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Abstract

Breaking of equivalence between the microcanonical ensemble and the canonical en-
semble, describing a large system subject to hard and soft constraints, respectively, was
recently shown to occur in large random graphs. Hard constraints must be met by every
graph, soft constraints must be met only on average, subject to maximal entropy. In
Squartini, de Mol, den Hollander and Garlaschelli (2015) it was shown that ensembles
of random graphs are nonequivalent when the degrees of the nodes are constrained, in
the sense of a non-zero limiting specific relative entropy as the number of nodes diverges.
In that paper, the nodes were placed either on a single layer (uni-partite graphs) or on
two layers (bi-partite graphs). In the present paper we consider an arbitrary number
of intra-connected and inter-connected layers, thus allowing for modular graphs with a
multi-partite, multiplex, time-varying, block-model or community structure. We give a
full classification of ensemble equivalence in the sparse regime, proving that breakdown
occurs as soon as the number of local constraints (i.e., the number of constrained degrees)
is extensive in the number of nodes, irrespective of the layer structure. In addition, we
derive an explicit formula for the specific relative entropy and provide an interpretation
of this formula in terms of Poissonisation of the degrees.
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1 Introduction and main results

1.1 Background and outline

For systems with many interacting components a detailed microscopic description is infeasible
and must be replaced by a probabilistic description, where the system is assumed to be a
random sample drawn from a set of allowed microscopic configurations that are consistent
with a set of known macroscopic properties, referred to as constraints. Statistical physics
deals with the definition of the appropriate probability distribution over the set of microscopic
configurations and with the calculation of the resulting macroscopic properties of the system.
The three main choices of probability distribution are: (1) the microcanonical ensemble, where
the constraints are hard (i.e., are satisfied by each individual configuration); (2) the canonical
ensemble, where the constraints are soft (i.e., hold as ensemble averages, while individual
configurations may violate the constraints); (3) the grandcanonical ensemble, where also the
number of components is considered as a soft constraint.

For systems that are large but finite, the three ensembles are obviously different and, in
fact, represent different physical situations: (1) the microcanonical ensemble models com-
pletely isolated systems (where both the energy and the number of particles are “hard”); (2)
the canonical ensemble models closed systems in thermal equilibrium with a heat bath (where
the energy is “soft” and the number of particles is “hard”); (3) the grandcanonical ensemble
models open systems in thermal and chemical equilibrium (where both the energy and the
number of particles are “soft”). However, in the limit as the number of particles diverges, the
three ensembles are traditionally assumed to become equivalent as a result of the expected
vanishing of the fluctuations of the soft constraints, i.e., the soft constraints are expected
to become asymptotically hard. This assumption of ensemble equivalence, which dates back
to Gibbs [33], has been verified in traditional models of physical systems with short-range
interactions and a finite number of constraints, but it does not hold in general. Nonetheless,
equivalence is considered to be one of the pillars of statistical physics and underlies many of
the results that contribute to our current understanding of large real-world systems.

Despite the fact that many textbooks still convey the message that ensemble equivalence
holds for all systems, as some sort of universal asymptotic property, over the last decades
various examples have been found for which it breaks down. These examples range from
astrophysical processes [41], [56], [35], [40], [19], quantum phase separation [10], [5], [25],
nuclear fragmentation [21], and fluid turbulence [23], [24]. Across these examples, the sig-
natures of ensemble nonequivalence differ, which calls for a rigorous mathematical definition
of ensemble (non)equivalence: (i) thermodynamic equivalence refers to the existence of an
invertible Legendre transform between the microcanonical entropy and canonical free energy
[25]; (ii) macrostate equivalence refers to the equivalence of the canonical and microcanonical
sets of equilibrium values of macroscopic properties [58]; (iii) measure equivalence refers to
the asymptotic equivalence of the microcanonical and canonical probability distributions in
the thermodynamic limit, i.e., the vanishing of their specific relative entropy [57]. The latter
reference reviews the three definitions and shows that, under certain hypotheses, they are
identical.

In the present paper we focus on the equivalence between microcanonical and canonical
ensembles, although nonequivalence can in general involve the grandcanonical ensemble as
well [59]. While there is consensus that nonequivalence occurs when the microcanonical spe-
cific entropy is non-concave as a function of the energy density in the thermodynamic limit, the
classification of the physical mechanisms at the origin of nonequivalence is still open. In most
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of the models studied in the literature, nonequivalence appears to be associated with the non-
additivity of the energy of the subparts of the system or with phase transitions [15], [16], [57].
A possible and natural mechanism for non-additivity is the presence of long-range interactions.
Similarly, phase transitions are naturally associated with long-range order. These “standard
mechanisms” for ensemble nonequivalence have been documented also in the study of random
graphs. In [4], a Potts model on a random regular graph is studied in both the microcanonical
and canonical ensemble, where the microscopic configurations are the spin configurations (not
the configurations of the network itself). It is found that the long-range nature of random con-
nections, which makes the model non-additive and the microcanonical entropy non-concave,
ultimately results in ensemble nonequivalence. In [50], [51], [52] and [18], random networks
with given densities of edges and triangles are considered, and phase transitions characterised
by jumps in these densities are found, with an associated breaking of ensemble equivalence
(where the microscopic configurations are network configurations).

Recently, the study of certain classes of uni-partite and bi-partite random graphs [55],
[30] has shown that ensemble nonequivalence can manifest itself via an additional, novel
mechanism, unrelated to non-additivity or phase transitions: namely, the presence of an
extensive number of local topological constraints, i.e., the degrees and/or the strengths (for
weighted graphs) of all nodes.1 This finding explains previously documented signatures of
nonequivalence in random graphs with local constraints, such as a finite difference between
the microcanonical and canonical entropy densities [1] and the non-vanishing of the relative
fluctuations of the constraints [54]. How generally this result holds beyond the specific uni-
partite and bi-partite cases considered so far remains an open question, on which we focus
in the present paper. By considering a much more general class of random graphs with a
variable number of constraints, we confirm that the presence of an extensive number of local
topological constraints breaks ensemble equivalence, even in the absence of phase transitions
or non-additivity.

The remainder of our paper is organised as follows. In Section 1.2 we give the definition
of measure equivalence and, following [55], show that it translates into a simple pointwise
criterion for the large deviation properties of the microcanonical and canonical probabilities.
In Section 1.3 we introduce our main theorems in pedagogical order, starting from the char-
acterisation of nonequivalence in the simple cases of uni-partite and bi-partite graphs already
explored in [55], and subsequently moving on to a very general class of graphs with arbitrary
multilayer structure and tunable intra-layer and inter-layer connectivity. Our main theorems,
which (mostly) concern the sparse regime, not only characterise nonequivalence qualitatively,
they also provide a quantitative formula for the specific relative entropy. In Section 2 we dis-
cuss various important implications of our results, describing properties that are fully general
but also focussing on several special cases of empirical relevance. In addition, we provide
an interpretation of the specific relative entropy formula in terms of Poissonisation of the
degrees. We also discuss the implications of our results for the study of several empirically
relevant classes of “modular” networks that have recently attracted interest in the literature,
such as networks with a so-called multi-partite, multiplex [11], time-varying [38], block-model
[37], [39] or community structure [26], [49]. In Section 3, finally, we provide the proofs of our
theorems.

In future work we will address the dense regime, which requires the use of graphons. In that
regime we expect nonequivalence to persist, and in some cases become even more pronounced.

1While in binary (i.e., simple) graphs the degree of a node is defined as the number of edges incident to that
node, in weighted graphs (i.e., graphs where edges can carry weights) the strength of a node is defined as the
total weight of all edges incident to that node. In this paper, we focus on binary graphs only.
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1.2 Microcanonical ensemble, canonical ensemble, relative entropy

For n ∈ N, let Gn denote the set of all simple undirected graphs with n nodes. Let G♯
n ⊆ Gn

be some non-empty subset of Gn, to be specified later. Informally, the restriction from Gn

to G♯
n allows us to forbid the presence of certain links, in such a way that the n nodes are

effectively partitioned into M ∈ N groups of nodes (or “layers”) of sizes n1, . . . , nM with∑M
i=1 ni = n. This restriction can be made explicit and rigorous through the definition of a

superstructure, which we call the master graph, that will be introduced later. A given choice
of G♯

n corresponds to the selection of a specific class of multilayer graphs with desired intra-
layer and inter-layer connectivity, such as graphs with a multipartite, multiplex, time-varying,
block-model or community structure. In the simplest case, G♯

n = Gn, which reduces to the
ordinary choice of uni-partite (single-layer) graphs. This example, along with various more
complicated examples, is considered explicitly later on.

In general, any graph G ∈ G♯
n can be represented as an n× n matrix with elements

gi,j(G) =

{
1 if there is a link between node i and node j,

0 otherwise.
(1.1)

Let ~C denote a vector-valued function on G♯
n. Given a specific value ~C∗, which we assume to be

graphic, i.e., realisable by at least one graph in G♯
n, the microcanonical probability distribution

on G♯
n with hard constraint ~C∗ is defined as

Pmic(G) =

{
1/Ω ~C∗ , if ~C(G) = ~C∗,
0, else,

(1.2)

where
Ω ~C∗ = |{G ∈ G♯

n : ~C(G) = ~C∗}| > 0 (1.3)

is the number of graphs that realise ~C∗. The canonical probability distribution Pcan(G) on G♯
n

is defined as the solution of the maximisation of the entropy

Sn(Pcan) = −
∑

G∈G♯
n

Pcan(G) lnPcan(G) (1.4)

subject to the soft constraint 〈 ~C〉 = ~C∗, where 〈·〉 denotes the average w.r.t. Pcan, and subject
to the normalisation condition

∑
G∈G♯

n
Pcan(G) = 1. This gives

Pcan(G) =
exp[−H(G, ~θ∗)]

Z(~θ∗)
, (1.5)

where
H(G, ~θ) = ~θ · ~C(G) (1.6)

is the Hamiltonian (or energy) and

Z(~θ ) =
∑

G∈G♯
n

exp[−H(G, ~θ )] (1.7)

is the partition function. Note that in (1.5) the parameter ~θ must be set to the particular
value ~θ∗ that realises 〈 ~C〉 = ~C∗. This value also maximises the likelihood of the model, given
the data [31].
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It is worth mentioning that, in the social network analysis literature [17], maximum-
entropy canonical ensembles of graphs are traditionally known under the name of Exponential
Random Graphs (ERGs). Indeed, many of the examples of canonical graph ensembles that
we will consider in this paper, or variants thereof, have been studied previously as ERG
models of social networks. Recently, ERGs have also entered the physics literature [1], [2],
[9], [47], [53], [54], [42], [28] ,[29], [39], [27], [48], [8] because of the wide applicability of
techniques from statistical physics for the calculation of canonical partition functions. We
will refer more extensively to these models, and to the empirical situations for which they
have been proposed, in Section 2.2. Apart for a few exceptions [1], [48], [55], these previous
studies have not addressed the problem of ensemble (non)equivalence of ERGs. The aim of
the present paper is to do so exhaustively, and in a mathematically rigorous way, via the
following definitions.

The relative entropy of Pmic w.r.t. Pcan is

Sn(Pmic | Pcan) =
∑

G∈G♯
n

Pmic(G) ln
Pmic(G)

Pcan(G)
, (1.8)

and the specific relative entropy is

sn = n−1 Sn(Pmic | Pcan). (1.9)

Following [57], [55], we say that the two ensembles are measure equivalent if and only if their
specific relative entropy vanishes in the thermodynamic limit n → ∞, i.e.,

s∞ = lim
n→∞

n−1 Sn(Pmic | Pcan) = 0. (1.10)

It should be noted that, for a given choice of G♯
n and ~C, there may be different ways to realise

the thermodynamic limit, corresponding to different ways in which the numbers {ni}Mi=1 of
nodes inside the M layers grow relatively to each other. So, (1.10) implicitly requires an
underlying specific definition of the thermodynamic limit. Explicit examples will be considered
in each case separately, and certain different realisations of the thermodynamic limit will
indeed be seen to lead to different results. With this in mind, we suppress the n-dependence
from our notation of quantities like G, ~C, ~C∗, Pmic, Pcan, H, Z. When letting n → ∞ it will
be understood that G ∈ G♯

n always.
Before considering specific cases, we recall an important observation made in [55]. The

definition of H(G, ~θ ) ensures that, for any G1,G2 ∈ G♯
n, Pcan(G1) = Pcan(G2) whenever

~C(G1) = ~C(G2) (i.e., the canonical probability is the same for all graphs having the same
value of the constraint). We may therefore rewrite (1.8) as

Sn(Pmic | Pcan) = ln
Pmic(G

∗)

Pcan(G∗)
, (1.11)

where G∗ is any graph in G♯
n such that ~C(G∗) = ~C∗ (recall that we have assumed that ~C∗ is

realisable by at least one graph in G♯
n). The condition for equivalence in (1.10) then becomes

lim
n→∞

n−1
[
lnPmic(G

∗)− lnPcan(G
∗)
]
= 0, (1.12)

which shows that the breaking of ensemble equivalence coincides with Pmic(G
∗) and Pcan(G

∗)
having different large deviation behaviour. Importantly, this condition is entirely local, i.e.,
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it involves the microcanonical and canonical probabilities of a single configuration G∗ real-
ising the hard constraint. Apart from its theoretical importance, this fact greatly simplifies
mathematical calculations. Note that (1.12), like (1.10), implicitly requires a specific defini-

tion of the thermodynamic limit. For a given choice of G♯
n and ~C, different definitions of the

thermodynamic limit may result either in ensemble equivalence or in ensemble nonequivalence.

1.3 Main Theorems

Most of the constraints that will be considered below are extensive in the number of nodes.

1.3.1 Single layer: uni-partite graphs

The first class of random graphs we consider is specified by M = 1 and G♯
n = Gn. This choice

corresponds to the class of (simple and undirected) uni-partite graphs, where links are allowed
between each pair of nodes. We can think of these graphs as consisting of a single layer of
nodes, inside which all links are allowed. Note that in this simple case the thermodynamic limit
n → ∞ can be realised in a unique way, which makes (1.10) and (1.12) already well-defined.

Constraints on the degree sequence. For a uni-partite graph G ∈ Gn, the degree se-
quence is defined as ~k(G) = (ki(G))ni=1 with ki(G) =

∑
j 6=i gi,j(G). In what follows we

constrain the degree sequence to a specific value ~k∗, which (in accordance with our aforemen-
tioned general prescription for ~C∗) we assume to be graphical, i.e., there is at least one graph
with degree sequence ~k∗. The constraints are therefore

~C∗ = ~k∗ = (k∗i )
n
i=1 ∈ N

n
0 , (1.13)

where N0 = N ∪ {0} with N = {1, 2, . . .}. This class is also known as the configuration model
([7], [13], [44], [45], [20], [54]; see also [36, Chapter 7]). In [55] the breaking of ensemble
equivalence was studied in the sparse regime defined by the condition

m∗ = max
1≤i≤n

k∗i = o(
√
n). (1.14)

Let P(N0) denote the set of probability distributions on N0. Let

fn = n−1
n∑

i=1

δk∗i ∈ P(N0), (1.15)

be the empirical degree distribution, where δk denotes the point measure at k. Suppose that
there exists a degree distribution f ∈ P(N0) such that

lim
n→∞

‖fn − f‖ℓ1(g) = 0, (1.16)

where g : N0 → [0,∞) is given by

g(k) = log

(
k!

kke−k

)
, k ∈ N0, (1.17)

and ℓ1(g) is the vector space of functions h : Z → R with ‖h‖ℓ1(g) =
∑

k∈N0
|h(k)|g(k) < ∞.

For later use we note that

g(0) = 0, k 7→ g(k) is strictly increasing, g(k) = 1
2 log(2πk) +O(k−1), k → ∞.

(1.18)

6



Theorem 1.1. Subject to (1.13)–(1.14) and (1.16), the specific relative entropy equals

s∞ = ‖f‖ℓ1(g) > 0. (1.19)

Thus, when we constrain the degrees we break the ensemble equivalence.

Remark 1.2. It is known that ~k∗ is graphical if and only if
∑n

i=1 k
∗
i is even and

j∑

i=1

k∗i ≤ j(j − 1) +
n∑

i=j+1

min(j, k∗i ), j = 1, . . . , n − 1. (1.20)

In [3], the case where k∗i , i ∈ N, are i.i.d. with probability distribution f is considered, and it
is shown that

lim
n→∞

f⊗n
(
(k∗1 , . . . , k

∗
n) is graphical

∣∣∣
n∑

i=1

k∗i is even
)
= 1 (1.21)

as soon as f satisfies 0 <
∑

k even f(k) < 1 and limn→∞ n
∑

k≥n f(k) = 0. (The latter condition
is slightly weaker than the condition

∑
k∈N0

kf(k) < ∞.) In what follows we do not require
the degrees to be drawn in this manner, but when we let n → ∞ we always implicitly assume
that the limit is taken within the class of graphical degree sequences.

Remark 1.3. A different yet similar definition of sparse regime, replacing (1.14), is given in
van der Hofstad [36, Chapter 7]. This condition is formulated in terms of bounded second
moment of the empirical degree distribution fn in the limit as n → ∞. Theorem 1.1 carries
over.

Constraints on the total number of links only. We now relax the constraints, and fix
only the total number of links L(G) = 1

2

∑n
i=1 ki(G). The constraint therefore becomes

~C∗ = L∗. (1.22)

It should be note that in this case, the canonical ensemble coincides with the Erdős-Rényi
random graph model, where each pair of nodes is independently connected with the same
probability. As shown in [1], [55], in this case the usual result that the ensembles are asymp-
totically equivalent holds.

Theorem 1.4. Subject to (1.22), the specific relative entropy equals s∞ = 0.

1.3.2 Two layers: bi-partite graphs

The second class of random graphs we consider are bi-partite graphs. Here M = 2 and nodes
are placed on two (non-overlapping) layers (say, top and bottom), and only links across layers
are allowed. Let Λ1 and Λ2 denote the sets of nodes in the top and bottom layer, respectively.
The set of all bi-partite graphs consisting of n1 = |Λ1| nodes in the top layer and n2 = |Λ2|
nodes in the bottom layer is denoted by G♯

n = Gn1,n2 ⊂ Gn. Bi-partiteness means that, for all
G ∈ Gn1,n2 , we have gi,j(G) = 0 if i, j ∈ Λ1 or i, j ∈ Λ2.

In a bipartite graph G ∈ Gn1,n2 , we define the degree sequence of the top layer as
~k1→2(G) = (ki(G))i∈Λ1 , where ki(G) =

∑
j∈Λ2

gi,j(G). Similarly, we define the degree se-

quence of the bottom layer as ~k2→1(G) = (k′i(G))i∈Λ2 , where k′i(G) =
∑

j∈Λ1
gi,j(G). The

symbol s → t highlights the fact that the degree sequence of layer s is built from links pointing
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from Λs to Λt (s, t = 1, 2). The degree sequences ~k1→2(G) and ~k2→1(G) are related by the
condition that they both add up to the total number of links L(G):

L(G) =
∑

i∈Λ1

ki(G) =
∑

j∈Λ2

k′j(G). (1.23)

Constraints on the top and the bottom layer. We first fix the degree sequence on
both layers, i.e., we constrain ~k1→2(G) and ~k2→1(G) to the values ~k∗1→2 = (k∗i )i∈Λ1 and
~k∗2→1 = (k′∗i )i∈Λ2 respectively. The constraints are therefore

~C∗ = {~k∗1→2,
~k∗2→1}. (1.24)

As mentioned before, we allow n1 and n2 to depend on n, i.e., n1 = n1(n) and n2 = n2(n). In
order not to overburden the notation, we suppress the dependence on n from the notation.

We abbreviate
m∗ = max

i∈Λ1

k∗i , m′∗ = max
j∈Λ2

k′∗j ,

f
(n1)
1→2 = n1

−1
∑

i∈Λ1

δk∗i , f
(n2)
2→1 = n2

−1
∑

j∈Λ2

δk′∗j ,
(1.25)

and assume the existence of

A1 = lim
n→∞

n1

n1 + n2
, A2 = lim

n→∞

n2

n1 + n2
. (1.26)

(This assumption is to be read as follows: choose n1 = n1(n) and n2 = n2(n) in such a way
that the limiting fractions A1 and A2 exist.) The sparse regime corresponds to

m∗m′∗ = o(L∗2/3), n → ∞. (1.27)

We further assume that there exist f1→2, f2→1 ∈ P(N0) such that

lim
n→∞

‖f (n1)
1→2 − f1→2‖ℓ1(g) = 0, lim

n→∞
‖f (n2)

2→1 − f2→1‖ℓ1(g) = 0. (1.28)

The specific relative entropy is

sn1+n2 =
Sn1+n2(Pmic | Pcan)

n1 + n2
. (1.29)

Theorem 1.5. Subject to (1.24) and (1.26)–(1.28),

s∞ = lim
n→∞

Sn1+n2(Pmic | Pcan)

n1 + n2
= A1 ‖f1→2‖ℓ1(g) +A2 ‖f2→1‖ℓ1(g). (1.30)

Since A1 +A2 = 1, it follows that s∞ > 0, so in this case ensemble equivalence never holds.

Constraints on the top layer only. We now partly relax the constraints and only fix the
degree sequence ~k1→2(G) to the value

~C∗ = ~k∗1→2 =
(
k∗i
)
i∈Λ1

, (1.31)
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while leaving ~k2→1(G) unspecified (apart for the condition (1.23)). The microcanonical num-
ber of graphs satisfying the constraint is

Ω~k∗1→2
=
∏

i∈Λ1

(
n2

k∗i

)
. (1.32)

The canonical ensemble can be obtained from (1.5) by setting

H(G, ~θ) = ~θ · ~k1→2(G). (1.33)

Setting ~θ = ~θ∗ in order that equation (1.5) is satisfied, we can write the canonical probability
as

Pcan(G) =
∏

i∈Λ1

(p∗i )
ki(G)(1− p∗i )

n2−ki(G) (1.34)

with p∗i =
k∗i
n2
. Let

fn1 = n2
−1
∑

i∈Λ2

δk∗i ∈ P(N0). (1.35)

Suppose that there exists an f ∈ P(N0) such that

lim
n→∞

‖fn1 − f‖ℓ1(g) = 0. (1.36)

The relative entropy per node can be written as

sn1+n2 =
Sn1+n2(Pmic | Pcan)

n1 + n2
=

n1

n1 + n2
‖fn1‖ℓ1(gn2 )

, (1.37)

with
gn2(k) = − log

[
Bin

(
n2,

k
n2

)
(k)
]
I0≤k≤n2 , k ∈ N0, (1.38)

and Bin(n2,
k
n2
)(k) =

(n2

k

)
( k
n2
)k(n2−k

k )n2−k for k = 0, . . . , n2 and equals to 0 for k > n2. We
follow the convention 0 log(0) = 0.

In this partly relaxed case, different scenarios are possible depending on the specific reali-
sation of the thermodynamic limit, i.e., on how n1, n2 tend to infinity. The ratio between the
sizes of the two layers c = limn→∞

n2
n1

= A2
A1

plays an important role.

Theorem 1.6. Subject to (1.31) and (1.36):
(1) If n2 →n→∞ ∞ with n1 fixed (c = ∞), then s∞ = limn→∞ sn1+n2 = 0.
(2) If n1, n2 →n→∞ ∞ with c = ∞, then s∞ = limn→∞ sn1+n2 = 0.
(3) If n1 →n→∞ ∞ with n2 fixed (c = 0), then

s∞ = lim
n→∞

sn1+n2 = ‖f‖ℓ1(gn2 )
. (1.39)

(4) If n1, n2 →n→∞ ∞ with c ∈ [0,∞), then

s∞ =
1

1 + c
‖f‖ℓ1(g). (1.40)
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Constraints on the total number of links only. We now fully relax the constraints and
only fix the total number of links, i.e.,

~C∗ = L∗. (1.41)

In analogy with the corresponding result for the uni-partite case (Theorem 1.4), in this case
ensemble equivalence is restored.

Theorem 1.7. Subject to (1.41), the specific relative entropy equals s∞ = 0.

1.3.3 Multiple layers

We now come to our most general setting where we fix a finite number M ∈ N of layers.

Each layer s has ns nodes, with
∑M

s=1 ns = n. Let v
(s)
i denote the i-th node of layer s, and

Λs = {v(s)1 , . . . , v
(s)
ns } denote the set of nodes in layer s. We may allow links both within and

across layers, while constraining the numbers of links among different layers separately. But
we may as well switch off links inside or between (some of the) layers. The actual choice can
be specified by a superstructure, which we denote as the master graph Γ, in which self-loops
are allowed but multi-links are not. The nodes set of Γ is {1, . . . ,M} and the associated
adjacency matrix has entries

γs,t(Γ) =

{
1 if a link between layers s and t exists

0 otherwise.
(1.42)

The chosen set of all multi-layer graphs with given numbers of nodes, layers, and admis-
sible edges (we admit edges only between layers connected in the master graph) is G♯

n =
Gn1,...,nM

(Γ) ⊆ Gn. In 2.2 we discuss various empirically relevant choices of Γ explicitly, while
here we keep our discussion entirely general.

Given a graph G, for each pair of layers s and t (including s = t) we define the t-targeted
degree sequence of layer s as ~ks→t(G) =

(
kti(G)

)
i∈Λs

, where kti(G) =
∑

j∈Λt
gi,j(G) is the

number of links connecting node i to all other nodes in layer t. For each pair of layers s
and t such that γs,t(Γ) = 1, we enforce the value ~k ∗

s→t =
(
k∗ ti

)
i∈Λs

as a constraint for the

t-targeted degree sequence of layer s. For γs,t(Γ) = 0 we have ~k ∗
s→t = ~0, but this constraint is

automatically enforced by the master graph. Thus, the relevant constraints are

~C∗ =
{
~k ∗
s→t : s, t = 1, . . . ,M γs,t(Γ) = 1

}
. (1.43)

We abbreviate

L∗
s,t =

∑

i∈Λs

k∗ ti =
∑

j∈Λt

k∗ sj , m∗
s→t = max

i∈Λs

k∗ ti , f
(ns)
s→t = n−1

s

∑

i∈Λs

δk∗ t
i
, (1.44)

where L∗
s,t is the number of links between layers s and t (note that L∗

s,s is twice the number
of links inside layer s), and assume the existence of

As = lim
n1,...,nM→∞

ns

n
∀ s, (1.45)

where
∑M

s=1As = 1. (As before, this assumption is to be read as follows: choose ns = ns(n),
1 ≤ s ≤ M , in such a way that the limiting fractions As,1 ≤ s ≤ M , exist.) The sparse regime
corresponds to

m∗
s→tm

∗
t→s = o(L∗

s,t
2/3), ns, nt → ∞ ∀ s 6= t,

m∗
s→s = o(n

1/2
s ), ns → ∞ ∀ s.

(1.46)
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We further assume that there exists fs→t ∈ P(N0) such that

lim
ns→∞

‖f (ns)
s→t − fs→t‖ℓ1(g), lim

ns→∞
‖f (ns)

s→s − fs→s‖ℓ1(g) = 0. (1.47)

Theorem 1.8. Subject to (1.43) and (1.45)–(1.47),

s∞ =

M∑

s,t=1
γs,t(Γ)=1

As ‖fs→t‖ℓ1(g). (1.48)

The above result shows that, unless As = 0 whenever γs,t(Γ) = 1 (i.e., unless only the nodes
of the master graph that have no links or self-loops contribute a finite fraction of nodes in the
corresponding layers), ensemble equivalence does not hold.

1.3.4 Relaxing constraints in the multilayer case

We next study the effects of relaxing constraints. This deserves a separate discussion, since
in the multi-partite setting there are more possible ways of relaxing the constraints than in
the uni-partite and bi-partite settings.

One class of layers. We first fix two kinds of constraints: (1) the total number of links
between some pairs of layers; (2) the degree sequence between some other pairs of layers. We
define the set of the edges of the master graph as E = {(s, t) ∈ (M ×M) : γs,t(Γ) = 1}. Then,
we partition E into two parts, namely D,L ⊆ E , with D ∩ L = ∅, D and L symmetric, by
requiring that (s, t) ∈ D (∈ L) when (t, s) ∈ D (∈ L). For each pair of layers (s, t) ∈ D we
fix the degree sequence ~k ∗

s→t of every node of Λs linking to Λt. As before, we impose that∑
i∈Λs

k∗ ti =
∑

j∈Λt
k∗ sj . For each pair of layers (s, t) ∈ L we fix the total number of links L∗

s,t

(L∗
s,t = L∗

t,s).
The effect of relaxing some constraints affects the specific relative entropy: this will de-

crease because the pairs of layers with relaxed constraints (i.e., the pairs in L) no longer
contribute.

Theorem 1.9. Subject to the above relaxation,

s∞ =
∑

(s,t)∈D

As ‖fs→t‖ℓ1(g). (1.49)

In particular, equivalence holds if and only if D = ∅ or As = 0 for all s endpoints of elements
in E . Note that, if D = ∅, then we have a finite number of constraints (at most M2), and this
implies equivalence of the ensembles.

Two classes of layers. We may further generalise Theorem 1.8 as follows. Suppose that
we have two classes of layers, M1 and M2. For every pair of layers s, t ∈ M1 such that
γs,t(Γ) = 1, we fix the degree sequences ~k ∗

s→t and ~k ∗
t→s. For every pair of layers s ∈ M1,

t ∈ M2, γs,t(Γ) = 1 we fix the degree sequence ~k ∗
s→t from the layer in M1 to the layer in M2

(but not vice versa). We show that the resulting specific relative entropy is a mixture of the one
in Theorem 1.8 and the one in Theorem 1.6. For s = 1, . . . ,M we set As = limn1,n2,...,nM→∞

ns

n .
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Theorem 1.10. Subject to the above relaxation,

s∞ =
∑

s∈M1, t∈M1∪M2
γs,t(Γ)=1

As ‖fs→t‖ℓ1(g).
(1.50)

In particular,

s∞ = 0 ⇐⇒ As = 0 ∀ s ∈
{
u ∈ M1 : ∃ t ∈ M1 ∪M2 with γu,t(Γ) = 1

}
. (1.51)

Another way for relaxing constraints. We may think about another way for relaxing the
constraints. We assume that γs,t(Γ) = 1 for all s, t = 1, 2, . . . ,M and we fix ~k ∗

s =
∑M

t=1
~k ∗
s→t

for each s = 1, 2, . . . ,M . This means that for each node we fix its degree sequence (no matter
to which target layer, possibly its own layer). In this case we lose the multi-layer structure:
constraints are no longer involving pairs of layers and the graphs are effectively uni-partite.
This is the same case described in the configuration model of Theorem 1.1. There are still an
extensive number of local constraints, and the ensembles are nonequivalent.

2 Discussion

In this section we discuss various important implications of our results. We first consider
properties that are fully general, and afterwards focus on several special cases of empirical
relevance.

2.1 General considerations

Poissonisation. The function g in (1.17) has an interesting interpretation, namely,

g(k) = S
(
δ[k] | Poisson[k]

)
(2.1)

is the relative entropy of the Poisson distribution with average k w.r.t. the Dirac distribution
with average k. The specific relative entropy in (1.1) for the uni-partite setting can therefore
be seen as a sum over k of contributions coming from the nodes with fixed, respectively,
average degree k. The microcanonical ensemble forces the degree of these nodes to be exactly
k (which corresponds to δ[k]), while the canonical ensemble, under the sparseness condition
in (1.14), forces their degree to be Poisson distributed with average k. The same condition
ensures that in the limit as n → ∞ the constraints act on the nodes essentially independently.

The same interpretation applies to Theorems 1.5–1.6 and 1.8–1.10. The result in Theo-
rem 1.6(3) shows that in the bi-partite setting, when one of the layers tends to infinity while
the other layer does not, Poissonisation does not set in fully. Namely, we have

sn =

n∑

k=1

f(k)gn(k), gn(k) = S
(
δ[k] | Bin(n, kn)

)
. (2.2)

In words, the canonical ensemble forces the nodes in the infinite layer with average degree k
to draw their degrees towards the n nodes in the finite layer essentially independently, giving
rise to a binomial distribution. Only in the limit as n → ∞ does this distribution converge to
the Poisson distribution with average k.
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Additivity vs. non-additivity. In all the other examples known so far in the literature,
the generally accepted explanation for the breaking of ensemble equivalence is the presence of
a non-additive energy, induced e.g. by long-range interactions [15], [16]. However, in the ex-
amples considered in the present paper, nonequivalence has a different origin, namely, the
presence of an extensive number of local constraints. As we now show, this mechanism
is completely unrelated to non-additivity and is therefore a novel mechanism for ensemble
nonequivalence.

Intuitively, the energy of a system is additive when, upon partitioning the units of the
system into non-overlapping subunits, the ‘interaction’ energy between these subunits is neg-
ligible with respect to the internal energy of the subunits themselves. The ‘physical’ size of
the systems considered in this paper is given by the number n of nodes, i.e., we are defining
the network to become ‘twice as large’ when the number of nodes is doubled. Think, for
instance, of a population of n individuals and the corresponding social network connecting
these individuals: we say that the size of the network doubles when the population doubles.
Consistently, in (1.9) we have defined the specific relative entropy sn by diving Sn by n. In
accordance with this reasoning, in order to establish whether in our systems ensemble equiv-
alence has anything to do with energy additivity, we need to define the latter node-wise, i.e.,
with respect to partitioning the set of nodes into nonoverlapping subsets. Note that, in the
presence of more than one layer, we have allowed for the number of nodes in some layer(s)
to remain finite (in general, to grow subextensively) as the total number of nodes goes to
infinity (see for instance Theorem 1.6). In such a situation it makes sense to study additivity
only with respect to the nodes in those layers that are allowed to grow extensively in the
thermodynamic limit.

Formally, if we let I denote the union of all layers for which As > 0 (see (1.45)), then we
say that the energy is node-additive if the Hamiltonian (1.6) can be written as

H(G, ~θ) =
∑

i∈I

Hi(G, ~θ) ∀G ∈ G♯
n, (2.3)

where the {Hi}i∈I do not depend on common subgraphs of G (i.e., each of them can be
restricted to a distinct subgraph of G), and are therefore independent random variables.

The case of uni-partite graphs with fixed degree sequence (Theorem 1.1) is an example
of ensemble nonequivalence with non-additive Hamiltonian, because the latter is defined as
H(G, ~θ) =

∑n
i=1 θiki(G) and cannot be rewritten in the form of (2.3) with independent

{Hi(G, ~θ)}: the degrees ki(G) and kj(G) of any two distinct nodes i and j depend on a
common subgraph of G, i.e., the dyad gi,j(G). In the example of uni-partite graphs with

a fixed total number of links (see (1.22)), the energy has the form H(G, ~θ) = θL(G) =
1
2θ
∑n

i=1 ki(G), which is still non-additive. However, the ensembles are in this case equivalent
(see Theorem 1.4).

By contrast, the case of bi-partite graphs with fixed degree sequence on the top layer and
the nodes in the other layer growing subextensively (case (3) of Theorem 1.6) is an example
of ensemble nonequivalence with an additive Hamiltonian. Indeed, from (1.33) we see that
H(G, ~θ) is now a linear combination of the n1 degrees of the nodes in layer Λ1, each of
which depends only on the (bi-partite) subgraph obtained from the corresponding node of the
top layer and all the nodes of the bottom layer. Here, unlike the uni-partite case, all these
subgraphs are disjoint. Despite being node-additive, when A1 = 1 (c = 0) this Hamiltonian
leads to nonequivalence, as established in (1.39). Similar examples can be engineered using
some of the relaxations in Section 1.3.4. Finally, the case of bi-partite graphs with fixed
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total number of links (Theorem 1.7) is an example of ensemble equivalence with an additive
Hamiltonian.

The four examples above show that additivity or non-additivity of the Hamiltonian does
not influence the breaking of ensembles equivalence in the examples considered here. What
matters is the extensiveness of the number of constraints. This observation was already made
in [55], and is confirmed in full generality for the multi-layer setting treated in the present
paper. Indeed, our results indicate that, whenever the number κ of constraints on the degrees
is subextensive, i.e., κ = o(n) where n is the number of nodes, ensemble equivalence is restored.

Note that the above notion of node additivity should not be confused with that of edge
additivity, i.e., the fact that the Hamiltonian can be written as a sum over independent pairs
of nodes. Due to the linearity of the chosen (local) constraints on the entries {gi,j}ni,j=1 of
the adjacency matrix of the graph G, our examples are always edge-additive (irrespective of
whether they are ensemble-equivalent), while they may or may not be node-equivalent, as we
have seen. In either case, there is no relation between additivity and equivalence.

We stress again that the extensivity of the (local) constraints is, with respect to the
mechanisms for nonequivalence already explored in the literature so far, an additional (and
previously unrecognised) sufficient mechanism. It is obviously not the only one, and defi-
nitely not a necessary one, as exemplified by the fact that, in dense networks, nonequivalence
has been found even in the presence of only two constraints, such as the total numbers of
edges and triangles [50, 51, 52, 18]. However, while in the previous examples the breaking
of equivalence arises from the nonlinearity (with respect to {gi,j}) of some constraint and is
typically found in a specific (usually critical) region of the parameter space separating phases
where ensemble equivalence still applies, in our setting ensemble nonequivalence arises from
the extensiveness of the number of (linear) constraints and extends to the entire space of pa-
rameters of the models. In this sense it is a stronger form of nonequivalence. Moreover, while
the nonequivalence of network ensembles with a finite number of constraints was previously
reported only for dense graphs, we are documenting it for the unexplored regime of sparse
graphs.

A principled choice of ensembles. Ensembles of random graphs with constraints are
used for many practical purposes. Two important examples are pattern detection and network
reconstruction. For concreteness, we briefly illustrate these examples before we emphasize the
implications that our results have for these and other applications.

Pattern detection is the identification of nontrivial structural properties in a real-world
network, through the comparison of such network with a suitable null model [53]. For instance,
community detection is the identification of groups of nodes that are more densely connected
with each other than expected under a null model [26], [49] (in Section 2.2 we discuss the
relation between our models and community detection in more detail). A null model is a
random graph model that preserves some simple topological properties of the real network
(typically local, like the degree sequence) and is otherwise completely random. So, maximum-
entropy ensembles of graphs with given degrees are a key tool for pattern detection.

Network reconstruction employs purely local topological information to infer the higher-
order structural properties of a real-world network [42]. This problem arises whenever the
complete structure of a network is not known (for instance, due to confidentiality or pri-
vacy issues), but local properties are. An example relevant for the epidemiology of sexually
transmitted diseases is the network of sexual contacts among people, for which only aggregate
information (the total number of contacts with different partners) can be typically surveyed in
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a population. In such cases, optimal inference about the network can be achieved by maximis-
ing the entropy subject to the known (local) constraints, which again leads to the ensembles
with fixed degrees considered here.

The aforementioned applications, along with similar ones, make use of random graphs
with local constraints. Our proof of nonequivalence of the corresponding ensembles have the
following important implication. While for ensemble-equivalent models it makes practically no
difference whether a microcanonical or canonical implementation is applied to large networks,
for nonequivalent models different choices of the ensemble lead to asymptotically different
results. As a consequence, while for applications based on ensemble-equivalent models the
choice of the working ensemble can be arbitrary or be done on mathematical convenience (as
usually done), for those based on nonequivalent models the choice should be principled, i.e.,
dictated by a theoretical criterion that indicates a priori which ensemble is the appropriate
one.

Among the possible criteria, we suggest one that we believe appropriate whenever the
available data are subject to (even small) errors, i.e., when the measured value ~C∗ entering
as input in the construction of the random graph ensemble is, strictly speaking, the best
available estimate for some unknown ‘true’ (error-free) value ~C×. In this situation, we want
that possible small deviations of ~C∗ from ~C× result in small devations of P ∗

mic and P ∗
can from

the corresponding P×
mic and P×

can. Now, if ~C∗ 6= ~C× (no matter how “small” and in which
norm this difference is taken), then P ∗

mic will attach zero probability to any graph G× that

realises the ‘true’ constraint ~C×: P ∗
mic(G

×) = 0, while P×
mic(G

×) 6= 0. Indeed, P ∗
mic and P×

mic

will have non-overlapping supports, so they will sample distinct sets of graphs. This means
that even small initial errors in the knowledge of the constraints will be severely propagated
to the entire microcanonical ensemble, and inference based on the latter will be highly biased.
In particular, the ‘true’ network will never be sampled by P ∗

mic. On the other hand, if the

difference between ~C∗ and ~C× is small, then the difference between P ∗
can and P×

can will also be
small. So, even though ~C× is unknown, any graph G× that realises this value will be given
a probability P ∗

can(G
×) that is nonzero and not very different from the probability P×

can(G
×)

that would be obtained by knowing the true value ~C×. In general, small deviations of ~C∗ from
~C× imply that P ∗

can(G) is not very different from P×
can(G) for any graph G, as desired. This

implies that even if ~C∗ is affected by small errors, then a principled choice of ensembles is the
canonical one. So, besides being the mathematically simpler option, we argue that canonical
ensembles are also the most appropriate choice in the presence of ‘noise’. A similar claim was
already made in [54], and is here strengthened by our proof of nonequivalence.

2.2 Special cases of empirical relevance

Different choices of the master graph Γ induce different structural features in the graphs
of the ensemble G♯

n. Convenient choices allow us to consider certain classes of graphs that
have been introduced recently to study appropriate types of real-world networks of empirical
relevance. We discuss some of these choices below. The full generality of our results in
Section 1.3.3 allows us to immediately draw conclusions about the (non)equivalence of the
corresponding ensembles in each case of interest. As an important outcome of this discussion,
all the empirically relevant ensembles of graphs turn out to be nonequivalent. In line with our
general observation at the end of the previous section, this implies that a principled choice of
ensembles is needed in all practical applications.
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Scale-free uni-partite networks. Clearly, the trivial case when the master graph has a
single node (M = 1) with a self-loop, i.e., γ11(Γ) = 1, corresponds to the class of uni-partite
graphs we considered in Section 1.3.1. Many real-world networks, at least at a certain level of
aggregation, admit such uni-partite representation. Examples include the Internet, the World
Wide Web and many biological, social and economic networks. A common property displayed
by most of these real-world networks is the presence of a “broad” empirical degree distribution,
often consistent with a power-law distribution with an upper cut-off [12]. Networks with a
power-law degree distribution are said to be scale-free [14]. This empirical observation implies
that real-world networks are very different from Erdős-Rényi random graphs (which have
a much narrower degree distribution) and are more closely reproduced by a configuration
model with a truncated power-law degree distribution fn (see (1.15)) of the form fn(k) =
Aγ,nk

−γ
I1≤k≤kc(n) with γ > 1, Aγ,n the normalisation constant, and limn→∞ kc(n) = ∞

and kc(n) = o(
√
n). The so-called structural cut-off kc(n) makes the networks sparse, as in

condition (1.14) [12]. Since limn→∞ ‖fn − f‖ℓ1(g) = 0 with f(k) = k−γ/ζ(γ) for k ≥ 1 and 0
elsewhere, where ζ is the Riemann zeta-function, our result in (1.19) tells us that

s∞ =
∑

k∈N

g(k) f(k) =
1

ζ(γ)

∑

k∈N

g(k) k−γ . (2.4)

Since g(k) = 1
2 log(2πk) + O(k−1) as k → ∞, we find that s∞ tends to 1 as γ → ∞ and

diverges like ∼ 1/2(γ−1) as γ ↓ 1. This result shows that the simplest random graph ensemble
consistent with the scale-free character of real-world networks is nonequivalent. Interestingly,
as the tail exponent γ decreases, the degree distribution becomes broader and the degree of
nonequivalence increases. A similar conclusion was drawn in [55].

Remark 2.1. Suppose that for each n ∈ N the degrees are drawn in an i.i.d. manner from the
truncated degree distribution fn. Suppose further that

∑
k∈N0

kf(k) < ∞, i.e., γ > 2. Then,
because supn∈N

∑
k∈N0

kfn(k) =
∑

k∈N0
kf(k) < ∞, conditional on the sum of the degrees

being even, the degree sequence is graphical with a probability tending to one as n → ∞.
This fact is the analogue of the result in [3] mentioned in Remark 1.2, and its proof is a
straightforward extension of the argument in [3]. Truncation improves the chance of being
graphical.

Multipartite networks. The case when the master graph has only M = 2 interconnected
nodes and no self-loops, i.e., γ1,2(Γ) = γ2,1(Γ) = 1 and γ1,1(Γ) = γ2,2(Γ) = 0, coincides
with the class of bi-partite graphs discussed in Section 1.3.2. Popular real-world examples
relevant to economics, ecology and scientometrics are bank-firm, plant-pollinator and author-
paper networks, respectively. In this case as well, empirical evidence shows that real-world
bi-partite networks have broad degree distributions (at least on one of the two layers, and
typically on both). Random graph models with only a global constraint on the total number
of links (as in Theorem 1.7) are therefore unrealistic. The minimal ensemble that is consistent
with the properties of most real-world bi-partite networks requires the specification of the
degree sequence(s) as constraint(s) and is therefore nonequivalent.

A direct generalisation of the bi-partite case is when Γ is an M -dimensional matrix with
zeroes along the diagonal and ones off the diagonal: γs,s(Γ) = 0 ∀s and γs,t(Γ) = 1 for all

s 6= t. The induced graphs in G♯
n have an “all-to-all” multipartite structure (i.e., links are

allowed between all pairs of distinct layers, but not inside layers). From our Theorem 1.8 it
follows that if the t-targeted degree sequences are specified as a constraint, then the relative
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entropy in the all-to-all multipartite case is

s∞ =
M∑

s,t=1
s 6=t

As ‖fs→t‖ℓ1(g) > 0, (2.5)

which proves again ensemble nonequivalence.

Stochastic block-models. Another important example is when the master graph is a com-
plete graph with all self-loops realised, i.e., γs,t(Γ) = 1 for all s, t. This prescription generates
the class of so-called stochastic block-models, which are very popular in the social network
analysis literature [37], [39], [27]. The earliest and simplest stochastic block-model [37] is one
where only the total numbers of links between all pairs of blocks (including within each block)
are specified. When we identify blocks with layers, this model coincides with our relaxed
model considered in Theorem 1.9, with D = ∅. It follows as a corollary that this model is
ensemble equivalent:

s∞ = 0. (2.6)

However, this model predicts that, within each block, the expected topological properties of
the network are those of an Erdős-Rényi random graph, a property that is contradicted by
empirical evidence. So, unless the number of blocks is chosen to be comparable with the
number of nodes (which in our case is contradicted by the requirement that M is finite), the
traditional block-model is not a good model of real-world networks.

More recently, emphasis has been put on the more realistic degree-corrected stochastic
block-model [39], where an additional constraint is put on the degree of all nodes. An even more
constrained variant of this model has been proposed in [27], where the constraints coincide
with the t-targeted degree sequences {~ks→t}s,t among all pairs of blocks. To distinguish this
model from the “generic” degree-corrected block-model, we call it the targeted degree-corrected
block-model. This coincides with our model in Section 1.3.3, with the block structure given
by the (complete) master graph. From Theorem 1.8 we calculate the relative entropy as

s∞ =
M∑

s,t=1

As ‖fs→t‖ℓ1(g) > 0. (2.7)

We can therefore conclude that, unlike the traditional block-model considered above, the
targeted degree-corrected model is ensemble nonequivalent. We also note that, unlike stated
in [27], the targeted degree-corrected block-model is not just a reparametrisation of the un-
targeted degree-corrected model. While fixing the targeted degree sequences automatically
realises the constraints of the untargeted model, the converse is not true. Being a relaxation
of the targeted model, we expect the untargeted model to have a relative entropy smaller
than in (2.7), further illustrating the difference between the two models. Yet, we expect the
relative entropy in the untargeted model to be strictly positive for, every choice of the degree
sequence, since there is still an extensive number of active constraints. This would support
the claim made in [48] that, for small values of the degrees, the degree-corrected block-models
with soft and hard constraints are not equivalent in the thermodynamic limit. At the same
time, it would contradict the claim made in the same reference that, if all degrees become
large (but still in the sparse regime), the two ensembles become equivalent. Indeed, from the
behaviour of g(k) for large k (see (1.18)) and the normalisation by n in (1.9), we expect a
finite specific relative entropy in that case as well.
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Networks with community structure. Another very important class of graphs that are
studied intensively in the literature are graphs with community structure [26], [49]. This class
is related to the block-models described above, but is in general different. Community struc-
ture is loosely defined as the presence of groups of nodes that are more densely interconnected
internally than with each other. One of the possible ways to quantitatively define the presence
of communities in a real-world network is in terms of a positive difference between the realised
number of intra-community links and the corresponding expected number calculated under
a certain null hypothesis. This definition can be made more explicit by introducing the con-
cept of modularity [26], [49]. For a graph with n nodes, a non-overlapping partition of nodes
into M communities can be specified by the n-dimensional vector ~σ, where the i-th entry
σi ∈ {1, . . . ,M} is an integer number labelling the community to which node i is assigned by
that particular partition. For a given real-world graph G∗, the modularity is a function on
the space of possible partitions, defined as

QG∗(~σ) = KG∗

∑

1≤i<j≤n

(gij(G
∗)− 〈gij〉) δσi,σj

, (2.8)

whereKG∗ is an (inessential) normalisation constant (independent of the partition ~σ) intended
to have the property QG∗ ∈ [−1,+1], and 〈gij〉 is the expected value of gij(G) under the null
hypothesis. The null hypothesis leads to a null model for the real-world network G∗. The
most popular choice for this null model is the canonical configuration model in the sparse
regime, which gives 〈gij〉 = k∗i k

∗
j/2L

∗ for i 6= j and 〈gii〉 = 0, where k∗i , k
∗
j and L∗ are all

calculated on G∗ (see (3.7) in the proof of Theorem 1.1).
Now, if the real-world network G∗ is indeed composed of communities, then the partition

~σ† that encodes these communities will be such that QG∗(~σ†) > 0, i.e., the total number of
links inside communities will be larger than the expected number under the null model. More
stringently, the ‘optimal’ partition into communities can be defined as the one that maximises
QG∗(~σ), provided that the corresponding value max~σ QG∗(~σ) is positive. Indeed, one of the
most popular ways in which communities are looked for in real-world networks is through
the process of modularity maximisation. The higher the value of the maximised modularity,
the sharper the community structure. In practice, the problem of community detection is
complicated by the possible existence of many local minima of QG∗(~σ) and by the fact that
QG∗(~σ†) may be positive even for “noisy communities”, i.e., communities induced by chance
only out of randomness in the data.

In our setting, community structure can be easily induced in the multilayer graph ensemble
G♯
n = Gn1,...,nM

(Γ) through a convenient choice of the master graph Γ and of the constrained

t-targeted degree sequences {~k∗s→t}. First, we identify the M layers {Λs} with the desired

communities and define the corresponding partition ~σ† through σ†
i = Λs if i ∈ Λs. Next, we

require that the master graph Γ has all possible self-loops, plus a desired number of additional
edges that need not be maximal (pairs of distinct communities are not necessarily connected in
real-world networks). Finally, we need to require that the t-targeted degree sequences induce
an excess of intra-community links with respect to the null model, so that the modularity
is at least positive, i.e., QG∗(~σ†) > 0, and at best maximised by the desired partition, i.e.,

18



~σ† = argmax~σ QG∗(~σ). To this end, we rewrite

QG∗(~σ†) = KG∗

∑

1≤i<j≤n

(gij(G
∗)− 〈gij〉) δσ†

i ,σ
†
j

=
KG∗

2

∑

1≤i,j≤n

(gij(G
∗)− 〈gij〉) δσ†

i ,σ
†
j

=
KG∗

2

M∑

s=1

∑

i,j∈Λs

(
gij(G

∗)−
k∗i k

∗
j

2L∗

)

=
KG∗

2

M∑

s=1

(
L∗
s,s −

1

2L∗

(∑

i∈Λs

k∗i

)2
)

=
KG∗

2

M∑

s=1

(
L∗
s,s −

1
∑M

s,t=1 L
∗
s,t

( M∑

t=1

L∗
s,t

)2
)
,

(2.9)

where we use gii(G
∗) = 〈gii〉 = 0, k∗i =

∑M
t=1 k

∗t
i and 2L∗ =

∑M
s,t=1 L

∗
s,t. So, the weaker

condition QG∗(~σ†) > 0 is realised by requiring that {~k∗s→t} satisfies the inequality

M∑

s=1

L∗
s,s >

∑M
s=1

(∑M
t=1 L

∗
s,t

)2

∑M
s,t=1 L

∗
s,t

, (2.10)

where L∗
s,t =

∑
i∈Λs

k∗ti . The above inequality explicitly states that the number of realised
intra-community edges counted in the left-hand side should be larger than the expected num-
ber calculated in the right-hand side. The stronger condition ~σ† = argmax~σ QG∗(~σ) should
instead be enforced by looking for the specific {~k∗s→t} that maximises (2.9).

Independently of how communities are induced in our framework, our results show that
ensembles of random graphs with community structure (according to the definition above)
are nonequivalent, with a relative entropy given by (1.48) where the degree distributions
{fs→t} are induced by suitable t-targeted degree sequences that realise (2.10) and possibly
also ~σ† = argmax~σ QG∗(~σ).

Multiplex networks and time-varying graphs. Two other important classes of graphs
that have recently gained attention are those of multiplex networks [11] and time-varying
graphs [38].

Multiplex networks are networks where the same set of nodes can be connected by M
different types of links [11]. Two examples, both studies in [32], are the multiplex of interna-
tional trade in different products (where nodes are world countries and links of different type
represent international trade in different products) and the multiplex of flights by different
airlines (where nodes are airports and links of different type represent flights operated by
different companies). An equivalent and widely used representation for a multiplex is one
where a number M of layers is introduced, the same nodes are replicated in each layer, and
inside each layer an ordinary graph is constructed, specified by all links of a single type. Links
only exist within layers, and not across layers. Indeed, what ‘couples’ the different layers and
makes a real-world multiplex different from a collection of independent layers is the empirical
fact that the topological properties of the layer-specific networks are typically strongly (either
positively or negatively) correlated. For instance, networks of trade in different products have
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a similar structure, and most notably countries that are ‘hubs’ in one layer are likely to be
hubs in other layers as well. By contrast, airports that are hubs for a domestic airline are
likely not to be hubs for other domestic airlines [32]. This means that, for each node i in
real-world networks, the M numbers of intra-layer links (i.e., the intra-layer degrees) are in
general (anti)correlated.

Time-varying graphs are collections of temporal snapshots of the same network [38]. If
the set of nodes in the network does not change with time, then a time-varying graph can
be represented as a multiplex where each temporal snapshot is a single layer. (Note that
multiplex networks themselves can vary over time [46].) Again, while not interacting directly
via links, the different layers are mutually dependent because of empirical correlations between
the properties of the same physical network across its temporal snapshots. Therefore this type
of time-varying graphs can be treated in a way formally similar to that used for multiplex
networks, the only difference being that a natural temporal ordering can be defined for the
snapshots of time-varying graphs, while this is in general not true for the layers of a multiplex.

In our framework, a multiplex or time-varying network can be introduced by identifying
each link type with a layer Λs and by requiring that the only edges of the master graph Γ are
self-loops, i.e., γs,s(Γ) = 1 for s = 1,M and γs,t(Γ) = 0 for s 6= t. Note that this specification,

which implies ~k∗s→t = ~0 for s 6= t, is somehow ‘dual’ to the one defining all-to-all multipartite
networks (see above). The fact that nodes in different layers are replicas of the same set of n
nodes implies that |Λs| is the same for all s, i.e., ns = n/M . Finally, the ‘coupling’ between
the topological properties of different layers can be introduced by assigning (anti)correlated
t-targeted degree sequences, i.e., by choosing (anti)correlated entries for every pair of vectors
~k∗s→s and ~k∗t→t, s 6= t. Real-world multiplexes, including the two examples made above, are
well reproduced by such a model [32]. Our results imply that the relevant ensembles are
nonequivalent. In particular, as a corollary of Theorem 1.8 we have

s∞ =
1

M

M∑

s=1

‖fs→s‖ℓ1(g). (2.11)

So, the relative entropy between the microcanonical and canonical distributions is the average
of the relative entropy of all layers, where for each layer s the relative entropy is the same as
that obtained for a uni-partite network with n/M nodes and limiting degree distribution fs→s

(see Theorem 1.1). Moreover, the presence of correlations between ~k∗s→s and
~k∗t→t translate into

dependencies between ‖fs→s‖ℓ1(g) and ‖ft→t‖ℓ1(g). In particular, in case of perfect correlation

(~k∗s→s =
~k∗t→t for all s, t), all the degree distributions are equal to a common one fs→s = f ∀s,

and we get
s∞ = ‖f‖ℓ1(g). (2.12)

In this case, the degree of nonequivalence is the same as that obtained for a single uni-partite
network with n/M nodes and limiting degree distribution f (see Theorem 1.1).

Interdependent multilayer networks. Finally, we discuss the class of interdependent
multilayer networks, which are multiplex networks with the addition of inter-layer links [11].
Nodes in different layers are still replicas of the same set of nodes, so we still have ns =
n/M for all s. Similarly, the topological properties of different intra-layer networks are still
(anti)correlated, which can be again realised by choosing (anti)correlated entries for every
pair of vectors ~k∗s→s and

~k∗t→t, s 6= t. However, while we still require γs,s(Γ) = 1 for s = 1,M ,
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now we no longer require γs,t(Γ) = 0 for s 6= t. Therefore the degree of nonequivalence can
only increase with respect to (2.11). Indeed, Theorem 1.8 now leads to

s∞ =
1

M

M∑

s,t=1
γs,t(Γ)=1

‖fs→t‖ℓ1(g), (2.13)

which shows that the relative entropy is no longer only an average over the layer-specific
relative entropies, since inter-layer relative entropies give additional contributions.

Networks of networks. A final class of graphs worth mentioning is the so-called networks
of networks, sometimes constructed by different ‘micro-networks’ that are coupled together
into a ‘macro-network’ where each node is a micro-network itself [22]. This class is similar to
the interdependent multilayer networks considered above, but here there is no identification
of the nodes in different layers to the same physical entity. An example is provided by multi-
scale transport networks, where different cities are internally characterised by their local
urban transport networks and at the same time are coupled through a long-distance inter-city
transport network (like highways or flights). In our framework, this class of network can be
induced by identifying the master graph Γ with the macro-network, and the M intra-layer
subgraphs with the micro-networks. To have all micro-networks non-empty, the master graph
must have all self-loops realised. This case is similar to the block-model mentioned above, but
now the master graph itself can be chosen to have nontrivial structural properties, such as
community structure, to resemble the specific properties of real-world networks of networks.

If the t-targeted degree sequences {~k∗s→t} (s, t = 1,M) are all enforced as constraints,
then the relative entropy is given by (1.48) with γs,s(Γ) = 1 for all s. However, in this class

of models it is often more natural to assume that the internal degree sequence ~k∗s→s of each
micro-network (layer) s is enforced (in order to get realistic micro-network topologies), while
between every pair s, t (s 6= t) of micro-networks only the number of links L∗

s,t is fixed (because
the topology of the master graph is already chosen in order to replicate the empirical macro-
network). This leads to the relaxed model in Theorem 1.9 with D = {(s, s) : s = 1,M}. The
relative entropy is therefore

s∞ =

M∑

s=1

As ‖fs→s‖ℓ1(g) (2.14)

and is still positive, even though the links among micro-networks do not contribute to it.

3 Proof of the theorems

3.1 Proof of Theorem 1.1

Proof. The microcanonical number Ω~k⋆
is not known in general, but asymptotic results exist

in the sparse regime defined by the condition (1.14). For this regime it was shown in [6], [43]
that

Ω~k∗
=

√
2 (2L

∗

e )L
∗

∏n
i=1 k

∗
i !

e−(k∗2/2k∗)2+ 1
4
+o(n−1k∗

3
), (3.1)

where k∗ = n−1
∑n

i=1 k
∗
i (average degree), L∗ = nk∗/2 (number of links), k∗2 = n−1

∑n
i=1 k

∗2
i

(average square degree). The canonical ensemble has Hamiltonian H(G, ~θ) =
∑n

i=1 θiki(G),
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where G is a graph belonging to Gn, and ki(G) =
∑

j 6=i gi,j(G) is the degree of the node i.
The partition function equals

Z(θ) =
∑

G∈Gn

e−H(G,~θ) =
∑

G∈Gn

∏

1≤i<j≤n

e−θigi,j(G)

=
∑

G∈Gn

∏

1≤i<j≤n

e−(θi+θj)gi,j(G) =
∏

1≤i<j≤n

(1 + e−(θi+θj)).
(3.2)

The canonical probability equals

Pcan(G | ~θ) =
∏

1≤i<j≤n e
−(θi+θj)gi,j(G)

Z(~θ)
=

∏

1≤i<j≤n

e−(θi+θj)gi,j(G)

1 + e−(θi+θj)
. (3.3)

Setting p∗ij ≡ e−θ∗i −θ∗j /(1 + e−θ∗i −θ∗j ), and ~θ∗ such that

∑

j 6=i

e−θ∗i −θ∗j

1 + e−θ∗i −θ∗j
= k∗i ∀ i (3.4)

we have
Pcan(G) =

∏

1≤i<j≤n

(p∗ij)
gij (1− p∗ij)

1−gij . (3.5)

It is ensured by (1.14) that limn→∞
1
n

∑
1≤i<j≤n p̂

∗ 2
ij = 0, a condition under which we can

show that (3.5) has the same asymptotic behaviour as

P̂can(G) =
∏

1≤i<j≤n

(p̂ ∗
ij)

gij (1− p̂ ∗
ij)

1−gij , (3.6)

with

p̂ ∗
ij = e−θ∗i −θ∗j =

k∗i k
∗
j

2L∗
. (3.7)

Indeed,

1

n
log

(
P̂can(G)

Pcan(G)

)
=

1

n

∑

1≤i<j≤n

gi,j log(1− p̂ ∗
ij)−

1

n

∑

1≤i<j≤n

log(1− p̂ ∗
ij
2) → 0, n → ∞,

(3.8)
because ∑

1≤i<j≤n

gi,j log(1− p̂ ∗
ij) ≤ (m∗)2 +O(p̂ ∗

ij
2) (3.9)

and

0 ≤ 1

n

∑

1≤i<j≤n

p̂ 2
ij =

1

2

[ ∑n
i=1 k

2
i√

n
∑n

i=1 ki

]2
≤ 1

2

(m∗)2

n
→ 0, n → ∞. (3.10)

This implies
∑

1≤i<j≤n ln(1− p∗ij) = −∑1≤i<j≤n k
∗
i k

∗
j /2L

∗ + o(n). Thus,

lnPcan(G
∗) =

n∑

i=1

k∗i ln k
∗
i − L∗ ln(2L∗)− L∗ + o(n). (3.11)
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Combining (3.1) and (3.11), we obtain (recall (1.17))

Sn(Pmic | Pcan) =
n∑

i=1

g(k∗i ) + o(n), n → ∞, (3.12)

where g(k) = log
(

k!
kke−k

)
, as defined in (1.17). With the help of (1.15) this reads

n−1 Sn(Pmic | Pcan) =
∑

k∈N0

fn(k)g(k) + o(1) = ‖fn‖ℓ1(g) + o(1), (3.13)

which together with (1.16) yields the claim.

3.2 Proof of Theorem 1.4

Proof. The microcanonical ensemble is easy: the number of graphs with a fixed fraction
λ ∈ (0, 1) of links is

ΩL∗ =

((n
2

)

L∗

)
=

(
K

λK

)
, K =

(
n

2

)
. (3.14)

The canonical ensemble has the Hamiltonian H(G, θ) = θL(G), where G is a graph belonging
to Gn, and L(G) =

∑
1≤i<j≤n gi,j(G) is the number of links in G. The partition function

equals

Z(θ) =
∑

G∈Gn

e−H(G,θ) =
∑

G∈Gn

∏

1≤i<j≤n

e−θgi,j(G) =
∏

1≤i<j≤n

(1 + e−θ). (3.15)

The canonical probability equals

Pcan(G | θ) = e−
∑

1≤i<j≤n θgi,j(G)

Z(θ)
=

∏

1≤i<j≤n

e−θgi,j(G)

1 + e−θ
=

∏

1≤i<j≤n

pgi,j(G)(1− p)1−gi,j(G)

(3.16)

with p = e−θ

1+e−θ . We search for θ∗ such that

L∗ =
∑

1≤i<j≤n

p∗, p∗ =
e−θ∗

1 + e−θ∗
. (3.17)

It follows that p∗ = λ. Thus,

logPmic(G
∗) = − log(K)! + log(λK)! + log((1− λ)K)!

= −K[logK − 1] + λK[log λK − 1] + [(1 − λ)K][log((1 − λ)K)− 1] + o(n)

= K log(1− λ) + λK log

(
λ

1− λ

)
+ o(n),

logPcan(G
∗) = λK log(λ) + (1− λ)K log(1− λ).

(3.18)
This in turn implies that

lim
n→∞

Sn(Pmic | Pcan)

n
= 0. (3.19)
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3.3 Proof of Theorem 1.5

Proof. We start by describing the canonical ensemble. The Hamiltonian is

H(G|~θ, ~φ) =
∑

i∈Λ1

ki(G)θi +
∑

j∈Λ2

k′j(G)φj

=
∑

i∈Λ1

∑

j∈Λ2

θigi,j(G) +
∑

i∈Λ1

∑

j∈Λ2

φjgi,j(G) =
∑

i∈Λ1

∑

j∈Λ2

(θi + φj)gi,j(G).
(3.20)

The partition function is

Z(~θ, ~φ) =
∑

G∈Gn1,n2

e−
∑

i∈Λ1

∑
j∈Λ2

(θi+φj)gi,j(G) =
∏

i∈Λ1

∏

j∈Λ2

(
1 + e−(θi+φj)

)
. (3.21)

The canonical probability becomes

Pcan(G | ~θ, ~φ) = e
−

∑
i∈Λ1

∑
j∈Λ2

(θi+φj)gi,j(G)

Z(~θ, ~φ)

=
∏

i∈Λ1

∏

j∈Λ2

e−(θi+φj)gi,j(G)

1 + e−(θi+φj)
=
∏

i∈Λ1

∏

j∈Λ2

p
gi,j(G)
i,j (1− pi,j)

1−gi,j(G),

(3.22)

where pi,j =
e−(θi+φj )

1+e−(θi+φj)
. We search for (~θ∗, ~φ∗) that solves the system of equations

{∑
j∈Λ2

p∗i,j = k∗i ,∑
i∈Λ1

p∗i,j = k′∗j ,
(3.23)

where p∗i,j =
e
−(θ∗i +φ∗j )

1+e
−(θ∗

i
+φ∗

j
) . If G

∗ is any graph in Gn1,n2 such that ki(G
∗) = k∗i and k′j(G

∗) = k′∗j ,

then
Pcan(G) =

∏

i∈Λ1

∏

j∈Λ2

p∗i,j
gi,j(G)(1− p∗i,j)

1−gi,j(G). (3.24)

Under the sparseness condition (1.27), we can replace p∗i,j with the following quantity.

Define p̂ ∗
i,j = e−(θ∗i +φ∗

j ) and consider the system of equations

{∑
j∈Λ2

p̂ ∗
i,j = k∗i ,∑

i∈Λ1
p̂ ∗
i,j = k′∗j .

(3.25)

This has solution

p̂ ∗
i,j =

k∗i k
′∗
j

L∗
, L∗ =

∑

i∈Λ1

k∗i =
∑

j∈Λ2

k′∗j . (3.26)

We define
P̂can(G) =

∏

i∈Λ1

∏

j∈Λ2

(p̂ ∗
i,j)

gij(G)(1− p̂ ∗
i,j)

1−gij(G), (3.27)

and note that
1

n1 + n2
log

(
P̂can(G)

Pcan(G)

)
→ 0, n1, n2 → ∞. (3.28)
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The crucial point is to prove that 1
n1+n2

∑
i∈Λ1

∑
j∈Λ2

p̂ ∗ 2
i,j → 0. This allows us to write

∑

i∈Λ1

∑

j∈Λ2

log(1− p∗i,j) = −
∑

i∈Λ1

∑

j∈Λ2

k∗i k
′∗
j

L∗
+ o(n1 + n2), n1, n2 → ∞. (3.29)

Indeed,

0 ≤ 1

n1 + n2

∑

i∈Λ1

∑

j∈Λ2

p̂ ∗ 2
i,j =

1

n1 + n2

∑
i∈Λ1

k∗i
2∑

j∈Λ2
k′∗j

2

∑
i∈Λ1

k∗i
∑

j∈Λ2
k′∗j

≤ m∗m′∗

√
n1n2

√
n1n2

n1 + n2
→ 0, (3.30)

because m∗m′∗ = o(L∗2/3) implies m∗m′∗ = o(
√
n1n2).

Combining (3.24) and (3.29), we have

log Pcan(G
∗) =

∑

i∈Λ1

∑

j∈Λ2

gi,j(G
∗) log

(
k∗i k

′∗
j

L∗

)
−
∑

i∈Λ1

∑

j∈Λ2

k∗i k
′∗
j

L∗
+ o(n1 + n2)

=
∑

i∈Λ1

k∗i log (k
∗
i ) +

∑

j∈Λ2

k′∗j log
(
k′∗j
)
− L∗ logL∗ − L∗ + o(n1 + n2), (3.31)

which concludes our computation for the canonical ensemble.
Microcanonical probabilities come from the results in [34], where it is shown that, as

n → ∞, the number of bi-partite graphs with degree sequences ~k∗, ~k′∗ on the two layers is
given by

Ω ~k∗, ~k′∗
=

L∗!∏
i∈Λ1

k∗i !
∏

j∈Λ2
k′∗j !

eo(n1+n2). (3.32)

Hence

logPmic(G
∗) = − log Ω ~s∗, ~t∗ =

∑

i∈Λ1

k∗i ! +
∑

j∈Λ2

k′
∗
j !− log(L∗!) + o(n1 + n2). (3.33)

From (3.31) and (3.33) we get

Sn1+n2(Pcan | Pmic) = logPmic(G
∗)− log Pcan(G

∗)

=
∑

i∈Λ1

log

(
k∗i !

k∗i
k∗i

)
+
∑

j∈Λ2

log

(
k′∗j !

k′∗j
k′∗j

)

+ L∗ logL∗ + L∗ − log(L∗!) + o(n1 + n2)

=
∑

i∈Λ1

g(k∗i ) +
∑

j∈Λ2

g(k′∗j ) + o(n1 + n2),

(3.34)

where in the last line we use L∗ =
∑

i∈Λ1
k∗i =

∑
j∈Λ2

k′∗j and Stirling’s approximation for
log(L∗!). Since

n1
−1
∑

i∈Λ1

g(k∗i ) =

n2∑

k∈N0

f
(n1)
1→2(k)g(k) = ‖f (n1)

1→2‖ℓ1(g),

n2
−1
∑

j∈Λ2

g(k′∗j ) =

n1∑

k∈N0

f
(n2)
2→1(k)g(k) = ‖f (n2)

2→1‖ℓ1(g),
(3.35)

we get, with the help of (1.28),

lim
n→∞

Sn1+n2(Pcan | Pmic)

n1 + n2
= A1 ‖f1→2‖ℓ1(g) +A2 ‖f2→1‖ℓ1(g), (3.36)

which proves the claim.
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3.4 Proof of Theorem 1.6

Proof. The number of bi-partite graphs with constraint ~k∗ on the top layer is

Ω~k∗
=
∏

i∈Λ1

(
n2

k∗i

)
. (3.37)

In order to calculate the canonical probability, we calculate the partition function:

Z(~θ) =
∑

G∈Gn1,n2

e
−

∑
i∈Λ1

θi
∑

j∈Λ2
gi,j(G)

=
∑

G∈Gn1,n2

∏

i∈Λ1

∏

j∈Λ2

e−θigi,j(G) =
∏

i∈Λ1

∏

j∈Λ2

[1 + e−θi ].

(3.38)
The canonical probability becomes

Pcan(G|~θ) = e−
∑

i∈Λ1
θi

∑
j∈Λ2

gi,j(G)

Z(~θ)
=
∏

i∈Λ1

∏

j∈Λ2

e−θigi,j(G)

1 + e−θi
=
∏

i∈Λ1

∏

j∈Λ2

p
gi,j(G)
i (1− pi)

1−gi,j(G)

(3.39)

with pi =
e−θi

1+e−θi
. We search for θ∗i such that

k∗i =
∑

j∈Λ2

p∗i = n2p
∗
i , p∗i =

e−θ∗i

1 + e−θ∗i
. (3.40)

It follows that pi =
k∗i
n2

(recall (1.34)). According to (1.11) we have

Sn1+n2(Pmic | Pcan) = ln
Pmic(G

∗)

Pcan(G∗)

= −
∑

i∈Λ1

log

(
n2

k∗i

)
−
∑

i∈Λ1

k∗i log

(
k∗i
n2

)
−
∑

i∈Λ1

(n2 − k∗i ) log

(
1− k∗i

n2

)

= n1n2 log n2 −
∑

i∈Λ1

log

[(
n2

k∗i

)
k∗i

k∗i (n2 − k∗i )
(n2−k∗i )

]
.

(3.41)
Abbreviate Ua(x) ≡ log

[(a
x

)
xx(a− x)a−x] and write

Sn1+n2(Pmic | Pcan) = n1n2 log n2 −
∑

i∈Λ1

Un2(k
∗
i ) = n1n2 log n2 − n1

n2∑

k=0

fn1(k)Un2(k). (3.42)

For the relative entropy per node this gives

sn1+n2 =
n1

n1 + n2

n2∑

k=0

fn1(k)n2 log n2 −
n1

n1 + n2

n2∑

k=0

fn1(k)Un2(k)

= − n1

n1 + n2

n2∑

k=0

fn1(k) log Bin
(
n2,

k
n2

)
(k) =

n1

n1 + n2
‖fn1‖ℓ1(gn2 )

.

(3.43)

Case (1). Recall (1.17). Note that x 7→ z(x) = eg(x) is non-decreasing:

z(x− 1)

z(x)
=

(
x

x− 1

)x−1 1

e
≤ 1. (3.44)
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It therefore follows that

‖fn1‖ℓ1(gn2 )
= −

n2∑

k=0

fn1(k) log Bin
(
n2,

k
n2

)
(k) =

n2∑

k=0

fn1(k) log

(
z(k)z(n2 − k)

z(n2)

)

=
∑

k∈N0

fn1(k) log

(
z(k)z(n2 − k)

z(n2)

)
Ik≤n2 ≤

∑

k∈N0

I0≤k≤n2 fn1(k) log z(k)

≤
∑

k∈N0

fn1(k) log z(k) = ‖fn1‖ℓ1(g) < ∞.

(3.45)

By (1.36) and dominated convergence, we may exchange limit and sum to obtain

lim
n→∞

sn1,n2 = lim
n2→∞

n1

n1 + n2

∑

k∈N0

fn1(k) lim
n2→∞

log

(
z(k)z(n2 − k)

z(n2)

)
I0≤k≤n2 = 0, (3.46)

where we use that limn→∞
n1

n1+n2
= 0 and limn→∞

z(n2−k)
z(n2)

= 1 for all k ∈ N0.

Case (2). Using (3.45) and (1.36), we get

0 ≤ sn1,n2 =
n1

n1 + n2
‖fn1‖ℓ1(g) →n→∞ 1

1 + c
‖f‖ℓ1(g) = 0. (3.47)

Case (3). Estimate

0 ≤ |‖fn1‖ℓ1(gn2 )
− ‖fn1‖ℓ1(gn2 )

| ≤ ‖fn1 − f‖ℓ1(gn2 )
≤ ‖fn1 − f‖ℓ1(g) →n→∞ 0. (3.48)

Case (4).

0 ≤ |‖fn1‖ℓ1(gn2 )
−‖f‖ℓ1(g)| ≤

∑

k∈N0

|fn1(k)−f(k)||gn2(k)Ik≤n2−g(k)| ≤ 2‖fn1−f‖ℓ1(g). (3.49)

Since n1
n1+n2

= 1
1+

n2
n1

→ 1
1+c , the claim follows.

3.5 Proof of Theorem 1.7

Proof. The microcanonical ensemble is easy: the number of bi-partite graphs with a fixed
fraction λ ∈ (0, 1) of links is

ΩL∗ =

(
n1n2

L∗

)
=

(
n1n2

λn1n2

)
. (3.50)

The canonical ensemble has the Hamiltonian H(G, θ) = θL(G), where G is a bi-partite graph
belonging to Gn1,n2 , and L(G) =

∑
i∈Λ1

∑
j∈Λ2

gi,j(G) is the number of links in G. The
partition function equals

Z(θ) =
∑

G∈Gn1,n2

e−H(G,θ) =
∑

G∈Gn1,n2

∏

i∈Λ1

∏

j∈Λ2

e−θgi,j(G) =
∏

i∈Λ1

∏

j∈Λ2

(1 + e−θ). (3.51)
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The canonical probability equals

Pcan(G | ~θ) = e−
∑

i∈Λ1

∑
j∈Λ2

θgi,j(G)

Z(~θ)
=
∏

i∈Λ1

∏

j∈Λ2

e−θgi,j(G)

1 + e−θ
=
∏

i∈Λ1

∏

j∈Λ2

pgi,j(G)(1− p)1−gi,j(G)

(3.52)

with p = e−θ

1+e−θ . We search for θ∗ such that

L∗ =
∑

i∈Λ1

∑

j∈Λ2

p∗, p∗ =
e−θ∗

1 + e−θ∗
. (3.53)

It follows that p∗ = λ. Thus,

log Pmic(G
∗) = − log(n1n2)! + log(λn1n2)! + log((1− λ)n1n2)!

= −n1n2[log n1n2 − 1] + λn1n2[log λn1n2 − 1]

+ [1− λn1n2][log((1− λ)n1n2)− 1] + o(n1 + n2)

= n1n2 log(1− λ) + λn1n2 log

(
λ

1− λ

)
+ o(n1 + n2),

log Pcan(G
∗) = n1n2 log(1− λ) + λn1n2 log

(
λ

1− λ

)
.

(3.54)

This in turn implies that

lim
n1,n2→∞

Sn1+n2(Pmic | Pcan)

n1 + n2
= 0. (3.55)

3.6 Proof of Theorem 1.8

Proof. The proof is based on the previous theorems. We start by looking at the Hamiltonian
of the system. For each admitted pair of layers (γs,t(Γ) = 1) we define Lagrange multipliers
~θs→t = (θ

(t)
1 , . . . , θ

(t)
ns ). The Hamiltonian equals

H
(
G | ~θs→t; s, t = 1, . . . ,M, γs,t(Γ) = 1

)

=
∑

1≤s<t≤M
γs,t(Γ)=1

∑

i∈Λs
j∈Λt

(θti + θsj)gi,j(G) +

M∑

s=1
γs,s(Γ)=1

∑

i,j∈Λs
i<j

(θsi + θsj)gi,j(G)

=
∑

1≤s<t≤M
γs,t(Γ)=1

∑

i∈Λs
j∈Λt

Hs,t(G
(st) | ~θs→t, ~θt→s) +

M∑

s=1
γs,s(Γ)=1

∑

i,j∈Λs
i<j

Hs,s(G
(ss) | ~θs→s),

(3.56)

where
Hs,t(G

(st) | ~θs→t, ~θt→s) =
∑

i∈Λs
j∈Λt

(θti + θsj)gi,j(G
(st)),

Hs,s(G
(ss) | ~θs→s) =

∑

i,j∈Λs
i<j

(θsi + θsj)gi,j(G
(ss)),

(3.57)
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and G(st) (G(ss)) is the bi-partite (uni-partite) graph between layers s and t (inside layer
s) obtained from the multi-partite graph G. The ns × nt matrix representing the bi-partite
graph has, for each i ∈ Λs and j ∈ Λt, elements gi,j(G

(st)) = gi,j(G). Note that Hs,t(G
(st) |

~θs→t, ~θt→s) is the Hamiltonian of the bi-partite graph G(st) between layers s and t with con-
straints ~k ∗

s→t, and Hs,s(G
(ss) | ~θs→s) is the Hamiltonian of the uni-partite graph G(ss) of the

layer s with constraints ~k ∗
s→s.

The partition function of the canonical ensemble equals

Z
(
~θs→t; s, t = 1, . . . ,M, γs,t(Γ) = 1

)
=

∑

G∈Gn1,...,nM
(Γ)

e−H(G | ~θs→t; s,t=1,2,...,M : γs,t(Γ)=1)

=
∏

1≤s<t≤M
γs,t(Γ)=1

∑

G(st)∈Gns,nt

e−Hs,t(G(st) | ~θs→t,~θt→s)
M∏

s=1
γs,s(Γ)=1

∑

G(ss)∈Gns,ns

e−Hs,s(G(ss) | ~θs→s)

=
∏

1≤s<t≤M
γs,t(Γ)=1

Z(st)(~θs→t, ~θt→s)
M∏

s=1
γs,s(Γ)=1

Z(ss)(~θs→s),

(3.58)
where Z(st)(~θs→t, ~θt→s) is the partition function of the set of bi-partite graphs Gns,nt with

constraints ~k ∗
s→t on the top layer and ~k ∗

t→s on the bottom layer, and Z(ss)(~θs→s) is the partition
function of the set of graph Gns with constraint ~k ∗

s→s. The canonical ensemble is

Pcan(G) =
∏

1≤s<t≤M
γs,t(Γ)=1

P (st)
can (G

(st))

M∏

s=1
γs,s(Γ)=1

P (ss)
can (G(ss)), (3.59)

where P
(st)
can (G(st)) is the canonical probability of the bi-partite graph G(st) with constraints

~k ∗
s→t on the top layer and ~k ∗

t→s on the bottom layer, and P
(ss)
can (G(ss)) is the canonical proba-

bility of the uni-partite graph G(ss) with constraint ~k ∗
s→s.

We can split the microcanonical probability as products of microcanonical probabilities
for simpler cases. The number of graphs with constraints ~C∗ is

Ω~k ∗
s→t; s,t∈{1,...,M}, γs,t(Γ)=1

=

∣∣∣∣∣∣



G ∈ Gn1,...,nM

(Γ) :
∑

j∈Λt

gi,j(G) = k∗ ti ∀ i ∈ Λs ∀ γs,t = 1





∣∣∣∣∣∣

=
∏

1≤s<t≤M
γs,t(Γ)=1

∣∣∣∣∣∣



G(st) ∈ Gns,nk

:
∑

j∈Λt

gi,j(G
(st)) = k∗ ti ∀ i ∈ Λs,

∑

i∈Λs

gi,j(G
(st)) = k∗ sj ∀ j ∈ Λt





∣∣∣∣∣∣

M∏

s=1
γs,s(Γ)=1

∣∣∣∣∣∣



G(ss) ∈ Gns :

∑

j∈Λs

gi,j(G
(ss)) = s∗hi ∀ i ∈ Λs





∣∣∣∣∣∣

=
∏

1≤s<t≤M
γs,t(Γ)=1

Ω~k ∗
s→t,

~k ∗
t→s

M∏

s=1
γs,s(Γ)=1

Ω~k ∗
s→s

.

(3.60)
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This means the microcanonical probability can be factorised as

Pmic(G) =
∏

1≤s<t≤M
γs,t(Γ)=1

P
(st)
mic (G

(st))

M∏

s=1
γs,s(Γ)=1

P
(ss)
mic (G

(ss)), (3.61)

where P
(st)
mic (G

(st)) is the microcanonical probability of the bi-partite graph G(st) with con-

straints ~k ∗
s→t on the top layer and ~k ∗

t→s on the bottom layer, and P
(ss)
mic (G

(ss)) is the micro-

canonical probability of the uni-partite graph G(ss) with constraint ~k ∗
s→s.

Equations (3.59) and (3.61) imply that the relative entropy equals the sum

Sn(Pmic | Pcan) =
∑

1≤s<t≤M
γs,t(Γ)=1

Sn(P
(st)
mic | P (st)

can ) +

M∑

s=1
γs,s(Γ)=1

Sn(P
(ss)
mic | P (ss)

can ). (3.62)

We can now apply Theorems 1.1 and 1.5 to get the asymptotic relative entropy per nodes as

lim
n1,...,nM→∞

Sn(Pmic | Pcan)

n

=
∑

1≤s<t≤M
γs,t(Γ)=1

lim
n1,...,nM→∞

Sn(P
(st)
mic | P (st)

can )

n
+

M∑

s=1
γs,s(Γ)=1

lim
n1,...,nM→∞

Sn(P
(ss)
mic | P (ss)

can )

n

=
∑

1≤s<t≤M
γs,t(Γ)=1

{
As ‖fs→t‖ℓ1(g) +At ‖ft→s‖ℓ1(g)

}
+

M∑

s=1
γs,s(Γ)=1

{
As ‖fs→s‖ℓ1(g)

}

=

M∑

s,t=1
γs,t(Γ)

As ‖fs→t‖ℓ1(g).

(3.63)

3.7 Proof of Theorem 1.9

Proof. We start by studying the Hamiltonian. For each pair (s, t) of layers in D, we define
Lagrange multipliers ~θs→t = (θt1, . . . , θ

t
ns
). For each pair (s, t) of layers in L, we define a

Lagrange multiplier θs,t. The Hamiltonian is

H
(
G | ~θs→t, θl,m; (s, t) ∈ D, (l,m) ∈ L

)

= HD(G | ~θs→t; (s, t) ∈ D) +HL(G | θl,m; (l,m) ∈ L)
(3.64)

with

HD(G | ~θs→t; (s, t) ∈ D) =
∑

1≤s<t≤M
(s,t)∈D

∑

i∈Λs
j∈Λt

(θti + θsj)gi,j(G) +

M∑

s=1
(s,s)∈D

∑

i,j∈Λs
i<j

(θsi + θsj)gi,j(G),

HL(G | θs,t; (s, t) ∈ L) =
∑

1≤s<t≤M
(s,t)∈L

∑

i∈Λs
j∈Λt

(θs,t)gi,j(G) +
M∑

s=1
(s,s)∈L

∑

i,j∈Λs
i<j

(θs,s)gi,j(G).

(3.65)
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Consequently, the canonical ensemble is

Pcan(G) = PD
can(G)PL

can(G) (3.66)

with

PD
can(G) =

∏

1≤s<t≤M
(s,t)∈D

P (st)
can

D
(G(st))

M∏

s=1
(s,s)∈D

P (ss)
can

D
(G(ss)),

PL
can(G) =

∏

1≤s<t≤M
(s,t)∈L

P (st)
can

L
(G(st))

M∏

s=1
(s,s)∈L

P (ss)
can

L
(G(ss)).

(3.67)

Here,

• G(st) (G(ss) ) is the bi-partite (uni-partite) graph between layers s and t (and itself)
obtained from the multi-partite graph G. The ns × nt (ns × ns) matrix representing
this bi-partite (uni-partite) graph has, for each i ∈ Λs and j ∈ Λt (for each i, j ∈ Λs),
elements gi,j(G

(st)) = gi,j(G) (gi,j(G
(ss)) = gi,j(G)).

• P
(st)
can

D
(G(st)) (P

(ss)
can

D
(G(ss))) is the canonical probability of the bi-partite (uni-partite)

graph G(st) (G(ss)) with constraints ~k ∗
s→t on the top layer and ~k ∗

t→s on the bottom layer
(with constraint ~k ∗

s→s).

• P
(st)
can

L
(G(st)) (P

(ss)
can

L
(G(ss))) is the canonical probability of the bi-partite (uni-partite)

graph G(st) (G(ss)) with constraint L∗
s,t (L

∗
s,s).

We can split the microcanonical probability as products of microcanonical probabilities of
simpler cases. The number of graphs with such a type of constraints is

Ω~k ∗
s→t,L

∗
l,m; (s,t)∈D,(l,m)∈L

= Ω~k ∗
s→t;(s,t)∈D

ΩLl,m;(l,m)∈L. (3.68)

This means that the microcanonical probability can be factorised as

Pmic(G) = PD
mic(G)PL

mic(G) (3.69)

with

PD
mic(G) =

∏

1≤s<t≤M
(s,t)∈D

P
(st)
mic

D
(G(st))

M∏

s=1
(s,s)∈D

P
(ss)
mic

D
(G(ss)),

PL
mic(G) =

∏

1≤s<t≤M
(s,t)∈L

P
(st)
mic

L
(G(st))

M∏

s=1
(s,s)∈L

P
(ss)
mic

L
(G(ss)).

(3.70)

Here,

• P
(st)
mic

D
(G(st)) (P

(ss)
mic

D
(G(ss))) is the microcanonical probability of the bi-partite (uni-

partite) graph G(st) (G(ss)) with constraints ~k ∗
s→t on the top layer and ~k ∗

t→s on the
bottom layer (with constraint ~k ∗

s→s).

• P
(st)
mic

L
(G(st)) (P

(ss)
mic

L
(G(ss))) is the microcanonical probability of the bi-partite (uni-

partite) graph G(st) (G(ss)) with constraint L∗
s,t (L

∗
s,s).
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The relative entropy becomes

Sn(Pmic | Pcan) = Sn(P
D
mic | PD

can) + Sn(P
L
mic | PL

can). (3.71)

It follows that

lim
n1,...,nM→∞

Sn(Pmic | Pcan)

n

= lim
n1,...,nM→∞

Sn(P
D
mic | PD

can)

n
+ lim

n1,...,nM→∞

Sn(P
L
mic | PL

can)

n
.

(3.72)

Using Theorem 1.8 we get

lim
n1,...,nM→∞

Sn(P
D
mic | PD

can)

n
=

∑

(s,t)∈D

As ‖fs→t‖ℓ1(g). (3.73)

Moreover,

lim
n1,...,nM→∞

Sn(P
L
mic | PL

can)

n

= lim
n1,...,nM→∞

∑

1≤s<t≤M
(s,t)∈L

Sn(P
(st)
mic

L
| P (st)

can

L
)

n
+ lim

n1,...,nM→∞

M∑

s=1
(s,s)∈L

Sn(P
(ss)
mic

L
| P (ss)

can

L
)

n
.

(3.74)

Using Theorems 1.4 and 1.7, we get

lim
n1,...,nM→∞

Sn(P
(st)
mic

L
| P (st)

can
L
)

n
= lim

n1,...,nM→∞

Sn(P
(ss)
mic

L
| P (ss)

can
L
)

n
= 0, (3.75)

which proves the claim.

3.8 Proof of Theorem 1.10

Proof. The proof is based on the previous theorems. For each pair of layers s, t ∈ M1 we
define Lagrange multipliers ~θs→t = (θt1, . . . , θ

t
ns
) and ~θt→s = (θs1, . . . , θ

s
nt
). For each pair of

layers s,∈ M1, t ∈ M2 we define ~θs→t = (θt1, . . . , θ
t
ns
). The Hamiltonian is

H
(
G | ~θs→t; s ∈ M1, t ∈ M1 ∪M2, γs,t(Γ) = 1

)

=
∑

s,t∈M1

γs,t(Γ)=1

~θs→t~ss→t(G) +
∑

s∈M1
γs,s(Γ)=1

~θs→s~ss→s(G) +
∑

s∈M1, t∈M2

γs,t(Γ)=1

~θs→t~ss→t(G)

= HM1→M1 +HM1→M2 ,

(3.76)

with
HM1→M1 =

∑

s,t∈M1

γs,t(Γ)=1

~θs→t~ss→t(G) +
∑

s∈M1
γs,s(Γ)=1

~θs→s~ss→s(G),

HM1→M2 =
∑

s∈M1, t∈M2

γs,t(Γ)=1

~θs→t~ss→t(G).
(3.77)
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Consequently, the canonical ensemble is

Pcan(G) = PM1→M1
can (G)PM1→M2

can (G) (3.78)

with

PM1→M1
can (G) =

∏

s,t∈M1

γs,t(Γ)=1

P (st)
can

top,bot
(G(st))

∏

s∈M1
γs,s(Γ)=1

P (ss)
can (G(ss)),

PM1→M2
can (G) =

∏

s∈M1, t∈M2

γs,t(Γ)=1

P (st)
can

top
(G(st)).

(3.79)

Here,

• G(st) (G(ss)) is the bi-partite (uni-partite) graph between layers s and t (itself) obtained
from the multi-partite graph G. The ns × nt (ns × ns) matrix representing this bi-
partite (uni-partite) graph has, for each i ∈ Λs and j ∈ Λt (for each i, j ∈ s), elements
gi,j(G

(st)) = gi,j(G) (gi,j(G
(ss)) = gi,j(G)).

• P
(st)
can

top,bot
(G(st)) is the canonical probability of the bi-partite graph G(st) with con-

straints ~k ∗
s→t on the top layer and ~k ∗

t→s on the bottom layer.

• P
(ss)
can (G(ss)) is the canonical probability of the uni-partite graph G(ss) with constraint

~k ∗
s→s.

• P
(st)
can

top
(G(st)) is the canonical probability of the bi-partite graph G(st) with constraint

~k ∗
s→t on the top layer.

We can split the microcanonical probability as products of microcanonical probabilities
for simpler cases. The number of graphs with such a type of constraints is

Ω~k ∗
s→t; s∈M1, t∈M1∪M2, γs,t(Γ)=1

= Ω~k ∗
s→t; s,t∈M1, γs,t(Γ)=1

Ω~k ∗
s→t; s∈M1, t∈M2, γs,t(Γ)=1

. (3.80)

This means that the microcanonical probability can be factorised as

Pmic(G) = PM1→M1
mic (G)PM1→M2

mic (G) (3.81)

with

PM1→M1
mic (G) =

∏

s,t∈M1

γs,t(Γ)=1

P
(st)
mic

top,bot
(G(st))

∏

s∈M1
γs,s(Γ)=1

P
(ss)
mic (G

(ss)),

PM1→M2
mic (G) =

∏

s∈M1, t∈M2

γs,t(Γ)=1

P
(st)
mic

top
(G(st)).

(3.82)

Here,

• P
(st)
mic

top,bot
(G(st)) is the microcanonical probability of the bi-partite graph G(st) with

constraints ~k ∗
s→t on the top layer and ~k ∗

t→s on the bottom layer.

• P
(ss)
mic (G

(ss)) is the microcanonical probability of the uni-partite graph G(ss) with con-

straint ~k ∗
s→s.
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• P
(st)
mic

top
(G(st)) is the microcanonical probability of the bi-partite graph G(st) with con-

straint ~k ∗
s→t on the top layer.

The relative entropy becomes

Sn(Pmic | Pcan) = Sn(P
M1→M1
mic | PM1→M1

can ) + Sn(P
M1→M2
mic | PM1→M2

can ). (3.83)

It follows that

lim
n1,...,nM→∞

Sn(Pcan | Pcan)

n

= lim
n1,...,nM→∞

Sn(P
M1→M1
mic | PM1→M1

can )

n
+ lim

n1,...,nM→∞

Sn(P
M1→M2
mic | PM1→M2

can )

n
.

(3.84)

Using again Theorem 1.8 we get

lim
n1,...,nM→∞

Sn(P
M1→M1
mic | PM1→M1

can )

n

=
∑

s,t∈M1
γs,t(Γ)=1

{
As ‖fs→t‖ℓ1(g) +At ‖ft→s‖ℓ1(g)

}
+

∑

s∈M1
γs,s(Γ)=1

As ‖fs→s‖ℓ1(g)

=
∑

s,t∈M1
γs,t(Γ)=1

As ‖fs→t‖ℓ1(g).

(3.85)

From Theorem 1.6 we get

lim
n1,...,nM→∞

Sn(P
M1→M2
mic | PM1→M2

can )

n

= lim
n1,...,nM→∞

∑

s∈M1, t∈M2

γs,t(Γ)=1

Sn(P
(st)
mic

M1→M2 | P (st)
can

M1→M2

)

n
=

∑

s∈M1, t∈M2

γs,t(Γ)=1

As ‖fs→l‖ℓ1(g),

(3.86)
which concludes the proof.
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