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ABSTRACT. If X is a compact Hausdorff space and σ is a homeomorphism of X , then an
involutive Banach algebra `1(Σ) of crossed product type is naturally associated with the
topological dynamical system Σ= (X ,σ). We initiate the study of the relation between
two-sided ideals of `1(Σ) and C∗(Σ), the enveloping C∗-algebra C(X )oσ Z of `1(Σ).
Among others, we prove that the closure of a proper two-sided ideal of `1(Σ) in C∗(Σ)
is again a proper two-sided ideal of C∗(Σ).

1. INTRODUCTION AND OVERVIEW

If X is a compact Hausdorff space and σ : X → X is a homeomorphism of X , then
an involutive Banach algebra `1(Σ) of crossed product type can be associated with
this dynamical system Σ = (X ,σ); we shall recall the definition in Section 2. Its C∗-
enveloping algebra, denoted by C∗(Σ), is the crossed product C∗-algebra C(X )oσ Z.
Whereas C∗(Σ) is well-studied, the investigation of `1(Σ) itself is of a more recent nature;
this has been taken up in [2], [3], [4], and [5]. The algebra `1(Σ) is more complicated
than C∗(Σ). For example, it can occur that `1(Σ) has a non-selfadjoint closed two-sided
ideal (see [2, Theorem 4.4]), whereas this is, of course, never the case for C∗(Σ).

The study of `1(Σ) so far has proceeded without using what is known about C∗(Σ).
Still, it has turned out that some analogous properties of `1(Σ) and C∗(Σ) are equivalent.
For example, these algebras are either both simple (i.e. have only trivial closed two-sided
ideals), or both non-simple. The proof of this fact proceeds via the properties of Σ:
for each of these algebras, this simplicity can be shown to X being an infinite set and
Σ being minimal, i.e. to X being an infinite set that has only trivial invariant closed
subsets. Hence the simplicity of one algebra also implies the simplicity of the other. It is
desirable to have some basic results, formulated directly in terms of the algebras and
not using the properties of the dynamical system, that can help transfer a property of
the ideal structure of one algebra to an analogous property of the ideal structure of the
other algebra. As the example of non-selfadjoint closed two-sided ideals makes clear,
one cannot expect to be able to do this in all cases, but one would hope that something
in this direction is still possible.

The present paper contains the first steps in this direction. We show that the closure
in C∗(Σ) of a proper not necessarily closed two-sided ideal of `1(Σ) is still a proper
two-sided ideal of C∗(Σ); see Theorem 3.7. We also investigate what the necessary and
sufficient condition is so that all closed two-sided ideals of `1(Σ) can be reconstructed
from their closure in C∗(Σ) by taking the intersection with `1(Σ) again. The latter is
possible if and only if the Z-action on X is free, i.e. if and only if there are no periodic
points of σ in X ; see Theorem 3.12.
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As a (now immediate) example of how such a relation between two-sided ideals
of `1(Σ) and C∗(Σ) can be exploited, we re-establish the fact that the minimality of Σ
implies the simplicity of `1(Σ), based on the knowledge that this is true for C∗(Σ); see
Corollary 3.9 for a more elaborate statement.

This paper is organized as follows.
In Section 2, we introduce `1(Σ) and its enveloping C∗-algebra C∗(Σ).
In Section 3, we establish our main results. The key idea in this section is that there

are some proper two-sided ideals of `1(Σ) for which it is immediately obvious that their
closure in C∗(Σ) is still a proper two-sided ideal of C∗(Σ), and that they can be retrieved
as the intersection of their closure in C∗(Σ) with `1(Σ). As is the case for all unital
involutive Banach algebras that are a subalgebra of their enveloping C∗-algebra, all
kernels of non-zero involutive representations of `1(Σ) on Hilbert spaces have these two
properties. The main technical result in this section is then to show that all primitive
ideals (in the purely algebraic sense to be recalled in Section 3) of `1(Σ) are such kernels.

2. TWO ALGEBRAS

In this section, we introduce the two algebras playing a role in this paper, and we
recall a few standard facts about their relation. We also introduce notation for the two
closure operations figuring in this context, and state our convention concerning ideals
of an algebra.

Throughout this paper, X is a non-empty compact Hausdorff space and σ : X → X is
a homeomorphism. Hence Z acts on X , and we write Σ for short for the topological
dynamical system (X ,σ). We let Aper(σ) and Per(σ) denote the aperiodic and the
periodic points of σ, respectively. A subset S of X is invariant if it is invariant under
the Z-action, i.e. if σ(S) = S. The involutive algebra of continuous (complex-valued)
functions on X is denoted by C(X ), and we write α for the involutive automorphism
of C(X ) induced by σ, defined by α( f ) = f ◦σ−1 for f ∈ C(X ). Via n 7→ αn, Z acts on
C(X ).

With ‖ · ‖ denoting the supremum norm on C(X ), we let

`1(Σ) = `1(Z, C(X )) =
§

a : Z→ C(X ) : ‖a‖ :=
∑

n∈Z

‖a(n)‖<∞
ª

.

We supply the Banach space `1(Σ) with the usual twisted convolution as multiplication,
defined by

(aa′)(n) =
∑

k∈Z

a(k) ·αk(a′(n− k))

for n ∈ Z and a, a′ ∈ `1(Σ), and define an involution on `1(Σ) by

a∗(n) = αn(a(−n))

for n ∈ Z and a ∈ `1(Σ). Thus `1(Σ) becomes a unital Banach ∗-algebra with isometric
involution. If X consists of one point, then `1(Σ) is the group algebra `1(Z) of the
integers.

There is a convenient way to work with `1(Σ), which we shall now explain. For
n, m ∈ Z, let

χ{n }(m) =

¨

1 if m= n;

0 if m 6= n,

where the constants denote the corresponding constant functions on X . Then χ{0 } is
the identity element of `1(Σ). Let δ = χ{1 }; then one sees easily that χ{−1 } = δ−1 = δ∗.
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If we put δ0 = χ{0 }, then one computes that δn = χ{n } for all n ∈ Z. We may view
C(X ) as a closed abelian ∗-subalgebra of `1(Σ), namely as { a0δ

0 : a0 ∈ C(X ) }. If
a ∈ `1(Σ), and if we write fn for a(n) as a more intuitive notation, then a =

∑

n∈Z fnδ
n

and ‖a‖ =
∑

n∈Z ‖ fn‖ <∞. In the rest of this paper, we shall constantly use this
series representation a =

∑

n∈Z fnδ
n of an arbitrary element a ∈ `1(Σ), with uniquely

determined fn ∈ C(X ) for n ∈ Z. Thus, all in all, `1(Σ) is generated, as a unital Banach
algebra, by an isometrically isomorphic copy of C(X ) and the elements δ and δ−1,
subject to the relation δ f δ−1 = α( f ) = f ◦σ−1 for f ∈ C(X ). The isometric involution
is determined by f ∗ = f for f ∈ C(X ) and by δ∗ = δ−1.

Since `1(Σ) is a unital Banach algebra with an isometric involution, it has an envelop-
ing C∗-algebra as constructed in [6, Section 2.7]. We denote this enveloping C∗-algebra
of `1(Σ) by C∗(Σ). As in the general construction of crossed products of C∗-algebras
(see [9]), the enveloping C∗-seminorm on `1(Σ) is actually a norm; in this particular
case, a somewhat shorter argument can also be used to see this (see [3, p. 51]). Hence
`1(Σ) can be viewed as a dense subalgebra of C∗(Σ), and the inclusion of `1(Σ) into
C∗(Σ) is continuous (even contractive).

We infer from [6, Proposition 1.3.7] that a not necessarily unital involutive represent-
ation of `1(Σ) or C∗(Σ) as bounded operators on a Hilbert space is always continuous
(even contractive). As another standard fact, let us note that [6, Proposition 2.7.4] shows
that every not necessarily unital involutive representation of `1(Σ) extends uniquely to
an involutive representation of C∗(Σ), and that a bijection between the collections of
involutive representations of the two algebras is thus obtained.

If S ⊂ `1(Σ), then S`
1
denotes its closure in `1(Σ). If S ⊂ C∗(Σ), then SC∗denotes its

closure in C∗(Σ).
Although we have written ‘two-sided ideal’ in the abstract and in Section 1 to avoid

any possible misunderstanding, in the sequel of this paper, an ideal of an algebra is
always a two-sided ideal, unless otherwise stated. It need not (if applicable) be closed.

3. RESULTS

In this section, we take up the study of the relation between the ideals of `1(Σ) and
C∗(Σ). We shall show that the closure IC∗of a proper ideal of `1(Σ) is still a proper ideal
of C∗(Σ); see Theorem 3.7. Furthermore, we shall investigate when closed ideals of
`1(Σ) can be recovered from their closure in C∗(Σ) in the most obvious fashion; see
Corollary 3.11 and Theorem 3.12. The key technical result of this section is the fact that
every primitive ideal of `1(Σ) is the kernel of a non-zero involutive representation of
`1(Σ); see Theorem 3.6.

The proof of Theorem 3.7 can be reduced to a particular case by the following purely
algebraic argument.

We recall that, if A is an algebra, an algebraically irreducible representation of A is a
non-zero homomorphism into the linear operators on a vector space E over the pertinent
field such that E has only trivial invariant subspaces. A primitive ideal of A is the kernel
of an algebraically irreducible representation of A. It was already noted by Jacobson
(see [7]) that a maximal ideal M of a unital algebra A is a primitive ideal. Since it is this
fact that allows us to make a reduction that is instrumental for the proof of Theorem 3.7,
we recall the short argument, which is as follows. Since A is unital, the proper left
ideal M is contained in a maximal left ideal I . The representation of A on A/I is then
algebraically irreducible, so that Ker(π) is a primitive ideal. Since M is also a right
ideal of A, one has M ⊂ Ker(π). By the maximality of M , we conclude that M = Ker(π).
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Hence M is a primitive ideal, as desired. Since in a unital algebra every proper ideal
is contained in a maximal ideal, we see that in a unital algebra every proper ideal is
contained in a primitive ideal.

As a consequence of these well-known results, if we want to prove that IC∗ is a proper
subset of C∗(Σ) for every proper ideal I of `1(Σ), then it is sufficient to do this when I is a
primitive ideal of `1(Σ). In order to fully exploit this reduction, it is clearly important to
have more information about the primitive ideals of `1(Σ), and we shall now set out to
collect the relevant facts from previous work. Before doing so, however, let us note that,
in the literature on involutive Banach algebras, a primitive ideal is often defined as the
kernel of a topologically irreducible (i.e. having only trivial closed invariant subspaces)
non-zero involutive representation of the pertinent algebra on a Hilbert space. This was
also the notion employed by the authors in [4], but in [5] the purely algebraic notion as
in the present paper was used. For C∗-algebras, there is no difference (this follows from
the combination of [6, Corollary 2.8.4] and [6, Corollary 2.9.6.(i)]), but otherwise a
little care is in order when using results (including those of the authors) for primitive
ideals of involutive Banach algebras as found in the literature.

We start by describing a family of finite dimensional algebraically irreducible repres-
entations (hence also of primitive ideals) that are associated with periodic points of σ.
When combined with the standard relation between the involutive representations of
`1(Σ) and C∗(Σ) on Hilbert spaces, the existence of these representations also follows
from general considerations for crossed products of C∗-algebras (see [9]), but the direct
definition below suffices for our needs. More can be said about these representations of
`1(Σ) than we shall include here, and we refer to [5, Section 3.2] for further information.

For x ∈ Per(σ) and λ ∈T, we define a representation πx ,λ of `1(Σ) as follows. Let p
be the period of X . Let Hx ,λ be a Hilbert space with orthonormal basis { e0, . . . , ep−1 }
and bounded operators B(Hx ,λ). We let Tλ ∈ B(Hx ,λ) be the bounded linear operator on
Hx ,λ that is represented with respect to this basis by the matrix













0 0 . . . 0 λ
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0













.

For f ∈ C(X ), we let ρx( f ) be the bounded linear operator on Hx ,λ that is represented
with respect to this basis by the matrix









f (x) 0 . . . 0
0 f (σx) . . . 0
...

...
. . .

...
0 0 . . . f (σp−1 x)









.

It is easily checked (we refer to [5, Lemma 3.1.2] for details), that there exists a
unique involutive representation πx ,λ : `1(Σ)→ B(Hx ,λ) such that πx ,λ �C(X )= ρx and
π(δ) = Tλ.

In [5, Theorem 3.5], the finite dimensional algebraically irreducible representations
of `1(Σ) are classified. Amongst others, this classifications shows, somewhat surpris-
ingly, that the Hilbert space context is automatic for finite dimensional algebraically
irreducible representations of `1(Σ). This is the first part of the following result. The
description of the intersection of primitive ideals in equation (3.1) follows from an
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explicit description of Ker(πx ,λ) and the injectivity of the Fourier transform on `1(Z);
see [4, Proposition 2.10].

Proposition 3.1. If π is a finite dimensional algebraically irreducible representation of
`1(Σ), then there exist x ∈ Per(σ) and λ ∈ T such that π and πx ,λ are algebraically
equivalent. In particular, Ker(π) = Ker(πx ,λ). Hence every primitive ideal of `1(Σ) that
arises as the kernel of a finite dimensional algebraically irreducible representation of `1(Σ)
is also the kernel of a topologically irreducible non-zero involutive representation of `1(Σ)
on a Hilbert space, and it is a selfadjoint ideal.

Furthermore,

(3.1)
⋂

λ∈T
Ker(πx ,λ) =

§

∑

n∈Z

fnδ
n ∈ `1(Σ) : fn(σ

k x) = 0 for all n, k ∈ Z
ª

.

Remark 3.2. Given the algebraic irreducibility, the topological irreducibility of the
finite dimensional representations in Proposition 3.1 is, of course, immediate. We have
nevertheless included it, since an analogous statement is also true when this is less
obvious (see part (4) of Proposition 3.4). Although it is not relevant for the proofs
of Theorem 3.7, Corollary 3.11, or Theorem 3.12, the presence of this topological
irreducibility seems too remarkable not to include it; see also part (3) of Theorem 3.6.

Now that all primitive ideals corresponding to finite dimensional algebraically ir-
reducible representations have been described, and have been related to involutive
representations, we turn to the infinite dimensional case. In [5] it was repeatedly used
that the representation space of an algebraically irreducible representation of `1(Σ)
can always be normed in such a way that the algebra acts as continuous operators
and that the representation is a bounded map. This is an immediate consequence (see
e.g. [1, proof of Lemma 25.2]) of the fact that a maximal left ideal in a unital Banach
algebra is closed. Combining this normability (which also shows that primitive ideals of
`1(Σ) are closed) with [5, Propositions 2.6, 4.2, and 4.17] yields the following.

Proposition 3.3. If π is an infinite dimensional algebraically irreducible representation
of `1(Σ), then there exists an infinite invariant subset S of X such that

(3.2) Ker(π) =
§

∑

n∈Z

fnδ
n ∈ `1(Σ) : fn �S= 0 for all n ∈ Z

ª

.

Hence Ker(π) is a self-adjoint ideal.
If X is metrizable, then there exists x ∈ Aper(σ) such that the description of I in

equation (3.2) holds with S = {σn x : n ∈ Z }.

In order to relate Ker(π) for an infinite dimensional algebraically irreducible represent-
ation π to an involutive representation, we shall use equation (3.2), the representations
πx ,λ as described before for periodic points x and λ ∈T, and a family of infinite dimen-
sional representations of `1(Σ) that are associated with aperiodic points and that we
shall now introduce. Here, again, more can be said than we shall include in the present
paper, and we refer to [5, Section 3.3] for further information.

Fix x ∈ Aper(σ), and let 1 ≤ p <∞. We let B(`p(Z)) denote the bounded linear
operators on `p(Z), and, for k ∈ Z, we let ek denote the element of `p(Z) with 1 in
the kth coordinate and zero elsewhere. Let S ∈ B(`p(Z)) be the right shift, determined
by Sek = ek+1 for k ∈ Z. For f ∈ C(X ), let πp

x( f ) ∈ B(`p(Z)) be determined by
πp

x( f )ek = f (σk x)ek for k ∈ Z. It is then easily seen (see [5, Lemma 3.1] for details)
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that there exists a unique unital continuous representation πp
x : `1(Σ)→ B(`p(Z)) such

that

(3.3) πp
x

�

∑

n∈Z

fnδ
n

�

=
∑

n∈Z

πp
x( f )S

n

for all
∑

n∈Z fnδ
n ∈ `1(Σ). Furthermore, if p = 2, then π2

x is an involutive representation
of `1(Σ) on the Hilbert space l2(Z).

We collect a few relevant facts about these infinite dimensional representations, the
first three of which are taken from [5, Theorem 3.16 and Lemma 4.9]. Part (2) is not
too hard to establish, and part (3) is rather obvious, but part (1) is considerably more
intricate. Part (4) is immediate from the parts (1), (2), and (3).

Proposition 3.4. Let x ∈ Aper(σ) and let 1≤ p <∞. Then:
(1) The representation π1

x of `1(Σ) on `1(Z) is algebraically irreducible;
(2) For 1< p <∞, the representation πp

x of `1(Σ) on `p(Z) is topologically irredu-
cible, but not algebraically irreducible;

(3) The kernel of πp
x is a selfadjoint ideal of `1(Σ) that does not depend on p. In fact,

(3.4) Ker(πp
x) =

¨

∑

n∈Z

fnδ
n ∈ `1(Σ) : fn(σ

k x) = 0 for all n, k ∈ Z

«

;

(4) The primitive ideal Ker(π1
x ) of `1(Σ) is also the kernel of the topologically irredu-

cible involutive representation π2
x of `1(Σ) on the Hilbert space `2(Z).

Remark 3.5. Before proceeding, let us note that, if X is metrizable, the combination of
Propositions 3.1, 3.3, and 3.4 shows that we can describe the set of primitive ideals of
`1(Σ), even though we do not know all infinite dimensional algebraically irreducible
representations. This set is {Ker(πx ,λ) : x ∈ Per(σ), λ ∈T }∪{Ker(π1

x) : x ∈ Aper(σ) }.
As a word of warning, let us note that there are multiple occurrences in this enu-
meration. If x1, x2 ∈ Per(σ) and λ1,λ2 ∈ T, then Ker(πx1,λ1

) = Ker(πx2,λ2
) if and

only if the orbits of x1 and x2 coincide and λ1 = λ2. If x1, x2 ∈ Aper(σ), then
Ker(π1

x1
) = Ker(π1

x2
) if and only if the closures of the orbits of x1 and x2 coincide.

Furthermore, {Ker(πx ,λ) : x ∈ Per(σ), λ ∈T }∩{Ker(π1
x) : x ∈ Aper(σ) } = ;. We refer

to [5, Lemma 4.14] for more details.

We collect the material on arbitrary primitive ideals in the next result. The crucial
link with involutive representations is established in the parts (2) and (3).

Theorem 3.6. Let I be a primitive ideal of `1(Σ).
(1) (a) If I is the kernel of a finite dimensional algebraically irreducible representation

of `1(Σ), then I = Ker(πx ,λ) for some x ∈ Per(σ) and λ ∈T.
Furthermore, πx ,λ is a topologically irreducible involutive representation of
`1(Σ) on a finite dimensional Hilbert space.

(b) If I is the kernel of an infinite dimensional algebraically irreducible repres-
entation of `1(Σ), then there exists an infinite invariant subset S of X such
that

I =
⋂

x∈Per(σ)∩S
λ∈T

Ker(πx ,λ) ∩
⋂

x∈Aper(σ)∩S

Ker(π2
x).

If X is metrizable, then there exists x ∈ Aper(σ) such that I = Ker(π2
x).
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Furthermore, all πx ,λ that occur are topologically irreducible involutive
representations of `1(Σ) on finite dimensional Hilbert spaces, and all π2

x that
occur are topologically irreducible involutive representations of `1(Σ) on the
Hilbert space `2(Z).

(2) There exists a unital involutive representation π of `1(Σ) on a Hilbert space such
that I = Ker(π).

(3) If X is metrizable, then there exists a topologically irreducible involutive represent-
ation π of `1(Σ) on a Hilbert space such that I = Ker(π).

Proof. Part (1.a) is contained in Proposition 3.1.
The first statement in part (1.b) follows by combining equations (3.2), (3.3), and

(3.4) for p = 2. The second statement in part (1.b) follows from the metrizable case in
Proposition 3.3 and equation (3.4) for p = 2.

Since part (1) shows that, in both cases, I is the simultaneous kernel of a suitable
collection of involutive representations of `1(Σ), it is also the kernel of the Hilbert direct
sum of the representations in this collection; note that this sum can be defined, since
the pertinent representations are all contractive. This establishes part (2).

Part (3) is immediate from part (1).
�

With part (2) of Theorem 3.6 available, we can now use the observation that was
already mentioned in the introduction: kernels of involutive representations of `1(Σ)
are well-behaved when their relation with C∗(Σ) is concerned.

Theorem 3.7. Let I be a not necessarily closed proper ideal of `1(Σ). Then the closure IC∗

of I in C∗(Σ) is a proper closed ideal of C∗(Σ).

Proof. It is elementary that IC∗ is an ideal of C∗(Σ); it remains to be shown that it is a
proper subset of C∗(Σ). As explained earlier, we may assume that I is a primitive ideal
of `1(Σ). In that case, Theorem 3.6 shows that I = Ker(π) for some non-zero involutive
representation of `1(Σ) on a Hilbert space. If we let πe denote the extension of π to
a non-zero involutive representation of C∗(Σ) on that Hilbert space, then Ker(πe) is a
proper closed subset of C∗(Σ). Since IC∗= Ker(π)C

∗
⊂ Ker(πe)C

∗
= Ker(πe), we see that

IC∗ is also a proper subset of C∗(Σ). �

Remark 3.8.
(1) An inspection of the structure of the proof of Theorem 3.7 shows that [5,

Proposition 2.6] is used, which, in turn, is based on the so-called intersection
property of the commutant of C(X ) in `1(Σ); see [2, Theorem 3.7]. The latter
result is the rather non-trivial key result in [2]. Thus, in spite of the simplicity
of its formulation, Theorem 3.7 seems to be a reasonably deep fact about the
relation between `1(Σ) and C∗(Σ).

(2) For a not necessarily closed proper ideal I of `1(Σ), a necessary and sufficient
condition for IC∗ to be a proper ideal of C∗(Σ) is given in [4, Proposition 4.12].
In effect, we have shown that this condition is always satisfied, with a proof
that is in the spirit of the proof of [4, Proposition 4.12].

As an illustration how Theorem 3.7 can be used to deduce results about `1(Σ) from
results about C∗(Σ) without resorting to the properties of the dynamical system, we
re-establish the following result. It can already be found as [2, Theorem 4.2].

Corollary 3.9. The following are equivalent:
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(1) The only closed ideals of `1(Σ) are {0 } and `1(Σ);
(2) The only closed selfadjoint ideals of `1(Σ) are {0 } and `1(Σ);
(3) X has an infinite number of points, and the only closed invariant subsets of X are
; and X .

Proof. It is clear that (1) implies (2). If (3) does not hold, then it is not too difficult
to construct a non-trivial closed selfadjoint ideal of `1(Σ); we refer to [2, proof of
Theorem 4.2] for details. Thus (2) implies (3). The hard part is to show that (3)
implies (1), and it is here that Theorem 3.7 can be put to good use to be able to apply a
result about C∗(Σ). Indeed, [8, Theorem 5.4] shows that, if (3) holds, then the algebra
C∗(Σ) has only trivial closed ideals. Theorem 3.7 shows that the same is then true for
`1(Σ), which is (1). �

We shall now consider the relation between the closure operation in `1(Σ) and in
C∗(Σ). We start with the following observation, the first part of which was already
alluded to in Section 1.

Proposition 3.10.

(1) If I is the kernel of an involutive representation of `1(Σ) on a Hilbert space, then
I = IC∗∩ `1(Σ).

(2) If { Iα : α ∈ A} is collection of closed ideals of `1(Σ) such that Iα = Iα
C∗∩ `1(Σ)

for all α ∈ A, then
⋂

α∈A

Iα =
⋂

α∈A

Iα
C∗
∩ `1(Σ).

Proof. Suppose that I = Ker(π) for an involutive representation π of `1(Σ). As in the
proof of Theorem 3.7, we let πe denote the extension of π to an involutive representation
of C∗(Σ). Then, again as in that proof, we have IC∗= Ker(π)C

∗
⊂ Ker(πe)C

∗
= Ker(πe).

Hence IC∗∩ `1(Σ) ⊂ Ker(πe) ∩ `1(Σ) = Ker(π) = I . Since obviously I ⊂ IC∗∩ `1(Σ),
part (1) has been established.

We turn to part (2). Using the properties of the Iα in the final step, we see that

⋂

α∈A

Iα
C∗
∩ `1(Σ) ⊂

�

⋂

α∈A

Iα
C∗
�

∩ `1(Σ) =
⋂

α∈A

�

Iα
C∗∩ `1(Σ)

�

=
⋂

α

Iα.

Since the reverse inclusion is obvious, the proof is complete. �

Combining Proposition 3.10 and part (2) of Theorem 3.6, we have the following.

Corollary 3.11. If I is an intersection of primitive ideals of `1(Σ), then I = IC∗∩ `1(Σ).

We can now determine when all closed ideals of `1(Σ) can be retrieved from their
closure in C∗(Σ) as above.

Theorem 3.12. The following are equivalent:

(1) I`
1
= IC∗∩ `1(Σ) for every not necessarily closed ideal of `1(Σ);

(2) I = IC∗∩ `1(Σ) for every closed ideal of `1(Σ);
(3) Every closed ideal of `1(Σ) is an intersection of primitive ideals of `1(Σ);
(4) Every closed ideal of `1(Σ) is a selfadjoint ideal of `1(Σ);
(5) Every closed ideal of `1(Σ) is the kernel of an involutive representation of `1(Σ)

on a Hilbert space;
(6) There are no periodic points of σ in X .
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Proof. It is clear that (1) implies (2).
Using the continuity of the inclusion of `1(Σ) in C∗(Σ), an application of (2) to I`

1

shows that (2) implies (1).
Certainly (2) implies (4), because all closed ideals of C∗(Σ) are selfadjoint.
The equivalence of (3), (4), and (6) is the content of [5, Theorem 4.4].
We know from part (2) of Theorem 3.6 that every primitive ideal of `1(Σ) is the

kernel of an involutive representation of `1(Σ) on a Hilbert space. Therefore, assuming
(3), we see that (5) holds by taking a Hilbert direct sum.

It is evident that (5) implies (4).
The proof will be complete once we show that (3) implies (2), and this is immediate

from Corollary 3.11. �
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