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Abstract

We explore the question of which shape a manifold is compelled to take when immersed
in another one, provided it must be the extremum of some functional. We consider a family
of functionals which depend quadratically on the extrinsic curvatures and on projections
of the ambient curvatures. These functionals capture a number of physical setups ranging
from holography to the study of membranes and elastica. We present a detailed derivation
of the equations of motion, known as the shape equations, placing particular emphasis on
the issue of gauge freedom in the choice of normal frame. We apply these equations to the
particular case of holographic entanglement entropy for higher curvature three dimensional
gravity and find new classes of entangling curves. In particular, we discuss the case of New
Massive Gravity where we show that non-geodesic entangling curves have always a smaller
on-shell value of the entropy functional. Then we apply this formalism to the computation
of the entanglement entropy for dual logarithmic CFTs. Nevertheless, the correct value for
the entanglement entropy is provided by geodesics. Then, we discuss the importance of
these equations in the context of classical elastica and comment on terms that break gauge
invariance.
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1 Introduction

Constrained optimization problems are a persistent leitmotif in the history of mathemat-
ics and physics. The calculus of variations, which yields classical solutions to minimization
problems with prescribed boundary conditions, supplies the language for characterizing equi-
librium configurations in diverse physical settings. A class of problems of particular interest
in this context comprises the behavior of gravitational systems. More than a century ago,
Einstein and Hilbert deduced that an action constituted out of purely geometric quantities
describes how spacetime curves in response to energy and matter. The equations of motion
obtained from variation of the action are the Einstein equations of general relativity. If we
incorporate higher order, though still purely geometric terms into the action, the equations
are suitably modified. This supplies a theoretical basis for organizing the low energy effective
action of gravity as an o expansion. The philosophy extends to environments in which the



energy functional of a system is written in terms of geometric invariants, for example in de-
termining the shapes of elastic membranes. The goal of this paper is to formulate solutions
to constrained optimization problems couched in terms of geometric actions within a unified
framework.

We consider immersions of a lower dimensional manifold in a higher dimensional one.
We study the shape that the immersed submanifold takes if we demand that it extremizes
a certain effective action. This effective action is constructed out of intrinsic, ambient,
and extrinsic curvatures order by order in a derivative expansion. The most familiar case of
extrema of this kind of functionals are minimal submanifolds, of which geodesics and minimal
surfaces are the lowest dimensional instances. These shapes are ubiquitous in nature, e.g.,
the latter are physically realized by soap bubbles in open frames. There is a rich literature
on this theme in mathematics (see, for example, [1] and references therein). In this work, the
functionals discussed are more complicated than area functionals and support other classes
of extrema, such as Willmore submanifolds [2, 3, [4]. In order to find the equations satisfied
by extrema, referred to as shape equations, we must perform a careful variational analysis of
the effective action. Many of the tools and results leading to these equations can be found
in the literature with varying degrees of generality and using diverse approaches. (See the
references in Section ) Here, we provide our derivation of the equations for rather general
setups. Perhaps the most important thing to keep in mind in deriving the shape equations
is to be meticulous about how the geometry of the submanifold looks from an intrinsic and
from an extrinsic viewpoint. This perspective will lead to a number of interesting insights
such as the existence of a freedom in the choice of normal directions and its consequences.

Within the context of the gauge/gravity correspondence [3] 6], [7], the Ryu-Takayanagi
prescription [§] states that the problem of computing the entanglement entropy of a region
in the boundary conformal field theory (CFT) can be reformulated as a question regarding
minimal surfaces in anti-de Sitter space (AdS). Furthermore, if the gravity action receives
corrections from a derivative expansion, we can still calculate this quantity using more general
functionals of the class discussed in [9] [10, 11]. As a matter of fact, it is known that for
four derivative gravity, the entanglement entropy can be obtained by evaluating the relevant
functional on one of its extrema [I1]. However, the issue of which of the possible extrema
provides the right answer is yet to be resolved. For field theories with four derivative gravity
duals this functional falls within the class of effective actions we consider, and thus, the shape
equation formalism can be applied directly in this context. One simply needs to consider an
asymptotically AdS (AAdS) ambient manifold, tune the coefficients in the effective action
properly, and choose appropriate boundary conditions. Having a detailed knowledge of the
shape equations and its space of solutions might be of use in elucidating how to systematically
choose the extremum that yields the right value for entanglement entropy, among other
things.

Indeed, we shall see that for four derivative gravity in AdSs; finding all the possible
extrema analytically is feasible. In fact, this is just an example of the problem of finding
extremal curves in maximally symmetric spaces treated in [12] and discussed in detail in
this work. Then, for concreteness one can consider a particular theory of gravity, such as
New Massive Gravity [I3]. In this theory, we find by evaluating the functional on all the
relevant extrema that the one on which it takes the largest value, the geodesic, provides the
correct value for the entanglement entropy. We invite the reader to consider the elegance



and effectiveness of this approach. The standard strategy when dealing with these kind of
problems has been to directly derive the equations of motion for the extrema without relying
on their geometric structure. It might be helpful to compare the results in the present work
with references [14] (see discussions around Fig. 4 and (B.3)), [15] (see (6.5)) and [16] (see
the discussion around Fig. 1 and (A.5)), which are representative of the state of the art. The
equations resulting from this method are rather convoluted and finding analytic solutions
seems extremely difficult. Thus, one was compelled to rely either on numerical methods or
trial and error. In contrast, using the geometrical tools discussed in Sec. 3 one is able to find
analytically all the possible extrema for the entanglement entropy functional. This is one of
the main results of this present paper.

One of the main advantages of taking a geometric approach is that it can be applied
in a wide variety of systems. Presumably, the first framework that comes to mind when
considering applications is the dynamics of curves and surfaces immersed in R3; after all,
these geometries are a part of our everyday lives. Energy functionals, closely related to the
effective actions we consider, emerge in interesting problems of elasticity. We would like to
mention two cases, one for surfaces and the other for curves. The former is the Canham—
Helfrich energy, (132)), which can be used to model the elastic properties of a lipid bilayer
membrane [I7, [18]. Interestingly, the shape equations corresponding to this energy were
used to predict the existence of a lipid torus for which the ratio between the radii is v/2 [19].
Indeed, this prediction was experimentally verified in [20]. The other example we would like
to mention is the Sadowsky-Wiinderlich energy, (133]). This functional estimates the free
energy of a thin elastic ribbon in terms of a curve via dimensional reduction to its centerline.
This model can be used to elucidate certain properties of long polymers [21]. Above, we
were cautious and said that these functionals are closely related to the ones we study. There
is a crucial difference, the energy functionals (132]) and ([133)) allow for the presence of terms
that violate gauge invariance. From the viewpoint of geometric effective actions, adding such
terms needs to be justified on physical grounds. We believe that this is an important point,
and we hope that the developments presented here help to streamline the reasoning.

The organization of the paper is as follows. In Section [2, we introduce the general geo-
metric setup, then we discuss the subject of gauge freedom and normal frames; afterwards,
we explain how to obtain the effective action and display the shape equations characterizing
their extrema. In Section [3] we apply the shape equation formalism to immersions into
a maximally symmetric ambient space, paying particular attention to curves immersed in
surfaces. In Section [4 we apply these results to study questions regarding holographic en-
tanglement entropy. We make general observations regarding the choice of entangling curves
and discuss holographic entanglement entropy for logarithmic CFTs. Section [5] contains re-
marks concerning gauge freedom and functionals used to describe elastic curves and surfaces
in R3. Finally, Section |§| contains a detailed summary of this work and potential directions
for further investigation. Most of the technical details have been placed in the appendices.
In [A], we develop the geometric technology needed to derive the equations of motion. Then,
[B] contains the derivation of the shape equations using the tools developed in the previous
appendix. [C]explains how to invert the extrinsic curvature in maximally symmetric spaces in
order to find the shapes of extrema. Finally, |D| provides a brief review of the Jacobi elliptic
functions.




1.1 Notation

For the reader’s convenience, we collect the notation used in this paper.

Symbol ~ Nomenclature Definition

Py Immersed space Y={a"(o))|i=1,...,p}

i, vy...  Ambient space indices pw=1....d

Uy Jye e Indices tangent to X 1=1...p

A, B,... Indices normal to X A=1...d—p

th Tangent vectors on 3 th = Ot

hij Induced metric on X hij = g 0ix"0;x"

Y Intrinsic Levi-Civita Vihi; = 0

A Intrinsic Laplace—Beltrami A= ﬁkﬁk

leﬁ Intrinsic Riemann tensor lejivl = [6“ 6j]vk

n;‘ Normal vectors to X niyt, =0

NAB Metric on the normal bundle 745 = diag(—1,...,—1,1,...,1)
K} Extrinsic curvatures K} = ti't4V,n;

TAB Extrinsic torsion TAP = t'n YV nb

DA, Gauge covariant derivative ﬁiABVﬁ = 61‘/;’4 + TP VE,

2 The effective action and shape equations

In this section, we describe how to specify the most general effective action up to quadratic
order in the curvatures. We then write the corresponding equations of motion.

2.1 Geometric setup

We start by considering an immersion

f+ N — M
= (1)

The manifold N is p dimensional, so that a point P € N is specified by coordinates o?,
i =1,...,p. The map f takes P and sends it to the point f(P) € M. Thus, if M is
d dimensional, we may write coordinates (z!,...,x¢) for f(P). We observe that each of
the z#, p = 1,...,d, are functions of the coordinates on N. We define > C M to be the
orientable submanifold obtained from taking the images of all of the points P € N under

the map :
Y=f(N)C M. (2)

When N is diffeomorphic to its image Y, then f is an embedding. Clearly, embeddings are
immersions. Hereafter, we consider p < d, and only assume that the map is an immersion.
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Define the tangent vectors to X:

Now, M is a differentiable manifold endowed with a metric g,, that enables us to measure
the distances between points. The metric on ¥ is induced from the metric on M:

hij = t?t}/gw/ . (4>

Since there are p vectors tangent to the submanifold 3, there are d — p normal vectors n/y,
A=p+1,...,d At each point ) € X, the tangent and normal vectors ¢/ and n'; span
orthogonal subspaces. We may choose the normal vectors to satisfy

nNaBp = nin%guu ) (5)

where nap is a diagonal matrix with eigenvalues £1. As we shall soon see, the selection of
a basis of normal vectors that satisfies is not unique. In fact, the normal frame will be
defined only up to gauge transformations that preserve .

Using t', nfy, hi;, and nap, we as well decompose the inverse metric on M as

g = hijtft;’ + nABnknY, . (6)

The Greek indices label the ambient space M. The lowercase Latin indices label the tangent
vectors, and the uppercase Latin indices label the normal vectors. The metrics g,.,, hij, naB
and their inverses are used to raise and lower indices. We can use ¢! and n/; to trade ambient
indices for tangent and normal ones.

As we traverse from point to point on the submanifold ¥, the normal vectors can of course
change. Employing the covariant derivative V,, defined using the Levi-Civita connection on
M, we compute

v, = K — T/ Pnk, (7)

where K;;‘ are the extrinsic curvatures (or second fundamental forms) and the T2 are the
extrinsic torsions:

K = ttV,n) (8)

v )

TP = thn*v,n? . (9)

Bear in mind that the extrinsic torsion is a different object from the usual torsion associated
with a connection. In what follows, as these are somewhat involved manipulations, in order
to focus the conversation on the essential physics and geometry, we refer the interested reader
to [Al for further mathematical details that inform the statements that we make.

2.2 Gauge freedom in the normal frame

A crucial component of the setup described in the previous section is the decomposition of
the tangent bundle 7'M on Y. For any point x € ¥ vectors in T, M can be segregated into
tangent components ¢! and normal components nﬁ. Hereafter, we refer to the span of n:j‘ as
the normal frame. As a matter of fact, as shown in [A] this decomposition can be extended
to a neighborhood of .



Now, there is still an outstanding issue regarding this decomposition that we must ad-
dress. While the tangent vectors can be determined completely in terms of the immersion
map , the normal vectors are defined indirectly via and the requirement that

nyth =0 (10)

As we shall see, these conditions still leave some freedom in the choice of normal frame.
The most important manifestation of this freedom is the ability to choose frames with dif-
ferent extrinsic torsions. In this section we provide a general discussion of this phenomenon.
The reader interested in gaining more intuition can go to Section [5| where we discuss the
relationship between torsion and normal frames for the familiar example of a curve in R3.

Let us count the number of independent components in the normal frame. There are d—p
normal vectors ! with d components. Condition (5) gives (d — p)(d — p+ 1)/2 constraints.
In turn, fixes p(d — p) components. This leaves us with

(d—p)d—p-1)

# independent components = 5 ) (11)

Not coincidentally, this number matches the number of independent components of the
extrinsic torsion TAP as well as the dimension of the Lie group O(d — p)ﬂ Indeed, it is
natural to think of the normal frame in the language of an O(d — p) classical Yang-Mills
theory living on ¥ [22]. This perspective becomes more compelling once we observe that
conditions and are still satisfied after a transformation of the form

n;‘ — M‘pn® (12)

®

where M4 is a o' dependent O(d — p) matrix.
One easily sees that the extrinsic curvature transforms in the fundamental representation
of O(d — p), i.e.,

Kji — MK] . (13)
From this, and using the orthonormality of M, we observe that the quantity
TIABK{? K lfz (14)

is gauge invariant. In particular, both the quadratic terms TrK4 K, and TrK,TrK4 are
gauge invariant, where the trace is taken over the tangent indices. On the other hand the
extrinsic torsion transforms just like a gauge field

T8 — MGME, TAB 4 2B MG oMY, . (15)

Hence, we see that the extrinsic torsion transforms non-trivially as we change normal frames.
Moreover, since TP transforms like a connection we are compelled to introduce the gauge
covariant derivative operator

EiABVf = 61‘/]14 + TiABTIBGVﬁ ; (16)

I To be precise, we should take into account the signature of M. Hence, if there are k timelike normal
directions, the group should be O(d — p — k, k). Moreover, we chose the orthonormal group because parity,
i.e., the global change of sign for all normal vectors, is a symmetry. In particular, for codimension one
hypersurfaces, there are no T and the symmetry group becomes discrete O(1) = Zs: the only ambiguity left
is the choice of the orientation of the normal vector.



to which the field strength
F3P = VT3 =TT nen (17)

can be naturally associated.

In light of these definitions, we can rewrite some of the geometric identities computed in
[A1] For example, the generalized Codazzi-Mainardi (151]) and Ricci (152)) equations can be
recast as

A = A
R jik — D[k BK;]%a (18)

and
ﬂ;‘B = Kg‘kKﬁlhkl — RABZ.]. , (19)

respectively. An interesting consequence of the above equation is that only when the right
hand side vanishes, is it possible to use gauge freedom to select - at least locally - a torsionless
frame, T*® = 0. Observe that this is always the case for p = 1. This prescription naturally
extends to the case of any truly geometrically invariant action: it must be built using only
gauge invariant quantities. In particular, it is clear that whenever a V; is hitting a gauge
covariant quantity it has to be replaced by D/4;. Finally, notice that allows us to
exchange FZ?B for quantities on the right hand side. Therefore, for gauge invariant actions
the extrinsic torsion appears only in combinations which, using (19), can be replaced by
terms depending on the extrinsic curvature and projections of the ambient curvature.

2.3 Dimensional analysis and the effective action

The equations of motion which determine minimal surfaces arise from applying the vari-
ational principle to an energy functional, which we call the effective action. Symmetry
considerations and dimensional analysis provide guiding principles in constructing the effec-
tive action. In this work, we will keep terms up to quadratic order. Nevertheless, many of
the tools developed here can be readily applied to higher order actions.

To formulate the effective action, we must first ask ourselves about the kind of terms that
respect the symmetries. The geometric functionals must satisfy certain basic requirements:

e To be generally covariant, the functional should depend on geometric properties of >
and not on specific choices of the coordinates. This can be achieved by requiring every
index to be properly contracted.

e The formulation of the Wilsonian effective action in quantum field theory teaches us
that we should organize terms in the functional according to the dimensions of their
couplings. In cases where the functional is to be interpreted as a configuration energy,
higher order terms will probably contribute less to determine the local minimum, i.e.,
they would be more and more irrelevant at large wavelengths (wviz., in the infrared).
We wish to stress that this framework is used only as a guiding principle in this work.
Sometimes we will take the effective action as given and not as a small deformation of
other theory.



e From the elastica perspective, the inclusion of terms up to quadratic order can be
viewed as an expansion in extrinsic curvatures. We assume that Y is moderately
curved with respect to the microscopic scale and include only the first non-trivial
contributions to the total elastic energy of the submanifold. Higher order terms in the
flat limit would vanish faster.

e As in a standard gauge theory, we allow only gauge invariant terms in the functional
under the transformation . For example a quadratic term in the extrinsic torsions
would respect the above conditions but will transform as

TPThy — TP T + QTQBTICDMAC@MBD . (20)

Such terms are forbidden. Indeed, as we have noted, torsions can only appear within
the field strength E| which is a gauge invariant combination that in turn can be
recast in favor of curvatures using .

Secondly, we consider the mass dimension of the various building blocks of the action.
We have

[gu] = [hij] = naB] = [n,’ii] = [ti] = [mass]®
(K] = [T*7] = [1%,] = [[};] = [mass]"
[Riju] = [Rpuvpo] = [mass]” . (21)

We determine the dimensions of the extrinsic curvature and the torsion from inspection of
and @[} We also observe that contracting curvatures with normal and tangent vectors in
order to exchange the indices does not alter the mass dimension.

With these precepts in mind, we see that we can build terms only with positive energy
(and thus negative length) dimensions. At zeroth order, the only object respecting our
requirements is the identity. This leads to an area term:

Sol3] = Ag / o Vi 1= Ao Arcals]] . (22)

There are no terms at first order: TrK4, for example, has a free index A. At second order
we identify six combinations of the curvatures:

SQ[E] = / dPo \/E [)\17?, + )\gR + /\3RAA + )\4RABAB
b
+ A TrRATrK? 4+ AgTr (KK ) | (23)

The contracted Gauss relation allows us to eliminate one of these objects leaving only
five independent terms. With odd numbers of K, it is not possible to simultaneously pair
and contract both the tangent and the normal indexes. Therefore, there are no terms at cubic
order, and the next contribution to the energy functional arises at order four. Schematically,

2With the notable exception of .



these terms go like R?, RKK, K*, IN)ZR, and D?K?2. Thus, up to second order in derivatives,
we obtain the low energy action

Sui[E] = So[E] + Ss[2] - (24)

A final comment is in order in the special case of codimension d — p = 2, where the
gauge group is O(2) ~ U(1). Recall that the extrinsic torsion is antisymmetric on its normal
indices. Thus, in codimension two, it is proportional to the Levi-Civita symbol €. Therefore,
for p = 1 we can define the curve torsion

1
T = §EABTAB, (25)

which transforms with a total derivative as a standard U(1) gauge field. Therefore, the

integral
W:/T, (26)
b

is gauge invariant, provided fixed boundary conditions, and corresponds to the curve’s twist.
This term could clearly be added to the general action. However, since it is not locally gauge
invariant and exists only for d = 3 and p = 1 we will not consider it further. Interestingly,
(26)) was introduced in the holographic entanglement entropy functional for theories dual to
Topological Massive Gravity (TMG) [23] ]

For the case of surfaces p = 2 we can consider instead the field strength , which is
antisymmetric in both normal and tangential indices. Therefore, by the same argument we
can consider the term

1 .
o= ABEZJF;;.‘B, (27)

which is a well-defined gauge invariant quadratic term. This term is of relevance in the
study of holographic entanglement entropy for four dimensional gravitational theories with
Chern-Simons terms [24], 25]. Notice that using the Ricci identity this term can be
recast in terms of the extrinsic curvatures and a projection of the Riemann tensor

1 ij (1cA 7B 1kl AB
Moreover, whenever p is odd it is possible to define on ¥ a classical SO(d — p) Chern—Simons
term [20] which encodes topological degrees of freedomﬁ For instance, if p = 3 we have

. 1
Scs ~ /Ed306”k77Ac (E?BTEC - g iABTJBDTI?C) ) (29)

which is gauge invariant up to boundary contributions. For analogous reasons to those given
for (25)) we do not consider these objects further in the present work.

3Note that its contribution to the shape equations can be easily derived as a special case of the normal

variation .

4These terms should be distinguished from those mentioned in the previous paragraph. Gravitational
Chern-Simons terms are similar to Eq. but the role of TP¢ is played by the spacetime’s Levi-Civita
connection and they are regarded as modifications to Einstein gravity.
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2.4 Shape equations

In this section, we display the equations of motion coming from extremizing the effective
action . These kind of equations have been studied by a number of authors, both in
the mathematics and the physics communities [27, 28, 29, 30], 31, 32, B3, B4], 35, 36]. The
equations presented here encompass many of these examples. They are valid for arbitrary
Riemannian manifolds of any dimension and codimension, and they are gauge covariant.
Only after deriving these equations, we became aware of works by Guven and Capovilla |37,
38] as well as Carter (see [39] and references therein), where these results were previously
derived. Nevertheless, we provide a detailed version of our derivation in [A] and [B] In terms
of the notation defined in Section [I.1], the final result reads:

6
EY=NTIEY + ) NEF =0, (30)
n=1

with

&' = TtK*R — 2RV K, (31)
&' = TtK*R+nV"R, (32)
&L =TeKARP + 2D/P R, + ntn“'n**VsR,,, (33)
(34)
(35)

&l = TrKA R 7P + ADAP RF S, + nnyn PP n™*Vs R, 0,

EA = TrKg [TIKATI“KB — 2Tr (KBKA) _ QRBi Ai] 35
- 25iAcl~7iCBTrKB>
&' =2 [@ABﬁchKg + Tr (KBKBKA) + KgRBin} (36)

+ TrKATr (KpK") |

where we used the covariant derivative ﬁiAB defined in . In a torsionless frame, provided
it exists, this covariant derivative simplifies and becomes

52‘AB — UAB61‘ ) (37)

which implies that the equations of motion also become simpler. In deriving we have
made no assumptions about ¥ and M beyond those stated in Section [2.1] Notice that the
Es above are not independent, indeed, the identity

EA—E) 1280 —EL —EL+EL =0 (38)

holds. This identity can be shown by considering the normal variation of the Gauss rela-
tion and employing judiciously the second Bianchi identity and the Codazzi-Mainardi
equation ([151]).

In what follows, we shall consider a number of different cases, corresponding to a variety
of applications, which give more tractable versions of . Hereafter, we refer to the above
equations as shape equations and to their solutions as extrema. The simplest examples of
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such extrema occur when all the coefficients in the effective action, except Ao, vanish. In
this case, the extrema correspond to minimal submanifolds with

TrK*=0. (39)

Familiar examples are geodesics (p = 1) and minimal surfaces (p = 2).

3 Extrema in maximally symmetric spaces

Let us consider a simplification of that comes from restricting the ambient M to a maz-
imally symmetric space (MSS). For the moment, we leave the dimension d and codimension
d — p arbitrary. Later, we shall consider some cases that lead to further simplifications. For
a maximally symmetric space, the Riemann curvature tensor can be written as

R
R;wpa = m (gupgua - g;wgup) s (40)
where the scalar curvature R is a constant. The Ricci tensor then reads
R
R/u/ = gg;w ) (41)

and the geometry enjoys %d(d + 1) Killing directions corresponding to a maximum number
of isometries. The normal projections are

R
Rapep Ad=1) (nacnBp — NapNBC) (42)
d—p—1
BCA AB
= 4
R/ T (43)
R
Rap = 7'1aB (44)

whose contractions are readily calculated:

(d—p)

Ry = —g (45)
ap _ (d—p—1)(d—p)
With the above identities we can simplify the effective action and find
Se[2] = / o Vh [5\0 + MR+ MNTrK T KA + M Tr(KAK )| (47)
b
with ) p
Ao = Ao+ 75 [Aed(d = 1) + A3(d = 1)(d = p) + Aa(d —p — 1){d — p)] , (48)

and the radius of curvature L is defined via the expression

d(d—1)

R=k I ,

K=0,+1. (49)
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The terms in the effective action are not all independent. Indeed, in the present context
the contracted Gauss identity ((150)) is given by

- fpl—1)

o - (K Ka) + TrK " TrK 4 . (50)

With this identity we can always trade one of the curvature invariants in (47]). For instance,
we can write

SulS] = / o Vi [(Go+ 3ep(p— 1)) + (A — A)R
+ (X5 + o) Tr(K4)Tr(K7)] (51)

where \; = 75, for i = 1,5,6. Which curvature term we choose to eliminate is a matter of
convenience.

From the functional , equation reduces to
0=(Xo + Asp(p — D)TEE? + (M — Ag) (TtKR — 2RV K}
—2(As 4 X6) DHCDic g TrK? + (A5 + Ag) TTKATr K 5 Tr K P
K
— 20 + Ae)TrK [Tr (KBKA) + pﬁnAB} . (52)

An interesting consequence of this equation is that, in maximally symmetric spaces, minimal

submanifolds are extrema of the full functional if either
AM=X o RIKI=0. (53)

The fulfillment of the first condition will depend on the physics being considered. Notice
that the second condition is always satisfied for curves and surfaces (p = 1,2). Indeed, for
= 1 the intrinsic geometry is trivial while for p = 2:

ij R
RYK] = 5TrKA . (54)
On the other hand, for p > 2, minimal submanifolds do not necessarily satisfy the shape

equations.

3.1 Curves in maximally symmetric surfaces

Now, we wish to go beyond minimal submanifolds and study other classes of extrema. In
the following, we restrict to a simple, yet rich, example. These are curves in maximally
symmetric surfaces (i.e., d = 2, p = 1). Here, the frame is automatically torsionless, and
there is only a single non-vanishing extrinsic curvature, which we denote by k. The relevant
functional reads

Se[X] = /E do Vh [5\0+/\gTr(k)2 , (55)
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where )\ is given by (48]) and \; = A5 + Ag. Thus, the shape equation (30)) becomes
~ 5\0 2K
2ATrk + Trk® — <Y — ﬁ) Trk =0 . (56)
5

If we parameterize the curve by its arclength s measured in units of L, then h = 1 and
reads

. A 2K
3 o o 0
2k+k>—Bk=0, B_<)\_§,_ﬁ)’ (57)
where " = d/ds. Indeed, geodesics k = 0 solve the above equation as discussed before. The
first kind of non-geodesic solutions of are
k* = B = constant , (58)

which are constant mean curvature (CMC) solutions. Clearly, these solutions exist provided
B > 0 which imposes a bound that relates the coupling constants in the action and the
curvature of the ambient space

5\0 2K

=>=.

/\5 L2
We will return to these solutions in Section[4.1] Interestingly enough, the differential equation
is formally equivalent to the equation of motion of a classical field in an quartic potential
unbounded from below

(59)

V(E) = SR8 - k). (60)
For B > 0, this potential has two maxima at k¥ = +v/B and a local minimum at k = 0;
meanwhile, for B < 0, k£ = 0 is the only maximum. Notice that these extrema correspond
to the constant mean curvature and geodesic solutions, respectively.
As explored previously in [12], it is possible to find solutions with non-constant mean
curvature analytically. We proceed as follows, we multiply by k # 0 and set u = k2.
Integrating, we then find an equation of form

W= —(u—a)(u—p)u—"7). (61)
The general solution to is

u(s) = k*(s) = a |1 - a_VSHQ(E\/a—ﬁs, ﬂ) : (62)
Q 2 a—pf
(See [D] for a brief recapitulation of Jacobi elliptic functions such as sn(z,m), cn(z, m), and
dn(z,m).) Using elliptic function identities, this solution enjoys a symmetry under permuta-
tion of the roots. The second argument of the elliptic function is the elliptic modulus m. We
adopt the convention that the elliptic modulus 0 < m < 1 in writing our solutions explicitly.
Introducing the notation

B, =B+vVB2+ A, (63)

where A is an integration constant, the roots «, 3, and 7y for the present case are By or zero.
Non-trivial solutions arise from choosing oo = B...
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e Setting v = 0, the solution becomes

1 B
u(s) = Bycn® (—\/BJr — B_s, —+) . (64)
2 B, — B_
This form of the solution corresponds to positive A so that B, > 0> B_.
e Setting 5 = 0, the solution becomes

1 B, - B_

u(s) = B+dn2<—\/B+ s, +—> : (65)
2 B

Here, A is negative so that By > B_ > 0. Indeed, as cn(y/m z,m™') = dn(z,m), the

expressions and are formally the same. We simply require that the elliptic

modulus 0 < m < 1 in determining which form of the solution to use.

e If B. =0, then A =0. The two previous cases coincide in this case. We have the limit
m — 1 of the expressions and (65)). The solution is

u(s) = 2B sech? (\/gs) : (66)

The three solutions are, respectively, called wavelike, orbitlike, and asymptotically geodesic
in [I2]. When 8 = 0, we have seen that A is negative. Demanding that the roots remain real,
A cannot become too negative. If B, = B_ (i.e., A = —B?), we return to the constant mean
curvature solutions for which u(s) = B. The qualitative behavior of the extrinsic curvatures
is different in each of the regimes as we show in Figure [I]

We have computed the extrinsic curvature, and it is possible to use this to calculate the
on-shell value of the effective action. Substituting , we have

s )
S;’f‘fl_SheH[E] = /0 ds [)\0+)\'5u(8)]

— Jols 42 B+E<am(\/28_+€z,m),m> , (67)

where /5, is the total length of 3 and

B, — B_
m=— B (68)
Similarly, using , we derive
Sop=shellisy] — No by, + By (1 —m™Y) fy (69)
+2/B, —B_ E(am(% eg,m),m> ,
with . B, )
=B B

We expressed these results in terms of the Jacobi amplitude (233)) and the incomplete elliptic

integral of the second kind ([240)).

15



1.0 -

0.8

0.6
=
=
0.4
0.2
0.0
0 2 4 6 8 10 12 14
S
Figure 1: Behavior of the extrinsic curvatures, u(s) = k?(s), for extrema in maximally

symmetric spaces. The orange curve corresponds to a CMC , the red one is wavelike
(64)), the blue curve is orbitlike and the green one is asymptotically geodesic .

4 Holographic entanglement entropy

Entanglement is one of the most profound and engaging aspects of quantum mechanics.
Essentially, it consists of the fact that even when we possess a complete description of a
quantum system, this does not imply that we can describe every possible subsystem in a
complete fashion. The entanglement entropy (EE) of a subsystem is a quantitative embod-
iment of this phenomenon. The entanglement entropy is defined as follows. Let p be the
density matrix of the whole system and suppose that the Hilbert space H can be factorized
as H = Ha®H s, where A labels the subsystem of interest and A€ its complement. We may
regard A as a system and A€ as the environment with which the system interactsﬂ Then,
by tracing over the Hilbert space of the complement, we may construct the reduced density
matriz pa = Try ,.p. The entanglement entropy of A is the Von Neumann entropy of pyu,
which is

Ser(A) = —Trpalogpa. (71)

This notion can be defined for quantum field theories if one proceeds carefully, and it is found
that the entanglement entropy encodes physics within its divergent structure. Computations
of entanglement entropy, in general, can be rather difficult especially in higher dimensions.
However, there is a great body of literature with many results, both analytical and numerical;
see, for example [40], 41] and references therein.

During the past decade, entanglement entropy has been the subject of intense study. This
is in great part due to the reformulation of the problem, under the light of the AdS/CFT
correspondence [5], by Ryu and Takayanagi (RT') [8]. This proposal has been used with great

5 In our discussions A will correspond to a region in space.
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success to investigate a wide variety of systems. In its original form, the Ryu Takayanagi
prescription states that for a theory with an Einstein gravity dual, the computation of the
entanglement entropy can be recast as a minimal submanifold problem in an asymptotically
AdS (AAdS) spacetime. From a practical standpoint, in order to compute the entanglement
entropy for a subsystem A in the boundary theory, one needs to extremize the functional

1

Seg[2] = — [ dPoVh (72)
4Gy Jx,

in an AAdS ambient space M, where X is codimension two, is anchored at A and Gy is the

d dimensional Newton’s constant. It is clear that this functional corresponds to , where

the only non-vanishing coefficient is

Mo = 4%,(1 | (73)
Therefore, the equation of motion relevant for this problem is
TrK* =0, (74)
and the Ryu-Takayanagi prescription says that
See(4) = S [2]. (75)

The Ryu-Takayanagi prescription is valid for field theories whose holographic dual can be
described using Einstein gravity. However, we know that Einstein gravity can receive higher
derivative corrections, which in the context of string theory can be viewed as the result
of an o expansion. The question of whether the Ryu-Takayanagi prescription is suitable
in the presence of these additional terms has been explored in a number of papers [9, 10,
42] culminating with a general prescription presented in [I1I]. As it turns out, the Ryu—
Takayanagi functional must be modified in a non-trivial manner; for example, for a four
derivative gravity theory with Lagrangian

L=-2N+R+c1 R+ 3R, R" + 3R 0 R, (76)
the functional that provides the entanglement entropy reads

1

Set = —+
ft 4Gd »

1
dov'h [1 2R+ o <R A 5TrKATrKA)
+ 263 (R — Tr(K K 1)) } , (77)

where the ambient manifold is AAdS. The question of which surface must be plugged into
this functional to obtain the right value for the entanglement entropy remains open. A
natural conjecture was proposed in [I1] whereby the surface in question is obtained from
minimizing the functional . Indeed, in that work it was shown that for functionals of the
form , the equations of motion match those emerging from the procedure outlined in [43].
However, as the equations of motion give rise to many possible solutions, determining which
of these solutions is the one that yields the correct value of the entanglement entropy is not
settled. Investigations in this direction appear in, for example, [14] [15, [44] 45]. Clearly, the

17



functional is of the form H Thus, the equations of motion are a special case of the
shape equations . There is an important point that we wish to stress: in the following
sections we will regard as a definition of the action and not in a Wilsonian spirit. We
will use this functional to compute entanglement for duals to New Massive Gravity, where
the deformation parameter (the inverse graviton’s mass) is not small.

The geometric perspective presented here was overlooked in the aforementioned works.
There, a parametrization was proposed for the entangling surfaces leading to fourth order,
highly nonlinear, differential equations. The advantage of using the shape equations (30))
is that they display a more transparent structure. For example, at least for maximally
symmetric spaces, they allow for hierarchical approach to the solution. Namely, one can
solve first a second order differential equation for the extrinsic curvatures and afterwards
extract the entangling surface from the extrinsic curvatures. In the following, we use this

strategy and find, analytically, all the possible entangling curves for gravitational theories of
the form in AdSs.

4.1 Entanglement from three dimensional gravity

In this section, we study the entanglement entropy for two dimensional conformal field
theories (CFT5) whose dual is a gravitational theory in three dimensions with a Lagrangian
of the form ([76]). For most of the discussion below we will keep the coefficients ¢; arbitrary
and only later commit to a particular higher derivative theory. The only assumption we need
for now is that the theory in question admits an AdS3 background
L7 2 2 2
ds’ = — (—dt® + daz® + d2*) . (78)
To compute the entanglement entropy for an interval A = [—¢/2,¢/2] in a CFTy holograph-
ically, we consider a constant time slice of AdSs, that is, a two dimensional Lobachevsky
space H2. Thus, the higher curvature entanglement entropy functional reduces to .
As discussed in Section [3] the simplest extrema of this functional are geodesics, i.e.,
curves with Trk = 0. The extrinsic curvature in H? is given by . Furthermore, we
are interested in a geodesic that meets the boundary at the endpoints of the interval A.
Demanding this, we find the curve

2(s)+2%(s) = (g) , (79)

which indeed has vanishing extrinsic curvature. The on-shell value of the functional is
divergent, and this leading divergence reads as

SSelEl = o |

P

ds = 2\ L log (§> + O(e), (80)
€

where € > 0 is an ultraviolet cutoff.

6 With coefficients: Ao as in , A = 0, Ao = 2¢1Ag, A3 = N9, M2 = 2¢3Ag, 2A5 = —ca )¢ and
)\6 = —263>\0.
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We learned in Section that there are other kinds of extrema for curves in maximally
symmetric spaces, such as H?, besides the geodesics. First, we turn our attention to the
constant mean curvature solutions, , which for H? obey

N 2
2 o 0
k“*=B= <—)\5 +—L2> . (81)

Once more, we wish to find curves that meet the boundary at the endpoints of the interval
A. We find that the two solutions

)+ [ - (Vo] = (5) aonty oz EE (s2)
e e) T2 TN AT DR
satisfy these conditions. Observe that the curves exist provided that

1
E* < T3 (83)

This last statement is a general feature of constant mean curvature solutions in hyperbolic
space. Note that these solutions correspond to those found in [45]. Finally, combining
and we find that the solutions exist only if
2 o 1
— =< —<—=. 84
L2 )y L? (84)

Plugging back into the functional we get the on-shell value

S2Sls] = Ty -re0a + Lh)tog (£) + 000, (55)
There are other classes of extrema that can be anchored at the endpoints of A in H?, namely,
the wavelike and the asymptotically geodesic solutions. The latter solution has
the same ultraviolet behavior as the geodesic solution, and hence, it has the same leading
divergence for the on-shell value of the functional. On the other hand, the former leads to a
different value altogether.
Finding the wavy solutions explicitly is significantly more complicated, and it is done in
The arclength parametrization of these extrema can be found in equation (229)). For
these solutions the leading divergence of the on-shell value of reads

- N 20 E (2£E+A
Sc\))r\i—s};lell[z] = 2/\0 gZ + )\,5 (2 - C + % EE + ... (86)
2C

where A = A\/M,, C = \/A+ (24 \)? and (g is the regularized arclength of the wavelike

extremum X, which is given by

ls = Plog (é) + O, (87)
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A

Figure 2: Extrema in a constant time slice of AdSs anchored at the ends of the interval A.
For this plot we take L = 1 and A = —3/2. The black curve corresponds to the geodesic
solution , the red curve is a CMCs , the green and blue curves are examples of
wavelike solutions with A = 50 and A = 1000 respectively, and the magenta solution is
an asymptotically geodesic curve . Bear in mind that every type of solution is unique
up to isometries that leave the interval A invariant.

i —8(C +2)K (ZER)
P= 42+C+N) 240+ n 24C+AY | (88)
A[(C =21 (A2EGR0, =0 — (24 O (2]

where A is given by , and K, F, and II are complete elliptic integrals of the first,
second, and third kind, respectively. See |D|for details.

Before proceeding to a systematic comparison of the on-shell values for the different
extrema, let us make one general observation. The single interval entanglement entropy for
a CFTy is given by [40]

See() = §1ox (£) + 000, (59)

where ¢ is the central charge of the CFT,. For any parity preserving theory of higher
derivative gravity admitting an AdSs background, the central charge of the dual theory can

be found using the formula [47]
L oL

= — g — 90
which, in the Einstein gravity limit, reduces to the Brown-Henneaux central charge [48]
3L
= —. 91
CBH 2G, (91)
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For a theory with Lagrangian (76|, we find from that

C = CBH — L_C;g (301 -+ Cg) y (92)
which implies that ¢ = 6XoL. Thus, we find
Ser(A) = g’lefshell[z] ’ (93)

which proves that regardless of the explicit coefficients of the Lagrangian , the geodesics
are the extrema that provide the correct value for the entanglement entropy.

Now, we address the question of minimality. For concreteness, we will compare the
on-shell values for the geodesic , the constant mean curvature (85)), and the wavelike
solution for a specific higher curvature theory of gravity in three dimensions. For
related work see [14, (15, 49, 50]. By a simple counting argument one can show that a
massless graviton in three dimensions cannot have propagating degrees of freedom. This
feature makes three dimensional gravity more tractable from an analytic point of view [51].
By contrast, a massive graviton in three dimensions will carry two propagating degrees of
freedom and allows for more complicated dynamics. A diffeomorphism and parity invariant
theory of three dimensional gravity was constructed in [I3]. It is known as New Massive
Gravity (NMG), and its Lagrangian reads

1 v 3 2
Lave = —2A+ R+ 2 <RWR“ — éR ) ; (94)

where m is the graviton’s mass. The coefficients of the entanglement entropy functional for
New Massive Gravity in AdS;3 are

. 1 1 1
RVTEN ( * 2L2m2> ’ 8m?2Gs (95)
The on-shell value for the geodesic becomes
L 1 l
Geo _ —
Sonfshell[E] - 2G3 <1 + 2L2m2) log (€> + O(E) ) (96)

and for the constant mean curvature solution (85))

1 l
S2Sals] = = tos (1) + 000, (o7
3

Observe that for New Massive Gravity, the bound on the existence of constant mean
curvature extrema reads

0<m2< —. (98)

The corresponding expression for the on-shell values of the wavelike solutions is not partic-
ularly illuminating but can easily be obtained from substituting the couplings into (86

and .
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Figure 3: Comparison of the renormalized on-shell values Eq. for the curves depicted in
Fig.[Il We keep the same values for the parameters and coloring code as in Fig.[T]i.e. black
for the geodesic, red for the CMC and so on. The asymptotically geodesic curve (magenta)
is absent since its renormalized on-shell value is identical to that of the geodesic. Notice that
the geodesic value is always the largest.

We wish to compare the universal parts of these quantities, which can be extracted using

N d
Son—shell[E] = Ed_ﬁ Son—shell[E] . (99)

Geodesic and constant mean curvature results can be easily compared, and we obtain

onshe _ L+ 2mLP (100)
Socnlyégell 2\/§mL B

We find that the on-shell value of the functional is smaller for the constant mean curvature
curve (whenever its existence is allowed by the bound (98))), consistent with the results
presented in [45]. Moreover, we find that the on-shell values for the wavelike solutions
are also smaller than those corresponding to the geodesic. See Figure |3| for a comparison
of the different extrema depicted in Figure [, Therefore, the geodesics do not constitute a
global minimum. Nevertheless, as seen in , they always provide the correct value for the
entanglement entropy.

4.2 Holographic entanglement for logarithmic CFT

In this section we briefly discuss the functional for New Massive Gravity backgrounds,
which are conjectured to be dual to logarithmic conformal field theories (LCFT) [52]. These
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kind of theories have a wide range of applications, which include topics such as percolation,
quenched disorder, and self avoiding walks. See [53] for a modern perspective on the subject.
The single interval entanglement entropy for LCFTs has been studied from a holographic
point of view [54] as well as with more direct methods [55]. Here, we revisit the computation
presented in [54] and find some discrepancies.

The line element dual to the LCFT reads [50]

L? z
ds* = = |dz* — 2dx dx_ — Blog <Z) d:ci] , (101)

52
where we define light—cone coordinates through

= (oo +2) Loy — ) (102)
= —(z x_), rz=—(wy—x_).

V2o V2ot
The coefficient [ is used to keep track of the logarithmic deformation; setting # = 0 one
recovers AdSs3. Hereafter, we take [ to be a small parameter since it can be regarded as a
perturbation of the CFT by and irrelevant operator, see [54] for a discussion. A curve in this
space can be described by immersion functions

zt(s) = (2(s), 21.(s), z_(s)) , (103)

where s corresponds to curve’s arc-length measured in units of L. Such a curve is determined
by two independent functions g(s) and (s), which we choose such that the tangent vector

reads
—ef tanh (g + )

= %ef“ﬁsech (g+s) : (104)
—\/Lief*wsech (g+s) (1+5e2f)
where
f'(s) = —tanh(g + s) . (105)
We also need to find normal vectors such that
ntnl = ntP = ( _01 (1) ) . (106)

For instance, the normal vectors

(o Lorre Lo Lgew
n't = <O, \/ie + 7\/56 (1 2&62 f>> , (107)
n* = <efsech(g), %e“w tanh(g), —%ef_w tanh(g) (1 + gewf)) :

where g = g + s fullfill this requirement. The extrinsic curvatures associated to each normal
direction can be elegantly written as

) _ B2 ;
k4 = sech() ( v i ﬁt;?ph (9) ) , (108)
9~ iz
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Notice that the frame ((107) has a non-trivial curve torsion ([25)
7 = —iptanh (§) — %ewsechz (9) - (109)

The geodesic equations in the logarithmic background can be read from (108)), and they are
given by

B 2

i ﬁ 2¢ .
- h -
P e“¥ tan (g+s), g 1 e

7 (110)

Geodesics can then be found iteratively by expanding in 3

g(s) =D B arls),  w(s) =D B tls). (111)

For 8 = 0 one recovers the AdSs; geodesics which correspond to constant gy and 1)y. In
particular, geodesics ending at unboosted intervals read gy = 1y = 0. The next order
contributions to the latter are given by

g1(s) = - U(s) = ilog cosh(s) . (112)

In principle, one can continue this procedure to arbitrary order in f3.
In what concerns the shape functionals, the crucial distinction between the logarithmic
background and AdSj; lies in the form of the contractions of the ambient Riemann tensor,

which read A 5
R, = —I: + mewsechZ(g) , (113)
RAB = _2 + ﬁewsechQ(A) (114)
AB — L2 L2 g)-

In constrast to AdSs, these quantities are no longer constant and thus cannot be reab-
sorbed into \g. Indeed, the most general form of the functional in the logarithmic

background (101)) is given by

S[X] = /ds (5\0 + Mk kA + )\g%ewsech2 (g)) , (115)
where
Ao = Ao — 5 B+ 225+ A (116)

The shape equations can be written down explicitly and expanded in 3 using Eq. .
Clearly, the zeroth order equation is of the form , therefore it admits solutions like those
discussed in Sec. i.e. geodesics, constant mean curvature curves, wavelike or asymptot-
ically geodesic. Above, we have seen that geodesics produce the right value of the central
charge so we expand about these solutions. Expanding around the AdS; geodesic, at or-
der 5 we find that the two shape equations decouple. The equation for v(s) is solved
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automatically by the geodesic solution ((112)), while for g;(s) we find

< /1 Ns+2\ (. 1+tanh®s
= )\ _— —— -
0= X (91 4) +8—7 (91 3

As (.. 1
+ 2L—‘; (gl — 20 tanh s + 2(1 + tanh? s) (91 - Z)) . (117)

The above equation is still rather complicated. Nevertheless, one can solve it analytically
and express ¢; in terms of hypergeometric and hyperbolic functions. We refrain from dis-
playing the result here since it is not very illuminating. The key point is that for a suitable

choice of integration constants

o1
n= 7 (118)

asymptotically (s — +o00). Comparing with Eq. (112]) we see that this solution is asymp-
totically geodesic. Plugging it back into the functional we find that the only divergent
contribution comes from the length term

S[X] = 2Xols + O(3%) . (119)

Finally, we must relate /x5, to the UV cutoff €. To achieve this goal, we insert the asymptot-
ically geodesic solution into

2(s) = Lef® | (120)

where f(s) is given by Eq. (105]) and then invert z({s) = e. This procedure, once more, should
be performed iteratively in 5. However, one finds that none of the subleading corrections
contribute to the UV divergence, thus

by = Llogé +0(p?), (121)

where ¢ is the width of the interval in the boundary. To find this last result we computed
also the second order corrections to the AdS3 geodesic. In the end, we are left with the
remarkably simple result

S[¥] = 2L\ 1og§ +0(5?%). (122)

As a matter of fact, the above vanishes for the critical NMG couplings. The simplicity of
Eq. stems from two interrelated reasons. First, the shape equations admit asymptoti-
cally geodesic solutions, this makes the contributions proportional to k4 negligible in the UV.
Secondly, the Riemann normal projections R45, 5 and R4, when evaluated on the asymp-
totically geodesic solution approach a constant at the boundary. Thus, their contributions
can be reabsorbed into the the definition of Ag.

Notice that the universal contribution to the LogCFT entanglement entropy reported
in equation (23) of [54] does not match Eq. (122). We believe that the reason for this
discrepancy is that the authors of [54] overlooked the fact that their normal vectors don’t
satisfy Eq. and this omission pervades the rest of their computation. Notice that
in [55] the EE has an additional log(log(¢/¢)) divergence. This divergence can be traced
back to logarithmic divergences in the two point functions of certain primary operators in
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LogCFTs, see [52]. Apparently, these kind of divergences are not captured by the geometric
formalism employed here. However, it is possible to link them to AdS3-NMG at the chiral
point by other means. In [57] these divergences where reproduced using the AdS/CFET recipe
of quadratic fluctuations. It would be interesting to explore ways of incorporating that result
into a geometric formalism.

5 Remarks on shapes in Euclidean space

It should not come as a surprise that the study of geometric functionals of the form ([24])
and their associated shape equations have some bearing on the investigation of classical
problems of elasticity of surfaces and curves in R3. These kinds of questions are of interest in
subjects ranging from the physics of polymers and membranes to pure differential geometry.
The terms dependent on the ambient geometry’s curvature drop out from leading to
considerable simplifications; see . Physical membranes can be modeled using smooth
surfaces provided they display fluid-like behavior, which is realized by reparametrization
invariance. Specifically, cell membranes can be described using the two dimensional fluid
mosaic model proposed in [58]. Based on this observation one can construct the functional
that determines the shape of such membranes, which is the Canham-Helfrich [I7] [I8] free

energy[’]

SculX] = / d*oVh [o+%(TrK)2+/ECdetK : (123)
P

where o is the surface tension, while k. and k. are known as the bending rigidities. Notice that
the third term in the above functional, called the Gaussian curvature, is a total derivative.
Nevertheless, using the relation

det K = % [(TrK)? — (TrK?)] (124)

it is straightforward to relate the surface tension and the bending rigidities to the A; coef-
ficients in (24). Interestingly, a special case of (123)) yields the only conformally invariant
combination of quadratic invariants, namely, the Willmore energy

1
Swlx] = / d*ov'h [Z(TrK)z —det K| . (125)
b
The shape equation corresponding to this functional can be obtained from , and it reads
1
ATrK — 5(Tm)‘“ﬂ + TrKTr(K?) =0. (126)

The study of the solutions of this equation, called Willmore surfaces, has been the subject
of recent and groundbreaking studies in mathematics [4].
Another interesting problem is the study of curves in R*, where the action is essen-

tially
Spp[Y] = / dov/R [M + A TrkATekA] | (127)
b

"For the moment we set the spontaneous curvature to zero. We shall discuss this quantity below.
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Finding extrema of this functional is a problem with a longstanding tradition. In fact, for
fixed total length, this variational problem was proposed by Daniel Bernoulli to Leonhard
Euler in 1744. (See [59] and references therein.) Physically speaking, A\; encodes the line
tension while \s is the corresponding one dimensional bending rigidity, which quantifies the
resistance to bending posed by an infinitesimal cross section of the material.

There is one aspect in which the study of curves in R? is richer than that of surfaces.
Indeed, since the relevant codimension is d —p = 2 there is a non-trivial gauge freedom in the
choice of normal frames. (See Section ) In this case the normal gauge group corresponds
to O(2) ~ U(1). In fact, this is the simplest case where a non-vanishing extrinsic torsion
can arise, leading to the introduction of the curve torsion . There is a particular frame,
or gauge choice, that plays a central role in the theory of curves, the Frenet—Serret (FS)
frame [60]. Once we have chosen an arclength parametrization, the Frenet—Serret frame is
engineered in such a way that the total extrinsic curvature is captured by a single normal
direction. Often the price to pay for this choice is to have a non-vanishing extrinsic torsion.
On the other hand, for closed curves it is always possible to find a normal frame where 7 = 0.
In this frame, the geometry of the embedding is entirely described by the two extrinsic
curvatures Trk; and Trk,, which are in general non-vanishing. Hence, we must make a
compromise, either a single extrinsic curvature and torsion or two extrinsic curvatures and
vanishing torsion. Evidently, these two options are connected by a gauge transformation.
Indeed,

ki = ki+k3, (128)
Kk — Kok,

_ Ml el 129

7FS [EEE (129)

Recall that we are in the arclength parametrization, hence, the absence of traces in the above
expression. Notice that whenever a portion of the curve is planar one of the ks is zero and
hence g = 0. One must be careful though in the case of straight lines where both ks vanish
and the Frenet—Serret frame is ill-defined. This construction can be extended to embeddings
where R is replaced by a general smooth three dimensional manifold [61]. As a matter of
fact, we can follow this reasoning whenever d — p = 2.

Observe that is a gauge invariant quantity, being simply the low dimensional ana-
logue of TrK,TrK#4. Meanwhile, it ought to be clear that is not gauge invariant.
However, we can incorporate 7rg into a gauge invariant combination by considering an in-

variant term of the form o B
h9(DPATEK 2) (DSPTeKp)nse - (130)

Which in the present setup reduces to
kg + Tigkis = k2 + k2. (131)

Analogous expressions where found in [62]. Equation is the simplest and most direct
application of the gauge invariance principle discussed in Section [2.2l The upshot is that
an action functional can’t depend arbitrarily on the torsion without leading to a breakdown
of gauge invariance. At this point, this remark might seem trite. However, it is a rather
important fact and there is a large body of literature that doesn’t seem to do justice to it.
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It is often the case in physics that effective descriptions must take into account possible
explicit symmetry breaking terms which can be explained only by considerations originating
at smaller scales. While reparametrization invariance on ¥ is a necessary symmetry of any
geometrical problem, this is not the case for the normal bundle’s gauge invariance. In fact,
in the two systems discussed above it is possible to incorporate physically sensible terms
that break gauge invariance. For example, in its original formulation the Canham—Helfrich
free energy contains an extra term TrK

SculX] = / *ovh {0 + %(TrK — TrKg)?* + kedet K | (132)
P

which is a constant called the spontaneous curvature. To understand the meaning of this
quantity, consider the problem of finding closed surfaces of fixed area which extremize the
functional . Clearly the answer to this question recalls the constant mean curvature
solutions wherein the mean curvature matches the spontaneous curvature (TrK = TrKj ).

Similarly, the Euler—Bernoulli model can be modified to support non-gauge in-
variant contributions. For example, imagine that the curve is an effective description of a
developable, infinitely thin ribbon. Ribbons, however thin, are two dimensional objects, due
to this fact they inherit a preferred frame onto the one dimensional description. The normal
vector to the ribbon becomes one of the vectors of the normal frame, thus fixing up to a resid-
ual Zs a natural frame in the normal bundle, which is customarily referred to as the material
frame. The existence of a preferred frame is in flagrant violation of gauge invariance but
clearly the physics justifies its existence. Now, the only term quadratic in the curvature of
the two dimensional action reduces to the one dimensional Sadowsky—Wiinderlich [63] 64} [65]
functional, which in the Frenet—Serret frame reads

k? 2 \2
S| :/st(Fsk#FS). (133)
FS

Interestingly, when (26 is evaluated in the material frame, it expresses the number of times a
physical ribbon or wire winds onto itself. The message we wish to convey with these examples
is that if a geometric action must break gauge invariance it has to do so for a physical reason.
Once the requirement of gauge invariance is forsaken the landscape of allowed terms in any
effective action grows significantly and physical intuition becomes the only guiding principle.

Finally, let us touch upon another interesting class of examples, namely, curves embedded
into surfaces. We can take two perspectives when handling these problems. For instance,
we could treat the problem intrinsically, i.e., by viewing the curve in question as Y and the
surface as the ambient manifold. Alternatively, we could regard it as the study of a curve
in R? where gauge invariance is broken by selecting the normal vector of the surfaces as one
of the members of the normal frame [66]. Finding these doubly embedded elastica is rather
non-trivial. Even if the surface is symmetric enough to allow for an analytic expression
of the extrinsic curvatures (see e.g., Section , constructing the actual curves is quite
involved but can be done analytically. Indeed, by a procedure parallel to the one outlined
in , one can reproduce the elastica on a sphere found in [I2]; see Figure . It is natural
to wish to explore this further. The geometric formalism we have discussed can be easily
adapted for the study of more complicated settings. Ome could, for instance, study the

28



Figure 4: Elastica on a sphere.

coupled shape equations on mobile surfaces, in fact this problem finds applications in the
theory of membranes [67]. Also, it is possible to explore the shape equations for a curve on a
time-dependent surface, see [68] for work in this direction. We hope that some of the lessons
discovered working in the latter setup will have some relevance in the study of entanglement
entropy in out of equilibrium systems via holography, see [69] [70].

6 Summary and discussion

This work is devoted to the study of geometric functionals and their extrema. More con-
cretely, we address the question of which shape a manifold is compelled to take if it extremizes
a given geometric functional. Our investigations are driven by physical interests but take a
purely geometric approach. The use of a geometric perspective has a twofold benefit: it gives
results of wide generality and yields equations with a meaningful structure. We find that
the geometries that extremize functionals of the form obey the shape equations ,
which depend solely on well-defined geometrical objects. In order to deduce and solve these
equations, a fair deal of geometric technology is needed; we have placed the necessary con-
cepts in[A] An interesting offshoot of these geometrical disquisitions is the realization of the
existence of an underlying gauge freedom in the choice of normal directions. We discuss this
in Section This gauge freedom implies the existence of a connection, which interestingly
corresponds to the extrinsic torsion @D Once the torsion is viewed as a connection a number
of questions in holography and elastica theory become more transparent. With the exception
of curves, in general, it is not possible to set the torsion to zero via gauge choice. Hence, we
wish to stress the importance of not overlooking the existence of this quantity. In fact, one
expects the shape equations to be fully covariant under gauge transformations and indeed
this is the case. Even though many of the tools used in deriving the shape equations were
previously derived in [22, [37, [38], we present our independent derivations in considerable
detail in [B] We believe that the contents of Section 2.2} [A] and [B] provide a useful summary
for someone wishing to enter this field.

In determining the shapes of extrema, the geometrical character of the equations is
extremely advantageous. If we were to write these, as equations for the shape itself, clearly
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the result would be a rather complicated system of fourth order, non-linear differential equa-
tions. In fact, in a number of works, e.g., [14] [15], [45], the path taken was the following: first
one chooses a parametrization for the submanifold in question, then one computes the geo-
metric quantities appearing in the action, and finally, one derives the Euler-Lagrange equa-
tions of motion for the functions that define the parametrization. Finding all the solutions
to the resulting system, even in simple scenarios, seems a daunting, if not unsurmountable,
endeavor. However, in some cases, using the geometric form of the shape equations one can
separate this question into a hierarchy of tractable problems. For instance, if the ambient
manifold is maximally symmetric then the shape equations reduce to , which is a system
of second order equations for the extrinsic curvatures. Right away, it is possible to draw
interesting conclusions from these equations, such as the conditions needed for a minimal
submanifold to be an extremum; see . If one manages to find the extrinsic curvatures,
then computing the actual shape of the submanifold reduces to another second order prob-
lem. Following seminal work by Langer and Singer [12], in Section we show how to
calculate analytically the extrinsic curvature of a curve in a maximally symmetric surface.
Then, in [C] we carry out the second step explicitly by inverting the extrinsic curvature in
the case of Lobachevsky space H2. The final result of this procedure appears in (229) and is
depicted in Figure [7] We want to stress that, in this context, the procedure outlined above
allows one to find all the solutions to the shape equations analytically.

Afterwards, we apply the above formalism to specific physical setups. First, we consider
the problem of computing entanglement entropy from a holographic perspective. The func-
tional that computes the entanglement entropy for quantum field theories whose holographic
dual is a gravity theory of the form is given by . Clearly, this functional is a par-
ticular case of and all the general results concerning the shape equations are applicable
to its extrema. Moreover, in [I1] it was shown the shape equations corresponding to
match the equations proposed in [43], which are known to be satisfied by the right entan-
gling surface. Thus, we learn that to obtain the entanglement entropy we must evaluate
the functional on one of its extrema. The question of which of the potentially infinite
possible extrema yields the correct value of the entanglement entropy remains to be settled.
In analogy with the Ryu-Takayanagi prescription one would expect the right surface to be
a minimum of the functional.

In Section we address the question of minimality in the context of four derivative
gravity in three dimensions, where we can apply the findings of Section straightforwardly.
If we were to compute the entanglement entropy for an interval in the boundary CFT, thanks
to the results in Section |3| we can construct all the possible static entangling curves in AdSs.
See Figure[l] for interesting examples. The simplest types of entangling curves are those with
non-zero constant mean curvature and geodesics. In the context of New Massive Gravity,
it was argued in [45] that while the geodesics yield the correct value for the entanglement
entropy, they cannot be global minima since their on-shell value is larger than that of curves
with non-vanishing constant mean curvature. Here, after showing that geodesics provide the
right value for the entanglement entropy for any four derivative theory in three dimensions,
we evaluate on all of its extrema. We discover that in New Massive Gravity, the
functional always takes its largest value on the geodesics. This is not what we naively expect
based on the Ryu—Takayanagi prescription. To our knowledge, this is the first case where
all the possible entangling curves are known for a higher curvature theory. Having analytic
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control over all these curves opens some interesting avenues to explore. For instance, it could
help in the search for a prescription to find the correct entangling surface in more general
settings. Also, one could investigate whether these new entangling curves have interesting
information theoretic interpretations along the lines of [71]. Moreover, we might be able to
understand analytically non-geodesic curves in Topological Massive Gravity as those studied
in [23].

The geometric formalism discussed in this work can be applied naturally to problems
concerning elastica and membranes. These are questions regarding surfaces and curves im-
mersed in Euclidean space. This formalism provides the tools to clarify certain aspects that
are sometimes, to our view, overlooked in the literature. A crucial point is the explicit ap-
pearance of torsion in energy functionals such as the Sadowsky-Wiinderlich energy
for a curve. As discussed in Section [2.2] the extrinsic torsion transform as a gauge field
under rotations of the normal frame. Therefore, a functional such as ((133)) isn’t invariant
under choices of normal frame. This implies the existence of preferred frames and this must
be justified. Indeed, in the Sadowsky—Wiinderlich formalism we treat ribbons (p = 2) as
curves (p = 1) and the presence of a preferred frame is inherited from the higher dimensional
origin of the problem. The stance we take is that gauge invariance should be used as a
guiding principle to construct effective actions and the addition of terms breaking it must
be advanced on physical grounds.

6.1 Future directions

Above, we pointed out some possible applications of the shape equation formalism beyond
the scope of this work. Now, we list other potential directions to explore.

e We showed that for AdS3 geodesics are the right entangling curves. However, we
have seen that minimal submanifolds (39)) aren’t always extrema even for maximally
symmetric spaces. Moreover, for generic ambient manifolds there is no guarantee
that even geodesics are extrema. Thus, we might wonder which criterion must be
used to select the right entangling curve if geodesics aren’t extrema. This problem
was partially addressed in [I5] for the case of a hairy black hole in New Massive
Gravity [72] for which geodesics don’t satisfy the shape equations. We hope that with
the analytic understanding developed here, this question can be tackled in a more
systematic manner. Moreover, we would like to explore other scenarios where this
issue is present such as Lifshitz [16, [73] and logarithmic metrics [54].

e The formalism discussed in the present work is valid for arbitrary dimension and codi-
mension. Therefore, it is natural to go on and investigate higher dimensional settings.
There are two possibilities that come to mind right away. First, recall that the crucial
point leading to the analytic expression for extrema such as (229)) was the hierarchical
splitting of the shape equations, namely, the fact that from the shape equations one
can find the extrinsic curvatures first and then from these find the shape of the sub-
manifold. From we see that this splitting occurs for any maximally symmetric
ambient space. An interesting feature of this equation is that for p > 3 minimal sub-
manifolds are not necessarily extrema, unless condition is satisfied. As we have
seen, for curves this equation can be integrated in terms of elliptic functions. Of course,
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one wonders whether similar progress can be done in higher dimensional theories. The
other possibility comes from considerations regarding the Killing vectors. The existence
of Killing directions in the ambient manifold can lead to trivializations of the normal
and tangent bundles. This might lead to a dimensional reduction of the problem. In
fact, we have used this implicitly in Section where we reduced a problem in AdS;
to one in Lobachevsky space. (This is explained at the end of [B]) We believe that this
feature of dimensional reduction also deserves further attention. Moreover, as seen in
[Cl the existence of Killing fields was crucial in inverting the extrinsic curvature.

There are certain questions that might require numerical techniques but appear to
be rather compelling. For example, we could consider the shape equations for a sub-
manifold immersed in a time dependent ambient geometry. Stimulating work in this
direction can be found in [68]. Moreover, it would be interesting to apply our general
geometric considerations in building action functionals where objects of different di-
mensionalities interact. In particular, the construction of a configuration energy of a
two-component elastic membrane with non trivial one dimensional interface bending
rigidity is an open interesting problem.

Furthermore, it would be interesting to study the behavior of the shape equations, and
the generalized curvature identities, under conformal maps. These transformations
can be used to build bridges between different geometrical problems. Then, these
connections can be used to carry insights from one problem to the other. This is
the case, for example, for the question of finding minimal surfaces in H? and that of
computing Willmore surfaces in R3. As shown in [74], these problems transform into
each other under conformal maps, this observation has been applied in the context of
holography in [75].

We view extrema (i.e., the solutions to the shape equations) as fixed points of geometric
flows. Whereas mean curvature flows perform a steepest descent on the area, we can
use steepest descent to extremize other geometric quantities. In particular, just as
minimal surfaces are fixed points of mean curvature flows, Willmore surfaces are fixed
points of Willmore flows, etc. Recasting constrained optimization problems in terms
of geometric flows has several natural advantages. It is ideal, for example, for realizing
numerical solutions. No matter the surface from which one starts, the flow (if it is
convergent) will eventually lead to the desired extrema.

The concept of geometric flows is very interesting per se and is a rich vein that has been
much tapped in various mathematical contexts. We may consider intrinsic geometric
flows, like Ricci flow, where the rate of change of the metric tensor at a given point on
a manifold is proportional to the Ricci tensor:

Agu

where \ is some parameter along the flow. Fixed points of this flow are necessarily
Ricci flat geometries. If we imagine the manifold as embedded in a larger one, this
flow is essentially a modification of (147)), where one replaces the extrinsic curvature
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with the intrinsic Ricci tensor and has to imagine a normal displacement as a shift in
the parameter \.

Perelman’s solution to the Poincaré conjecture proposes an entropy functional
F- / AV et (R+(VF)?) (135)
M

which is dilaton gravity on a Riemannian manifold, and considers gradient flow equa-
tions associated to variations of this entropy [76]. The extrema that are the endpoints
of the flow will in general not be minimal surfaces or Ricci flat geometries. It would
indeed be enlightening to understand this in the context of this paper. Moreover, it
is very interesting to contemplate flows that mix the purely intrinsic Ricci flow with
extrinsic flows such as those we have been discussing.

Ricci flow a la Perelman is essentially the same as the renormalization group evolution
of a non-linear sigma model on a string worldsheet with target space metric g, [77].
The connection between optimization problems couched in the language of gradient
flows and the renormalization group has not been fully explored within string theory or
in terms of the gauge/gravity correspondence. Initial efforts in this directions appear
in [78]. We have noted that there is a gauge redundancy in the description of the
system; this should ultimately be related to diffeomorphism invariance in the bulk and
scheme independence in the dual CFT [79] 80, &1].

Certainly, there are a plethora of interesting questions in this subject that deserve to
be addressed. In the present work we hope to have provided a clear picture of the basic
ingredients needed to treat questions regarding the shape of things. We would like to finish
by saying that, pedestrians that we are, we are joyful to have caught glimpses into to the
beautiful landscape of geometry and we hope to have conveyed some of this experience to
our readers.
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A Geometric technology

In this Appendix we explore some of the geometrical properties of the setup described in
Section [2 To start, let us define a suitable coordinate system in the neighborhood of X.
The relevant coordinates are constructed as follows. Consider the family of integral curves
generated by the span of n* emanating from X, see Figure . If y € M is a point in the
neighborhood of ¥, then it lies in one and only one of the aforementioned integral curves;
call this v,. The coordinates we shall use to label y are those of the point where v, meets
Y together with the distances in each of the directions n® which ~, had to traverse to reach
y. Infinitesimally, we can write y as

y" = 2" (0") + eAni , (136)

and thus, we assign to y the coordinates {o?,e4}. The tangent bundle of M restricted to 2
can be decomposed naturally into tangent and and normal directions using the basis {t%, n/y }.
Now, the integral curves 7, can be regarded as maps in M taking x — y and can be used to
extend the vector fields ¢! and n'; away from ¥ via push forward. With this construction,
we extend the normal/tangent factorization of the tangent bundle on ¥ to a neighbourhood
of ¥. Furthermore, this construction can be used to extend h;; and K;;‘» away from 3 in
the same neighbourhood. From another point of view, notice that the neighbourhood in
question is naturally foliated by push-forwarded copies of ¥. The extended h;; and K;?
correspond to the induced metrics and extrinsic curvatures of the leaves of this foliation.
It must be pointed out that this construction depends on n'; hence, it is associated with
a gauge choice. This will manifest itself in the form of non-gauge covariant intermediate
results. However, just as in familiar gauge theory computations, physical ( in the present
case geometrical) quantities must transform covariantly. Note that some of the intermediate
results in the following could be in principle made covariant by incorporating some of the
connection terms into the definition of the normal variations, as it was done in [38]. Abusing
slightly the notation, we denote the extended fields by ¢/, ny, h;; and K} as well.
By construction, the Lie derivatives obey

Lot} = Lyut! =0 Lypnfy=LinYy =0. (137)
Moreover, since [tf b ] = 0 on X and push forwards commute with Lie brackets then

holds in the entire neighborhood. Since M is a Riemannian manifold, equipped with a metric
g, and a torsion-free Levi-Civita connection, we can compute Lie derivatives using covariant
differentiation on M. In particular we can rewrite using the connection on M, from
which we then deduce

'V, ntt = nAv (139)
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Figure 5: Graphic example of the coordinate frame used in this section. Here ¥ is a curve
embedded in the two dimensional Euclidean plane, for which we depict in blue and red
respectively the tangent and normal vector fields. The dashed gray lines show the coordinates
grid. At each point outside of ¥, T M clearly decomposes in a normal and tangent direction.

We see that the rate of covariant change of a normal vector along a tangential direction is
the same as the rate of change of a tangential vector along a normal direction. Notice that
in general

Lang #0, (140)

we will study the explicit form of this expression in some detail below.

Subsequently, we compute the normal and tangent derivatives of vector fields using the
above construction. As we shall see, all the derivatives can be expressed in terms of the
following four objects:

o Intrinsic connection

Tk kv
TE = "'Vt . (141)
e FEzrtrinsic curvature
A v A
Kij = té‘tjv,my ) (142)
e FEzxtrinsic torsion
(R AV (143)
e Normal connection
0%, = nnL v, mb . (144)

In terms of these quantities, we can write
EAnBU — fZWi[AB]tiV + @[Ag}nCV ) (145>

Finally, using (137)), (138]) and (140|) and the above definitions the tangential and normal

derivatives read
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vty = Thty K Af]‘n Y
nA“V#té’ = K{?tjy - T Bn%
thv v = Ki‘?tj” — TAPny

nAuv“nBV — ,,TiABtiV + @ABCnCV

Table 1: Summary table of the tangent and normal decompositions of the four connection
forms. From £;t7 = 0 it follows that K;;‘- and Ffj are both symmetric in lower indexes.
From n?*t;, = 0 it follows that the same coefficient K7} shows in the first and second line
with opposite sign, and similarly the same coefficient T/*Z shows in the third and the fourth
line. From £L;n4 = —L At = 0 it follows that the second and third lines are equal. From
V,mAB = 0 it follows that TZ»AB = —TZ-BA and O 5c = —OacB.

A.1 Curvature identities

Our next task is to derive a number of consistency conditions on the curvatures which any
embedding ought to satisfy.lﬂ These conditions can be found by computing the appropriate
Lie derivatives, employing the identities (137]), (138)), (145) and applying the Leibniz rule
judiciously. As a first step, we calculate the tangential and normal Lie derivatives of the
induced metric and find the relations

Lihi = fikhlj‘i‘fé'khil; (146)
Lahy = 2K; (147)

i
where we used L,g,, = V,v, + V,v,. Notice that the first of the above identities captures
the compatibility of V and hij. The next step is to compute the tangential and normal
Lie derivatives of the connection forms. The results are displayed below: the tangential
derivatives are summarized in Table 2] while the normal ones are in Table Bl

With respect to the metric of the ambient space M, the extrinsic curvatures, extrinsic
torsions and induced connections are scalar objects. Since for such objects £;F = t/'V ,F =
0;F holds, by simply antisymmetrizing in 7 <> [ we find the Gauss relation

Rijkit = Rjrir + K@KE]UAB . (148)

From which the contracted identities
Rij = Rij — R4 + K TrK 4 — K Kinaph* (149)
R=R-2R* + R, ;"% + TTK,Tr K — Tr(K4K*), (150)

follow. In turn, the Codazzi-Mainardi equation
R = ViKiy — K& T nsc (151)

can be found from ([154) by a ¢ <> k anti-symmetrization. Meanwhile, from (155 we obtain
a generalized version of the Ricci equation
AB < TAB A 1-B 1kl ACBD

7
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LTk = PV, Y it + TTE ) — K KE inagh™ (153)

mj]
ﬁng = tft;tgvpvunf + rg?kK;ij) + ng:/;fg‘c nBc (154)
LT/ = 0N,V n) + THTP + KK h™*
+TPT nep — KRO S (155)
L;048¢ = pArOPy v P — K(lAT,fC)hkl
o EAD(_)EBCT,DE o /IviCD(_)ABD (156)

Table 2: Summary of tangential Lie derivatives of the connection forms from Table [I}

LTl =tV Vb, + DK R™ — T K b

B ﬂ?BKfl]hkanc ’ (157)
LpK{j = t1t/nPPV N my + KG KD R + TET Prep | (158)
LoTAP =0tV Vol + TP KW + 094, TP+
OAB TPC | (159)
£D®ABC _ nA#ncz;nDprv“nf . Ti(ABTjC)D R 4+ @DC’E@ABE
+ eP4, eF8¢ (160)

Table 3: Summary of normal Lie derivatives of the connection forms from Table
Now we turn to the consequences of the normal derivatives of connections reported in
Table 3l Notice that we can antisymmetrize (159) in A > C' and derive the identity
LT = R PO 4 TP KW+ T KE R
CA AB DC,
+eTPE L gt TPel (161)
Similarly, from (160]) we get by subtracting the same equation with A <» D

ﬁ[D@A]BC _ RBCAD _ Ti[ABTjCD] B ECBjﬂJ[AD} B

+ @[DCE@A]BE + @[D%@EBC ‘ (162)
From the orthogonality of tangent and normal vectors we have that
tnPrV, Y, (nts) =0, (163)
which implies
tftj’an”VpVan = — !BV VL, + T,fofj
+OP K — KLKEWH — TATPPnep . (164)

8 The reader is invited to keep the notation of the table in Section in mind.
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Analogously, from n2ti'V, (E Bt} ) = (0 and the first Bianchi identity we get

A nBeV Y t, = 0V, + RA B+ TOPTE —

O“PAK nep + KEK AWM + TPOT Pyep . (165)
Finally, combining (164} and (165) we get
tft;’anVpV“nf =— tan”tgvqunf - RAiBj + @[CB]AKi?nCD
— K K h" =TT e (166)

so that combining this with (155 we have the following identity
PV V,nd = — VTP — R4 B — KK G0
o EACTjBDnCD . Kg(_)BCAnCD ) (167)

In this way we can rewrite the normal variation of K;;‘. as

£BK£ — _ 6‘7‘7'!{43 . Ki?@BCAnC’D . RAiBj

+ KGKEW* + TATPPyep | (168)

The usefulness of this expression will become apparent in the following Appendix.

There are still a few invariants which will be relevant for our computations, and for which
we would like to compute normal variations. These are constructed with curvature tensors.
First, the Riemann contracted with four normal vectors:

LoR, 5P = ATCARY 5 B+ ninn®nP n VR, pe - (169)

Also,
LR = 2TFARY ) + nfinin VR, . (170)

The variation of the Ricci scalar is
LpR=n""V,R. (171)

Moreover, the intrinsic Ricci scalar varies as LgR = 2K5Rij, which upon using the con-
tracted Gauss equation ([149) becomes

LyR =2 [KﬁR“ KPR, 4 To(KEKNYTeK, — Te(KPKAK )

[

B Derivation of shape equations

In this appendix we derive the Euler-Lagrange equations of motion associated with a generic
functional of the form

Se[Y] = /E "o Vh[Ao + (MR + MR+ \R,* + MRy 547

+ A TERATK + A TrK K y)] - (172)
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Central to our approach is to write these equations purely in terms of geometric objects,
such as TrK4, R, and so on. As usual, to find the Euler-Lagrange equations associated
to a functional one needs to consider variations. In the present case, we must consider
variations of the surface ¥. Hence, it is necessary to posses the appropriate language to
discuss the geometry in vicinity of 3, the techniques required to do so where developed in[A]
In principle, we must vary ¥ in all the possible directions inside M however, one can show
that the variations in the directions tangent to > can be reabsorbed as diffeomorphisms.
Thus, we are left to consider variations in the normal direction only.
Normal variations are implemented by the map

o' =yt =2+ etohnk (173)

where ¢4 : ¥ — R, for each A, is infinitesimally small and we refer to the set of points y* as
Y. Notice the similarity of the above expression with , which in fact corresponds to the
constant ¢4(c?) case; hereafter, we refer to this case as a rigid normal variation. With this
terminology, we could say that in [A] we learned how the geometric structures on ¥ transform
under a rigid normal variation.

Figure 6: Adapted frame.

We wish to extend this technology to local normal variations, i.e., for e*(o%) non-constant.
Most of the structure found in the previous appendix is preserved but there is an important
subtlety to bear in mind. Recall that the first step to perform the variations is to extend the
tangent and normal bundles from ¥ to a neighborhood around it. If we extend the tangent
vectors such that

Lt =0, (174)
where n# = ¢4(o)n/y, then we have

YN, nt = n"V,tl . (175)

Moreover, extending the normal vectors in a way which preserves orthogonality with the
tangent vectors implies

tntV nl = —ninhV 1Y . (176)
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Combining (175) and (176 it follows that

tiniV nt = TPep — 9,e*. (177)

Observe that this identity is shifted with respect to the rigid case, compare with the last
expression in Table [I]

To see the implications of the above discussion let us consider the local variation of the
extrinsic curvatures. First, using Eq. we have

A v A
L, K =t{t] L,V . (178)
After some manipulations, this equation can be rewritten as

L, K{? =cp RAj B4V, (t]”-n’\v,\ ny) — (tV,tY) (n*Vn))
+ep (H/V,m"Y) (8/V,ng) +n (/V,ng) 0jep. (179)

Now, we proceed to insert the identities listed in Table [1{into the above equation. Neverthe-
less, one must be careful to use the shifted identity ((177). This procedure yields

EnK;;X = 5B£BK£' — T(‘?Bﬁj)gB — 61‘%]’6‘4 y (180)
where the £ BK;? is given by Eq. (168)). Following a similar procedure we can show
L,TAP = ecLeTAP + K978 — 06489, (181)

where LoTAP is computed in (159).
Now, we are set to compute the variations of the quadratic invariants appearing in the
functional (172)). The variation of the square of the trace of the extrinsic curvatures is

LaTKpTK? = = 2Tk p 24 Tr (KPKY) + AP 4 2y RE A 4 2174V,
+eAVITEA - 5Ahij1}BCY”JADn0D} . (182)
Meanwhile that of the trace of the squares reads
LaTe (KpkP®) == 264 | Tr (KPKpK?) + KYR® A, + K§ VI (183)
- KgTiBCTjADHCD] — 2KV, V;e* —4KITP Ve, .
Finally, the variations of the contractions of the Riemann tensor are given by
L.Ro? =4 (5 — he®) R* P + eanlentyn P nPon Vs Rypo |
LRy =2 (AT — 04e®) RF ¢ + eanfin® n™ VR, . (184)

Bringing these things together and integrating by parts we find the Euler-Lagrange equations
of motion

6
MTEEA 4+ NE4 =0, (185)

n=1
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where

& = KR — 2RV K2, (186)
&' =TrK R+ n V"R, (187)
&) = 'K RSP + 2DAP RY, 4+ nlin®"nV,R,,,, (188)
(189)
(190)

A_ Ap CB | 47AB pkC pov. Cp, Bo, AS
& =TrK Rog 7 +4D " R 50 + negngn™ " n" n" Vs R po,

&' = TeKp [TrK A TeK” — 2Tr (KPK™) — 2R% ] 190
_ 25iA05iCBTrKB,
&' = 2 [DAD K + T (KPHpKY) + Ky A" (101)

+ Tt KA Tr (KpK”®),

where we used the differential operator D;A? defined in (T6)).

As a closing remark for this section, let us show how normal Killing directions trivialize
the normal bundle. Suppose that one of the normal directions to X is the projection onto
TY. of a Killing vector field, i.e. it exists an A such that

Lxguw = V,mi + Vit =0. (192)

This automatically implies that £zh;; = 0 and thus in the direction n* the extrinsic cur-
vature is zero .

Ki=o0. (193)
Moreover (192)) implies also that t§'L sn); = 0 which is equivalent to requiring
T8 =0, (194)

)

for fixed normal index A. The curvature equations imply also further constraint on projec-
tions of the Riemann tensor, explicitly:

Summarizing, every time we can find a normal vector field on ¥ which is also a Killing for M,
we can de facto reduce the codimension of the problem. For example, for time-independent
space-times, whenever one is considering static embeddings, the time-like direction is always
a Killing vector field and the problem can be reduced in finding extrema of in a static
foliation of M.

C Inverting TrK in maximally symmetric surfaces

In this Appendix, we carry out in detail the strategy outlined in [12] to invert the extrinsic
curvature in maximally symmetric spaces. In Section we saw that the equations for a
curve in a maximally symmetric space can be written as an equation for TrK. See, for
example, (B6). Leaving the codimension arbitrary, extrema must satisfy

5\0 2K

2ATrK + TrKATr K TrK P — (A—, - ﬁ> Ttk =0, (196)
5
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in a torsionless frame. Notice that, locally, such frame can always be found for curves. Using
the arclength parametrization, contracting with K4 and integrating, we find

. A 1
KoK+ K K4 (%— 2;), —I—ZKBKB) = constant , (197)
5

where * = d/ds. After solving this equation along the lines of Section , we are left with
the task of inverting Tr/K“ to find the sought after extrema, 3. The first step to attain this
goal is to construct a Killing vector field along an extremal curve X, i.e., we must find

w" (o) = wy(o)t" + wf(a)n’:‘ , (198)

such that
L,h=0 and L,K*=0, (199)

for a solution of ([197)). The conditions (199)) are equivalent to stating that w* is a Killing
vector field in a neighborhood of 3. The first condition implies

W+ wi(o)Ka =0, (200)
while the latter yields
: . R
wy (o) K4 — (wf(a>KBKA (o) + ﬁwf(a)) ~0. (201)
Both of these are solved by
w' = (K K4 — \) t" — 2K n/;, (202)

where A = A /As. The crucial point is that since we are in a maximally symmetric space,
where the number of isometries is maximal, any local Killing field must originate as the
restriction of a global Killing field

wh = whly . (203)

Hence, w* provides a natural extension of w* to the whole ambient space.

Below, we study some aspects of the integral curves associated to w*, which we refer to
generically as 7,,. As curves in their own right, the ~, induce a natural decomposition of the
tangent space into the tangent vector and its orthogonal complement. For ¥ this decompo-
sition is the familiar {¢#,n/y}. In turn for the 4, we have {w* m#}, witha =1,...,d — 1.
At the points where Y and ~,, meet, these two bases provide alternative descriptions of the
tangent space. Just as with ¥, every 7, has an induced metric h,, = w*w, and an extrinsic
curvature for each of its normal directions

K = W'V, m;, . (204)

(The last expression must not be confused with K4 (142)) corresponding to ¥.) Since w* is
a Killing field we can show that
LK =0. (205)
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Thus, we find that the ~,, are constant mean curvature curves.

Now, we express the value of on Y in terms of the curvatures K4. For simplicity,
we consider the case d = 2 but the result can be readily generalized. For this case, we have
a single K which we denote by k. The same applies to K% which we write as k,. On ¥ we
can decompose w|y, = w* in the {t*,n’;} basis. Introducing w; = w,t* and w, = w,n", we
can write (204)) as

wik — wiy, + wow, [y — Low,] + w2 Lw;

Trk,|s = ]3/2

(206)
(w4 w?

Finally, using (202) to find w; and w,, as well as the formula ([158)), we obtain

2k 4k3J2
Trky|y = — : (% o 2) . (207)

This equation leads to some interesting observations. First, it implies that if at an intersec-
tion point between 7, and X the extrinsic curvature k of ¥ vanishes, then k, = 0 at that
point as well. Furthermore, we have argued that the curves 7, are constant mean curvature
solutions. Hence, k., = 0 all along the curve, and ,, is in fact a geodesic.ﬂ Similarly, if & = 0
at the intersection point, then 7, is a constant mean curvature solution with

2Kk

Trk, = —— 10
ke = = T =

(208)
Notice that in flat space (k = 0) these curves are also geodesics.

C.1 Extrema in H?

We consider extrema in the two dimensional Lobachevsky space H?. We can study this
space in two representations, the Poincaré disk and the upper half plane. The former has
coordinates {r, ¢} while the latter has {z,2}. Setting the radius of curvature L = 1, the line
element reads

1

d82 = ﬁ (dT’2 + 7"2d¢2) = ; (d$2 + d22) s (209)

in the Poincaré disk and the upper half plane, respectively. Hereafter we focus on the latter.
Now, consider a curve in H? parametrized by arclength. The tangent and normal vectors

are given by
t(s) = (z m) ni(s) = + (m —z) , (210)

and the extrinsic curvature reads

h(s) = £ ( + %) | (211)

z A

9 Interestingly, if A = 0 then this geodesic and ¥ intersect orthogonally.
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In the following, we consider the reparametrization
2(s) = e f) (212)

Now, we employ the Killing field technology developed in the previous section to find
extrema in H?. Imagine that we have found the extrinsic curvature k(s) of the ¥ by
solving and assume that k(s) has at least one zero. Then, from the discussion fol-
lowing (207), we know that at the point where k(s) vanishes ¥ must intersect an integral
geodesic of the Killing field w”. Generically, a Killing vector field in H? can be written as

w' =¢1(0,1) + ¢o (2,2) + c3 (202,2° — 2%) | (213)

where the three vectors correspond to translations, dilatations, and special conformal trans-
formations. To any vector field of the form (213]) we can associate a unique integral geodesic

1+ cor —c3(2® +2%) = 0. (214)

Hence, at the zeroes of k(s), 3 must intersect one of the above curves.
Without loss of generality, we choose the geodesic x = 0 which can be mapped to the

other geodesics via isometries. In the arclength parametrization, this geodesic has z(s) = e™%;

its corresponding Killing vector is
wh o (z,x) . (215)

Comparing this with (202]), we find the system
(k2 =Nz —2kv22 — 22 = Az, (216)
(k2 = NVz2 — 224 2k: = A, (217)

where A is a normalization constant. In the coordinate (212)), we discover that (216) becomes

, SN 2k /(R — N2+ 42— A2
fs) = . (218)
(k2 — \)2 + 4k?
Meanwhile, imposing w”w,, = w"w,, implies
2 2 2 2 a?
(k=N +4k"=A (1—1—;), (219)
which on the geodesic x = 0 becomes
A= 1/A2+4k2(sg), (220)

where sg is the arclength value at which X intersects the geodesic x = 0. The constant A is
related to the right hand side of (197)), which now reads

Ak 4+ (K2 = \)? - —

77 = A% (221)
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This last expression, together with (219)) leads to a succinct relation between z(s) and z(s):

2
() = ez (222

Using (221)), we can simplify (218) to state

A(kQ—A)i#.

f(s)=— (223)

2
A

Figure 7: Examples of wavelike solutions Eq. in the Poincaré disk. Each wavelike
solution is accompanied by its generating geodesic (black) and its two bounding CMCs
(red). The parameters used in this plot are: rows, top to bottom A = —1.5, A = 0 and
A = 1.5; columns, left to right A = 0.5, A =20 and A = 200.

Recapitulating, to find extrema in Hy, first we must find the extrinsic curvature by

solving (196)). The relevant solutions are discussed in Section Once we have found the
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extrinsic curvature k(s), we integrate (223)) to find f(s), from which z(s) can be determined.
Finally, we find z(s) using (222)) and we have thus found the extrema . Following this line
of thought we will find the curve corresponding to the wavelike solution (64))

k(s)=vV2+AX+Ccn (\/és, w) , (224)

2 2C

where we defined C' = /A + (2+ A)? and assumed A > 0. The next step is to find the
zeroes of (224)), which occur at

2
5= 52+ 1)K<
where K(m) is an elliptic integral of the first kind (236]). The constant (220]) can be deter-

mined from any of these zeroes:

Ct2+ 2
L) leN, (225)

2C

A=./C>—4(A+1). (226)

Moreover, at the critical points of k(s) from (208) we find the curvature of the constant
mean curvature solutions that intersect X

Trk,="Y-"2T~ (227)

In the upper half-plane model these curves correspond to straight lines originating at (z,z) =
(0,0) with slope
A

+ 228
2V2+ A+ C ( )
Finally, plugging (224) into (223]) and integrating, we find
O exp [\/02 —4(A+1) (;‘i - #{;}ﬂ)ﬂ n, go(s);m])} 220
RURERD C+2)2—4(C+2+ N\)sn? (4/Ss, S22 | -
(C+2)2 = 4(C +2+ Nsn? (|/Ss, S422)
where II is the incomplete elliptic integral of the third kind (241]) and we have
4(C+2+ ) C+24+ A

— - Y = - - 230
n (C _I_ 2)2 ) m 20 9 ( )

and

¢(s) = amp <\E8C+2—Z+A> : (231)

Finally, x(s) can be obtained using (222)).

46



D Jacobi elliptic functions

For the reader’s convenience, we recall the definitions of special functions used throughout
the paper. The elliptic functions may be constructed from the incomplete elliptic integral of
the first kind:

s de
z=F(p,m) = / _— . (232)
0 v/1—msin?é
Here, the elliptic modulus m satisfies 0 < m < 1. The amplitude is
o =F"Yz,m)=am(z,m) . (233)

We then have

sn(z,m) =singp , cn(z,m)=cosy, dn(z,m)=1/1—msin’yp. (234)

These are doubly periodic generalizations of the trigonometric functions:

sn(z 4+ 20K + 2niK’',m) = (=1)"sn(z,m) ,
en(z + 20K 4 2ni K m) = (—=1)" ™ en(z,m) | (235)
dn(z + 20K + 2niK',m) = (—1)"dn(z,m) ,

where ¢ and n are integers and K and K’ are defined from the complete elliptic integral of

the first kind:
11

T
B F(=. =
21(272

2 do
0 vV1—msin“0

K =K(m')=KH1—m). (237)
From the definitions (234]), the Jacobi elliptic functions satisfy the identities

;1;m?) | (236)

and

sn?(z,m) +cn(z,m) =1, msn®(z,m) +dn?(z,m) = 1. (238)
Special values include

sn(z,0) =sinz,  sn(z,1)=tanhz, cn(z,0) =cosz,
en(z,1) =sechz | dn(z,0) =1, dn(z,1) =sechz . (239)

Using the Glaisher notation, we express reciprocals and quotients as

1 1 1
ns(z,m) sn(z,m) ’ ne(z,m) en(z,m) nd(z,m) = dn(z,m) ’
_ sn(z,m) <dls.m) = sn(z, m) (. m) = cn(z,m)
so(z,m) = en(z,m) d(z,m) dn(z,m)’ d(z,m) dn(z,m)’
~cn(z,m) S(rm) — dn(z,m) (o m) = dn(z,m)
es(z,m) = sn(z,m) ’ ds(z,m) sn(z,m) ’ de(z,m) en(z,m)
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Finally, we introduce the incomplete elliptic integral of the second kind:

©
Bp,m) = / 40 /1 — msin0. (240)
0

us

%,m). The incomplete elliptic

The complete elliptic integral of the second kind is E(m) = E(
integral of the third kind is

do

)
I(n; p,m) = /

0 (1 —nsin®?6)v/1—m2sin?0
/sincp dt
0 (1 —nt2) /(1 —2)(1 — m2?) '

(241)

The complete elliptic integral of the third kind is II(n, m) = II(n; 5, m).
The general solution to the differential equation is ([242)):

u(s):a{l— a_ﬁnsz(%\/a—ﬁs—i—é, ﬂ)] : (242)

« a—pf

with 0 a free parameter. Setting 0 = iK (v/1 — m), we can rewrite ns(z —d,m) = msn(z, m).
This enables us to massage (242]) to read

u(s) = « [1 — ; ’ysnz(%\/oc — Bs,

We therefore recover ((62)).

Z — ;)} . (243)
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