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Abstract Eye-trackers are a popular tool for studying cog-
nitive, emotional, and attentional processes in different
populations (e.g., clinical and typically developing) and par-
ticipants of all ages, ranging from infants to the elderly.
This broad range of processes and populations implies that
there are many inter- and intra-individual differences that
need to be taken into account when analyzing eye-tracking
data. Standard parsing algorithms supplied by the eye-
tracker manufacturers are typically optimized for adults and
do not account for these individual differences. This paper
presents gazepath, an easy-to-use R-package that comes
with a graphical user interface (GUI) implemented in Shiny
(RStudio Inc, 2015). The gazepath R-package combines
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solutions from the adult and infant literature to provide
an eye-tracking parsing method that accounts for individ-
ual differences and differences in data quality. We illustrate
the usefulness of gazepath with three examples of different
data sets. The first example shows how gazepath performs
on free-viewing data of infants and adults, compared to
standard EyeLink parsing. We show that gazepath con-
trols for spurious correlations between fixation durations
and data quality in infant data. The second example shows
that gazepath performs well in high-quality reading data of
adults. The third and last example shows that gazepath can
also be used on noisy infant data collected with a Tobii
eye-tracker and low (60 Hz) sampling rate.

Keywords Infant eye movements · Eye-tracking
methodology · Fixation duration · Attention · Event
detection

Introduction

Eye-tracking has become a popular tool in many psycholog-
ical disciplines. For instance, eye-tracking is used to study
reading abilities (Rayner, Castelhano, & Yang, 2009) and
real-world scene perception (Henderson, 2003) in different
types of populations and age groups. For example, eye-
trackers enable researchers to quantify differences between
clinical populations and healthy controls in disorders such
as schizophrenia, attention-deficit hyperactivity disorder
(ADHD) and Williams syndrome (e.g., Riby & Hancock,
2008; Karatekin & Asarnow, 1999). Even in infants, looking
measures have been suggested to predict infants at risk of
developing autism (Wass et al., 2015). In reading research,
eye-tracking can provide insights into reading behavior dif-
ferences between children with and without dyslexia (e.g.,
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Hutzler & Wimmer, 2004), or between children, adults, and
the elderly (Paterson, McGowan, & Jordan, 2013; Reichle
et al., 2013; Rayner, Reichle, Stroud, Williams, & Pollatsek,
2006; Rayner et al., 2009).

The fact that eye-tracking can be used in such a
broad range of populations is one of its main advantages
(Karatekin, 2007). However, this also implies that there are
most likely individual differences that should be taken into
account, especially when comparing different populations.
This paper presents gazepath: an R-package developed to
detect fixations in eye-tracking data while accounting for
individual differences.

Fixations and saccades are the main elements of gaze pat-
terns. During fixations, visual processing takes place and
encoding information in memory is possible, whereas sac-
cades are the rapid eye movements during which visual
sensitivity is suppressed (Matin, 1974). In order to analyze
gaze patterns, eye-tracking data must be parsed into fix-
ations and saccades. This is commonly accomplished by
using dispersion, velocity, and/or acceleration-based algo-
rithms supplied by the eye-tracker manufacturer. For exam-
ple, EyeLink (SR Research Ltd., Ontario, Canada) uses a
velocity threshold of 35 deg/s and an acceleration threshold
of 8000 deg/s2 as default values, although these thresholds
can be altered manually. When both speed and acceleration
of the eye exceed these thresholds, it is assumed that a sac-
cade took place. Dispersion thresholds, on the other hand,
assume that a saccade takes place when a distance threshold
is crossed. For instance, the Tobii Clearview 2.7 Tobii Eye
Tracker User Manual (2006) defines the end of a fixations
when the eye has moved .9◦ of visual angle, although this
threshold can also be set to different values.

In our eye-tracking studies with infants (Van Renswoude,
Johnson, Raijmakers, & Visser, 2016), we noticed that
these standard algorithms with fixed thresholds were often
unable to correctly identify fixations and saccades. This is
a well-known problem in infant eye-tracking research (e.g.,
Wass, Forssman, & Leppänen, 2014; Hessels, Andersson,
Hooge, Nyström, & Kemner, 2015; Gredebäck, Johnson, &
von Hofsten, 2009), as well as in adult eye-tracking research
(e.g., Shic, Scassellati, & Chawarska, 2008; Nyström &
Holmqvist, 2010). The aim of this work is to combine solu-
tions from the fields of adult and infant eye-tracking and
develop a tool that can be used to parse eye-tracking data of
different populations and data quality into fixations.

Individual differences

Standard velocity and dispersion thresholds provided by
eye-tracker manufacturers are not always optimal. Some-
times small saccades are missed because the threshold
was not crossed, and it also happens that a speed and/or
dispersion threshold is crossed, while no actual saccade took

place. Optimizing the detection of fixations requires the use
of different thresholds for different participants. Even in dif-
ferent blocks or trials, stimuli, tasks, or the mood of the
participant can elicit different eye movements that are best
classified by different thresholds. Standard algorithms sup-
plied by eye-tracker manufacturers assume one threshold for
everyone at every time during the experiment.

Setting individual thresholds can possibly improve fix-
ation detection, although there are some drawbacks. For
instance, in a study it could become difficult to tell whether
observed individual differences on the task reflect real
underlying differences, or an artifact of the different thresh-
old choices. Study results can depend on these threshold
choices. Shic et al. (2008) showed that using a different
threshold, but the same within groups, can result in the
(dis)appearance of an effect between these groups. The use
of individual thresholds also complicates the replication and
comparison of these studies (Nyström & Holmqvist, 2010).
Therefore, statistical criteria are needed to define threshold
values.

The literature offers several data-driven algorithms for
defining thresholds (e.g., Blignaut, 2009; Shic et al., 2008;
Nyström & Holmqvist, 2010). In a recent paper, Andersson,
Larsson, Holmqvist, Stridh, and Nyström (2016) compared
ten (mostly data-driven) algorithms with classification by
humans. The aim of their study was to find the best per-
forming algorithm, but they found large differences in
performance, making it difficult to determine the best.
Applied to static stimuli, the adaptive velocity-based algo-
rithm of Nyström and Holmqvist (2010) produced similar
fixation durations as trained human coders. On a sample-
to-sample basis, however, other algorithms performed well.
For instance, algorithms that use hidden Markov models
(Komogortsev, Gobert, Jayarathna, Koh, & Gowda, 2010),
a binocular-individual threshold (van der Lans, Wedel, &
Pieters, 2011) or a simple velocity threshold had also a close
match to the human coders. An algorithm that Andersson
et al. (2016) did not take into account is the algorithm devel-
oped by Mould, Foster, Amano, and Oakley (2012). This
velocity-based algorithm is completely data-driven, mean-
ing there is no need for initial starting values as in most
data-driven algorithms. The Mould et al. (2012) algorithm
is able to adapt itself to the quality of the data by increasing
velocity thresholds in low-quality data and lowering veloc-
ity thresholds in high-quality data. This algorithm makes
it possible to apply the same method to the data of all
participants, yet allowing for individual threshold estima-
tion. This algorithm is developed for use in adult studies
and not yet tested with infant data. Moreover, additional
processing of the data is needed to deal with specific data-
quality issues often observed in infants. As noise is a major
issue in infant eye-tracking, we used the Mould et al.
(2012) algorithm as a starting point for gazepath because
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this algorithm is explicitly designed to adjust thresholds
to noise in the data without specifying an initial starting
threshold.

Data quality

A typical case of infant eye-tracking data is much noisier
than adult eye-tracking data. Sampling point fluctuations are
larger in infants than adults and there are much more miss-
ing sampling points. This is caused by multiple factors, for
example, infants tend to make more head movements than
adults, causing instances of missing data as the eye-tracker
needs to re-identify the position of the head (Hessels et al.,
2015). Head movements may also make it difficult for the
eye-tracker to identify the eyes; for instance, the nostril may be
mistaken for the pupil, resulting in a signal moving between
the eye and the nostril. Furthermore, infants’ eyes can be
watery, resulting in flicker in the data where the signal
rapidly switches between on and off (Wass et al., 2014).

Figure 1 shows 8 s of raw eye-tracking data measured
with a Tobii eye-tracker (Tobii 1750, Tobii Technology,
Stockholm, Sweden). Time is plotted on the x-axis and the
x- and y-positions of the left and right eyes are plotted on
the y-axis. Data quality is characterized by precision and
robustness (Wass, Smith, & Johnson, 2013). Precision refers
to the sampling point fluctuations. In Fig. 1 the signal in
the purple circle shows large fluctuations, thus low preci-
sion. Robustness refers to sequences of missing data. When
there is a constant signal, robustness is high, but when the
signal flickers on and off, such as in the yellow circle in
Fig. 1, robustness is low. The horizontal colored sequences
below the left and right eye signals are the fixations that are
classified by the standard Tobii event-detection algorithm.
Each color change indicates a new fixation. In the purple
circle, where precision is low, four fixations are classified;
however by looking at the data, it seems more likely that

one long fixation took place. Because of the low precision,
the dispersion threshold of the Tobii algorithm is crossed
several times and new fixations are classified. This shows
how data quality can influence dependent variables such as
fixation durations. In line with this example, Wass et al.
(2014) found that data quality correlates with key dependent
variables, such as fixation durations. Lower data quality
goes hand in hand with shorter fixation durations. Further-
more, data quality is also affected by other variables, such
as age. Older infants have better data quality than younger
infants (Wass et al., 2014). This makes it hard to assess,
for instance, the relationship between fixation duration and
age, as it is also influenced by data quality (see Wass and
colleagues, 2013, 2014 and Hessels and colleagues, 2015
for a more detailed discussion on data quality in infant
eye-tracking.)

The relationship between data quality and dependent
variables has been identified as a problem in infant eye-
tracking studies, and several solutions have been offered.
Wass et al. (2013), for example, developed a parsing algo-
rithm that performs post hoc checks on the data. Fixa-
tions are only kept if they have incoming and outgoing
saccades. This is done to make sure fixation durations
are not affected by missing data instances. These algo-
rithms were used as the basis of GraFIX, a semiautomatic
approach for parsing eye-tracking data (de Urabain, John-
son, & Smith, 2015). A major advantage of GraFIX over
most other algorithms is that GraFIX comes with a graph-
ical user interface (GUI). This makes GraFIX also usable
for researchers who lack MATLAB skills. A downside,
however, is that GraFIX needs considerable user input. Fix-
ations are initially parsed automatically and can then be
manually adjusted. Despite these possible solutions, infant
eye-tracking studies reporting data quality and/or taking
measures to overcome the issues described here remain
scarce.
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Fig. 1 Example of low robustness and low precision in eye-tracking
data collected with a Tobii 60 Hz eye-tracker. The colored horizontal
line at y = 380, represents the fixations classified by the Tobii. When
the color switches, a new fixation is identified, it can be seen that low

data quality leads to identification of many short fixations. Also note
the puzzling instances around 100 and 7000 ms, where Tobii detects
fixations without any gaze data
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Current study

To summarize, standard eye-tracker manufacturer classifi-
cation methods provide no satisfactory solution to reliably
parse eye-tracking data of different populations, because
they do not allow individual threshold estimation. The algo-
rithms that use individual thresholds are not yet suited to
analyze infant eye-tracking data and the algorithms devel-
oped by Wass et al. (2013) and de Urabain et al. (2015)
to analyze infant data do not allow individual threshold
estimation. Furthermore, most of these approaches (except
GraFIX) are implemented in MATLAB, which is expensive
and requires advanced programming skills to use. In this
paper, we attempt to combine the best of both worlds into
a new eye-tracking parsing tool called gazepath. Gazepath
is an easy-to-use open-source software tool, implemented in
R (R Core Team, 2014). It comes with a GUI implemented
in the R-package shiny (RStudio Inc, 2015). Gazepath is
capable of dealing with low-quality eye-tracking data in
terms of robustness and precision, but is also well suited for
high-quality data. We show this by examining correlations
between data quality and outcome measures and assess-
ing the distribution of fixation durations when the gazepath
method is used, compared to the standard classification
methods. The functionality of gazepath will be illustrated
on different data sets; first, we show how gazepath per-
forms compared to the standard EyeLink classification on a
free-viewing data set of infants and adults. Second, we com-
pare gazepath performance with EyeLink performance on
an adult reading data set. Third, we illustrate how gazepath
performs on low sampled (60 Hz) infant experimental data
collected with a Tobii. These data sets are chosen to reflect
the data extremes obtained with eye-trackers. On the one
end of the spectrum, there is infant free-viewing, which
can be highly variable without any predictable patterns to
expect. On the other end, there is adult reading, a highly
automatic process with a very predictable pattern.

Gazepath method

The algorithm of Mould et al. (2012) is taken as basis for
the gazepath package. This algorithm is able to account
for individual differences by estimating a velocity threshold
for every individual and every trial in a data-driven man-
ner, thereby providing a perfect starting point to develop an
algorithm that can be used for different populations. The
algorithm also has some limitations, one of which concerns
the estimation of the duration threshold. Although the algo-
rithm is capable of doing this in a data-driven manner based
on initial fixation durations, the duration threshold is too
unreliable. We estimated the duration thresholds, leaving
out one data point for every estimation. What we observed

were threshold differences up to 50 ms. These are very large
differences that cannot be justified with only a single data
point difference. Another limitation is the ability to deal
with low robustness in the data. Consequently, instances of
missing data signal the end of a fixation, even if data is only
missing for a few milliseconds. In order to overcome these
limitations, we combined the Mould et al. (2012) algorithm
with the methods described by Wass et al. (2013) into the
R-package gazepath.

Gazepath pre-processing

The gazepath method uses a six-step procedure to prepro-
cess the data from raw samples into fixations and saccades.
These six steps are described below and visualized in Fig. 2.
First, raw data of the left and right eye are combined when
two eyes were tracked. This is done by calculating the mean
of the x- and y-coordinates. Missing data points from one
eye are interpolated with data points of the other eye when
possible. This is done to maximize the available data.

Second, the velocity threshold is estimated using exactly
the same method as the Mould et al. (2012) algorithm to
account for individual and trial-by-trial differences in preci-
sion. The velocity of the eye is calculated as the Euclidean
distance between preceding and succeeding points divided
by the time elapsed between them. Then, sampling points
with velocities higher than the preceding and succeeding
sampling point are classified as local maxima. The sec-
ond panel of Fig. 2 shows the distribution of local speed
maxima exceeding the threshold (gray histogram), com-
pared to a uniform null distribution (Tibshirani, Walther, &
Hastie, 2001) of local maxima exceeding the threshold (dot-
ted line). The difference between these two distributions
is given by the gap statistic (red line). This gap statistic
is smoothed with a locally weighted quadratic regression
(loess, Cleveland, 1979; Fan & Gijbels, 1996) with increas-
ing bandwidths until the gap statistic reaches one maximum.
This maximum is the velocity threshold.

Third, to account for low robustness, missing data
sequences shorter than a given threshold (default = 250 ms)
are interpolated. The default value is choosing so it is
unlikely a saccade took place, as saccades take approxi-
mately 200 ms to program (Nyström & Holmqvist, 2010).
This is only done when the velocity difference between the
last measured sample before the missing data and the first
measured sample after the missing data, does not exceed the
velocity threshold. This is done to make sure no saccade
took place during the loss of signal.

Fourth, data sequences of the interpolated data that are
below the velocity threshold are marked as possible fixa-
tions and data sequences above the velocity threshold are
marked as possible saccades. At this moment, it is still pos-
sible that there are fixations that are too short, because the
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Fig. 2 Example of all steps of the gazepath method. First, gaze coor-
dinates are combined when two eyes where tracked. Second, the speed
threshold is derived using the Mould et al. (2012) algorithm. Data
sequences that fall below the threshold, are marked as initial fixations
(see panel 3). Panel 3 also clearly shows the bad performance of ini-
tial parsing, as can be seen from the many short fixations that occur as

a result of data quality. The fourth step is to interpolate sequences of
missing data. Panel 4 shows this improves the classification a lot, but
there are still instances (blue circle), where fixations should be com-
bined. This is done in the fifth step, by combining successive fixations
that overlap in space. The sixth and final step involves the selection of
fixations that pass the duration threshold, which is often set to 100 ms

velocity threshold was crossed without an actual saccade
taking place.

Fifth, to correct these instances, a check is made for
successive fixations overlapping in space. This is done by
drawing a polygon around the fixations, and when two suc-
cessive fixations have overlapping polygons, the fixations
are merged into one fixation.

The sixth and final step is to remove short fixations. This
is done by setting the duration threshold, the default value
for which is 100 ms. Although the Mould et al. (2012)
algorithm offers a possibility to do this in a data-driven
manner, this requires a lot of data. In practice, especially
in infant studies, there are rarely enough data to reliably
estimate the duration threshold. For the final classification,
the effect of the duration threshold is also limited, since

relatively few fixations fall in the interval of 50–150 ms.
Given these considerations, we decided to set the duration
threshold manually.

Using gazepath

This section describes the procedure to use gazepath.
Gazepath is implemented in R (R Core Team, 2014) and there-
fore requires the installation of R before gazepath can be used.
In R, gazepath can be installed by running the commands:

install.packages(‘gazepath’, dependencies = TRUE)

library(‘gazepath’)

Gazepath can be used from the R command line, but there
is also a Shiny (RStudio Inc, 2015) application that provides
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gazepath with a GUI, which can be opened in a web browser
with the command:

GUI()

Here we use the Shiny app to illustrate the use of gazepath.
First, the data are loaded; second, parsing takes place
using the procedure described above; third, the data can be

visualized; and fourth, the fixations can be downloaded (see
Fig. 3).

After opening the application, the data must be loaded.
Typically, eye-trackers generate text files with the raw data
for every individual, and gazepath uses these files as input.
As these text files can be formatted differently, there are sev-
eral options to make sure the data are loaded correctly, such

1. Load data 2. Analyze data

3. Visualize data

4. Download data

Fig. 3 Illustration of the four-step procedure to parse fixations and saccades via the gazepath Shiny app
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as different missing data strings and separation operators.
On the right side of the screen, the top and bottom rows
of the data file appear, and it is easy to check if the data
are loaded correctly, i.e., if every point has its own cell in
the data-frame. It is possible to load data of multiple par-
ticipants, so the whole analysis can be conducted at once.
However, loading multiple data sets requires all data sets
to be formatted exactly the same way, i.e., having the same
variable names, separation operators, etc.

Once the data are loaded, the next step is to provide
gazepath with the information needed to run the analyses.
From the uploaded data, gazepath needs at least the variable
names of the x- and y-coordinates, distance to the screen
and trial index. When two eyes are tracked, as is com-
mon with many trackers, the x- and y-coordinates and the
distance to the screen of the other eye can also be spec-
ified. Furthermore, gazepath needs information about the
screen dimensions in pixels and the stimulus dimensions in
both pixels and mm (when stimuli presentation is not full
screen, it is assumed that stimuli are presented in the mid-
dle). Finally, it is mandatory to specify the sampling rate
and choose a parsing method. The best available methods
are the gazepath and Mould methods, as described above.
It is also possible to select the MouldDur method, which
uses a fixed-duration threshold (default = 100 ms), the dis-
persion method, which is an implementation of the Tobii
algorithm described in the Clearview 2.7 manual (Tobii
Eye Tracker User Manual, 2006), and the velocity method,
which fixes the velocity threshold at 35 deg/s and the dura-
tion threshold at 100 ms. It is not recommended to use the
last two methods. These methods are only implemented to
ease comparison with simple parsing methods. Apart from
the mandatory input, gazepath can keep other variables from
the raw data, such as condition, age, stimuli, etc. These extra
variables can only have a single value per trial, i.e., if dif-
ferent stimuli appear during one trial, the stimuli variable
cannot be kept.

When all input parameters are set, the go button can be
clicked to start the analysis. When there are multiple data
sets loaded, this can take some time, and in the top right
corner progress is displayed. It takes approximately 3 s to
parse 1 min of 500-Hz data.1 After running the analyses,
gazepath displays the top of the output file next to the input
parameters. Now the data can be visualized. Fixations per
participant per trial are displayed under visualize parsing,
as seen in the middle of Fig. 3. The left screen plots the
raw x- and y-coordinate overlaid with the order and position
of fixations indicated by letters, the top right screen dis-
plays the raw x- and y-coordinates as the function of time

1laptop: SONY VAIO VPCEH3N1E, Intel Core i5-2450M Processor,
2.50 GHz, 4GB

and shows the fixations in green. The bottom right screen
shows the speed in deg/s as a function of time with the
velocity threshold in red. By clicking visualize threshold the
velocity thresholds obtained for each individual on every
trial are displayed. As estimation of the velocity threshold
requires at least some data, some trials cannot be selected
to inspect. This implies that there were not enough data
to estimate a threshold in that trial. Finally, the fixations
can also be visualized on the stimuli. Under the visualize
stimuli tab, it is possible to upload the stimuli and plot fixa-
tions per participant per trial to inspect individual scanning
patterns.

The final data can be downloaded as a .csv file, which
can be used to further analyze the data. The data can be
obtained in four forms, (1) all parsed fixations and sac-
cades, (2) fixations only, (3) only complete fixations and
saccades, i.e., fixations that have in- and outgoing saccades
and saccades that are between two fixations, and (4) only
complete fixations. The last two options can be selected to
make sure all fixations and saccades are ‘true’ fixations and
saccades; however, in noisy data this could result in much
fewer data points. The fixations-only option can be useful,
as most researchers are only interested in fixations. To close
gazepath, simply close the browser and press esc in R to
close the R process. The columns of the output data frame
are ordered as follows:

Participant the participant by the name of the
data file.

Value whether a fixation (f) or saccade (s)
is classified.

Duration the duration of the fixation or sac-
cade in milliseconds.

Start and End the start and end time in milliseconds
of the fixations and saccades from
the start of that trial.

mean x and mean y the mean x- and y-coordinates in pix-
els of fixations and saccades (note
that this measure is only meaningful
for fixations).

sdPOGsacAMP the standard deviation in point of
gaze (for fixations) and the saccade
amplitude in degrees of visual angle
(for saccades).

RMS the root mean square (RMS) within
each fixation.

Order the order of fixations and saccades
within trials

Trial the trial index.
* When additional variables are kept

from the original data, these vari-
ables appear after the last variable.
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Free-viewing data example

The performance of the gazepath method is examined in a
free-viewing data set of infants and adults. This is an exist-
ing data set that is published elsewhere (Van Renswoude
et al., 2016).

Participants

Infant participants were recruited from Los Angeles County
birth records. Adult participants were recruited through the
University of California, Los Angeles subject pool and
were given course credit for participating. Sixty-two infants
(Mage = 9 months, range = 3–15) and 47 adults saw
28 real-world scenes for 4s each on a 17-inch computer
monitor, which subtended an approximate 27◦ × 34◦ visual
angle. Eye movements were recorded with an EyeLink eye-
tracker (SR Research Ltd., Ontario, Canada) that sampled
at 500 Hz. Prior to data collection, a five-point calibration
scheme was used to calibrate each participant’s point of
gaze. The calibration procedure was repeated if necessary
until the recorded point of gaze was within 1◦ of the center
of the target.

Descriptives

Fixations were detected by the gazepath method of the
gazepath R-package and using the default settings of the
EyeLink. Fixation durations typically show a right-skewed
distribution, therefore the median fixation duration pro-
vides a more reliable measure than the mean (Helo, Pan-
nasch, Sirri, & Raemae, 2014; Velichkovsky, Dornhoefer,
Pannasch, & Unema, 2000). Figure 4 shows the distribu-
tions of the infant and adult free-viewing data parsed with
the standard EyeLink and gazepath methods. Although the
distributions look similar, there are some differences. The
most striking difference is that fixations parsed by the stan-
dard EyeLink method are longer than the fixations parsed
by gazepath. Another difference is the number of fixations.
In adults, the gazepath method results in approximately 10%
more fixations than the EyeLink method, whereas in infants
the difference is only 1% and in the opposite direction.

In order to get a better understanding of these differ-
ences and to test the significance of these observations, the
mean number of fixations and the median fixation dura-
tions were calculated for each participant. Figure 5 shows
the boxplots of these means and medians for the infants
and adults parsed by the gazepath and EyeLink methods.
A factorial mixed ANOVA revealed an interaction effect
between group (infant or adult) and method (gazepath or
EyeLink) on the mean number of fixations, F(1, 107) =
29.23, p < 0.001. For infants, there was no difference

in the mean number of fixations classified by the Eye-
Link and gazepath method, whereas for adults the gazepath
method classified more fixations than the EyeLink method.
The median fixation duration differed between methods,
F(1, 107) = 108.75, p < 0.001. Fixations parsed using
the gazepath method were shorter than fixations parsed with
the EyeLink method. This difference was similar for infants
and adults as there was no interaction effect between group
and method for the median fixation durations, F(1, 107) =
0.73, p = 0.396.

Performance in adult data

For adults, these findings make sense, when fixations are
shorter, more fixations can be made in the same time frame.
This would imply that some fixations that are classified
using the EyeLink method are split into two or more fixa-
tions using the gazepath method. This is likely, as gazepath
sets the velocity threshold for every individual and every
trial separately and lower thresholds would result in more
fixations. To see if this is indeed what happened, we
checked, for every fixation, for the possibility that the other
method split that fixation.

Figure 6 provides a real data example wherein the let-
ter S denotes saccades that led to splits. Here the gazepath
fixations are identified as not being split, because every fixa-
tion also has one fixation classified by the EyeLink method.
The first two EyeLink fixations are identified as being split
because the gazepath method identified two fixations during
the time frame of these fixations. Of the 10,764 gazepath
fixations, only nine were split and only one fixation was not
classified in the EyeLink method. Of the 10,867 EyeLink
fixations, 1417 were split into 1738 extra fixations and 332
were not classified in the gazepath method. This explains
the differences in the number of fixations between the two
methods.

Answering the question of which method provides the
best classification method is difficult, because it is impos-
sible to establish a clear ground truth from the eye-tracking
signal alone. Often classification by human experts is taken
as the best available benchmark (e.g., Andersson et al.,
2016). In order to get some insight into this question, we
examined all trials in which there were one or more splits.
Figure 6 shows two of these trials that are typical for what
we observed. It can be seen that the gazepath method is
more sensitive to small saccades (highlighted with S), which
leads to more and shorter fixations being classified. Inspec-
tion of these trials also showed that most of the time the
splits made in the gazepath method are easily observable
by looking at the data, as is the case in these examples.
However, we also observed trials where the splits were less
prominent.
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Fig. 4 Distribution of fixation durations classified with the gazepath and EyeLink methods for free-viewing data of infants and adults. The
distributions are plotted over a 100–1000-ms interval, whereas there are also some longer fixations classified

Performance on infant data

For infants, the relationship between the number of fixa-
tions and the fixation duration is less clear than in adults.
Infants also showed shorter median fixation durations when
gazepath was used to parse the data compared to EyeLink,
but the two methods produced a similar number of fixa-
tions. However, Fig. 5 also shows that there is more variance
in the number of fixations classified using the gazepath
method than the EyeLink method. This implies that for

some infants, gazepath classified fewer fixations than Eye-
Link, but for others more. This is in line with the findings
of the split fixations. Of the 15,368 gazepath fixations, 100
were split and 27 fixations were not classified in the Eye-
Link method. Of the 13,972 EyeLink fixations, 842 were
split into 1005 extra fixations and 1017 were not classified
in the gazepath method.

Ideally, the fixations that are split are the fixations
in higher-quality data, whereas the fixations that are not
classified with the gazepath method are mostly found in
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EyeLink method for free-viewing data of infants and adults
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Fig. 6 Example of gazepath and EyeLink classification of fixation. S denotes instances where a small saccade took place that is missed by
EyeLink, but picked up by gazepath

low-quality data. In order to see if this is indeed the case,
data quality were quantified in terms of robustness and pre-
cision. Robustness was calculated as the mean length of raw
data segments per trial. Infants who stay focused, have long
data segments, providing a robust measure, whereas infants
who look away and move a lot have many more missing data
points and therefore short data segments, providing a less
robust measure. To obtain the precision measure, the sig-
nal was smoothed by calculating mean x- and y-coordinates
over 100-ms time windows. Precision of a trial is the mean
of the mean difference between the smoothed and raw data
in each time window. Low values indicate high precision
and vice versa.

Correlations between data quality and fixation durations
can give an indication of parsing performance. These corre-
lations are often observed in infant data (Wass et al., 2013,
2014) and are considered problematic. As described in the
introduction, these correlations can occur because poor data
quality can lead to spurious short fixations. The top left
panel of Fig. 7 shows the correlation (r = −.52, r = −.31
without the outlier) between precision and median fixa-
tion durations classified with EyeLink. The top right panel

shows the correlation (r = .36, r = .31 without the out-
lier) between robustness and median fixation duration of
the EyeLink classification. These correlations are signif-
icant and in the expected direction. Poor data quality is
associated with shorter fixation durations when the standard
EyeLink is used. The bottom left and bottom right panel
show that the fixations classified with the gazepath method
have correlations that are non-significant and are closer to
zero. To test if these dependent correlations do indeed dif-
fer, we used a Williams test (Steiger, 1980), as implemented
in R-package psych. The Williams test showed that the cor-
relations between median fixation duration and precision
for the gazepath and EyeLink classification differed signif-
icantly with the outlier (t (59) = 6.52, p < 0.001) and
without the outlier (t (58) = 5.84, p < 0.001). For robust-
ness, similar results were obtained; the correlations between
median fixation duration and robustness for the gazepath
and EyeLink classification differed significantly with the
outlier (t (59) = −3.96, p < 0.001) and without the outlier
(t (58) = −3.82, p < 0.001). These results imply that the
individual threshold estimation and post hoc checks that are
implemented in the gazepath method work well.
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Fig. 7 Example of data-quality measures robustness and precision and
their correlations with median fixation durations classified using the
EyeLink (EL) and gazepath (GP) method. Fixation durations classi-
fied by gazepath have no correlation with data quality, whereas these

correlations are present with the EyeLink classification. In red, the cor-
relations without the outlier are shown. The outlier is marked in black,
which is the same data point in all plots

To illustrate the performance of gazepath, Fig. 8 shows
two trials that are typical for what we observed in the tri-
als with split fixations. The top panel shows instances of
interpolated short missing data sequences when the X and
Y position did not change (highlighted with M). The bot-
tom panel shows a trial with very noisy data, and it can
be seen that EyeLink identified multiple short fixations,
whereas gazepath combined these into one larger fixation
(highlighted with N). Although the bottom panel illustrates
the working of gazepath, the data are extremely noisy and
should probably be excluded from further data analyses.

Conclusion free-viewing data

In this section, we showed that gazepath performs well
for both infant and adult data. In high-quality adult data,
gazepath lowers its thresholds and is able to pick up more
fixations than the standard EyeLink method. In infant data,
gazepath does the same when the infant data are of good
quality, but it can also combine fixations, when low data
quality or signal loss results in spuriously short fixations.
Despite the good performance of gazepath, there is rea-
son to be cautious. That is, the data sets analyzed here
are the same data sets that were used to develop gazepath.
It is therefore important to also examine the performance
on new data sets. We selected an adult reading data set

and a experimental infant data set to further examine the
performance of gazepath.

Adult reading data

To test the performance of gazepath on a data set with very
different characteristics, we selected a data set of an adult
reading study. A part of this data is published in experi-
ment 2 of Koornneef, Dotlacil, van den Broek, and Sanders
(2016). Reading is a highly automatic process, with pre-
dictable fixation and saccade patterns, which may make it
easier to set a fixed velocity threshold. In line with what we
observed in the free-viewing data, we expected gazepath to
classify more and shorter fixations than the standard Eye-
Link method, as the individual threshold estimation allows
gazepath to be more sensitive to detect short fixations.

Participants

Sixty-five adults (Mage = 25.0 years, range = 18–68) par-
ticipated in a reading study at Utrecht University and were
paid for participating. They read 88 short texts that were
4–5 lines long. Their eye movements were measured with
a EyeLink (SR Research Ltd., Ontario, Canada) eye-tracker
that sampled at 500 Hz.
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Fig. 8 Example of gazepath and EyeLink classification for infant data. The top panel shows instances where data are interpolated (M). The
bottom panel shows extremely noisy data where gazepath combines multiple EyeLink fixations into one fixation (N)

Results

Figure 9 shows the distributions of the adult reading data
parsed with the standard EyeLink and gazepath methods in
the upper panels. The lower panels show boxplots of the
mean number of fixations and median fixation durations per
participant. As expected, paired-samples t tests showed that
the gazepath method classified more (t (64) = −96.58, p <

0.001) and shorter (t (64) = 14.37, p < 0.001) fixations
than the EyeLink method.

These results imply that some fixations that are classi-
fied using the EyeLink method are split into two or more
fixations using the gazepath method, as was the case in the
free-viewing data. To check if this is indeed what happened,
we again verified for every fixation if the other method split
that fixation.

Of the 188,372 gazepath fixations, only 63 were split
and only 41 fixations were not classified in the EyeLink
method. Of the 182,094 EyeLink fixations, 8926 were split
into 9518 extra fixations and 3215 were not classified in the

gazepath method. The shorter median fixation durations of
the gazepath method compared to the EyeLink method can
partly be explained by these splits. That is, gazepath clas-
sifies more fixations, leading to shorter fixation durations
on average. However, less than 5% of the EyeLink fixations
were split and therefore these splits cannot fully account for
the difference. This means that there may be another dif-
ference between the two methods that also accounts for the
difference in median fixation durations. For instance, there
may be a difference in onset and offset times of fixations
between the gazepath and EyeLink method.

To test for these differences, we selected trials (14%, N =
29499) that had no splits for both methods and had the
exact same number of fixations. In these trials, all classi-
fied fixations are very similar and the only difference can
occur in onset and offset times. In this subset of the data,
we also found that gazepath had shorter median fixation
durations (182) than EyeLink (194). This difference is pri-
marily driven by later onset times of the fixations classified
with gazepath compared to EyeLink. Figure 10 shows the
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Fig. 9 The top panels show the distribution of fixation durations classified with the EyeLink (EL) and gazepath (GP) method for reading data
of adults. The distributions are plotted over the 100–1000-ms interval, whereas there are also some longer fixations classified. The bottom panels
show boxplots of mean number of fixations per participant (left) and median fixation duration (right)

distribution of the differences between the start (left panel)
and end times (right panel) of fixations classified using the
EyeLink and gazepath method. The EyeLink fixations start
earlier, whereas the end times are very similar.

Gazepath performance

To get a better understanding of the overall performance of
gazepath, we again inspected the trials that had split fixa-
tions. We observed similar patterns as in the free-viewing

data of adults; gazepath is more sensitive than EyeLink to
small saccades. For eye-tracking data related to reading, this
can be a very useful property because saccades opposite
to the reading direction are often studied. These saccades
are called regressive saccades (Bicknell & Levy, 2011) and
can have different interpretations. For instance, readers may
miss the optimal viewing position of a word and correct with
a regressive saccade (Rayner, Schotter, Masson, Potter, &
Treiman, 2016). Regressions can also indicate difficulty to
process a word (Vitu, McConkie, & Zola, 1998), or indicate
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Fig. 10 Differences (EyeLink - gazepath) between the start and end times of the same fixations, classified with EyeLink and gazepath. Both
histograms are zoomed in to highlight differences around zero and show 99% of the data
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failure to integrate a word within the context of a sen-
tence (Frazier & Rayner, 1982). Figure 11 shows three of
these instances (highlighted with R) where EyeLink missed
a small regressive saccade that was picked up by gazepath.

Conclusion reading data

EyeLink and gazepath produce very similar results when pars-
ing adult reading data. The main difference lies in gazepath’s
ability to pick up small saccades, something that can be
very useful in reading studies. Another difference is that
the fixations classified with gazepath are a bit shorter than
fixations classified with EyeLink. This is caused by later
onset times of gazepath fixations, although it is difficult
to draw conclusions about one method being better than
the other, as it is impossible to decide which is the ‘cor-
rect’ classification based on the eye-tracking signal alone.
Overall, gazepath and EyeLink work well and produce

similar results. An advantage of gazepath over EyeLink
is when researchers are interested in small regressive
saccades.

Infant experimental data

To test the performance of gazepath on data of a different
eye-tracker with a lower sample rate (60 Hz) and dynamic
instead of static stimuli, we selected a data set of an infant
experimental study using a Tobii eye-tracker. The combina-
tion of infants, a low sample rate and dynamic stimuli makes
it likely that data is noisy. In line with what we observed
in the infant free-viewing data, we expected gazepath to
classify shorter fixations than the standard Tobii method.
Given the expected noise in the data, we also expected
gazepath to classify fewer fixations than the standard Tobii
method, since the individual threshold estimation and post
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Fig. 11 Two examples of gazepath and EyeLink classification for
adult reading data. The reading pattern is clearly visible as the eye is
stable on the y-axis and moves progressively higher (to the right) over
the x-axis until the end of a sentence where a large saccade to the

start of a new sentence is made. Overall, classification is very similar,
although gazepath is more sensitive to detect small saccades. This can
be useful for reading data as saccades in the opposite direction (R) of
the reading direction (regressive saccades) are often studied
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Fig. 12 Distribution of fixation durations classified with the gazepath (GP) and Tobii (TB) method for experimental data of infants. The
distributions are plotted over a 100–1000-ms interval, whereas there are also some longer fixations classified

hoc checks allow gazepath to be more conservative to
classify fixations in noisy data. For the same reason, we
also expected to see correlations between data quality and
median fixation durations classified with the Tobii method,
but not with the gazepath method.

Participants and design

The Tobii data were provided by 127 infants (Mage = 11
months, range = 10–12) who participated in a categori-
cal learning study at Radboud University Nijmegen. They
saw dynamic stimuli2 of a red ball moving to the left,
or a blue ball moving to the right. The ball ended up in
a cup and a reward (a small flickering chick making a
whistling sound) was shown. All infants saw 20 trials of 8
s each, on a 17-inch computer monitor, which subtended an
approximate 27◦ × 34◦ visual angle. Eye movements were
recorded with a Tobii eye-tracker (Tobii 1750, Tobii Tech-
nology, Stockholm, Sweden) that sampled at 60 Hz. Prior to

2The use of dynamic stimuli may have introduced smooth pursuit eye
movements, rather than fixations and saccades only. To assess the mag-
nitude of this possible confound, the Supplemental Materials provide
the same analysis described here, without data points obtained during
the dynamic part of the stimuli. In general, the analyses show similar
results and overall conclusions remain the same.

data collection, a nine-point calibration scheme was used to
calibrate each participant’s point of gaze.

Results

Figure 12 shows the distributions of the infant experimental
data parsed with the standard Tobii and gazepath methods in
the upper panels. The lower panels show the boxplots with
the mean number of fixations and median fixation dura-
tions per participant. Paired-samples t tests showed that the
gazepath method classified fewer (t(126) = 13.41, p <

0.001), but not shorter (t(126) = −0.93, p = 0.356)
fixations than the Tobii method. Of the 17,700 gazepath
fixations, 902 were split into 1245 extra fixations and 133
fixations were not classified in the Tobii method. Of the
26,691 Tobii fixations, 1406 were split into 1647 extra fix-
ations and 9600 were not classified in the gazepath method.
The distribution of the Tobii fixations (Fig. 12) is oddly
shaped, with many very short fixations compared to the
distribution of gazepath fixations.

Gazepath performance

In the infant free-viewing data, we observed correlations
between data quality and median fixation duration using
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Fig. 13 Example of data-quality measures precision and robust-
ness and their correlations with median fixation durations classified
using the gazepath (GP) method and Tobii (TB) method. Gazepath

classifies more fixations in higher quality data and has lower correla-
tions between data quality and median fixation duration than the Tobii
classification

the standard EyeLink classification method. These prob-
lematic correlations (Wass et al., 2014) were also found
with the standard Tobii classification method. The upper
panels of Fig. 13 show that lower precision and robust-
ness are strongly correlated with fixation durations (r =
−.44, p < 0.001 & r = .55, p < 0.001, respectively).
The lower panels of Fig. 13 show that the correlation
between median fixation duration and precision becomes
non-significant (r = −.13, p = 0.143) and that the cor-
relation between fixation duration and robustness becomes
smaller (r = .24, p = 0.007) when gazepath is used to
detect fixations. A Williams test confirmed that these cor-
relations between median fixation duration of the gazepath
and Tobii classification differed significantly for both preci-
sion (t(124) = 3.67, p < 0.001) and robustness (t(124) =
−3.91, p < 0.001). This is a strong indication that the
gazepath method is able to detect fixations with higher
accuracy than the standard Tobii method.

To verify that the correlations between data quality and
fixation durations disappeared because gazepath (1) com-
bined fixations that should not be split and (2) correctly
did not classify the 9000 fixations that were classified
by Tobii, we inspected the trials that had split fixations.
Figure 14 shows two trials that were typical for what we
observed. There were instances where gazepath classified

longer fixations, whereas Tobii classified multiple short
fixations (A, B, C, & D). It is difficult to tell what clas-
sification is better, given the noise in the data. Sometimes
gazepath seems too conservative; for instance B is likely
two multiple fixations, instead of the one gazepath classi-
fied. The lower panel of Fig. 14 shows that gazepath does a
much better job than Tobii in not classifying fixations when
there is a loss of signal (E) and extreme noise in the data
(F).

Conclusion infant experimental data

In this section, we showed that gazepath also performs well
in low-sampled (60 Hz), noisy infant data. The main ben-
efit of using the gazepath method over the standard Tobii
method lies in the fact that gazepath classifies far fewer fix-
ations than Tobii. Tobii misclassified around 9000 fixations,
leading to spurious correlations between fixation durations
and data quality. Gazepath lowered these correlations, but
could not fully account for them, as was the case in the
infant free-viewing data. Finally, it seems that gazepath
might still be too conservative in classifying fixations, as it
remains unclear whether most long fixations classified with
gazepath reflect one real underlying fixations or are actually
multiple fixations.



Behav Res

0 2000 4000 6000 8000

Time (msec.)

800

400

0

0

400

800

1200

S
p
e
e
d
 (

D
e
g
/s

)
P

o
s
it
io

n
 (

p
ix

e
ls

)

X−coordinates Y−coordinates Gazepath Fixations Tobii Fixations Speed

A B C D

0 2000 4000 6000 8000

Time (msec.)

800

400

0

0

400

800

1200

S
p
e
e
d
 (

D
e
g
/s

)
P

o
s
it
io

n
 (

p
ix

e
ls

)

X−coordinates Y−coordinates Gazepath Fixations Tobii Fixations Speed

E F

Fig. 14 Two examples of gazepath and Tobii classification for infant
data. The upper panel shows instances where gazepath identifies
longer fixations, whereas Tobii identifies multiple short fixations (A,
B, C & D). It is difficult to tell which method performed better, due
to the large amount of noise. It seems that A, C, and D could be a sin-
gle fixation as classified by gazepath, but they could also be multiple

fixations as classified by Tobii. B is likely a double fixation that is cor-
rectly identified by Tobii, but not by gazepath. The lower panel shows
instances (E & F) where Tobii identified fixations while there is a loss
of signal from one eye (E) and extreme noise (F), and here it is clear
gazepath outperforms Tobii by not classifying any fixations

General conclusion

The aim of this project was to develop an easy-to-use eye-
tracking data parsing tool that can be used to parse both
low- and high-quality data into fixations and saccades. With
the infant free-viewing data we showed how gazepath con-
trolled for low-quality data in infants by reducing spurious
correlations between fixation durations and data quality.
The adult free-viewing data showed that gazepath is more
sensitive than the standard EyeLink method in picking up
small fixations. This finding was corroborated in the reading
data set, for which we showed that gazepath can iden-
tify small fixations that are left undetected by the EyeLink
method. This can be useful because small regressive sac-
cades might be of interest in linguistic studies. Finally, we

showed that gazepath also works well when parsing noisy
infant data measured with a low sample rate eye-tracker and
dynamic instead of static stimuli. Although gazepath seems
conservative in setting its threshold, leading to (possibly
too) long fixations, gazepath classified fixations better than
the standard Tobii method. The largest benefit of gazepath is
leaving out fixations that the Tobii method classified during
loss of signal and extreme noise.

The analyses show that gazepath provides a useful tool
for parsing both low- and high-quality eye-tracking data.
However, it is important to note that gazepath cannot turn
low-quality data into a sequence of fixations and sac-
cades that can be interpreted perfectly. It is important that
researchers inspect the data and make sensible choices about
whether data can be interpreted, or data quality is too
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low. Gazepath’s GUI provides the user with an interface to
inspect the data of all participants and trials. This makes
it easy to inspect the trials with abnormally high veloc-
ity thresholds or low robustness and precision. Moreover,
by providing these data-quality measures directly, gazepath
makes it also easier to report such measures, something
rarely seen in the literature (Hessels et al., 2015).

The gazepath method presented in this paper combines
the best of several methods into one R-package. The data-
driven non-parametric Mould et al. (2012) algorithm is
taken as a basis to account for individual differences in data
quality and looking behavior. Furthermore, modified ver-
sions of the algorithms developed by Wass et al. (2013)
are used to make gazepath capable of dealing with noise
typical in infant data. Finally, gazepath is implemented in
R (R Core Team, 2014), which is open-source software.
Since gazepath comes with a Shiny app to provide a GUI,
researchers can decide for themselves whether they like
scripting or clicking.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

Andersson, R., Larsson, L., Holmqvist, K., Stridh, M., & Nyström, M.
(2016). One algorithm to rule them all? An evaluation and discus-
sion of ten eye movement event-detection algorithms. Behavior
Research Methods, 1–22.

Bicknell, K., & Levy, R. (2011). Why readers regress to previous
words: A statistical analysis. In Proceedings of the 33rd annual
meeting of the Cognitive Science Society (pp. 931–936).

Blignaut, P. (2009). Fixation identification: The optimum threshold for
a dispersion algorithm. Attention, Perception, and Psychophysics,
71(4), 881–895.

Cleveland, W. S. (1979). Robust locally weighted regression and
smoothing scatterplots. Journal of the American Statistical Asso-
ciation, 74(368), 829–836.

de Urabain, I. R. S., Johnson, M. H., & Smith, T. J. (2015). Grafix:
A semiautomatic approach for parsing low-and high-quality eye-
tracking data. Behavior Research Methods, 47(1), 53–72.

Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its appli-
cations: Monographs on statistics and applied probability 66 (vol.
66). CRC Press.

Frazier, L., & Rayner, K. (1982). Making and correcting errors dur-
ing sentence comprehension: Eye movements in the analysis of
structurally ambiguous sentences. Cognitive Psychology, 14(2),
178–210.

Gredebäck, G., Johnson, S., & von Hofsten, C. (2009). Eye tracking in
infancy research. Developmental Neuropsychology, 35(1), 1–19.

Helo, A., Pannasch, S., Sirri, L., & Raemae, P. (2014). The matura-
tion of eye movement behavior: Scene viewing characteristics in
children and adults. Vision Research, 103, 83–91.

Henderson, J. M. (2003). Human gaze control during real-world scene
perception. Trends in Cognitive Sciences, 7(11), 498–504.

Hessels, R. S., Andersson, R., Hooge, I. T., Nyström, M., & Kemner,
C. (2015). Consequences of eye color, positioning, and head move-
ment for eye-tracking data quality in infant research. Infancy,
20(6), 601–633.

Hutzler, F., & Wimmer, H. (2004). Eye movements of dyslexic chil-
dren when reading in a regular orthography. Brain and Language,
89(1), 235–242.

Karatekin, C. (2007). Eye-tracking studies of normative and atypical
development. Developmental Review, 27(3), 283–348.

Karatekin, C., & Asarnow, R. F. (1999). Exploratory eye move-
ments to pictures in childhood-onset schizophrenia and attention-
deficit/hyperactivity disorder (ADHD). Journal of Abnormal
Child Psychology, 27(1), 35–49.

Komogortsev, O. V., Gobert, D. V., Jayarathna, S., Koh, D. H., &
Gowda, S. M. (2010). Standardization of automated analyses of
oculomotor fixation and saccadic behaviors. IEEE Transactions on
Biomedical Engineering, 57(11), 2635–2645.

Koornneef, A., Dotlacil, J., van den Broek, P., & Sanders, T. (2016).
The influence of linguistic and cognitive factors on the time
course of verb-based implicit causality. The Quarterly Journal of
Experimental Psychology, 69(3), 455–481.

Matin, E. (1974). Saccadic suppression: a review and an analysis.
Psychological Bulletin, 81(12), 899.

Mould, M. S., Foster, D. H., Amano, K., & Oakley, J. P. (2012). A
simple nonparametric method for classifying eye fixations. Vision
Research, 57, 18–25.

Nyström, M., & Holmqvist, K. (2010). An adaptive algorithm for fixa-
tion, saccade, and glissade detection in eyetracking data. Behavior
Research Methods, 42(1), 188–204.

Paterson, K. B., McGowan, V. A., & Jordan, T. R. (2013). Filtered
text reveals adult age differences in reading: Evidence from eye
movements. Psychology and Aging, 28(2), 352.

R Core Team (2014). R: a language and environment for statis-
tical computing. Vienna, Austria. Retrieved from http://www.
R-project.org/

Rayner, K., Reichle, E. D., Stroud, M. J., Williams, C. C., & Pollatsek,
A. (2006). The effect of word frequency, word predictability, and
font difficulty on the eye movements of young and older readers.
Psychology and Aging, 21(3), 448.

Rayner, K., Castelhano, M. S., & Yang, J. (2009). Eye movements and
the perceptual span in older and younger readers. Psychology and
Aging, 24(3), 755.

Rayner, K., Schotter, E. R., Masson, M. E., Potter, M. C., & Treiman,
R. (2016). So much to read, so little time how do we read, and can
speed reading help? Psychological Science in the Public Interest,
17(1), 4–34.

Reichle, E. D., Liversedge, S. P., Drieghe, D., Blythe, H. I., Joseph,
H. S., White, S. J., & Rayner, K. (2013). Using E-Z Reader to
examine the concurrent development of eye-movement control and
reading skill. Developmental Review, 33(2), 110–149.

Riby, D. M., & Hancock, P. J. (2008). Viewing it differently: Social
scene perception in Williams syndrome and autism. Neuropsy-
chologia, 46(11), 2855–2860.

RStudio Inc (2015). Easy web applications in R. [computer software
manual]. http://www.rstudio.com/shiny/.

Shic, F., Scassellati, B., & Chawarska, K. (2008). The incomplete
fixation measure. In Proceedings of the 2008 symposium on eye
tracking research & applications (pp. 111–114).

Steiger, J. H. (1980). Tests for comparing elements of a correlation
matrix. Psychological Bulletin, 87(2), 245.

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number
of clusters in a data set via the gap statistic. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 63(2), 411–423.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.R-project.org/
http://www.R-project.org/
http://www.rstudio.com/shiny/


Behav Res

Tobii Eye Tracker User Manual (2006). Clearview analysis software.
Tobii technology AB.

van der Lans, R., Wedel, M., & Pieters, R. (2011). Defining eye-
fixation sequences across individuals and tasks: the binocular-
individual threshold (bit) algorithm. Behavior Research Methods,
43(1), 239–257.

Van Renswoude, D., Johnson, S., Raijmakers, M., & Visser, I. (2016).
Do infants have the horizontal bias? Infant Behavior and Develop-
ment, 44, 38–48.

Velichkovsky, B. M., Dornhoefer, S. M., Pannasch, S., & Unema,
P. J. (2000). Visual fixations and level of attentional processing.
In Proceedings of the 2000 symposium on eye tracking research &
applications (pp. 79–85).

Vitu, F., McConkie, G., & Zola, D. (1998). About regressive saccades
in reading and their relation to word identification. Eye Guidance
in Reading and Scene Perception, (pp. 101–124).

Wass, S. V., Smith, T. J., & Johnson, M. H. (2013). Parsing eye-
tracking data of variable quality to provide accurate fixation dura-
tion estimates in infants and adults. Behavior Research Methods,
45(1), 229–250.

Wass, S. V., Forssman, L., & Leppänen, J. (2014). Robustness and pre-
cision: How data quality may influence key dependent variables in
infant eye-tracker analyses. Infancy, 19(5), 427–460.

Wass, S. V., Jones, E. J., Gliga, T., Smith, T. J., Charman, T., &
Johnson, M. H. (2015). Shorter spontaneous fixation durations in
infants with later emerging autism. Scientific Reports, 5.


	Gazepath: An eye-tracking analysis tool that accounts for individual differences and data quality
	Abstract
	Introduction
	Individual differences
	Data quality
	Current study

	Gazepath method
	Gazepath pre-processing
	Using gazepath

	Free-viewing data example
	Participants
	Descriptives
	Performance in adult data
	Performance on infant data
	Conclusion free-viewing data

	Adult reading data
	Participants
	Results
	Gazepath performance
	Conclusion reading data

	Infant experimental data
	Participants and design
	Results
	Gazepath performance
	Conclusion infant experimental data

	General conclusion
	Open Access
	References


