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Topological defects are singularities in material fields that play
a vital role across a range of systems: from cosmic microwave
background polarization to superconductors and biological mate-
rials. Although topological defects and their mutual interactions
have been extensively studied, little is known about the inter-
play between defects in different fields—especially when they
coevolve—within the same physical system. Here, using nematic
microfluidics, we study the cross-talk of topological defects in two
different material fields—the velocity field and the molecular ori-
entational field. Specifically, we generate hydrodynamic stagna-
tion points of different topological charges at the center of star-
shaped microfluidic junctions, which then interact with emergent
topological defects in the orientational field of the nematic direc-
tor. We combine experiments and analytical and numerical calcu-
lations to show that a hydrodynamic singularity of a given topo-
logical charge can nucleate a nematic defect of equal topological
charge and corroborate this by creating —1, —2, and —3 topo-
logical defects in four-, six-, and eight-arm junctions. Our work is
an attempt toward understanding materials that are governed by
distinctly multifield topology, where disparate topology-carrying
fields are coupled and concertedly determine the material proper-
ties and response.

multifield topology | nematic liquid crystals | topological defects |
microfluidics | cross-interactions

Defects are ubiquitous in nature and are at the heart of
numerous physical mechanisms, including melting in 2D
crystals (1), cosmic strings (2), and other topological defects in
the early universe (3). Vortices are possibly the most common
examples of defects in flowing media (4, 5). In a typical hydrody-
namic vortex, the fluid velocity, v, rotates by 27 along any closed
loop around the vortex core and has an undefined direction at
the core. More generally, topological defects are singular points
or lines in a distinct scalar, vector, or tensor field that can be
characterized by topological invariants, including winding num-
ber (or index) for 2D, and topological charge for 3D variations
of the fields (6, 7). Topological defects have been long known
to mediate key processes in a wide range of settings, including
knotted flow field stream lines (8), defects in light fields (9),
knotted defect lines in complex fluids (10), defects in type 2
superconductors (11), spontaneous flow in active fluids (12-15),
and even, conduction properties of electron nematics (16).

The interaction between topological defects is governed by the
defect topology and the underlying energetics. Similar to electri-
cally charged particles, like-sign topological defects, in general,
repel each other, whereas defects of opposite sign attract. How-
ever, this interaction can be additionally affected by the geom-
etry and surface properties of the environment (17, 18) and the
presence of an external stimulus (19-23). Emergence of topo-
logical defects in a field and the resulting interactions between
them have been well-characterized (24). However, how topolog-
ical defects in a system can coevolve in and interact across dis-
parate fields is largely unexplored. It is rather recent that multi-
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field topological interactions were shown in optics, where singu-
larities in optical birefringence created topological defects in the
light field (25, 26). The growing evidence that topological defects
perform vital biological functions (27-29) creates a fundamen-
tal need for an integrated understanding of defect interactions,
especially in relation to those in a different field (for instance, in
the surrounding microenvironment).

Complex nematic fluids have proven to be a versatile test
bed for studying, testing, and realizing diverse topological con-
cepts (30-32), owing primarily to their inherent softness and
strong response to external stimuli and in context of this work,
their material fluidity (33, 34). Liquid crystal microfluidics (35)
has emerged as a potent toolkit to modulate fluid and mate-
rial structures caused by the coupling between the two main
material fields—the fluid velocity field and the molecular ori-
entational field (director) (34). The flow director coupling regu-
lates transport properties of nematic suspensions (36, 37), tunes
the rheology of the liquid crystals (LCs) (38-41), and mediates
annihilation—creation dynamics of topological defects (21, 42).
Microfluidics based on complex anisotropic fluids has allowed
for potential applications (43) and novel designs of microcargo
transport (44), tunable fluid resistivity (45), color filters (46), and
biochemical sensors (47).

In this paper, we study the emergence of topological defects
in two different fields present in the nematic microfluidic sys-
tem: the stagnation point, a hydrodynamic singularity in the
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flow velocity field, and the nematic defect, a topological sin-
gularity in the molecular orientation field. We characterize the
cross-interaction between these topological defects using star-
shaped microfluidic junctions and flowing nematic fluid (Fig.
1A4). We show that the nucleation and the nature of the nematic
defects are determined by the topology of the flow defect,
such that a hydrodynamic stagnation point of topological charge
1— N /2, with N as the number of arms of the junction, nucle-
ates a defect of the same topological charge in the nematic direc-
tor field. The multifield defect interaction is underpinned by a
coupling between the two fields, which we tune via microflu-
idic geometry, and the nematic flow parameters. We observe
transformations between topological states, including the decay
of nematic defects to lower topological charges. Notably, the
reconfiguration timescales for the defects from the two different
fields—10~° s for the hydrodynamic stagnation points and ~1's
for the nematic defects—are resolved, and possible ramifications
of this separation of timescales are discussed. Finally, this work
is a realization of a material system governed by the topology of
multiple coupled fields—a platform that can be extended further,
potentially leading to the development of interesting topological
materials or topological material phenomena.

Tuning Topology with Hydrodynamics

We study the emergence of topological defects using a combi-
nation of experiments, numerical modeling, and theory. Exper-
imentally, we use star-shaped microfluidic junctions fabricated
by soft lithography techniques (Materials and Methods and SI
Text). Our experimental results are complemented by theoretical
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Fig. 1.

analysis and numerical modeling based on Beris—Edwards-type
approach—a powerful tool to study nematic structures, espe-
cially defects at mesoscopic scale (34).

The cross-interaction between the velocity and the nematic
fields is governed by an interplay of multiple effects: material vis-
cosity, nematic elasticity, channel dimensions, and the strength
of the flow (Fig. 14). The combined effect is captured by a single
dimensionless number, the Ericksen number, Er =nvl/K (48),
with n being the effective viscosity, v being the flow velocity, [
being the channel hydraulic diameter, and K being the 4’-pentyl-
4-biphenylcarbo-nitrile (S5CB) elastic constant (SI Text). The
Ericksen number (0.4 <Er <70 in our experiments) thus gives
a relative measure of the viscous and elastic stresses.

Fig. 1B shows the nematic defects obtained in four-, six-, and
eight-arm microfluidic junctions. In each case, no defect was
observed for Er < 1—a nematofluidic regime in which the elastic
torque far outweighs the viscous torque. In the four-arm junc-
tion, the first appearance of a —1 defect is observed at Er =2
and found to stabilize at Er > 5. Fig. 1B, Top (imaged at Er ~ 10)
shows polarization optical micrograph (POM) of a stable defect
of strength —1 at the center of the junction. Increasing the num-
ber of arms (Fig. 1B, Middle and Bottom) results in increase in
the net topological charge at the junction center: —2 (imaged at
Er~18 in the six-arm channel) and —3 (imaged at Er~22 in
the eight-arm channel). High charge defects decayed into mul-
tiples of the —1 defects: the —2 defect decayed into a pair of
—1 defects, and the —3 defect decayed into three —1 defects
(see Fig. S1). By overlaying the positions of the hydrodynamic
and nematic topological defects, we find that, in a four-arm

Emergence of nematic topological defects and hydrodynamic singularities at a microfluidic junction. (A) Generic star-shaped microfluidic junctions.

Four-, six-, and eight-arm microfluidic junctions and (B) corresponding POM images of the emergent topological defects at the center: —1 (four-arm
junction), —2 defect split into two —1 defects (six-arm junction), and —3 defect split into three —1 defects (eight-arm junction). The double-headed arrows
indicate the orientation of the crossed polarizers. The inflow and outflow arms are indicated by the red and green arrows, respectively. (C) Epifluorescent
imaging of flowing fluorescent tracers reveals the hydrodynamic stagnation points at the geometric centers of each microfluidic junction. (D and E) Nematic
flows at microfluidic junctions reproduced in numerical simulations. (D) Streamlines of flow profile in simulations. The range in which the velocity magnitude
is drawn is given in units of nematic correlation length, ¢y, divided by the characteristic nematic timescale, 7y (S/ Text). (E) The director profile (blue rods)
and the isosurface of the nematic scalar-order parameter, drawn at S = 0.4 in yellow, as corresponding to the flow field in D.
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junction, the —1 defect is within a micrometer from stagnation
point. When averaged over time, the positions of the topological
defects coincided. Similarly, in the six- and eight-arm junctions,
the defects of higher charge (existing as multiples of —1 defect)
are found to fall within a stagnation zone, a region at the junc-
tion center where the flow speed was less than 10% of the far
field value.

We have reproduced the experimental results in silico using
numerical simulations of 3D microfluidic junctions based on the
Navier-Stokes equation coupled with the Beris—-Edwards equa-
tions of nematodynamics (49) (Materials and Methods and SI
Text). Fig. 1 D and E shows the numerical flow velocity and the
nematic ordering at the four-, six-, and eight-arm junctions. The
isosurfaces of the nematic order parameter (Fig. 1E) show stable
—1 defect loops (i.e., defects of charge —1 consisting of a discli-
nation loop with half-integer winding number), in good quali-
tative agreement with the experimental results. The numerical
modeling shows that the material flow singularity emerges as a
line region, extending from the top to the bottom of the channel,
whereas the nematic defects evolve into small loops, which are
topologically equivalent to 3D point defects (32). However, from
a topological perspective, our setup allows us to fully character-
ize the 3D nematic defects by an effective 2D invariant, like the
winding number. In essence, by simply capturing the midplane
intersection of the nematic field, we are able to describe the
nematic defect, because the channel geometry and the anchoring
conditions limit any possible variation of the director field nor-
mal to the midplane (50). To generalize, the demonstrated sys-
tem gives the cross-interaction between topological line defects
and point defects (which at topological level, can be considered
with 2D invariants), creating an interesting topological test bed
with defects of different dimensionality.

Global Constraints and Local Forces

The emergent topological structure of the defects at the junc-
tion center results from a combination of global topological con-
straints and local mechanical effects. For the analytical treat-
ment that follows, we consider the channel midplane only and
a 2D nematic field within this plane. Because flow tends to
align the director along the channel, a generic junction with 2n
arms yields 2n nematic defects at the corners of the polygon
shown in Fig. 24, Upper, each with winding number +1/2 (2D
topological charge). The total topological charge of the nematic
field in the midplane of the junction, however, is constrained
by the Poincaré—Hopf theorem (51), by virtue of which a com-
pensatory charge, kpux = 1 — n, emerges in the bulk of the junc-
tion. Effectively, the homeotropic boundary conditions within
the junction region are equivalent to a circle with perpendicu-
lar director orientation. Thus, in the case of a four-arm junc-
tion, kcorners = 2, and kyyx = —1. For a six-arm junction, however,
keorners = 3, kbuik = —2, and so on. At large Ericksen numbers, the
director is flow-aligned, and the negative topological charge, at
the expense of the system elastic energy, is attracted toward the
central stagnation point (Figs. S2 and S3). To allow for analytic
calculation of the basic cross-interaction between the flow and
nematic defects, the considered microfluidic geometry is simpli-
fied to a 2D midplane of the channel, where the nematic director
is written as a 2D field, n = (cos 6, sin 6, 0). The dynamics of the
angle 6 is governed by the following partial differential equation
(SI Text):

O +v-V)o = gVQH + Wiy — A(Ugy Sin 260 — Uy, cos 26).

(1]

where v is the flow velocity; wij = (0;v; —0;v:)/2 and uy =
(0;v; + 9;v;)/2 are the vorticity and strain rate tensor, respec-
tively; and ~y is the rotational viscosity. The constant A is the
flow alignment parameter, which determines the director reori-
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Fig. 2. Fractionalization of topological defects. (A, Upper) The hydrody-
namic force field experienced by a 2D defect of charges —1, —2, and —3
confined inside four-, six-, and eight-arm junctions. A, Lower shows POM
images of nematic defects right after formation: —1 defect loop at the
four-arm junction, —2 defect at the six-arm junction, and —3 defect at the
eight-arm junction. In each case, the defect loop encloses a homeotropic
domain, close to the junction center, where the surface-induced anchoring
remains unperturbed. Outside this domain, the nematic director is aligned
because of the flow. (B) The higher-strength topological defects decay into
multiple defects of charge —1, shown here as a time sequence for (Upper)
—2 and (Lower) —3 defect. The —1 loop defect stabilizes by shrinking the
enclosed homeotropic domain and thereby, reducing the effective length of
the defect loop (Fig. 3A).

entation in response to a shear flow (34, 48). For 5CB used in
our experiments, A~ 1.1, and the director orients at an angle
A6~ 13° with respect to the flow (52). Owing to the symme-
try of the junction geometry, the flow, in proximity of the cen-
tral stagnation point, is irrotational. In polar coordinates (r, ¢),
with r = 0 being the junction center, an analytical approximation
yields v, = vo(r/R)" " cosng and vy = —vo(r/R)" " sin ng,
with vo being the flow speed at the center of the channels and R
being a length scale proportional to the channel width (S7 Text).
Consequently, for a perfectly flow-aligning system (A=1), the
ideal defective configuration 6 = (1 — n)¢ is an exact solution of
Eq. 1 (SI Text). For A2 1, the solution departs from this ideal
form but however, still preserves the rotational symmetry.
Whereas emergence of the equilibrium singular director field
depends exclusively on the symmetry of the flow in proximity
of the stagnation point, its stability depends on the flow struc-
ture over the entire junction. We clarify this using an effective
particle model for the dynamics of defects in the presence of a
generic potential energy field that originates from a background
flow at sufficiently large Ericksen numbers. Let us consider the
generic free energy 7 = [ dA[K|V0|?/2+ U(0)], where U (0) is
a potential energy density caused by the interaction with an exter-
nally imposed flow, and that the system comprises a given num-
ber of topological defects of topological charge k; at positions
R; = (X;, Y;). Extending a classic approach by Kawasaki (53)
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and Denniston (54), one can then construct an equation of
motion for the moving defect as (SI Text)

R, —R;

g J

J#i

where ji; ~1/(vk?) is a mobility coefficient. The second term
on the right-hand side of Eq. 2 corresponds to the well-
known Coulomb-like elastic interaction between the topological
charges, whereas the third term, given by F; = —Vg, [ dA U(6),
represents the force experienced by a defect moving in a poten-
tial energy field. In the presence of hydrodynamic flow, the latter
can be calculated as (SI Text)

zZX (r—Ry) .
Fi = ]{,’Z/dA W [UJ;{,y — A(UIJ; sin 20 — Ugy COS 20)]7
[31

where 6 is approximated as a linear superposition of the
local orientations associated with all of the defects [i.e., (r) ~
>, kj arctan(y — Y;)/(z — X;)]. Fig. 24 shows the force field,
calculated from Eq. 3 (normalized by the maximal force value),
experienced by disclinations of topological charges —1, —2,
and —3 placed within the respective junctions. The correspond-
ing flow field, given by the tensorial elements w;; and w;; in
Eq. 3, has been analytically estimated, taking into account the
rotational symmetry and the relative position of the stagna-
tion point at the junction (SI Text). Consistent with our exper-
imental and numerical results in 3D geometry of the channels,
we found that defects of topological charge k& <0, analytically
considered in 2D geometry, experience an effective attractive
force toward a central stagnation point having the same nega-
tive topological charge. Such a force causes the defects to move
toward the center of the junction, forming a stable equilib-
rium configuration. The positive defects, however, are subject
to a repelling force that pushes them out of the junction cen-
ter (SI Text), thus protecting the internal negative defects from
annihilation.
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Charge Fractionalization and Defects Unbinding

Defects having large negative topological charge (i.e., k < —1) are
prone to decay into multiples of —1 defects. We have experimen-
tally resolved the dynamics of the collapse of the defect loop at the
central junction. Fig. 24, Lower shows POMs of the defect loops
immediately after their formation. At the center of the four-arm
junction, we observe a defect loop of charge —1 (Fig. 24, Lower
Left), which within a short time, stabilizes into a —1 monopole
of the pseudoplanar texture (50) (Movie S1). The defects in the
six- and eight-arm junctions emerge as loops of charges —2 and
—3, respectively (Fig. 24, Lower Center and Lower Right), and
gradually decay into multiple —1 charged defects (Fig. 2B). As
presented in Fig. 2B, Upper, the —2 loop fractionalizes into two
smaller —1 loops, and within 10 s, stabilized into a pair of —1
defects. The fractionalization of the —3loop (Fig. 2B, Lower) pro-
ceeds in three steps. (i) A loop of charge —3 splits into a —2 loop
and a —1 loop. (if) The —1 loop shrinks, while the —2 loop splits
into two —1 loops. (iii) Finally, all three —1 defect loops shrink
down to the —1 structure, completing the fractionalization pro-
cess. These emergent —1 defects are singularities of the pseu-
doplanar texture, with positions that are stable over time. How-
ever, their relative arrangement can be changed by tuning the flow
within arms of the junction (S/ Text and Fig. S1).

The behavior described above results from two competing ef-
fects. On the one hand, the hydrodynamic forces tend to concen-
trate the negative topological charge at the center of the junction.
On the other hand, the elastic forces drive the repulsion of like-
sign defects. This effect of elasticity favors the fractionalization of
a central k = —n topological charge into n defects of charge —1.
Furthermore, hydrodynamic stagnation points of charge —2 and
—3(Fig. 1C) are susceptible to decay and canbecome unstable with
respect to any perturbation of the pressure distribution across the
channels. A slight asymmetry in the pressure distribution causes
the central stagnation point to split into multiples of stagnation
pointsof charge —1, thusfurther favoring the unbinding of defects.

Dynamics of Defect Nucleation in a Four-Arm Junction

The higher stability of a —1 defect relative to the —2 (or —3)
defect allows for the analysis of the defect nucleation in our

Dynamics of defect nucleation in a four-arm junction. (A) Emergence of —1 defect over time at the four-arm junction visualized as POM image

(Er = 8). (B) Polarization micrographs of the nematic flow texture show the transition from a defect-free state to a —1 topological defect at the junction
(Er & 2). The defect can stretch at higher Er, shown here at Er > 5. (C) Numerically simulated nematic director field with increasing Er within the plane
indicated in Inset; director is shown in blue, and defects are shown as isosurfaces of nematic degree of order S=0.4. (D and E) Continuous defect-free
director field observed in specific inflow-outflow combinations in experiments (Top) and confirmed in simulations (Middle and Bottom). (F and G) When
symmetrical flow conditions are restored (each inflow arm is flanked by two outflow arms), a —1 defect emerges and stabilizes at the geometric center of

the four-arm junction when the flow speeds in all of the arms are equal (G).
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microfluidic experiments. Fig. 34 shows creation of the —1
nematic defect loop at the stagnation point, when flow through
the two facing inlet arms meets simultaneously at the four-arm
junction (Er =8). On starting the flow synchronously in a SCB-
filled four-arm microfluidic device, the director field aligns along
the flow direction. The alignment initiates close to the respective
inlets of the opposite-facing arms; however, farther downstream,
the director field remains relatively undisturbed. Thus, each inlet
arm develops two director domains: upstream, a flow-aligned
director domain, and downstream, an unperturbed homeotropic
domain. These two director domains are separated by a disclina-
tion line with half-integer winding number (41, 52). The disclina-
tion travels downstream in each of the facing inflow arms (Fig.
S4 and Movie S2) and meets head on at the junction center (Fig.
34, row 3). On meeting, the singular disclinations merge into a
defect loop, enclosing a homeotropic domain (Fig. 34, row 4),
which gradually shrinks and finally stabilizes into a —1 defect at
the junction center (SI Text and Movie S1). We would like to
emphasize that homeotropic anchoring, in absence of flow, sup-
ports multiple director configurations. These energetically sta-
ble or metastable configurations emerge because of an interplay
between the cross-section geometry (rectangular, square, or cir-
cular), anchoring strength, and the curvature (or sharpness) of
the channel corners (35, 41) and set the initial conditions for our
flow experiments.

In a second approach, we have gradually increased the flow
speed (in steps of Er=0.5) in each inflow arm and allowed
the director field to equilibrate before increasing Er further. The
exact structure of the nematic field and the emergence of the
nematic topological defects are observed to be strongly depen-
dent on the Ericksen number, which we vary by changing the
magnitude of the flow field. Fig. 3B presents a sequence of polar-
ized micrographs of the nematic texture at the junction cen-
ter. The first appearance of the —1 defect loop was recorded
at Er~ 2. At higher Er, the —1 defect loop was located stably
at the center; however, it could extend along one or either side
of the outflow arms (Fig. 3B, rows 4 and 5). The profile of the
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director within the four-arm junction is obtained by using numer-
ical modeling (Fig. 3C). Increasing the flow speed (or Er) results
in a further pronounced flow alignment of the director, and at
still larger Er values, the system attains a complete flow align-
ment with the nematic director aligned roughly parallel to the
channel direction. Because the two flow-aligned domains meet at
the junction center, the mismatch in the nematic director leads
to the formation of a small defective loop of charge —1 (Fig.
3C, Middle). At high Er values, the flow shear takes over the
elastic forces and determines the director field in the proximity
of the newly emerged nematic defect (35). The defect loop can
also flip and stretch out of the vertical plane (Fig. 3C, Bottom).
A stable —1 defect loop can also emerge by designing a specific
modulation of the flow at the four-arm junction. As shown in Fig.
3D, a combination of three inflow arms (left, right, and top) and
one outflow arm (bottom), results in a defect-free state at the
junction center. By switching off the inflow in the top arm (Fig.
3E), the system gradually reorganizes, and as symmetric outflow
conditions are restored, a transition to the defective configura-
tion (Fig. 3 F and G) is observed. This result shows that designing
different microfluidic circuits and junction geometries could be
used as an interesting route for creation of nematic defect struc-
tures of various complexity.

Discussion

The coupling between the velocity and the orientational fields
serves as a tunable mechanism for designing multifield topol-
ogy in nematic microfluidic systems. Our results reveal that this
coupling also underpins the cross-interaction between the topo-
logical defects in the flow velocity and the nematic orientational
fields. We quantify the interaction strength between the hydrody-
namic and nematic defects in a four-arm junction by perturbing
the defects out of their equilibrium position and analyzing the
relative separation between them over time. Altering the inlet
pressure in one of the flow arms displaces the stagnation point
off the center first followed by gradual recovery of the nematic
director. Fig. 4 A and C presents this dynamics using numerical
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Fig. 4. Cross-talk between topological defects in different fields. (A) Simulations show displacement of the nematic defect and the hydrodynamic stagna-
tion point when pressure in the left arm (W) of device was increased. The stagnation point shifts to a new position followed by a much slower shift of the
nematic defect. Before the pressure pulse is turned off (column 3), the stagnation point and the nematic defect are completely realigned. After the pressure
is released, the stagnation point shifts back to the original position, slowly followed by the nematic defect. The exact position of the stagnation point
and the nematic defect over time is shown in C. (B) When pressure in the bottom arm is decreased, the nematic defect first drifts away from the shifted
stagnation point (i.e., against the flow). At longer times, the nematic defect approaches the stagnation point, and finally, they overlay (D). (E) Positions
of the hydrodynamic stagnation point and the nematic defect are measured experimentally as functions of time. White dots show the transport of tracer
particles over time, and the yellow arrows indicate the position of the nematic defect center. F, Insets show the corresponding positions of the hydrody-
namic stagnation point over time obtained from the fluorescence measurements of the tracer particle flow at the junction center. (F) The increased pressure
pulse in experiments confirms numerical results: the stagnation point first undergoes an instantaneous shift, and then, the nematic defect drifts toward the
stagnation point. On releasing the pressure, the defects return back to their initial position, starting with the stagnation point and then followed by the
nematic defect.

Giomi et al. PNAS | Published online July 3,2017 | E5775

—
<
=
7
>
X
o
[=]
=
=
o
o
<

wv
w
v}
H
=
o
wv


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702777114/-/DCSupplemental/pnas.201702777SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702777114/-/DCSupplemental/pnas.201702777SI.pdf?targetid=nameddest=SF4
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1702777114/video-2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702777114/-/DCSupplemental/pnas.201702777SI.pdf?targetid=nameddest=STXT
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1702777114/video-1

L T

/

1\

=y

calculations dynamics. After the stagnation point and the
nematic defect are separated (Fig. 44, column 1), the latter
approaches the stagnation point, and within 1,0007y, the stag-
nation point and the nematic defect coincide again. Altering the
pressure in an outflow arm also shifts the stagnation point first
followed by recovery of the —1 defect (Fig. 4 B and D). How-
ever, because the nematic defect now moves against the flow, the
recovery is 10 times slower than in the previous case. Further-
more, the nematic defect initially moves backward before pro-
gressing toward the hydrodynamic stagnation point at the new
location.

Experimentally, we perturb our system out of the equilibrium
state by marginally increasing the inlet pressure in the left arm
(Fig. 4E) and record the position of the defects over time. By
overlaying consecutive frames of the recorded video data, we
obtain a processed micrograph that captures the transport of
tracer particles (bright dots along the flow direction in Fig. 4F)
and the position of the defect over time (indicated by the yellow
arrows in Fig. 4F). The separation between bright dots is the dis-
tance traveled by a particle over the time interval between con-
secutive frames. This recorded dynamics gives us a flow speed of
24 um/s under equilibrium conditions as shown in Fig. 4E, Top.
The topological defects remain colocalized at the center of the
junction (no relative shift) (0-5 s in Fig. 4F). When we increase
the inlet pressure in the left arm (Fig. 4E, Middle), the flow speed
increases to ~ 62 um/s and shifts the stagnation point (pres-
sure increase 1 ~ 15 kPa) (Fig. 4F) by ~ 40 pm to the right.
The —1 nematic defect, however, remains locked at the center
of the junction. Only on increasing the pressure further (v =180
um/s) does the nematic defect shift. As shown in Fig. 4E, Bot-
tom, the defect shifted by ~ 90 um before finally coinciding with
the stagnation point at the new equilibrium position (pressure
increase 2 ~ 50 kPa) (Fig. 4F). When the perturbing pressure
was released, the stagnation point rapidly returned to the junc-
tion center followed slowly by the —1 defect (pressure release
in Fig. 4F). The observed dynamics shows a complex interac-
tion between the hydrodynamic stagnation point and the nematic
defect, which is clearly dependent on the direction of motion of
the nematic defect relative to the local material flow. More gen-
erally and in a mechanics-motivated view, the emergent dynam-
ics of the two defect types in the vicinity of each other could
be viewed as induced by an interdefect force (or potential) that
stems from the coupling of the two material fields and is inher-
ently mediated by the topology (i.e., the topological charge) of
the involved defects.

The cross-interaction between topological defects originating
from different fields, although shown in the context of nematic
microfluidics, is a phenomenon, which owing to its topological
nature, is much more general in appeal. The demonstrated cross-
talk relies on the existence of multiple spatially overlying mate-
rial fields—in our case, vector type but it could also be scalar
or tensorial—that are mutually coupled by some force-, stress-,
or energy-like cross-coupling mechanism. Therefore, the natu-
ral candidates for such phenomena will be systems with pro-
nounced transport effects or strongly interacting fields. As possi-
bly the most far-reaching question of this type, such concepts of
cross-field interacting defects could offer a physical framework
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for addressing phenomena in other areas of condensed matter
physics, field theory, and cosmology.

In conclusion, the interplay between fluid flow and molecular
orientation in nematic microfluidics has revealed that a hydro-
dynamic stagnation point can nucleate defects, whose topolog-
ical charge can be hierarchically tuned by changing the rota-
tional symmetry of the junction (Fig. S5 and SI Text) Importantly,
our experiments, numerical modeling, and analytical calculations
show that topological defects in different material fields cross-
talk and that their characterization reveals a topology-dependent
interaction between these defects of hydrodynamic and nematic-
ordering origin. As defects from different fields can coexist in
several soft and living matter systems, this work introduces an
exciting perspective, and paves the way toward understanding the
potential role of multifield topology in equilibrium and nonequi-
librium systems.

Materials and Methods

Experimental Setup. We have used 5CB, a single-component nematic LC
(18°C < T < 33°C) for experiments. The microfluidic channels had rect-
angular cross-section, with depth d~10 pum, width w =100 pm, and
15 mm length (unless otherwise specified). The channels were treated
with 0.1% wt/wt aqueous solution of silane octadecyldimethyl(3-tri-
methoxysilylpropyl)Jammonium chloride to create homeotropic surface
anchoring (35). Before flow experiments, microchannels were filled with
5CB in its isotropic phase. After cooled down to the nematic phase, we have
gradually increased the flow rate until topological defects emerged at the
channel junction. The flow rate was varied between 0.01 and 2.0 uL/h (cor-
responding flow speed, v, ranged between 2um/s and 0.40 mm/s) in each
arm. Thus, the characteristic Reynolds number Re = pv//n ranged between
10~ and 10, Here, n=50mPas and p=1,025kg/m> are the dynamic
viscosity and density of 5CB, respectively, and / =4wd/2(w + d) = 18 um is
the hydraulic diameter of the rectangular microchannels. The corresponding
Ericksen number Er = nv//K, with K =5.5 pN being the 5CB elastic constant
(one-constant approximation), varied between 0.3 and 65.

Numerical Simulations. Our numerical simulations rely on Beris—Edwards for-
mulation of nematodynamics (49) describing the evolution of system den-
sity, velocity, and nematic tensor order parameter by the coupled continuity
equation, Navier-Stokes equation, and Beris—Edwards equation. Coupling
between flow and orientational order is included by the nematic stress ten-
sor and the flow-driven deformations of the nematic tensor order parame-
ter profile that compete with the relaxation of nematic orientation toward
the free energy minimum. The nematic free energy is constructed phe-
nomenologically, including terms describing phase behavior, effective elas-
ticity, and surface anchoring (34). Continuity and Navier-Stokes equations
are solved numerically by a lattice Boltzmann algorithm (55), with open
boundaries and pressure-driven flows through the channels. Simultaneously,
evolution of nematic tensor order parameter is solved by a finite difference
algorithm (S/ Text).
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