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ABSTRACT

In this paper, we study a system of two singular second order differential equations, which arises
from the theory of harmonic analysis on complex symmetric spaces. First of all, the distributional
solutions on an neighborhood of zero in R? are determined. Next, some new function spaces are
introduced and the system is solved in the duals of these new spaces.

INTRODUCTION

Suppose 2 is a self-conjugate, open, simply connected neighbourhood of
zero in C. We will indentify C and R? at our convenience. Let, as usual, @(£)
denote the space of C*-functions on Q with compact support, endowed with
the Schwartz-topology. Write @'(£2) for its dual, the distributions on 2. For
any function f: 2—C we define f: Q—C by

0 f@=/2).

Furthermore, let ¢ and & be holomorphic functions on Q, subject to the
following conditions:

da

ey a(x)=0ez=0; — (0)=1
az

) BO) =u+1 (ueR).
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Let L and L be differential operators, defined as:

. a2 b d s a?  _a
o2 e " T2 57

o /9 .90 o /9 .9
—=7 -——1—> and—_=7<—+t—>.
0z ax ay 9z ax ay

We will solve the system

where

(L-a)T=0
3) _ (TeD'(Q))
L-MHT=0

for all o, BeC.

Having done this, we will introduce some new function spaces which occur
in harmonic analysis on complex symmetric spaces. The results on the distri-
butional solutions of (3) will enable us to solve (3) in the duals of these new
spaces.

1. DISTRIBUTIONAL SOLUTIONS

1.1. Strategy and result

Let Q,=02-{0} and Q,=Q— {x|x=<0}.

Since L —a is elliptic on €, by (1) and since its coefficients are real-analytic
functions, any solution of (L —a)7T=0 on £, is in fact a real-analytic function.
We are thus led to examine real-analytic functions that satisfy (3) on 2,. In
order to find these, we first determine the functions that satisfy (3) on Q,.
This solution space S, say, is 4-dimensional. Let s, ..., s, be a basis. The s; are,
in general, multiple-valued which implies that, if a general solution Zf:l C;S;
of (3) on ©, is to be continued to a solution on €, not all combinations of the
¢; are allowed. We will find necessary and sufficient (linear) conditions for the
¢; for this to be possible. Having thus found the solutions on £, we extend
these to distributions on Q. If T is one such, then (I — )T and (£ — 8)T have
support contained in {0}, so, finally, we try to add a distribution with support
in {0} that makes up for the difference (or is a solution itself in case T is a
solution of (3)).

The solution space of (3) is two- or four-dimensional.

1.2, Solutions on Q,
Consider the equation

4 L-y)y=0 (yeQ).

If UCQ is open, let H(U) be the holomorphic functions on U and let H; ,(U)
be the holomorphic solutions of (4) on U. From the material in [Whittaker and
Watson, 10.1-10.3] we infer the following result without too much trouble:
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LEMMA 1.
() If u&Z, then there exist D, and W, , in H(Q) such that &, and

W,=z"'W,,
constitute a basis for H ,(£2,).

(ii) Ifu=0,1,2,..., then there exist @, and W, , in H(Q2) and A, € C such that
D, and
4

W,=z "W, ,+4,®,log z
constitute a basis for H ,(£,).

(ii) If u= -1, -2, -3,..., then there exist ®, and W, , in H(2) and 1,€C
such that z""®, and

W,=W,,+4,z27%®,log z

constitute a basis for H ,(£2,).
(iv) For all values of u, we may assume:

5) 2,0 =W, ,0)=1.
For u=0, we may assume in addition:
6) Ay=1

(v) For any basis {y,,v,,} of H; ,(£2,) and for any connected open subset
U of @,, the restrictions of w,, and y,, to U constitute a basis for
H, (U).

REMARKS
(i) In the Lemma, as well as in the rest of this paper, log denotes the
principal branch of the logarithm. For x<0 we define log x=1log |x|+ ni. All
exponential functions occurring will be defined with respect to this choice.
(i) For u=1,2,..., W, is not uniquely determined, even if (5) is satisfied.
However, it will be assumed in the sequel that for all 4 and y a choice has been
made in such a way that (5) and (6) are satisfied.

If UC&, is open, let A, z(U) be the solution space of (3) on U. All
functions in Ay, z(U) are real-analytic.

Let {w,1,¥o2} and {wg,, g2} be bases for H,(£2;) and H 4(2,) re-
spectively. We will proceed to show that {w, Vg1 Wa \Wp 2 Wa, 2515 We, 25,2}

is a basis for A, 4(£2,).
We will need the following fact:

Let UCC be open and f: U—C smooth. Let U be the conjugate of U and
define f: U—~C as in (0). Then:

a—f=<?£>~ and 2j—7=<a—f>~ on U.
0z 0z 07 0z
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LEMMA 2. Let weA,, (€,). Fix ceQ2,. Then there exists an open neigh-
bourhood U of ¢ and c,, ...,c4€ C such that

W=CWo \Wp 1+ CoWa 1 Wp ot C3Wo 2Wp 1 + CaWo2Wp 2 ON UL

PROOF. Since v is real-analytic we can choose an open disk U around ¢ such
that

o

v@= Y fix)z-7 on U,

1=0

where the series is absolutely and uniformly convergent on U and f;e H(U) for

all /. Since (L —a)y =0 and (L — a)f;€ H(U) for all /, we have (L —a)f,=0 for

all /. By Lemma 1 (v) there exist p,, g,€ C such that f;=p,y, +q,y,, on U.
Define g,, g, € H(U) by

g1(2) = ,i piz—0); g,(2)= li g(z-9" (ze D).

Then

V=, 18+ W28, on U,

Using the definition of I and the remark preceding the Lemma, we see that

Vo, 1 (L~ B)g1) ™ + o 2((L—B)g) " =0 on U.

We claim that (L-£)g) " =(L-8)g) =0 on U. If z,eU and, say,
(L -p)g1(Z5) #0, we can write

Vor | (L-Be)”

Va2 (L—Pa)”

on some neighbourhood of z,.

The left side is a power series in z — 2, and the right side is a power series in
Z—Zy, SO both must be a constant, contradicting Lemma 1 (v).

Therefore, by Lemma 1 (v), there are cy,...,c,€C such that

&I=C1Y¥p 1+ W05 82=C3Wp 1+ CaWp 2 on U,

which proves the Lemma.

LEMMA 3. {Wq 151 W, 1 Wp 20 Wa, 2V, 1s Wa,2Wp,2} IS @ basis for Ag o 5(€25).

PROOF. Let weA,, 3(£2,). Choose ce 2, and write

W=C W 1Wp 1+ CoWo 1 Wp 2t C3Wo 2Wp 1+ CaWa2Wp

on some open neighbourhood of ¢. Now the right side above is obviously
in Ag, p(£2,), so by unicity of analytic continuation, it equals ¥ on £,.
The linear independence is established by a power series argument as in
Lemma 2. L
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LEMMA 4. The following functions constitute a basis for A, p(82)):

2| %Wy o Wi p.
If 1=0,1,2,... and (A4, Ap) #(0,0): &,
Ao®oZ W g+ 24, A, Dy log | 2|+ Apz HW, By
If u=1,2,3,... and (Ao, A5) =(0,0): ¢, Dy
DLW
T WPy
2| %W, W e
Ifu=—1,-2,-3,... and (A, 1) #(0,0): |z| @, B,
AoZ H @ W, g+ 24,4502 T H D, By log [2|+ AgW 42 Dy,
Ifu=—1,-2,-3,... and (A, 1) =(0,0): |z| >, P,
2D W
MW Dy
Wi.oWy g
PROOF. Let u¢Z and y e A, 4(€2;). By Lemma | and 3 we can write:
=00, Pp+ .0 Z "W gt 32 W, Byt eyl 2| "W W) g on Q).

The right hand side must have a smooth continuation to £,. For all x<0 we
let z—x through the upper and lower halfplane. Equating the obtained ex-
pressions yields:

P, (W, p(x)=C3Pp(x) W, o(x) for all x<O.

Now (5) implies: ¢;=c3.
Applying the same procedure to dw/9dz gives:

o, . v, ,
Cy re W, () +c3jux™ W 4(x) - 3 : (x)} Dp(x) =0 for all x<0.
F4 Z

Since the first term is bounded as x—0, we have ¢;=0. This gives
W:C1¢aéﬂ+c4|z|—Z#Wl,an,,B

and this expression obviously has a smooth extension to ,.
The remaining cases are treated similarly (for u= -1, —2, —3,... dw/97 has
to be considered as well). ®

1.3. Reflection of distributions; the partie finie in the two-dimensional case
In order to cut down the size of the calculations we want to exploit the fact
that L and L are the same ‘“‘up to a reflection”.

401



Let Te @/(Q). Define Te D'(Q) by:

(TLwY=(T, i) (yveD®)).

Write
k+1

az*az7!

d as o0,

The following Lemma is easily established.

LEMMA 5. Let Te @'(Q). Then:
Q) )~ =T for all xe C*(Q).

ak+l - ak+l ~
(ii) 2oz T= <az’az" T) for all k,1=0.
(i) (%)~ =d%b for all k,1=0.
(iv) If T is represented by a function f, then T is represented by f.
~) L-PT=WL-y)T)~ forall yeC.
vi) If xe H(Q), then (L—y)Y{xT}=x{(L—y)T} for all yeC.

Partie finie

Consider the distribution z 7 #77Y (4,veR) on £2,. We extend this distri-
bution to Q.

For >0, let Q,={zeQ||z|=0}.

LEMMA 6. Let we 9(Q2). If u+veZ, then there are unique constants c;
k=0,2,3,...,[u+v]) such that
[u+v] «
®) f 27%27%wde )= L e " g+ o(l) (0l0).
2, k=2
If u+veZ, then there are unique constants ¢, (k=0,1,2,...,u+v—1) such
that
p+v—1

) § 27°27%d(x6 )= ¥ e "' 4 log e+ceto(l) (0l0).
Q,

R k=2

In both cases we can define a distribution on Q that extends z "z~ by

(Pfz7#27 % w) =cq.
PROOF. Fix g3>0. Then, for o<gy:

§ 2727%dOg )= | 2727 %wdOe )+ | 2727 Vwd(x, y).

2 2, esld=ep

Now expand  in a Taylor series around 0 such that the remainder term tends
sufficiently rapidly to 0 if |z|—0 and introduce polar coordinates. ®
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We will write Pf(f)=c, for any function f of ¢ having an asymptotic ex-
pansion as in (8) or (9).
It is easily checked that

(10)  (Pfz7Hz7 ")y~ =Pfz 27"
The following lemmas will be handy later on.

Let C, be the negatively oriented circle with 0 as its centre and radius o.

LEMMA 7. Let k,le€Z. Then:

-mif k)=, -1)
(M) Pf | iz%3idx+dy) =
Co 0 otherwise

(ii) Pf | 4z|T#%Zidx+dy)=0 if ue¢ Z.

CQ
PROOF. Use polar coordinates. ®
LEMMA 8. Suppose x satisfies (L —y)y =0 on Q, (yeC). Let y be smooth on

Q, with compact support in Q. With C, and Q, as above we have:

§ x(@L'=yywdx, »y= | 4lw, x)(idx+dy)

QQ CL‘
where

L o (ay) ? (by)
= —= {q _——
14 922 4 3z v

v wa=a(x-vg)+ (5 -0
W, xl=a azx Waz> 9z >XW~

PROOF. As in [M.T. Kosters, p. 35] we have:

3
xL'w—(Ly)y= %2 [w, x]. °

Consider the following contours I',, in Q,. (I, o surrounds supp(y)).

y

X
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Let Q, , be the interior of I, ,. Using Green’s Theorem in the fourth step we
have:

§ x(@L'=ywdx, )= | x(L'w)—Lx)wd(x, y)=
o Q

4 ¢

d . a
Sa—[w,xld(x,y)=hm{ P42 de ) -
4 eo L o, Ox

2

3 . .
i %la—[w,x]d(x,y)}ﬂlm{ [ Huoxldy+ | by, xldx} =
Q0 Yy elo Iy e

(,! FHw, x1(idx + dy)

by the choice of the I, ,.

1.4, Solutions of (3) on Q

Define the following distributions on £ (extensions of the bases in Lemma 4):
Forall u#—-1,-2,-3,...:

Tl,a,ﬁ—__ ¢a6ﬁ.

For p=1,2,3,... and (4,,45)=(0,0) or ueZ:
Ta05=Wi,o W, s Pf|2) .

For u=0,1,2,... and (4,,44) #(0,0):
T30 5=ha@o Wi pPI2 #+24,A50,8, log 2|+ AW, Py Pfz 7",

For u=1,2,3,... and (44,45)=(0,0):
Thop=PW, gPf2 " and Ts o y=W, , Dy Pfz .

For u=—1,-2,-3,... and all (44, 1p):

T p=2l %D, Bp.
For uy=-1,-2,-3,... and (la,lﬂ)#:(0,0):
Tr0p=Aa PP Wy p+2MAp) 2l ¥ D, By log 2|+ AW, .2 g,

For u=—1, -2, -3,... and (4,,45) =(0,0):
T8,a,[?=z_”¢a Wl,ﬂ'

Ty,05=2 "W, ,Pp.
TlO,a,ﬂ= Wl,a Wl,ﬂ-
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Table 1.

Conditions Distributions involved
uez ThapToas
u=0,1,2,...; (Agp Ap) #£(0,0) Tia.p 13,08
#=1,2,3,...; (ke A5)=(0,0) TvapToap Taap 1508
/12—1,—2,—3,...; (la,lﬁ)i(0,0) T6,a,ﬁ,T7,a,ﬂ

U=- 1, - 2, - 3, ey (Aa’ )»ﬁ) = (0, 0) T6,a,ﬂv TS,OI,ﬂ’ T9,a,ﬁ! TIO,a‘ﬂ

We now calculate (L —a)T and (L — 8)T for all distributions involved.

LEMMA 9. When they are defined, T, 4 5 T g p Ts.0,p0 19,0, a7 T, 5 are
solutions of (3).

PROOF. Obvious, since the functions defining these distributions are smooth
on 2 and satisfy (3) on Q,. )

LEMMA 10.
() If ueZ, then (L—a)Ty 4 p=(L =BT, 4 3=0 for all a, B.
(i) If u=1,2,3,..., then:

n “!
L—a)T, , = ———_ §n=Dy cud®?
( )T 0,8 (=D u+ 1) k,IE:O M

and

u—1
F-BT, = — —  su-Lmy e 5kD
( B) 20,8 (= D+ 1)! k,,Z=O kol

Sor all (e, B) such that (A4, Ag) = (0,0) (the ¢y and c;, are complex constants
depending on (a, B)).

PROOF. (i) We first prove (L —a)T, , 5=0 for all o, . By Lemma 5 (vi), it
is sufficient to show that

(L-a)W, Pf|z|~#=0 for all o, 8.
Let we @(2). Using Lemma 8 we have:

UL —a)W, o Pfz %, w) =Pf | 4w, |2 %W,  )dx +dy).
C,

4

When we expand [-,-] in a Taylor series around 0 we get terms of the type
7¥%/z| 7% or

3
zkzla_z |2 = —p' 2|2 72Dk, 120),

neither of which contributes to the partie finie by Lemma 7. This proves the
first statement in (i).
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Now we have for all ¢, §:

L~BT0p={L~PTo0s}" by Lemma 5 (v)
={(L-PB)YW, W, sPf|z|~*}~ by Lemma 5 (i) and (10)
={L-BT2pe} "~
=0 by the previous result.

(i) We first compute (L~a)W,’an|z|‘2“. Let we P(R2). Then, by
Lemma 8:

(L—a)W,  Pf|2l " w)y=Pf | 4w, |2~ %W,  Gdx+dy)
CQ
= —n-coefficient of z~' in the Taylorseries of [y, |z| %W, ]
around 0 (Lemma 7 (i)).

Using (1), (2) and (5), some computation gives this coefficient as

1 -1 _y gu+i-1
GG B YO I, g YO (60

SO

n u=l
oWwu-1 4 X tc,é(””’ n

p— _2 =TT o
(L—a)W, Pflz]* (=D u+1)! =0

Using (5) it is easily checked that for /, j=0:

- . -l )
W 36¢)=60)+ 'Y dyo%® (dye0).
k=0
An appeal to Lemma 5 (vi) proves the first statement in (ii) and the second
follows as in -(i). ®

LEMMA 11.
() If u=0, then (L—a)Ts , =L~ T3 4 =0 for all a, B.
(i) If u=1,2,3,..., then

_1 TUA -
(L—a)TS’a,ﬂ——‘(— l)” 1 (‘u/: la)‘ Wl,ﬂa((),p-l)
(I:—B)Ts,a,ﬁ=(—1)“”' % SW-10

Jor all (a, B) such that (A,,Ag)#(0,0).
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PROOF. Let e 2(£2). Then:
(L=)T;3 45 W)=Pf | (AP W) 327"+ AW, (Bpz WL - )yd(x, y)
QQ

+ § 24,459, B4 log | z|(L' — e)ydl(x, y)
Q

=Pf | 4w, 4,9, W, 52 *|(idx +dy) +
CQ

+Pf | Hu AgW, o Bpz “idx+dy)+
CQ

+Pf | 4y, 24,A3D, P log |2|I(idx + dy)

Co

where we have used Lemma 8 and the theorem on dominated convergence. By
Lemma 7 (i), the second term is zero and, using 3 log |z|/dz=1/2z, we see that
the third term is zero as well.

When =0, the first term is bounded, so (i) is proved.

If u=1,2,3,..., we have, since [y, 1,P, W,,/gz_“] =Aq W,,,,z‘”[w, Pl

(L~)Ts5,45W)=Pf § $A, W, 27 *ly, D )idx +dy)
CQ

—md, 471
- (u—- 1; gz¢ 1 W1 6Ly, @al}z0
—-nA, &) —1\ 89w, , g#i-!
= — a Z ﬂ __l’ﬂ — [W’¢a]
(u-D! = J 9z’ azt™/ =0
——lla ﬂil ,U—l ale’p a”_j_ly/ o
Dt % J oz’ aze=i—1 e |
—TnA u-1 u—1 ale,ﬁ(O) gu—i-1
=(u—1;! Eo < J ) oz W) v
mud, o*'
= — (W
w-n1 oz )|
— _lu—l n.u}'a W 5(0,‘1_1)
S\ Ty e

where (1) is used in the fifth step.
The second statement in (ii) follows as usual.

LEMMA 12. If u=1,2,3,... then:

. (-t T wm sou-)
O L-a)Tyop=(-11" Wi, p0" "

(I:'_ﬁ)T4,a,ﬂ=0
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(i) (L—a)T5,45=0

nu
(u—1!
Sor all (a, B) such that (A, A5)=(0,0).

(lj"ﬂ)Ts,a,/f=(—1)ﬂAl Wy 6% b0

PROOF. The statement concerning (L — )Ty , g is proved as in Lemma 11 (ii),
whereas (L — )T , ;=0 follows from Lemma 8 and 7 (i).

Since Ty o p=Ts.qp and Ts, =Ty 4, the combination of the previous
results and Lemma 5 proves the Lemma. ®

LEMMA 13. Ifu=-1,-2,-3,..., then
(L—=a)T7 4 p=(L—B)T;,4 =0
Jor all (a, B) such that (44, 45)#(0,0).
PROOF. Let ye @(Q). Using the theorem on dominated convergence and

Lemma 8, we have:

<(L‘a)T7,a,ﬂ9 '//>=lim 5 %[W,'laz_”¢aW1,B+2’1u’1/}‘z|_2‘1(pu(§5 lOg !Z|

0lo C,
+ AgWy o2 " Py(idx + dy).

Since —u=1, [-,-] is bounded as !0, which proves the lemma. o

We will now study distributions with support in {0}.
LEMMA 14. For all u, all (o, B) and all k,1=0:

k X
L-)d*=u—-k-1o**tD1 ¥ ;60D (c;eC)
j=0

— ! .
E-ps*P=(u-1-1s%"*V+ ¢ d;6%) (d;eC).

Jj=0

PROOF. As usual, we only prove the first statement.
Let w e (). Then, using (1) and (2):

(L-a)d®O yy=(-1)F 2 {—{ﬁ (ay) - 9 (bw)—ou//}
’ az* (8z° dz

z=0

ak+2 p: ak+l
=(- l)k{a(O) 3 k+!/2/ )+ (kT2> a—a ©0) Wl/l{ (0) + lower order terms
Z Z Z

kely
- b(0) 3T (0) + lower order terms}
4

=((u—k-1)o%*19 y> +lower order terms.

d
Now use (L —a)0®= - {(L - a)5"?}. o
Z
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As a next step we find a fundamental solution in the origin.
Define for u=1,2,3,..., irrespective of (4, Ag):
—DHE-1! -
E,= b W, o0% "9 and Fy= D Wi s
(u—1! u-nt "
LEMMA 15. Ifu=1,2,3,... then:
(L-a)E,= —ui,0
(L~ B)Fy= —udgd
for all (o, B).

SOu-1

PROOF. Note that W, ,6%“~19=¥"" " ¢;6Y? for some ;e C. By Lemma 14,
we see that (L - a)E,=}"_, djé‘j’o) for some d;e C. It is therefore sufficient
to test (L —a)E, on all w e 2(Q) which are holomorphic on a neighborhood
of 0. For the rest of this proof, let ¥ be such a function.

Observe that, with W, as in lemma 1,
“ .
Waw@)= ¥ diz ' +(E,w)z '+ O(|log z)) (z—0)
j=2
SO

12) W, (2L 'y (z) — a W, (2w(z) = f diz 7+ ((L-)E, )z~ !

j=2
+O(|log z]). (z—0)
Consider

a P < (WoL'v—aWoy)iz

(4

for small . Using (12) and the residue theorem one sees immediately that (13)
equals

(14) n{(L-a)E, yv).

On the other hand, if —~C, ., z; and z, are as indicated in the figure, then:

o
y
-1
(13)=Pflim [ — (W, L'yv—aW,y)dz
o -C,, 2
—i . z, L P
z_i—Pf{ hm [W: Wa](zl)— lr \\
71— -0 — X
. g "o
lim [W, Wa](ZZ)} = -ﬂla”‘//(o) 22
L7 -e
-C
p,€
where we used (1), (2), (5), (11) and the expression for W,. ®



Finally, define S, s for u= 1,2,3,... as:
G A

n -
= W, E,= Wy Wy go#= 1D,
“7 @-pt TMag e -y T

LEMMA 16. If u=1,2,3,..., then
Tk,
(u—1!

A gy, 51O,
(w-nt*

(L—@)Sgp=(-1)*

Wl ﬂJ(O,u—l)

(L=B)Sgp=(~ 1

PROOF.

' gr-!

(L-0a)S, 5= =Dt WLﬂ(L_a){F Ea}
R .

) ((7—2"1)7 Wy g ozt L - OE,}

A,

(u-n!

At last, we are able to solve (3) in all cases.

= (-1

Wy, ;0%#~D by Lemma 15. °

THEOREM 17. The following distributions are a basis for the solution space
of (3):

O If uez: Tl,a,ﬁ’ TZ,a,ﬂ'

(ll) Ifﬂ =1,2,3,... and (A.a, Aﬂ) ¢(0,0). Tl,a,ﬂ’ T3,a,ﬂ+Sa,ﬂ'
(i) If u=1,2,3,... and (A, A5) =(0,0): T, 4 4 So, -
(IV) Ifﬂ =0 Tl,a,ﬁ’ T3,a,ﬂ'

(V) ]f,Ll = - 1, —‘2, - 3, ... and (la,j.ﬂ)=(0,0): T6,a,ﬁ= TS,a,/i’ T9,a,ﬂs TlO,a,B‘
i) If u=—-1,-2, -3 and (Ap, Ap) #¥(0,0): T5 5 5, 7 ¢, p-

PROOF. We prove only (ii) since the other cases are treated similarly. Suppose
Aq#0. If T, pis a solution of (3), then there exist, by Lemma 4, ¢,,c;€C and
Xe D(Q) with supp(X)C {0} such that:

Top=C\Ty g ptC3T5 45+ X.
The Lemmas 9, 11 (ii) and 16 imply:
(L—a)X=—c3(L—a)T; 4 g=c3(L—a)S; 5, 50 (L—a)(X—c35)=0.
We claim that X=c;S. Write Y=X—c;S and suppose Y#0. Write
al

V%0 az’

Y= f

where the Y; are of the form

Y= Y d,0"0.

dy#0
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Using (L—a)Y=0 and Lemma 14 we see that
(L-a)Y;=0 for all .

Take any Y;#0. Lemma 14 gives: order (Y;)=u—1. Now note that
order(E,) =u—1, since W, ,(0)=1. Therefore, there exists c;e C, ¢;#0, such
that Y;—¢;E, is either zero or non-zero and has order <u-2. Now

(L—a)Y;~c;E)= —ul,c;é by Lemma 15.

In the first case, this gives 0=uAd,c;é which contradicts our assumptions con-
cerning 4,4, and ¢;. In the second case (which can only occur if y=>2),

order [(L—a)(Y;—c¢;E,)]=order (Y;—¢;E,)+ 121 by Lemma 14

which is again a contradiction.
So Y=0if 4,#0. If 1,=0 and A;+#0 we use Fjy instead of E,. ]

1.5. Remarks

1) Using techniques as the ones above, it should be possible to describe the
general solutions of the problem:

62
<a(z) Py + b(z) + c(z))
Te@'()

(d(z) v +f’<z)>

where:

1. a,...,feH).

da
2. a(@)=0ez=0; — (0)+0
az

ad
dz)=0ez=0; a_z 0)+#0.

3. b0)eR
e(0)e R.

2) In his thesis, [M.T. Kosters, section 2.5] Kosters found all solutions of
the one-dimensional problem:

(L-1)T=0 Te?'((0,1), AeC
where:

1. —o=0<0<r<00

2. L=a() & +b(t) 4
ST at dt
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3. a,b analytic on (g, 1)
4. a(t)=0et=0
5. a©@=1; bO)=u+1 (ueR; u#-1,-2,-3,...)

The solution space turned out to be three-dimensional. As 5. shows, Kosters
did not consider the case u= -1, -2, —3,..., but, using the methods in his
thesis, one finds easily that the solution space in this case is three-dimensional

as well. In fact, we have the following theorem ([Komatsu, p. 18]):
Let QCR be an interval and let

d da” d
P(t, E) =a,,(f) W + -+ ay(f) E +ay(?)

be an ordinary differential operator on © with analytic coefficients. Then all
singular points in £ are regular if and only if

dim {Te @'(Q)|PT=0}=m+ Y orda,(t)

teQ2

where ord,a,,(f) denotes the order of zero at ¢ of a,,().

Applying this theorem gives a dimension 3, as expected. In fact, knowing
this theorem, it would have been possible to take a shorter path to the solutions,
since most of the work is done in excluding possibilities (as in our case). Our
results show that a general theorem as above can not exist in the two-dimen-
sional (partial!) case, since it is easy to write down a version of (3) that has a
four-dimensional solution space:

aZ

z2— T=0
3z?

Te2(Q)

has base solutions 1, z, Z and |z|2.

2. SOLUTIONS IN OTHER SPACES
Let 7 be one of the following functions on Q,:
n@=|z* WweR, u#-1,-2,-3,...)
or
n@)=|z/* log |z (#=0,1,2,...)
Define
H,=D(Q)+nD(Q)={wo+nv|wo v, € D(Q)}.

We will topologize &, and solve (3) in &,.
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Note that w— 5y is one-to-one on @(Q). Topologize n%(£2) by requiring this
map to be a homeomorphism. Let V,=2(Q)XnP(2), endowed with the
product topology. V, is a topological vector space.

Let L,={(wonw,) € Vylwo+ny, =0 on ,}.

L, is a closed linear subspace of V,, so V,/L, is a topological vector space
in the quotient topology. 5, has the topology which is obtained by identifying
H,and V,/L,.

We will use the following remarks:

1. The inclusion map 9(2)—, is continuous. Thus, if Te H,, T|D(RQ)
is a distribution.

2. The map 9(Q)—, given by y—ny is continuous. Suppose TeH,
and T|2(R2)=0. Then

(Lyo+nw)=< L 0™y

finite

3. If xe C™(Q), then the map o, —~,, defined by y— xy is continuous.
Therefore, if Te ], we can define xT as for distributions.

4. Let D be a differential operator with C”-coefficients, and let Te .76’,,
We would like to define

(DT,w>=(T,D'y) (we*),)

as for distributions. Unfortunately, D' will not generally leave Jf’,, invariant,
but it is easily checked that 5, is invariant under L' and (L)". In fact, let
w, € D(Q) and define:

32l//1 da aWI
=g —5 +(2—+2uz"la-b) —+
as) Srw=a 9z7* < 3z e a ) 9z
+[62a %, ‘2{2 L l)a”
— — — +uz 2z — ~bz+(u-
o oz ¥ 9z # Vi
and

da F
(16) Sy, =l2* {Z’“Hu—%)z‘za—%bz‘1 v +azt 24
’ dz az

Then

L'(nyy)=1nf,y,
a7 i 1 Ly ] (77=|Z|2”)
L'(nyy)=n(f1,5,)

L'y ) =fr,y, + 1/
as) ~(nwl) Sau, ! Ly ] (1=|2% log | 2.
L'y =(f,5,) ~ + 11, 5)
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Using (1) and (2) we see that f, ,, /5, € D(£2) since

da -
(19) 2 —+2uz la-b=p+1+ -
az
da 5
(20) ZZa——bz+(,u—1)a=cz +- (ceQ)
4

da
ey z7! a—z+(u—%)z‘2a—%bz‘1=%uz“+---

Moreover, the expressions for f, , and f, , make it clear that w—L'y and
w— L'y are continuous maps from #, to #,, so it makes sense to consider
the problem:

(L-a)T=0
@2 ) Te .
(L-BT=0

5. If Te,, we can define T as we did for distributions. In Lemma 5, (i),
(iv), (v) and (vi) remain true (use 7=7#).

6. Suppose w=y,+ny,;€,. On considering the asymptotic expansion
around 0, one sees that

k+1
(23) (A(k,/) >Ea_+__ 0)
APV AL
and
k+1
@y B%yy= 0
Vo= oz%az' v

are well-defined for k,/>0 (if #(z)=|z|* and u=1,2, ... we must restrict our-
selves to 0=k, /<u—1 and the A*"). Furthermore, the A% and B*" are
continuous on &, and

(25) (A(k,l))~ =A(Lk); (B(k,l))~ = R4k,

We extend the relevant distributions in Theorem 17 to elements of Jt’,;:
(TopW)=Pf | D,Bpudlx,y) (ye,)
Q@

(ToapW)=Pf !g Wy oW plzl " yd(x y) (wedt,)
{4

(T3,0,p WY =Pf | (@ W\, 27+ 220 o Py log |2 +
QE
+ AW o Bpz MIpd(x, y) (we,)

A

Sa,ﬂ=m Wi oWy A~ 147D (only for u=1,2,3,...).

414



A reduction sequence of t is a, finite or infinite, sequence of terms #y, #,...,
such that #y=¢ and #;,—¢;, . A term ¢ is called weakly normalizable if at least
one reduction sequence of ¢ terminates in a normal form; ¢ is called strongly
normalizable if all of #’s reduction sequences are finite. In the latter case, by
Ko6nig’s lemma, the number of reduction steps in a reduction sequence of ¢ is
bounded; the maximum is denoted by A(¢) (the height of the reduction tree).

2.3. THE EXACT VALUATION. Now in order to obtain the expression for the
height, terms are evaluated in L starting from an assignment v, which gives a
value v(x*) in L, to each variable x%. As is customary we write v(x/f) for the
assignment which corresponds with v everywhere except at x:v(x/f)(x)=f,

v/ =v(y) if y#x.

2.3.1. DEFINITION. Let ¢ be a term of type a. The exact valuation [t], e L is
defined for any assignment v, by induction on £.
Q) b, =v)
(D) [ty =1%l.[1]y
(i) [Ax%-tol,=<Afe Ly Il + S+ + 1, [t), #) if x€¢ 1y, and
(AfG La ) [tO]v(x/f) +1, [tO]u(x/cg) *) if xe lo.

Notice that if x¢¢, then [¢], = [f],/), as can easily be verified by induction
on f. Let ¢ be the assignment defined by ¢(x%) =c¢f and put [¢]=[7]..
It may be instructive to calculate the following examples:

[Ax?-x]=[Ax°-¥°1={(Am-m+1,0),
[Ax9op° - x(xp)] = CASf- {Am- f(fm) + 2, f(f0) + 1),0),

[(AxD9y° . x(xy))Az° 2} ={Am -m+4,3).

2.3.2. cLAIM. For any term ¢, h(t) =[] *.
This will be proved in section 4. Here we first comment on the definition of
[¢] and then call attention to some consequences of 2.3.2.

2.3.3. COMMENTS ON 2.3.1. The functional behaviour of the valuations was
already described in the introduction (section 0.1). By that account clause (ii)
is sufficiently explained.

ad i. For a variable x we have [x] = [x].=¢(x)=cy. Observe that if ¢,,..., 1,
are strongly normalizable (of the appropriate types), then so is xt,...¢,, and
moreover the height is given by the equation A(x?,...t,,)=h(t;) + -+ h(t,,). This
squares with the fact that (cof...fn) * =f1* + - f* (1.3(iii)).

ad iii. To get a grasp of this clause the reader should try to invent a strategy
for constructing a reduction sequence from ¢ which is as long as possible.
Clearly if x¢1¢,, then in order to spoil no potential reduction steps a redex
(Ax- ty)t, should not be contracted until ¢; is in normal form. On the other
hand, if xet,, it is better not to perform reductions inside #; before con-
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The second, third and fourth term are zero, e.g. the fourth equals

Pf | 3452 ®glz" log |z|, Wi o2~ *1(idx + dy)

Co

which is zero by Lemma 7, since u= 1. The second statement in b(ii) follows
from remark 5.
b(v). Let w=w,+ny, €. Then, using Lemma 16,

UL —@)Sy W) =( Sy p (L' =)o) + ( Sy, g (L' = )y ))
={ —TUr, Wl,ﬂA(O'y_l)’ W)+ <Sa,/bf2,u/1> + <Sa,/}’ ”fl,w, —any;).

The third term is zero by the definition of S, ;4 and the second equals

7[ — —_ ~
m(A(ﬂ Ly 1)’ Wl’anyﬁfz,%)_

k+1
Now note that 3ar (Wy,aWi 20| i=0=0 for all (k,{) with O</<u—1,
2702
because of (16). This proves the first statement and the second follows again
by remark 5. ®

LEMMA 19.

k .
L-a)B*)=(u+k+1)B*+1D 4 v ¢, BED  (c;eC)
i=0

i=

where neZ if n(z)=|z|*.
PROOF. Straightforward, using (1), (2) and (15) to (20).

THEOREM 20. The solutions of (22) are precisely the extension of the solu-
tions of (3) to .

PROOF. For n(z)= |z|2" and 4=0,1,2,..., this is the statement of the para-
graph preceding Lemma 18.

In the other cases, Lemma 18 and Theorem 17 state that the extensions of
solutions of (3) are solutions of (22). Now, if T is a solution of (22), we can
write 7= Ty + R where T} is an extension of a solution of (3) and R|9(£2)=0,
s0 supp(R) C {0}. Note that the map 2(Q)—C defined by y— R(ny) is a distri-
bution with support in {0}, so R is a finite linear combination of the B*").
Note that R itself must be a solution of (22). Lemma 19 and the restrictions of
the values of u give R=0. ®
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