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Abstract. The aim of evolutionary level set approximation is to find
a finite representation of a level set of a given black box function. The
problem of level set approximation plays a vital role in solving problems,
for instance in fault detection in water distribution systems, engineer-
ing design, parameter identification in gene regulatory networks, and in
drug discovery. The goal is to create algorithms that quickly converge to
feasible solutions and then achieve a good coverage of the level set. The
population based search scheme of evolutionary algorithms makes this
type of algorithms well suited to target such problems. In this paper, the
focus is on continuous black box functions and we propose a challenging
benchmark for this problem domain and propose dual mutation strate-
gies, that balance between global exploration and local refinement. More-
over, the article investigates the role of different indicators for measuring
the coverage of the level set approximation. The results are promising
and show that even for difficult problems in moderate dimension the pro-
posed evolutionary level set approximation algorithm (ELSA) can serve
as a versatile and robust meta-heuristic.

1 Introduction

The problem of black box level set approximation is to find all inputs (arguments)
of a function that give rise to an observed or targeted output. In general, we
demand the output to be within a range or below a threshold ε ∈ R and we aim
to approximate the set. Given a black box objective function f : S → R, with
S ⊂ R

d, we search for the set L(f ≤ ε) which is defined as:

L(f ≤ ε) := {x ∈ S | f(x) ≤ ε} (1)
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In the following we assume that x is taken from a compact domain S. More
specifically, we will in the following look at problems where the input variables
are constrained by box constraints:

S = [xmin
1 ,xmax

1 ] × · · · × [xmin
d ,xmax

d ]

Problems of level set approximation occur in various disciplines of science and
engineering.

– Fault Detection and Model-Based Diagnosis: The problem could be to find
all possible source locations of a contamination given a model of a water
distribution system [ZR07].

– Parameter Identification: Find all parameters of a system’s model that can
explain an observed behavior. The behavior can, for instance, be given by
gene activation time series and it is used to find unknown reaction rates
(propensities) in a gene regulatory network model [NE15].

– Design Engineering: Find all possible designs that comply with a prescribed
behavior. For instance, different designs of building shapes that are compliant
with maximum stress and with energy efficiency demands could be searched
for [PCWB00,ZR07].

– De Novo Drug Discovery: Represent the space of molecular compounds that
have chemical properties within a prescribed range. See for instance [vdB13].
Moreover, different low energy configurations and positions of molecules could
be searched for in molecular docking problems.

This paper contributes to the development of a robust evolutionary algo-
rithm for black box level set approximation. The steady-state algorithm ELSA
( Evolutionary Level Set Approximation) [EDK13] is tested on a broader range
of problems including for the first time problems in more than two dimensions.
To test the ELSA approach, we construct a set of nonlinear test problems that
cover a wide range of properties and we study the geometry of the solution
sets. We also study a dual mutation operator that can help to better identify
disconnected components of level sets.

The paper is structured as follows: After discussing related work in Sect. 2, we
describe the ELSA algorithm in Sect. 3. After this a set of benchmark problems is
introduced in Sect. 4 and we summarize experimental studies on the robustness
and precision of selected algorithm variants in Sect. 5. Finally, Sect. 6 concludes
the paper with a summary of main results and outlook to future studies in this
research line.

2 Related Work

Level set approximation has received some attention in numerical analysis
[Set99], where it is usually used for solving explicitly given problems and not
for black box formulation, but so-far little attention has been paid to target-
ing black box problems and population-based search heuristics for solving them.
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In practice, the use of complex simulation codes for function evaluations has
increased the need for such black box enabled techniques.

As opposed to the often discussed problem of black box optimization, in level
set approximation we are not in the first place interested in optimal solutions,
but rather in solutions that satisfy certain criteria. The underlying assumption
can be that the system’s measurements are not exact and a minimization of, for
instance, the deviation from the desired target could exclude possible explana-
tions or solutions. A closely related question, related to level set approximation,
is to find all solutions that are within a certain tolerance range close to the glob-
ally optimal solution [ZR07]. Moreover, approximating Pareto fronts in multi-
objective optimization has much in common with level set approximation, as in
both cases a set that satisfies certain conditions should be covered. However,
in multi-objective optimization, the Pareto dominance relation is considered for
qualification of whether a point belongs to the set to be covered relative to the
position of other points in the objective space. Still, many principles of multi-
objective algorithm design such as the use of indicators, population-based meth-
ods, and exploration/exploitation handling, are also of interest in the design of
evolutionary level set approximation [EBN05].

A closely related work is diversity optimization, a term used by Ulrich and
Thiele [UT11]. The idea of their algorithm NOAH is to find diverse sets of
optimal or near optimal solutions. The algorithm NOAH lowers the threshold
level gradually while evolving a population of points w.r.t. the maximization of
diversity. In particular, the Solow-Polasky diversity metric [SPB93] was chosen in
this context, which has several favorable theoretical properties but also requires
the choice of a correlation parameter in its definition. Similar to ELSA, NOAH
follows an indicator-based steady-state selection scheme, but it differs in the
range of diversity indicators to be applied and in the way infeasible solutions
are treated. Whereas ELSA uses augmentation, a kind of smooth penalization
of infeasible solutions, in NOAH different phases of the algorithm are defined
in which the constraints are gradually tightened. However, this scheme requires
setting of many parameters which makes benchmarking of NOAH difficult. In
our work, we use the Solow-Polasky metric, similar to NOAH. Hence ELSA can
be considered as a very similar algorithm or variant of NOAH.

As opposed to diversity maximization, level set approximation seeks to find
a representation of the level set. This should be expressed in the performance
assessment. It has been argued in [EDK13] that if a set in R

d is approximated
by a maximally diverse set, then the solution sets tend to distribute along the
boundary of the level set. This would imply larger distances between solutions
of the level set and gaps in the interior. In contrast, the problem of representing
the level set well would rather imply closeness of the approximation set to the
targeted set in the sense of minimal Hausdorff distance, meaning that all points
in the targeted set should be as close as possible to (some) points in the approxi-
mation set, and vice versa, all points in the approximation set should be as close
as possible to (some) points in the target set. Unfortunately, the first criterion
cannot be assessed if the target set is not yet known. It is therefore, inevitable to
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use proxy indicators to assess the performance of an approximation set within
the algorithm. Several such proxy indicators, including the Solow-Polasky indi-
cator, have been discussed in [EDK13].

3 Evolutionary Level Set Approximation (ELSA)

ELSA is a relatively novel, simple in design, evolutionary algorithm (EA) for level
set approximation. It is guided by quality indicators (QIs) that rate the fitness
of a population. ELSA is a (μ + 1)-EA (or steady-state EA), which means that
ELSA creates one child per generation and only one solution cannot survive to
the next generation. Steady-state selection is commonly adopted by indicator-
based EAs (IBEAs) to circumvent computationally expensive subset selection
problems [EBN05].

3.1 Quality Indicators for Level Set Approximation

A quality indicator (QI) assigns a single value to a level set approximation, that
is a finite set A ⊂ S. It should consider how many points of the level set have
been found and how well they are distributed. In [EDK13] a detailed discussion
is provided and here we will only summarize the most important definitions. A
quality indicator is monotonous, if it grows with the number of points in the fea-
sible set. It should also reward a good coverage of the level set. Indicators which
fulfill these properties are the Augmented Average Distance (ADI+), Augmented
Solow-Polasky (SP+), and three types of Augmented Gap indicators (GI+): Aug-
mented Min-Max Diversity (GI+N ), Augmented Arithmetic Mean (GI+Σ), and
Augmented Geometric Mean (GI+Π). In this study, only the GI+Π and the SP+

indicator are used, as the ADI+ indicator is computationally expensive and the
other augmented gap indicators had several disadvantages that were highlighted
in [EDK13]. The SP indicator is defined in [SPB93] and measures the number of
species in a population. This indicator has a θ parameter that scales the distance
matrix and θ = 10 is recommended [UBT10]. Let D(x, Y ) denote the (Euclid-
ean) distance of x to the closest point in a set Y . The Geometric Mean is defined
as GIΠ =

∏n
p∈A D(p,A\{p}), with A being the approximation set that is made

up of all solutions x combined. In level set optimization, we only measure the
diversity of the feasible subset and subtract a penalty for all infeasible points
that growth proportionally with the distance to the threshold ε. By this, each
indicator can be extended to an augmented indicator which in turn can be used
as a quality indicator: indicator+ = indicator(L ∩ A) − penalty(A \ L). For the
Gap indicator we chose penalty(X) =

∑
x∈X (Diameter(S) + (f(x) − ε)), where

Diameter denotes the longest distance in S. For the SP indicator, the penalty
reads penalty(X) =

∑
x∈X(f(x) − ε). By choosing these penalties, it is made

sure that replacing an infeasible point in A by a feasible point always yields an
improvement.
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Algorithm 1. Indicator-Based Evolutionary Level Set Approximation (ELSA)
1: P0 ← init() {Initialize population}
2: t ← 0
3: while not terminate do
4: u ∼ rand(0, 1) {Draw uniform number between 0 and 1}
5: if u ≤ ν then
6: q ← mutate(Pt, σ) {create new child solution by mutation}
7: else
8: q ← reinitialize(S) {create new child solution by random re-initialization}
9: end if

10: P ′
t ← Pt ∪ {q}

11: r = arg minp∈P ′
t
(ΔQI(p, P ′

t )) {Select solution that least contributes to QI}
12: Pt+1 ← P ′

t \{r}
13: t ← t + 1
14: end while
15: return Pt

3.2 Basic Algorithm

Algorithm 1 describes the steps of ELSA. Pt is the population of approximation
set solutions in generation t. It contains the points that represent the level set.
The first step in the main loop is to create the child q ∈ S, for instance by adding
a small perturbation to a solution in Pt.

ELSA adopts a mixed mutation strategy, for a constant mutation probability,
the algorithm either creates a child by randomly creating a new point in S
(random reinitialization), or by adding a perturbation to a point in Pt (parent-
based mutation). The perturbation is drawn from an i.i.d. multivariate normal
distribution with a standard deviation of σ (step-size) and mean value of zero.
The default pseudo-random number generator from MATLAB 11 was used in
this work, both for the normal and for the uniform distribution. The decision
of which mutation to use, is based on a random number itself. The parameter
ν ∈ {0, 1} is the probability that a parent-based mutation is used, and 1 − ν is
the probability of random reinitialization. The reinitialization step is a simple
means to prevent the algorithm getting trapped in a local optimum or to miss a
component of the level set and the setting of ν and σ will be subject to further
study in this paper. In the next step, P ′

t denotes the temporary new population
which includes solution r. To keep the population size constant, in step 11 and
step 12, the least contributing individual in P ′

t is identified and discarded from P ′
t

to form the new parent population Pt+1. The contribution of a point is decided
by its Quality Indicator Contribution (QIC) which, for a given quality indicator
(to be maximized) is defined as: ΔQI(p,A) := QI(A)−QI(A\{p}). The algorithm
is terminated when the number of evaluations exceeds a user-defined evaluation
budget.
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4 Benchmark Problems for ELSA

ELSA has only been tested on benchmark problems in two dimensions in pre-
vious research. Next we propose a set of benchmark problems for more than 2
dimensions. The benchmarks are divided into two categories: simple and complex
shapes. Simple shapes refer to basic geometrical objects, such as generalizations
of spheres. Simple shape benchmarks are Lamé, Ellipsoid, Hollow Sphere, and
Double Sphere:

LLamé(x) =

{

x ∈ [−3, 3]d
∣
∣
∣
∣
∣

d∑

i=1

√∣
∣
∣
xi

3

∣
∣
∣ − 1 ≤ 0

}

(2)

LEllipsoid(x) =

{

x ∈ [−3, 3]d
∣
∣
∣
∣
∣

d∑

i=1

(xi

ci

)2

− 1 ≤ 0

}

(3)

where c = [1 2 2.5] for 3D, and c = [1 2 2.5 1 2 2.5 1 2 2.5 1] for 10D

LHollow(x) =

{

x ∈ [−3, 3]d
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

√
√
√
√

d∑

i=1

x2
i − 1.5

∣
∣
∣
∣
∣
≤ 0

}

(4)

LDouble(x) =

{

x ∈ [−3, 3]d
∣
∣
∣
∣
∣

(√
√
√
√

d∑

i=1

(xi + 1)2 − 1

)

·
(√

√
√
√

d∑

i=1

(xi − 1)2 − 1

)

≤ 0

}

(5)

Complex shapes refer to engineering relevant shapes described by functions
more complex than those found in the simple shapes benchmark category. The
shape functions used for the complex shape benchmarks are taken from mathe-
matical functions in multimodal optimization problems. They are used to show
the performance of the Indicator-Based Evolutionary Algorithms on more real-
istic landscapes in terms of practical test problems. The complex shape bench-
marks are Branke’s Multipeak [Bra98,Kru12], Rastrigin, Schaffer [Kru12], and
Vincent [vdGSB08]:

fBranke′s(x) =
1
d

d∑

i=1

(
1.3 − g(xi)

)

g(xi) =

⎧
⎨

⎩

−(xi + 1)2 + 1 if −2 ≤ xi < 0
1.3 · 2−8|xi−1| if 0 ≤ xi ≤ 2
0 otherwise

(6)

LBranke′s(x) =
{

x ∈ [−2, 2]d
∣
∣
∣
∣fBranke′s(x) ≤ 0.4

}

(7)

where this benchmark is not included as a level set benchmark for 10D

LRastrigin(x) =

{

x ∈ [−4.5, 4.5]d
∣
∣
∣
∣
∣
10d +

d∑

i=1

(
x2

i − 10 · cos(2πxi)
)

≤ 29

}

(8)



152 L.-Y. Liu et al.

LSchaffer(x)

=

{

x ∈ [−2.5, 2.5]d
∣
∣
∣
∣
∣

d−1∑

i=1

(x2
i +x2

i+1)
0.25 ·

(

sin2
(
50 · (x2

i +x2
i+1)

0.1
)
+1

)

≤2

}

(9)

LV incent(x) =

{

x ∈ [0.5, 5]d
∣
∣
∣
∣
∣
− 1

d

d∑

i=1

sin
(
10 · ln(xi)

)
≤ −0.8

}

(10)

The difficulty of the level set benchmark depends on the level set shapes and
their sizes. In general small objects are more difficult to locate, which leads to an
increase in difficulty for the benchmark. The same applies for thin parts or acute
angles in an object, which add a challenge when locally exploring a feasible com-
ponent. If a level set has disjoint parts, it is expected that the algorithm should
settle at least one solution on each disjoint part, unless the approximation set
size is smaller than the amount of disjoint parts. Many of the chosen complex
shape level sets have an exponential growth in the number of their disconnected
component when increasing the dimensionality of the level set benchmark. Hav-
ing large distances between the disjoint parts can serve as a way to test the
global search capabilities of the algorithm. To this end, the difficulty of the level
set benchmarks has been tailored according to the philosophy of the ELSA algo-
rithm to not consider points in the exterior of the approximation set. Therefore,
we avoid components of measure zero. The shape of the level sets can be seen
in Fig. 1.

5 Experimental Analysis

The experiments with ELSA consist of two main parts: First part shows that
implementing both global and local search is essential for black box level set
benchmarks. The importance of mixed mutation strategy is measured by com-
paring different ν values for ELSA on 3D Ellipsoid and Vincent level set bench-
mark for two different σ step-sizes (results presented in Table 1); In the second
part, the importance of choosing the right σ step-size is highlighted, this is
seen from the experiments of ELSA on all benchmarks. These experiments show
the robustness of ELSA with different σ step-sizes on 3D and 10D benchmarks
(Tables 2 and 3, respectively), where ν is set to 0.5 (a recommended parameter
value derived from the mixed mutation strategy experiments). Finally, Table 4
presents a comparison on the amount of evaluations to yield a population that
solely consists of feasible solutions, with respect to different step-sizes, for 3D
and 10D benchmarks. The Monte Carlo Search (MCS) is included as a reference
algorithm configuration in all the experiments. ELSA can easily be transformed
into the MCS approach by setting ν to 0 (σ is irrelevant as the algorithm never
produce children through parent perturbation).

The evaluation budget for a single ELSA run is set to 10 K for all 3D level
set benchmarks and 100 K for 10D benchmarks. Population size μ = 100 is used
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for all experiments. Each configuration has been run 40 times. Several σ step-
sizes are to be defined to use in ELSA. The generic form for the σ step-size is
described below, where d is the dimension:

σ =
ω · mean(xmax − xmin)√

d

√
d is derived from the longest diagonal of an n-dimensional hypercube. The

chosen ω values for the σ step-sizes are 1, 0.1, 0.01, and 0.001 (different magni-
tudes of 10). 3D Ellipsoid and 3D Vincent are used as the level set benchmarks to
compare the results for mixed mutation strategy. They represent the core oppo-
sites of having a non-disjoint level set with Ellipsoid versus the multisegmented
Vincent level set. The chosen ν values are 0, 0.25, 0.5, 0.75, and 1.

The following objectives are used for the comparison of the results:

– Diversity: The Quality Indicator value of the final population.
– EvalFeasible: The amount of evaluations it takes to yield a population that

solely consists of feasible solutions.
– Coverage of the final population on the level set determined by human

observation.

Table 1 allows us to reason about the effect ν has in scenarios of small and
big step-sizes, for single level set (Ellipsoid) and multiple level set (Vincent)
problems. For the Ellipsoid problem with ω = 0.1, we see that the higher the ν
value the better the diversity yielded with GI+Π and SP+. This behavior is mainly
explained by the fact that Ellipsoid is a single level set problem. In Vincent
problem with ω = 0.1 both GI+Π and SP+ indicators show that intermedium
values of ν (0.25 and 0.5) perform better than extreme ones such as 0 and 1
(best from worst for GI+Π and SP+: 0.25, 0.5, 0, 0.75, 1, with ν = 1 being
significantly worse).

For ω = 0.01, both GI+Π and SP+ indicators in the Ellipsoid problem also
reveal that intermedium values of ν such as 0.5 and 0.75 perform better than
extreme ones (GI+Π best to worst: 0.5, 0.75, 0.25, 0, 1; and SP: 0.75, 0.5, 0.25,
0, 1). A similar conclusion can be made for the Vincent problem with ω = 0.01,
intermedium values of 0.25 and 0.5 of ν allow for best GI+Π and SP+ results (best
to worst, GI+Π and SP+: 0.25, 0.5, 0, 0.75, 1).

Results from Table 1 show that the tuning/trade-off settings allowed by ELSA
mixed mutation strategy, is essential for the exploration and exploitation of single
and multiple level set problems. For the test on different values of ν it can be
observed that higher values of ν have priority, in case of simple problems with
connected level sets (Ellipsoid). On the contrary, a value of ν that lies between
0 and 1 should be chosen, if the level set is disconnected (Vincent). There is an
optimal setting of ν which is in the middle between the two extremes. This makes
sense, as in the multimodal case it is important to explore (find new components
of the level set by reinitialization), but also one has to distribute points well in
the found level set components (parent based mutation).
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Table 1. The diversity of the final populations from ELSA with ω = 0.1 and ω = 0.01
for σ step-size and different ν values on selected 3D level set benchmarks.

ν = 0 ν = 0.25 ν = 0.5 ν = 0.75 ν = 1

mean std mean std mean std mean std mean std

Ellipsoid
(ω = 0.1)

GI+Π 0.592 0.004 0.613 0.005 0.625 0.004 0.631 0.005 0.637 0.004

SP+ 99.198 0.029 99.327 0.021 99.381 0.016 99.413 0.015 99.439 0.012

Vincent
(ω = 0.1)

GI+Π 0.518 0.015 0.532 0.013 0.525 0.016 0.485 0.021 0.355 0.030

SP+ 98.736 0.243 98.953 0.125 98.920 0.202 98.665 0.379 94.613 2.098

Ellipsoid
(ω = 0.01)

GI+Π 0.592 0.004 0.637 0.006 0.647 0.005 0.641 0.007 0.504 0.050

SP+ 99.198 0.029 99.444 0.022 99.498 0.016 99.510 0.017 99.091 0.411

Vincent
(ω = 0.01)

GI+Π 0.518 0.015 0.562 0.015 0.541 0.019 0.440 0.025 0.178 0.028

SP+ 98.736 0.243 99.088 0.182 98.948 0.232 97.665 0.621 70.054 9.182

Experiment results in Table 2 show that ELSA is able to consistently find
entirely feasible populations with high diversity on all 3D level set benchmarks
for almost all the tested σ step-sizes. Even MCS can produce relatively good
results with the exception of Lamé benchmark which proves to be too difficult
to find feasible solutions with purely random search. The results from ω = 1
resemble the results of MCS, thus it can be considered a too large step-size.
ELSA with ω = 0.1 and ω = 0.01 are most successful at finding diverse approx-
imation sets, where the results with ω = 0.1 have noticeably better diversity in
3D Schaffer. Results from w = 0.001 however show a decline in diversity which
indicates that this σ step-size is too small for the level set benchmarks. Similar
patterns between the different step-sizes are reflected in the 10D level set bench-
marks (See Table 3). Again, the configurations with ω = 0.1 and ω = 0.01 are
observed to be most suited in general for these type of black-box level set bench-
marks. However, the limitations of ELSA are revealed in higher dimensions as it
struggles with finding an entirely feasible set for Lamé, Rastrigin and Schaffer
regardless of σ step-size. MCS and ELSA with ω = 1 are the most severe cases
whereby they cannot even find any entirely feasible populations. For the other
10D benchmarks, ELSA with ω = 0.1 or ω = 0.01 find diverse populations where
the results from Solow-Polasky on Ellipsoid and Hollow Sphere are near optimal
in measurement.

Table 4 experiments compare 3D and 10D convergence to the level set, it
shows that the setting of the step size parameter is crucial not only for finding
sets with a good coverage, but also for finding the components of the level set.
Step size settings are more critical in the high dimensional case and in the future
work automatic adaptation of the step size should be developed.
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Table 2. The diversity of the final populations from the tested algorithm configurations
on the 3D level set benchmarks.

MCS ω = 1 ω = 0.1 ω = 0.01 ω = 0.001

mean std mean std mean std mean std mean std

Lamé GI+Π −15.411 41.893 −6.820 23.989 0.326 0.006 0.284 0.015 0.121 0.022

SP+ 68.961 2.642 67.740 2.609 86.442 0.448 85.503 1.103 57.155 4.318

Ellipsoid GI+Π 0.592 0.004 0.593 0.006 0.625 0.004 0.647 0.005 0.594 0.007

SP+ 99.198 0.029 99.192 0.035 99.381 0.016 99.498 0.016 99.170 0.045

Hollow GI+Π 0.575 0.007 0.576 0.005 0.614 0.005 0.639 0.007 0.576 0.007

SP+ 99.131 0.043 99.144 0.038 99.362 0.016 99.504 0.020 99.091 0.065

Double GI+Π 0.413 0.006 0.413 0.007 0.463 0.003 0.464 0.007 0.396 0.010

SP+ 95.128 0.203 95.049 0.203 96.709 0.077 97.059 0.107 94.230 0.468

Branke’s GI+Π 0.254 0.009 0.260 0.006 0.295 0.007 0.291 0.011 0.205 0.019

SP+ 80.179 1.267 80.364 1.550 86.537 0.731 86.173 1.627 71.108 3.214

Rastrigin GI+Π 1.549 0.014 1.552 0.019 1.506 0.023 1.563 0.025 1.493 0.022

SP+ 100.000 0.000 100.000 0.000 100.000 0.000 100.000 0.000 100.000 0.000

Schaffer GI+Π 0.302 0.016 0.307 0.012 0.395 0.005 0.302 0.016 0.190 0.032

SP+ 84.973 1.839 84.918 1.991 93.275 0.434 86.424 1.767 71.024 4.023

Vincent GI+Π 0.518 0.015 0.514 0.019 0.525 0.016 0.541 0.019 0.444 0.022

SP+ 98.736 0.243 98.716 0.212 98.920 0.202 98.948 0.232 97.132 0.571

Table 3. The diversity of the final populations from the tested algorithm configurations
on the 10D level set benchmarks.

MCS ω = 1 ω = 0.1 ω = 0.01 ω = 0.001

mean std mean std mean std mean std mean std

Lamé GI+
Π

−2199.11 3.39 −2182.17 3.21 −1922.81 11.17 −1422.44 859.12 −2067.21 36.38

SP+ −301.53 3.79 −284.76 2.86 −32.02 1.43 −41.11 48.43 −174.82 31.63

Ellipsoid GI+
Π

−2027.30 15.73 −1980.68 26.12 1.663 0.014 1.242 0.076 0.177 0.045

SP+ −139.80 5.24 −104.30 7.35 100.000 0.000 100.000 0.000 27.434 14.023

Hollow GI+
Π

−1944.75 19.53 −1872.49 38.62 1.760 0.005 1.502 0.023 0.215 0.041

SP+ −68.39 4.55 −44.02 4.14 100.000 0.000 100.000 0.000 34.293 9.441

Double GI+
Π

−2586.90 12.45 −2467.93 17.08 0.966 0.032 0.945 0.008 −402.69 791.54

SP+ −692.29 15.41 −571.12 13.84 99.948 0.018 99.946 0.002 −0.89 39.49

Rastrigin GI+
Π

−7355.82 98.02 −7144.56 82.24 −3095.72 546.12 −2101.94 1743.26 −1985.23 1837.74

SP+ −4531.24 71.23 −4324.87 80.48 −600.63 286.13 −281.08 526.95 −494.81 672.37

Schaffer GI+
Π

−2439.64 8.68 −2403.24 9.41 −1743.84 41.45 −2118.51 95.64 −2114.59 70.52

SP+ −859.49 7.69 −824.42 9.42 −175.86 52.09 −526.95 123.59 −553.91 64.94

Vincent GI+
Π

−1210.98 56.09 −1174.72 62.49 0.943 0.102 0.726 0.112 0.218 0.029

SP+ 9.88 3.63 13.87 3.56 99.933 0.041 98.281 2.331 51.121 9.313

Figure 1 represents the final populations of ELSA, generated with GI+Π under
the setting of ν = 0.5 and ω = 0.1, for 3D benchmarks of Lamé (a), Ellipsoid
(b), Branke’s Multipeak (c), Rastrigin (d), Schaffer (e) and Vincent (f). The
populations are selected in a way that their measured diversity comes closest
to the average diversity found over all runs. The populations from SP+ have a



156 L.-Y. Liu et al.

Table 4. EvalFeasible of the results from the tested algorithm configurations.
EvalFeasible is calculated as the average of the results from GI+Π and SP+ combined.
The “-” symbol marks a configuration that contains at least one population that does
not solely consist of feasible solutions.

3D 10D

MCS ω = 1 ω = 0.1 ω = 0.01 ω = 0.001 ω = 0.1 ω = 0.01 ω = 0.001

mean std mean std mean std mean std mean std mean std mean std mean std

Lamé - - - - 1067 113 911 137 957 238 - - - - - -

Ellipsoid 1030 101 1044 93 468 40 454 49 456 49 3045 493 9022 2436 40474 17868

Hollow 1279 122 1252 119 539 46 492 46 488 60 2715 362 7852 2245 29867 12113

Double 2570 278 2542 255 686 68 622 75 642 100 4377 473 13679 3507 - -

Branke’s 4488 468 4105 419 969 89 764 109 758 127

Rastrigin 1043 106 1062 93 710 66 465 44 453 42 - - - - - -

Schaffer 6316 663 6247 586 1101 120 862 135 833 143 - - - - - -

Vincent 2852 309 2843 283 1086 91 659 83 656 77 3152 534 2694 674 5946 2991

tendency for solutions to reside on the boundary of the level set which is not
always a desired behavior when taking practical applications into account. While
figures labeled with 1 (for example a1) represent 3D plots of the level sets, figures
labeled with 2 represent a 2D projection of the 3D plots (for example a2). The
level sets are depicted in light gray and are semi-transparent. In the 3D view,
the RGB-value (converted into gray scale) of a solution maps to the (x1, x2, x3)-
coordinate of the solution with respect to the search space. In the orthographic
view, gray scale coding is used to determine the location of the solution with
respect to the x3-axis.

By visual inspection of Fig. 1 we can state that the acute parts of Lamé are too
challenging for ELSA to evenly distribute solutions over them. The populations
are well-spread on simple shape benchmarks like Ellipsoid (while not depicted,
it also holds for Hollow Sphere and Double Sphere). Branke’s Multipeak has
each level set component covered by solutions for both quality indicators, but
the result from GI+Π does not balance the number of points evenly across the
components. For Rastrigin the majority of the solutions are settled on the center
raster-like structure, however ELSA is able to settle some solutions on the outer
rim disjoint parts. 3D Schaffer has similarities to Lamé in terms of general shape
and the same problems with ELSA are encountered, but ELSA manages to
distribute solutions on the exterior parts to some degree despite the lack of
connectivity. 3D Vincent has 64 disjoint level set parts and neither population
can cover them all, although the overall diversity is good.
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Fig. 1. Visualization of results on 3D benchmark achieved with GI+Π indicator.
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6 Summary and Outlook

The current study shows that a mixed strategy of random reinitialization and
parent-based mutation is preferable to using only one of these strategies, because
it allows to explore and to refine at the same time, thereby minimizing the risk
that a component of the level set is overlooked. This mixed strategy might be
considered preferable, as we lose performance for the sake of reliability.

In contrast to previous work where only 2D problems were addressed, in
our study ELSA performance is assessed for low (3D) and high dimensional
level sets (10D). This study allowed to conclude that step size parameter is
crucial (specially in higher dimensions) to get both good coverage and to find
the components of the level set. Automatic adaptation of the step size (Self-
adaptive σ) should be developed to adapt the algorithm parameters to problem
specific properties.

Although ELSA has revealed very good performance in simple shape bench-
marks such as Ellipsoid for low and high dimensions, there is still space for
improvement in shapes with acute parts such as Lamé, Rastrigin and Schaffer,
specially in high dimensions. To this end, new selection and cross-over operations
can be designed for ELSA.

There are still some ways that can be tried to improve the performance of
ELSA: The current version of ELSA does not utilize cross-over, that might help
to improve the level set coverage (close gaps). However, it might also be dis-
ruptive, when applied to individuals from different components of the level set.
Moreover, creating more than one children or introduction of mating selection
could be beneficial for improving the quality of results, but would also signifi-
cantly increase computational costs of an iteration.

In contrast to evolutionary algorithms AIS feature a variable population size
and they also have some inherent mechanisms for diversity maintenance, which
makes them a promising technique for level set approximation [CZ06].
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