaussian process with
known (or estimated a priori) mean and covariance structure. Given that the
values f(x(i)) at sites x(1), . . . , x(t) are known, e.g., from previous exact eval-
uations, the conditional mean μ(x) and standard deviations σ(x) at a yet
unevaluated point x can be computed. The 1-D Gaussian distribution with
mean μ(x) and standard deviation σ(x) assigns to y ∈ R the likelihood of
the event f(x) = y. Consider the problem of maximizing f(x), and a corre-
sponding sequence of points (xi)i∈N. Then, for a given point in time, t, we can
express the improvement of a given y ∈ R as I(y, fmax,t) = max{0, y − fmax,t},
where fmax,t = max{f(xi)|i ∈ {1, . . . , t}}. The expected improvement of x is
then defined as EI(x) =

∫
y∈R

I(y, fmax,t) ξμ(x),σ(x)(y) dy, where ξμ(x),σ(x) is the
probability density function of the 1-D Gaussian distribution conditioned on
(xi, f(xi))i∈{1,...,t}.

The EI is widely used to pre-assess the quality of solutions in evolutionary
and deterministic optimization with expensive black box evaluations. It was
popularized by Jones et al. [9] as an infill criterion in the so-called Efficient Global
Optimization (EGO) algorithm. In each iteration EGO evaluates the design point
with maximal EI. Its convergence properties are discussed in [16], where a proof
of global convergence under mild assumptions on the global covariance and the
smoothness of the function is given. Roughly speaking, global convergence is due
to the fact that EI rewards high variance and also high mean values.

Various generalizations of EI to multi-criterion optimization have been
discussed in the literature, e.g., [7,17–20]. See also [11] for an overview. In
the case of multiple objectives, it is possible to consider a Gaussian process
model for each objective function separately and independently, resulting in
a multivariate distribution with d mean values μi(x) and standard deviation
σi(x). A key question when generalizing the expected improvement is how to
define improvement of a given Pareto-front approximation. In indicator-based
multi-criterion optimization, the performance of a Pareto-front approximation
is assessed by a unary indicator, typically the Hypervolume Indicator, which
allows for a simple generalization of the Expected Improvement–the EHVI. Given
(xi, f(xi)), i = 1, · · · , t, the incumbent Pareto-front approximation becomes
Pmax,t = Non-Dominated subset of {f(xi)|i ∈ {1, ..., t}} and its hypervolume
replaces fmax,t in the definition of the EI. The EHVI was first proposed in [21],
and since then it has been used in Evolutionary Algorithms for airfoil optimiza-
tion [4] and quantum control [22], as well as in multi-criterion generalizations
of Efficient Global Optimization for applications in fluid dynamics [23], event
controllers in wastewater treatment [1], efficient algorithm tuning [5], electrical
component design [8], and bio-fuel power-generation [3]. In all of these appli-
cations, the bi-objective EHVI was used. Due to its high computation time for
problems with three and more objectives, using it as an infill criterion was not
advised in such settings, and fast, but imprecise, alternatives were sought [24].
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So far it has remained unknown whether the integration algorithms used in
the literature achieved optimal performance. Hence, it is an important ques-
tion to study whether, and to what extent, the computational efficiency of the
exact computation of the EHVI can be further improved. In early work, the
EHVI integral was computed by Monte Carlo simulation [21]. The first algo-
rithm for the exact calculation of the 2-D EHVI was introduced by Emmerich
et al. [12], with a computational complexity of O(n3 log n), where n is the num-
ber of non-dominated points in the front. Couckuyt et al. [8] provided an exact
EHVI calculation algorithm for d > 2, and, according to experimental data,
this algorithm was typically much faster than the one introduced in [12], but
it still had a high worst-case time complexity. Hupkens et al. [14] found algo-
rithms for computing EHVI with the then lowest worst-case time complexity of
O(n2) and O(n3), for two and three objectives, respectively. Recently, Emmerich
et al. [13] proposed an asymptotically optimal algorithm for the bi-objective case,
with a computational time complexity of Θ(n log n). In 3-D, the time complexity
of this problem and those of the related problems of computing the Probability
of Improvement [8] and Truncated Expected Hypervolume Improvement [2] have
so far remained cubic. The following sections outline algorithms that can solve
these problems in optimal time Θ(n log n).

3 Expected Hypervolume Improvement

This section formally introduces the Expected Hypervolume Improvement and
related definitions. In the following, we consider problems with three objectives.
Most of the discussion will be on mathematical objects defined in the objective
space. We will denote the axes of the objective space spanned by f1, f2, ...., fd,
where fi : Rq → R are the objective functions to be maximized. Points in the
objective space will be denoted by y, in case we are not interested in their pre-
image. We define the usual Pareto dominance order on the objective space, i.e.
y(1) � y(2), iff y(1) ≥ y(2) (componentwise) and y(1) �= y(2).

The Hypervolume Indicator, introduced in [25], is one of the most important
unary indicators for evaluating the quality of a Pareto-front approximation. Its
theoretical properties are discussed in [26,27]. Notably, it does not require the
Pareto front to be known in advance, and its maximization leads to high qual-
ity and diverse Pareto-front approximation sets. The Hypervolume Indicator is
defined as follows:

Definition 1 (Hypervolume Indicator). Given a finite approximation to a
Pareto front, say P = {y(1), . . . ,y(n)} ⊂ R

d, the Hypervolume Indicator (HV )
of P is defined as the d-dimensional Lebesgue measure of the subspace dominated
by P and bounded below by a reference point r:

HV(P) = λd(∪y∈P[r,y]) (1)

with λd being the Lebesgue measure on R
d.
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The hypervolume measures the size of the dominated subspace bounded below
by a reference point r – we consider maximization. This reference point needs
to be provided by the user, and it should, if possible, be chosen such that it is
dominated by all elements of the Pareto-front approximation sets P that might
occur during the optimization process.

In order to generalize the Expected Improvement (EI) criterion, we will first
generalize the concept of improvement to the multiobjective case:

Definition 2 (Hypervolume Improvement). Given a finite collection of vec-
tors P ⊂ R

d, the Hypervolume Improvement of a vector y ∈ R
d is defined as:

HVI(y,P) = HV(P ∪ {y}) − HV(P) (2)

In case we want to emphasize the reference point r, the notation HVI(y,P, r)
will be used to denote the Hypervolume Improvement.

The Expected Hypervolume Improvement is based on the theory of the Hyper-
volume Indicator, and is a measure of how much hypervolume may improve,
considering the uncertainty of the prediction. The prediction is a probability
distribution that measures, for a given input vector in the decision space, the
likelihood of outcomes in the objective space. Typically, Gaussian process mod-
els or Kriging models are used for prediction, delivering for each input vector an
independent, multivariate probability distribution with a mean vector μ ∈ R

d

and a standard deviation vector σ ∈ R
d, each component of which corresponding

to a particular objective function prediction.

Definition 3 (Expected Hypervolume Improvement). Given a mean vec-
tor μ ∈ R

d and a standard deviation vector σ ∈ R
d, an incumbent Pareto-front

approximation P ⊂ R
d, and a reference point r ∈ R

d the expected improvement
is given by:

EHVI(μ,σ,P, r) =
∫

y∈Rd

HVI(y,P, r)ξμ,σ(y)dy (3)

Example 1. Figure 1(left) depicts the dominated hypervolume for a small
approximation set P = (y(1) = (4, 4, 1), y(2) = (1, 2, 4), y(3) = (2, 1, 3)). The
volume of all slices is the 3-D Hypervolume Indicator of P, with r being the ori-
gin of the coordinate system. The Hypervolume Improvement of y(+) = (3, 3, 2)
relative to P is given by the joint volume covered by the red slices. The Expected
Hypervolume Improvement would average over different realizations of y(+) fol-
lowing a 3-D normal distribution with mean vector (μ1, μ2, μ3) and standard
deviation σ1, σ2, and σ3.

4 Asymptotically Optimal Algorithm for 3-D EHVI
Calculation

For the convenience of illustration, the EHVI calculation in this section only
involves the maximization case. The main idea of the proposed algorithm is
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f1

f2

f3

y(1)

y(2)

y(3)

f1

f2

f3

y(+)

y(1)

y(2)

y(3)

Fig. 1. The left figure shows a given 3-D Pareto-front approximation consisting of the
points y(1) = (4, 4, 1), y(2) = (1, 2, 4), and y(3) = (2, 1, 3). The right figure shows how
the Hypervolume Indicator increases when the red point y(+) = (3, 3, 2) is added. The
volume of the increment (red blocks) is the Hypervolume Improvement. The Expected
Hypervolume Improvement is the mean value of the Hypervolume Improvement, if y+

would be sampled from a 3-D normal distribution. (Color figure online)

separating the integration volume into integration slices, as few as possible, and
then per integration slice compute all contributions to the EHVI integral that
are related to the area of the bases of the integration slices.

4.1 Partitioning into O(n) Integration Slices

Example 2. An illustration of integration slices is shown in Fig. 2. A Pareto
front set is composed by 4 points (y(1) = (1, 3, 4),y(2) = (4, 2, 3),y(3) = (2, 4, 2)
and y(4) = (3, 5, 1)), and this Pareto front is shown in the left figure. The right
figure illustrates the projection onto y1y2-plane with rectangle slices and l,u. The
rectangular slices, which share the similar color but different opacity, represent
integration slices with the same value of y3 in their lower bound. The lower
bound of the 3-D integration slice B4 is l(4) = (1, 2, 2), and the upper bound of
the slice is u(4) = (2, 4,∞).

For maximization problems, the upper bound of each integration slice is always
∞ in the y3 axis, therefore we can describe each integration slice by its lower
bound (l) and upper bound (u) as follows.

Bi = (l,u) =

⎛

⎜
⎝

⎛

⎜
⎝

l
(i)
1

l
(i)
2

l
(i)
3

⎞

⎟
⎠ ,

⎛

⎜
⎝

u
(i)
1

u
(i)
2

∞

⎞

⎟
⎠

⎞

⎟
⎠ , i = 1, . . . , 2n + 1 (4)
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y1

y2
(∞,∞)

l(1)

u(1)

l(2)

u(2)

l(4)

u(4)

l(3)

u(3)

l(6)

u(6)

l(5)
u(5)

l(9)

u(9)

l(8)

u(8)

l(7)

u(7)

y(1) = (1, 3, 4)

y(2) = (4, 2, 3)

y(3) = (2, 4, 2)

y(4) = (3, 5, 1)

0 1 2 3 4 5 ∞0

1

2

3

4

5

∞

B1 B2

B3

B4

B5

B6

B7

B8

B9

Fig. 2. Left: 3-D Pareto front. Right: 3-D Pareto front in 2-D, each slice can be
described by lower bound and upper bound

y1

y2

y3

y(j)

y(t)

y(r)

Case 2Case 1 Case 1Case 1

u

l discarded slices and points (y(d[s])) in next loop

u

l discarded slices and points in previous loop
u upper bound

l lower bound

Fig. 3. Boundary search for slices in 3-D case

Algorithm 1 describes how to obtain the slices B1, . . . , Bi, . . . , B2n+1 with
the corresponding lower and upper bounds (l(i) and u(i)) and compute the inte-
grals for them. The partitioning algorithm is similar to the sweep line algorithm
described in [28]. The basic idea of this algorithm is using an AVL tree, struc-
tured by y1 and y2 coordinates, to process the points in a descending order of
the y3 coordinate. For each such point, say y(i), add this point to the AVL tree
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and find all the points (y(d[1]), . . . ,y(d[s])) which are dominated by it in the y1y2-
plane and discard them from the AVL tree. See Fig. 3 for describing one such
iteration. In each iteration, s + 1 slices are created by coordinates of the points
y(t),y(d[1]), . . . ,y(d[s]),y(r), and y(i) as illustrated in Fig. 3. The integration of
the slices (calculation 3D) will be described in Subsect. 4.2.

Here, the number of the integration slices is 2n + 1 when all points are in
general position. (Otherwise 2n + 1 provides an upper bound for the obtained
number of slices.) The reason is as follows: In the algorithm each point
y(i), i = 1, . . . , n creates a slice, say slice A(i), when it is created and a slice,
say slice B(i), when it is discarded from the AVL tree due to domination by
another point, say y(s), in the y1y2-plane. The two slices are defined as fol-
lows A(i) = ((y(t)

1 , y
(l2)
2 , y

(i)
3 ), (y(u1)

1 , y
(i)
2 ,∞)) whereas y

(l2)
2 is either y

(r)
2 if no

points are dominated by y(i) in the y1y2-plane or y
(d[1])
2 , otherwise. Moreover,

B(i) = ((y(i)
1 , y

(r)
2 , y

(s)
3 ), (y(u)

1 , y
(s)
2 ,∞)), and y(u) denotes either the right neigh-

bour among the newly dominated points in the y1y2-plane, or y(s) if y(i) is the
rightmost point among all newly dominated points. This way each slice can be
attributed to exactly one point in P, except for one slice that is created in the
final iteration. In the final iteration one additional point y(n+1) = (∞,∞,∞)
is added in the y1y2-plane. This point leads to the creation of a slice when it
is added, but because it is never discarded it adds only a single slice. In total,
therefore 2n + 1 slices are created.

4.2 Computing Slice-Based Parts of the Integral

Given a partitioning of the non-dominated space into integration slices
B1, . . . , Bi, . . . , B2n+1 the part of the integral related to each of the integration
slices can be computed separately. To see how this can be done, the Hypervolume
Improvement of a point y ∈ R

3 is rewritten as:

HVI3(y,P, r) =
2n+1∑

i=1

λ3[Bi ∩ Δ(y)] (5)

where Δy is the part of the objective space that is dominated by y. The HVI
expression in the definition of EHVI in Eq. (3) can be replaced by HVI3 in Eq. (5):

EHVI(μ,σ,P, r) =
2n+1∑

i=1

∞∫

y1=l
(i)
1

∞∫

y2=l
(i)
2

∞∫

y3=l
(i)
3

λ3[Bi ∩ Δ(y)] · ξμ,σ(y)dy (6)

In Eq. (6), the summation can be done after the integration, because integration
is a linear mapping. Then we can divide the integration interval

∫ ∞
y1=l

(i)
1

and
∫ ∞

y2=l
(i)
2

into (
∫ u

(i)
1

y1=l
(i)
1

+
∫ ∞

y1=u
(i)
1

) and (
∫ u

(i)
2

y2=l
(i)
2

+
∫ ∞

y2=u
(i)
2

), respectively. Based on

this division, Eq. (6) can be expressed by:
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Eq.6 =
2n+1∑

i=1

u
(i)
1∫

y1=l
(i)
1

u
(i)
2∫

y2=l
(i)
2

∞∫

y3=l
(i)
3

λ3[Bi ∩ Δ(y)] · ξμ,σ(y)dy (7)

+
2n+1∑

i=1

u
(i)
1∫

y1=l
(i)
1

∞∫

y2=u
(i)
2

∞∫

y3=l
(i)
3

λ3[Bi ∩ Δ(y)] · ξμ,σ(y)dy (8)

+
2n+1∑

i=1

∞∫

y1=u
(i)
1

u
(i)
2∫

y2=l
(i)
2

∞∫

y3=l
(i)
3

λ3[Bi ∩ Δ(y)] · ξμ,σ(y)dy (9)

+
2n+1∑

i=1

∞∫

y1=u
(i)
1

∞∫

y2=u
(i)
2

∞∫

y3=l
(i)
3

λ3[Bi ∩ Δ(y)] · ξμ,σ(y)dy (10)

The idea of this decomposition is that the improvement for
∫ ∞

y1=u
(i)
1

(· · · ) and
∫ ∞

y2=u
(i)
2

(· · · ) are constant, that is:
∫ ∞

yk=u
(i)
k

λ1[Bi ∩ Δ(yk)] · ξμk,σk
(yk)dyk =

∫ ∞
yk=u

(i)
k

(u(i)
k − l

(i)
k ) · ξμk,σk

(yk)dyk = (u(i)
k − l

(i)
k ) · (1 − Φ(u

(i)
k −μk

σk
)) =:

ϑ(l(i)k , u
(i)
k , σk, μk), where k = 1, 2 and λ1[Bi ∩ Δ(yk)] is the Hypervolume

Improvement in dimension k, i.e., a 1-D Hypervolume Improvement. We intro-
duce the following abbreviations: λ1[Bi ∩ Δ(yk)] = |[l(i)k , u

(i)
k ] ∩ [l(i)k , yk]| =

min{u
(i)
k , yk} − l

(i)
k =: 	

(u
(i)
k ,yk)

l
(i)
k

, ξi = ξμi,σi
(yi), where i = 1, 2, 3. Based on this

abbreviation, Eq. (7) can be written as

Eq.7 =

2n+1∑

i=1

u
(i)
1∫

l
(i)
1

�
(u(i)

1 ,y1)

l
(i)
1

ξ1dy1

u
(i)
2∫

l
(i)
2

�
(u(i)

2 ,y2)

l
(i)
2

ξ2dy2
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l
(i)
3

�
(u(i)

3 ,y3)

l
(i)
3

ξ3dy3

=

2n+1∑

i=1

⎛

⎜⎜⎜⎝

∞∫

l
(i)
1

�
(u(i)

1 ,y1)

l
(i)
1

ξ1dy1 −
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u
(i)
1

�
(u(i)

1 ,y1)

l
(i)
1

ξ1dy1

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎝

∞∫

l
(i)
2

�
(u(i)

2 ,y2)

l
(i)
2

ξ2dy2 −
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u
(i)
2

�
(u(i)

2 ,y2)

l
(i)
2

ξ2y2

⎞

⎟⎟⎟⎠ ·
∞∫

l
(i)
3

�
(u(i)

3 ,y3)

l
(i)
3

ξ3dy3

=

2n+1∑

i=1

⎛

⎜⎜⎜⎝

∞∫

l
(i)
1

(y1 − l
(i)
1 )ξ1dy1 −
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u
(i)
1

(u
(i)
1 − l

(i)
1 )ξ1dy1

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎝

∞∫

l
(i)
2

(y2 − l
(i)
2 )ξ2dy2 −
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u
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2
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2 )ξ2dy2

⎞
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∞∫

l
(i)
3

(y3 − l
(i)
3 )ξ3dy3

=

2n+1∑

i=1

(
Ψ∞(l

(i)
1 , l

(i)
1 , μ1, σ1) − ϑ(l

(i)
1 , u

(i)
1 , σ1, μ1)

)
·

(
Ψ∞(l

(i)
2 , l

(i)
2 , μ2, σ2) − ϑ(l

(i)
2 , u

(i)
2 , σ2, μ2)

)
· Ψ∞(l

(i)
3 , l

(i)
3 , μ3, σ3) (11)
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The Ψ∞ functions that are used here, are integrals of the 1-D cumulative
Gaussian distribution function (Φ) and the 1-D Gaussian probability density
function ξ, these two functions are discussed in the appendix. Similar to the
derivation of Eqs. (7), (8), (9) and (10) can be written as follows:

Eq.8 =
2n+1∑

i=1

(
Ψ∞(l(i)1 , l

(i)
1 , μ1, σ1) − ϑ(l(i)1 , u

(i)
1 , σ1, μ1)

)
· ϑ(l(i)2 , u

(i)
2 , σ2, μ2)·

Ψ∞(l(i)3 , l
(i)
3 , μ3, σ3) (12)

Eq.9 =
2n+1∑

i=1

ϑ(l(i)1 , u
(i)
1 , σ1, μ1) ·

(
Ψ∞(l(i)2 , l

(i)
2 , μ2, σ2) − ϑ(l(i)2 , u

(i)
2 , σ2, μ2)

)
·

Ψ∞(l(i)3 , l
(i)
3 , μ3, σ3) (13)

Eq.10 =
2n+1∑

i=1

ϑ(l(i)1 , u
(i)
1 , σ1, μ1) · ϑ(l(i)2 , u

(i)
2 , σ2, μ2) · Ψ∞(l(i)3 , l

(i)
3 , μ3, σ3) (14)

The final EHVI formula is the sum of Eqs. (11), (12), (13) and (14). The
Pseudo code of the proposed algorithm is shown in Algorithm 1.

During the EHVI calculation, as the y1y2-projections are mutually non-
dominated, the points are also sorted by the y2 coordinate in the AVL tree,
identifying a neighbouring point or a discard point takes time O(log n). Then
the EHVI for these integration slices will be calculated by the calculation 3d
function in Algorithm 1 (line 13 and 23), which is the summation of Eqs. (11),
(12), (13) and (14) with the parameters of μ,σ and B2n+1. The EHVI computa-
tional complexity for each slice is O(1). Moreover, the dominated points (y(d[s]))
will be removed from the AVL tree, and the new points (y(j)) will be inserted
in the AVL tree. Since the points that are dominated by the new point y(j) will
be deleted at the end of the current loop, they will not occur again in the later
computations. Hence the total number of open slices does not exceed 2n + 1, as
mentioned before, and the total computation costs O(n log n).

Fig. 4. Randomly generated fronts of type convexSpherical, concaveSpherical,
and cliff3D from [28] with |P | = 100 (left, middle and right).
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Algorithm 1. EHVI calculation algorithm in 3-D

Input: (y(1), · · · ,y(n)): mutually non-dominated R
3-points sorted by third

coordinate (y3) in descending order
Output: EHVI value

1 y(n+1) = (∞, ∞, r3) ;
2 Initialize AVL tree T for 3-D points

Insert y(1), (∞, r2, ∞)T and (r1, ∞, ∞)T into T;
3 Initialize the number of integration slices nb = 1;
4 Initialize EHV I = 0;
5 for i = 2 to n + 1 do /* Main loop */

6 Retrieve the following information from tree T:

7 r: index of the successor of y(i) in x-coordinate (right neighbour);

8 t: index of the successor of y(i) in y-coordinate (left neighbour);

9 d[1], · · · , d[s]: indices of points dominated by y(i) in y1y2-plane, sorted
ascendingly in the first coordinate(y1);

10 Bnb .l3 = y
(i)
3 , Bnb .u2 = y

(i)
2 , Bnb .u3 = ∞ ;

11 if s == 0 then /* Case 1 */

12 Bnb .l1 = y
(t)
1 , Bnb .l2 = y

(r)
2 , Bnb .u1 = y

(i)
1 ;

13 EHV I = EHV I+ calculation 3d(μ, σ, Bnb) ;
14 nb = nb + 1 ;

15 else /* Case 2 */

16 for j = 1 to s + 1 do
17 if j == 1 then

18 Bnb .l1 = y
(t)
1 , Bnb .l2 = y

(d[1])
2 , Bnb .u1 = y

(d[1])
1 ;

19 else if j == s + 1 then

20 Bnb .l1 = y
(d[s])
1 , Bnb .l2 = y

(r)
2 , Bnb .u1 = y

(i)
1 ;

21 else

22 Bnb .l1 = y
(d[j-1])
1 , Bnb .l2 = y

(d[j])
2 , Bnb .u1 = y

(d[j])
1 ;

23 EHV I = EHV I+ calculation 3d(μ, σ, Bnb) ;
24 nb = nb + 1 ;

25 Discard y(d[1]), · · · ,y(d[s]) from tree T;

26 Insert y(i) in tree T.

The C++ source-code and MATLAB .mex file for computing the EHVI is
available on http://moda.liacs.nl or on request from the authors.

5 Empirical Comparison

Three algorithms, IRS fast [14], CDD13 [8] and KMAC, which is short for the
authors given name, in this paper are compared via the same benchmarks. The
test benchmarks from Emmerich and Fonseca [28] are used to generated the
Pareto fronts. The Pareto fronts and evaluated points are randomly generated
based on convexSpherical, concaveSpherical, and cliff3D functions.

http://moda.liacs.nl
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Table 1. Empirical comparisons of strategies for 3-D EHVI calculation

Type |P | Batch Size Time Average (s)

CDD13 [8] IRS fast [14] KMAC

convex 10 1 0.13785 0.00037 0.00005

convex 10 10 0.14090 0.00056 0.00021

convex 10 100 0.16500 0.00304 0.00095

convex 10 1000 0.69104 0.02778 0.00754

convex 100 1 13.97556 0.05337 0.00038

convex 100 10 17.05551 0.13730 0.00099

convex 100 100 45.90095 0.93196 0.00831

convex 100 1000 422.31263 8.38585 0.06462

convex 1000 1 >3 h 94.72402 0.00390

convex 1000 10 >3 h 155.77306 0.01067

convex 1000 100 >3 h 795.11319 0.06517

convex 1000 1000 >3 h 2838.31854 0.53801

concave 10 1 0.11209 0.00026 0.00007

concave 10 10 0.12790 0.00054 0.00014

concave 10 100 0.14002 0.00294 0.00077

concave 10 1000 0.36697 0.02597 0.00840

concave 100 1 10.62329 0.04895 0.00031

concave 100 10 12.63582 0.12927 0.00146

concave 100 100 27.51827 0.85124 0.00768

concave 100 1000 314.32314 7.67280 0.06285

concave 1000 1 >3 h 91.51055 0.00332

concave 1000 10 >3 h 149.58491 0.01079

concave 1000 100 >3 h 744.46691 0.06696

concave 1000 1000 >3 h 2499.29737 0.50981

cliff3D 10 1 0.12514 0.00026 0.00007

cliff3D 10 10 0.13222 0.00055 0.00013

cliff3D 10 100 0.14432 0.00278 0.00075

cliff3D 10 1000 0.44964 0.02725 0.00761

cliff3D 100 1 10.90605 0.04730 0.00029

cliff3D 100 10 12.85031 0.12709 0.00112

cliff3D 100 100 44.79395 0.80735 0.00689

cliff3D 100 1000 679.51368 7.46205 0.06099

cliff3D 1000 1 >3 h 136.37944 0.00344

cliff3D 1000 10 >3 h 165.34537 0.01007

cliff3D 1000 100 >3 h 731.03794 0.06480

cliff3D 1000 1000 >3 h 2543.16864 0.51032



Computing 3-D Expected Hypervolume Improvement and Related Integrals 697

The parameters: σ = (2.5, 2.5, 2.5), μ = (10, 10, 10) were used in the exper-
iments. Pareto front sizes |P | ∈ {10, 100, 1000} and the number of predictions
(candidate points) or Batch Size ∈ {1, 10, 100, 1000} are used together with σ
and μ. Ten trials were randomly generated by the same parameters, and average
runtimes (10 runs) for the whole 10 trails with the same parameters were com-
puted. The data for 3-D case with |P | = 100 are visualized in Fig. 4, and these
figures are originally from [28]. All the experiments were run on the same hard-
ware: Intel(R) Xeon(R) CPU E5-2667 v2 3.30 GHz, RAM 48 GB. The operating
system was Ubuntu 12.04 LTS (64 bit), and the compiler was gcc 4.9.2 with
compiler flag -Ofast, except for SUMO code, MATLAB 8.4.0.150421 (R2014b),
64 bit. The experiments were set to halt if the algorithms would not finish the
EHVI computation within 3 hours. The results are shown in Table 1. While the
speed-up gained by batch processing in IRS fast is considerable, in KMAC the
idea is not the case and we just use repeated computation. The results show
that the proposed algorithm, KMAC, is the fastest one for all the test problems.
Empirical comparisons on randomly generated Pareto fronts of different shape
show that the new algorithm is by a factor of 7 to 3.9×104 faster than previously
published implementations.

6 Related Problems

It is now straightforward to compute other integrals in a similar manner. For
instance the Probability of Improvement [8,21], that is the probability that a
point is non-dominated w.r.t. P, can be computed simply by integration in parts
over the 2n + 1 integration slices, which yields an algorithm with running time
in O(n log n) algorithm for d = 3:

PoI(μ,σ,P) =
2n+1∑

i=1

d∏

j=1

Φ(
u
(i)
j − μj

σj
) − Φ(

l
(i)
j − μj

σj
) (15)

Moreover, we can compute the Truncated Expected Hypervolume Improvement
(TEHVI) [2], by replacing the formulas of Ψ∞, Φ, and ξ by corresponding for-
mulas of the truncated Gaussian distribution (see [2] for details) and discard
irrelevant integration slices that do not intersect with the reference slice [2].

7 Conclusions and Future Research

In this paper, an asymptotically optimal algorithm with a computational com-
plexity of O(n log n), for the 3-D EHVI exact calculation, was proposed. Com-
pared to [14], the computational complexity is improved by the factor n2/ log n.
This meets the lower bound for the time complexity of the 3-D EHVI computa-
tion for d = 3, shown by reduction to the Hypervolume Indicator problem, see
[14]. Thus the algorithm is asymptotically optimal and the time complexity of 3-
D EHVI computation is in Θ(n log n). As opposed to previous techniques, which
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required grid decomposition of the non-dominated subspace into O(n3) integra-
tion slices, the new integration technique can make use of efficient partitioning of
the dominated space into only 2n + 1 axis-aligned integration slices. In practice,
the new computation scheme will be of great advantage for making the EHVI
and related integrals applicable in multiobjective optimization with three objec-
tives, especially in Bayesian Optimization and surrogate-assisted multi-criterion
evolutionary algorithms. Empirical comparisons are in line with this theoretical
improvement and show the proposed algorithm is by a factor of 7 to 3.9 × 104

faster than previous existing implementations.
It is expected that this technique can be generalized to higher dimensional

objective spaces, using for instance the partitioning technique for the non-
dominated space discussed in [29]. The time complexity per slice is expected
to be O(2d−1).
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Appendix

Definition 4 (Ψ∞ function (see also [14])). Let φ(s) = 1/
√

2πe− 1
2 s2

(s ∈ R)
denote the probability density function (PDF) of the standard normal distrib-
ution. Moreover, let Φ(s) = 1

2

(
1 + erf

(
s√
2

))
denote its cumulative probabil-

ity distribution function (CDF), and erf is Gaussian error function. The gen-
eral normal distribution with mean μ and standard deviation σ has as PDF,
ξμ,σ(s) = φμ,σ(s) = 1

σ φ( s−μ
σ ) and its CDF is Φμ,σ(s) = Φ( s−μ

σ ). Then the func-
tion Ψ∞(a, b, μ, σ) is defined as:

Ψ∞(a, b, μ, σ) =

∞∫

b

(z − a)
1
σ

φ

(
z − μ

σ

)

dz

= σφ

(
b − μ

σ

)

+ (μ − a)
[

1 − Φ

(
b − μ

σ

)]
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