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The classical uncertainty principle for the Fourier transform has been extended
to the spherical transform for Gelfand pairs by Wolf. We sharpen the principle and
extend its validity to the context of integral operators with a bounded kernel for
which there is a Plancherel theorem.  © 1994 Academic Press, Inc.

1. INTRODUCTION

The uncertainty principle for the Fourier transform on R states, roughly
speaking, that a function and its Fourier transform can not both be
localized with arbitrary precision. Actually, there are at least two versions
of the uncertainty principle.

The first one holds for functions f that are sufficiently regular, e.g.,
Schwartz functions. This form of the principle gives a lower bound for the
product of the variance of f and f; it is this form that can be bound in any
book on quantum theory.

The second principle is valid for arbitrary functions in L,(R). In order
to formulate it, we need a definition. Let ¢ >0 and let T< R be Lebesgue-
measurable, with characteristic function 1;. We say that fe L,(R) is
e-concentrated on T if |f—1,f|,<e|fl,. Then the second form of the
uncertainty principle, due to Donoho and Stark ([DS]), reads as follows:

Let feL,(R), f#0. Let ¢¢& 20 and let T,T'cR be
Lebesgue-measurable sets. Suppose that f is e-concentrated on
T and f is &'-concentrated on T'. Then, with u denoting
Lebesgue-measure, we have y(T) W(T') = (1 —eg—¢')%

This second form of the uncertainty principle has first been generalized
to the Fourier transform for Abelian groups by Smith ([S]), and later to
the spherical transform for Gelfand pairs by Wolf ([W]). The proof in
[loc.cit.] is based on the integral equation for the spherical functions, the
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Fubini theorem, and the Holder inequalities. However, an examination of
the structure of the proof reveals that the integral equation is redundant.
This observation allows one to prove this form of the uncertainty principle
in more general situations where a Plancherel theorem holds for an integral
operator with bounded kernel. The possibility of such an extension has
been suggested by Katznelson and Diaconis ([DS, p. 9261]).

The method of proof is essentially the same as in [W] and [DS], but
leads to a sharper form of the principle, which is “obscured” in the case of
Gelfand pairs if one uses the integral equation for the spherical functions.

2. THE UNCERTAINTY PRINCIPLE

We now prove this more general form of the uncertainty principle.

Let (X, A, u) and (X', A', u') be o-finite complete measure spaces.

Let M(X) be the measurable functions on X, where we agree to identify
functions that are equal almost everywhere. Let M(X)® be a subspace of
M(X), invariant under conjugation. If ¥V < M(X), put V&=V M(X)"

Assume that

(1) L,(X)¥ is closed in L,(X);

(2) there exist three projections, P,: L, (X)— LX) (p=1,2, ),
agreeing on intersection of domains, commuting with conjugation, and
such that forp=1, 2 o0

) [y (P, )x du(x =[x f(x)(P, g)(x)du(x) whenever fe
L,,(X) and gelL,( ) (whcre p’ denotes the conjugate exponent of p).

Note that these assumptions imply that P, is the orthogonal projection
of L,(X) onto L,(X)® Hence P, is continuous; since L,(X)n Ly(X) is
dense in L,(X), we conclude that L,(X)% n L,(X)" is dense in L,(X)".

Let ¥: X’ x X+ C be measurable with respect to the completed product
measure on X’ x X and suppose that | ¥ < 0.

For fe L,(X) and x"e€ X', put

()<Y =] f00) (', x) d().

Note that the map x> f(x) ¥(x’, x) is measurable for u’-almost all x’; if
we define (Af)(x") to be zero for those x’ for which this does not hold, then
Afe L _(X'). In the sequel we always tacitly assume that such adaptations
have been made.

Assume that

(4) (Plancherel theorem, first part) 4 maps L,(X)®n L,(X)% into
L,(X’), isometrically for the two-norms.
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By density of L,(X)?n Ly,(X)® in L,(X)®, A extends uniquely to an
isometric isomorphism A, of L,(X)" into L,(X"). Assume that

(5) (Plancherel theorem, second part) A,:L,(X)®— L,(X') is
surjective.

We define the operator A": L(X')— L_{(X) b
(W)@ =] PO FER ) (f LX),

Assume that
(6) A’ maps L,(X’)into L_(X)"

In many situations, we have M(X)® = M(X), and then the assumptions
reduce to the Plancherel theorem and the boundedness of ¥. In other
cases, one may have a Plancherel theorem only for a special subspace of
L,(X), and the assumptions (1), (2), (3), and (6) are designed to let a class
of such situations fit into the general framework. In the case of a Gelfand
pair (G, K), § denotes of course K-invariance, the projections are just
averaging on the right and the left over K, and A (resp., A,) is the spherical
transform on L,(G)" (resp., L,(G)®).

If /"€ L,(X')n Ly(X"), then there is an obvious candidate for (4,)~' f".
Let us show that this guess is correct.

LemMMA 2.1. If ffe Li(X'YLy(X'), then (A,) "' ' = A'f".
Proof. Let ge L,(X)n Ly(X). Then by (5), (2), and (3) we have

([ AP 8y =AD" [, P28)x=(PAA) " ', ©)x=((4)"" [, 8)x-

But the left-hand side equals
| 1) TP d ()

= 1P ()

= L{’ J(x) {L (P, g)(x) P(x', x) du(x)} du'(x')
=L {f S W, x) dp(x )} (P £)(x) du(x)

X’

= L {f,, f1(x) P, x) du'(x')} 20x) du(x).
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We used (3) and (6) in the last equality. Hence

J AL 76 PR i) = (4 )00 207 ) =

X

Since L,(X)n L,(X) contains the step-functions, this equation proves the
lemma. |

It is interesting that the above assumptions imply a weak form of an
inversion theorem. This is the content of the following corollary.

COROLLARY 2.2. If fe L(X)*n Ly(X)" and Af € L (X"), then f = A’ Af.
Proof. f=(A) " "A.f=(A,)" "Af=A4'41. 1|

Now let Te A and T'e A’ be sets of finite measure with characteristic
functions 1, and 1. If fis a function, let M, denote pointwise multiplica-
tion with f. As in [W] and [DS], the uncertainty principle is derived from
the study of the operator S=M,, >(4,) '« M, A, S is a continuous
operator from L,(X)® into L,(X). As a first estimate we have {|S]| < 1. We
proceed to show that ||S|| < ||1,. ¥, (note that this new estimate may
be worse). The uncertainty principle follows from this new estimate in
exactly the same way as in [W].

PROPOSITION 2.3. For S: L,(X)%— L(X) we have | S| < |14+, + Pl,.

Proof. Let feL(X)"*nL,(X)". Since A,f=Af we see that
A feL, (X').Hence M, A, feL,(X')nLyX"), so Lemma 2.1 permits us
to conclude that actually Sf=M, A'M, Af. Now let xeX. Then we
calculate as follows.

(S )(x)=1,(x) L, Lr (X' )(AS)(x") P(x, x) dp'(x7)

(| 1 P[00 ) ) )

)
=10 [ 1) { [JREICORZEARIEN) dn'(x')} du()

=] S0k duiy),
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where
ko (y)=17(x) L, L (x") P(x', x) P(x', y) du'(x")
=17(x) LH 1r(x") P(x', x) P(x', y) du'(x).
Put
kK (x)=1,(x") P(x', x).
Then

k,=17(x) (4'k%).

Note that k', e L\(X')n L,(X'), so A'k’.=(A,) ' k'.. Hence, if we apply the
Schwartz inequality to (7), we see that

ISACOIE <SS k3
=17(x) 1(A4) " K3 1A13
=17(x) kN30
So

I3 | 13 113 dutx)

=11 {1 0o dute)

=17 I3 1715

Since L,(X)%~ Ly(X)? is dense in L,(X)" the proposition follows. |

We can now prove the sharper form of the uncertainty principle. We
state it in a slightly different way than was done in [W] and [DS]. To this
end, let L,(X)r={feLy(X)| M, f=f} Then M, is nothing but the
orthogonal projection of L,(X) onto L,(X)};. Similarly, put L,(X)5 =
{(feLy(X)*|(A,) "M, A, f=[} Then (4,) ' M, A, is the orthogonal
projection of L,(X)® onto L,(X)5..

THEOREM 2.4 (Uncertainty principle).

M7 r-#llaz1— inf (d(f, L(X)7) +d(f, L,(X)7)).

FeLaAXE | fll2=1
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Proof. The proof is mimicked from [W] and [DS]. We include it for
the sake of completeness. Let f e L,(X)? such that || f|,=1. Then

L= M (4) "M A S
SIf =M (4) "M A S,
SIS =M flo+ M f =M (A) M, A fl,
<d(f, Ly(X)r) + I f —(4) " M A S
=d(f, Ly(X)7) +d(f, Ly(X)5.).
Hence the norm of S: L,(X)"+ L,(X) satisfies

I1SIh=>1— inf (d(f, Ly(X)7) +d(f, Lo(X)7)),

feLAX)E, | fl2=1

and the theorem follows from Proposition 2.3. ||

The uncertainty principle is phrased in terms of e-concentration as in the
Introduction by the other authors. This formulation is equivalent to ours
since the concentration definition is a statement about distance.

3. CLOSING REMARKS

Inspection of the above proofs reveals that the uncertainty principle is
basically a consequence of the use of Fubini’s theorem in the proof of
Proposition 2.3. The application of the theorem is possible since (A, )~}
can be identified with an integral operator on L,(X’)n L,(X’). This iden-
tification is established in Lemma 2.1, on basis of Assumptions (2), (3),
and (6). This is the sole place where these assumptions are used; in fact,
they are tailored just to make the proof of Lemma 2.1 work. Hence the
method of proof still has a degree of freedom left: if one removes Assump-
tions (2), (3), and (6) but postulates the statement of Lemma 2.1 instead,
then Theorem 2.4 still holds.

We emphasize that Lemma 2.1 is a consequence of the Plancherel
theorem if M(X)%= M(X). Thus the uncertainty principle for an integral
operator as above holds at least in the cases where

— the kernel is bounded;
----- there is a Plancherel theorem for L,(X).
The uncertainty principle is thus seen to be inherent to Plancherel

theorems in general, rather than being connected with harmonic analysis in
the context of topological groups. This range of validity is rather wide, it
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contains e.g. some Sturm-Liouville problems and some problems involving
operators other than differential operators (see e.g. [J]).

In some situations for given X, X', and ¥, one knows that a Plancherel
theorem holds for the integral operator associated to ¥, but the Plancherel
measure is yet to be determined. This occurs e.g. in the case of Gelfand
pairs.

It is a “fact of life” that in many of these cases the Plancherel measure
is closely connected with the asymptotic behaviour of ¥ (one needs of
course additional structure on X and X' to define what asymptotic
behaviour is). Now the Plancherel measure and ¥ are related to each other
in Proposition 2.3 and Theorem 2.4; it is an intriguing (and ambitious)
question whether this theorem (or a refinement of the method to prove it)
can be of any help in establishing an explanation of this phenomenon,
rigorous enough to determine the Plancherel measure from ¥ or vice versa.
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