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We investigate the topological properties of dynamical states evolving on periodic oriented graphs. This
evolution, which encodes the scattering processes occurring at the nodes of the graph, is described by a single-step
global operator, in the spirit of the Ho-Chalker model. When the successive scattering events follow a cyclic
sequence, the corresponding scattering network can be equivalently described by a discrete time-periodic unitary
evolution, in line with Floquet systems. Such systems may present anomalous topological phases where all the
first Chern numbers are vanishing, but where protected edge states appear in a finite geometry. To investigate the
origin of such anomalous phases, we introduce the phase rotation symmetry, a generalization of usual symmetries
which only occurs in unitary systems (as opposed to Hamiltonian systems). Equipped with this new tool, we
explore a possible explanation of the pervasiveness of anomalous phases in scattering network models, and
we define bulk topological invariants suited to both equivalent descriptions of the network model, which fully
capture the topology of the system. We finally show that the two invariants coincide, again through a phase
rotation symmetry arising from the particular structure of the network model.

DOI: 10.1103/PhysRevB.95.205413

I. INTRODUCTION

Topological insulators are remarkable materials where the
particular topology of the bulk states leads to protected degrees
of freedom with exceptional properties at the boundary of
the system. For example, such edge states may provide a
unidirectional propagation of waves, and are robust against
various perturbations. In this context, periodically driven
(Floquet) dynamical systems have been shown to exhibit spe-
cific anomalous topological properties with no equivalent in
equilibrium systems [1,2]. This anomalous behavior manifests
itself by the existence of boundary states in finite geometry
despite the vanishing of the topological index, which usually
accounts for all topological properties in equilibrium systems.
More precisely, the first Chern number associated with the
bands of the Bloch Hamiltonian that effectively describes the
stroboscopic dynamics vanishes in this case. The existence
of these anomalous boundary states can instead be associated
with a topological property of the full bulk evolution operator
U (t), which, unlike the effective Hamiltonian, accounts for the
entire evolution at all times during one driving period [2].

This behavior can be generalized to a more general class
of time-dependent dynamical systems. For linear systems, the
evolution operator is generated by the Hamiltonian H (t) of
the system through an equation of motion i∂tU (t) = H (t)U (t)
with initial condition U (0) = Id, which is formally solved by
the time-ordered exponential

U (t) = lim
N→∞

e−it/N H (Nt/N) · · · e−it/N H (nt/N)

· · · e−it/N H (t/N). (1)

Namely, U (t) results from an infinite product of infinitesi-
mal free evolutions governed by instantaneous Hamiltonians
H (nt/N ). As the Hamiltonians at different times generically
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do not commute, the evolution operator U (t) can be cumber-
some to manipulate.

However, it is often convenient to alternatively consider
evolutions composed of a finite sequence of step operations
described by unitary step operators Un, so that after N

operations the evolution operator reads

U = UNUN−1 . . . U1 . (2)

Such a stepwise dynamics suitably describes the effective
discrete-time evolution of various experimental systems such
as, in two dimensions, arrays of evanescently coupled optical
waveguides with sufficiently sharp bending [3,4] and atomic
discrete-time quantum walks, where the operators Un may
consist of coin or shift operations applied to a spin-1/2
quantum state trapped in an optical lattice [5].

Periodically driven systems include both evolutions gener-
ated by a time-periodic Hamiltonian H (t) = H (t + T ) and
stepwise evolutions where the sequence of operations is
repeated periodically. In both cases, the Floquet operator of
the evolution can be defined respectively by UF = U (T ) and
by UF = U . Despite their lack of explicit time dependence,
stepwise evolutions were predicted to host anomalous topo-
logical chiral edge states in two dimensions, showing that the
sequence structure (2) is enough to engineer such topological
phases [1,2,6–10].

An important physical example was revealed by Liang,
Pasek, and Chong [7,8] who described spatially periodic arrays
of coupled photonic resonators in terms of unitary scattering
matrices that locally encode the transmission and reflection
coefficients of the optical signal between resonators, in order to
go beyond the effective tight-binding description. Within this
framework, the system can be seen as an oriented scattering
network similar to that introduced by Chalker and Coddington
to describe the Hall plateau transition [11,12], which consists
in links over which a directed current flows in one direction
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FIG. 1. Example of an oriented network. The direction of prop-
agation along the links is represented by an arrow. The nodes rep-
resent the unitary scattering events between incoming and outgoing
amplitudes. Due to the unitarity of scattering events, the number of
incoming links is equal to the number of outgoing links at each node.

connecting nodes where incoming currents are scattered into
outgoing currents, as represented in Fig. 1.

Notably, the unidirectionality of the links plays a role
similar to that of time as it forces the currents to cross the nodes
in a given order that is fixed by the connectivity of the network.
This behavior can originate from various physical mechanisms
that explicitly break time-reversal symmetry, such as a perpen-
dicular magnetic field like in the original Chalker-Coddington
model [11,12] or a flow of the propagation medium like in the
array of acoustic circulators recently proposed by Khanikaev
et al. [13] and Souslov et al. [14]. When time-reversal
symmetry is preserved, as it is in most photonic systems, it
is fair to use similar one-way oriented networks to describe
one of the two “spin” copies of the system, provided that
certain spin-flip processes can be neglected [7,15–17]. Due
to this particular resurgence of an effective time, a fruitful
analogy between scattering networks and Floquet dynamics
was envisioned [8,18,19], an important consequence of which
is the discovery of anomalous chiral edge states in such
systems, while there is remarkably no external periodic driving
as it would be in a Floquet system. The efficiency of this
approach motivated two recent microwave experiments that
probed the existence of these anomalous topological edge
states [15,16].

Despite the accumulation of theoretical and experimental
results on such systems, several questions remain open. First,
the entire network is described by a unitary scattering matrix,
the Ho-Chalker evolution operator [12], which takes into
account all the scattering events at the same time. In this
picture, there is no Floquet dynamics, and the relation between
both descriptions is not clear. A second issue is that even in the
Floquet picture, a bulk topological characterization of network
models is not available. The question of the characterization
of the bulk topology of such systems is particularly crucial in
the case of anomalous phases, where the first Chern numbers
of the bands all vanish. Moreover, the way to engineer such
phases remains an open question. Generically, bands of a two-
dimensional gapped system where time-reversal symmetry is
broken have a nonvanishing first Chern number. We therefore
expect that an additional mechanism imposes their vanishing
in certain conditions.

To answer this set of questions, we introduce in Sec. II a
new symmetry specific to unitary systems, the phase rotation

symmetry, and show how this property constrains the value of
the first Chern numbers associated to the spectral projectors
of a gapped unitary operator. In particular, a strong version
of the phase rotation symmetry ensures the vanishing of first
Chern numbers, a necessary condition to obtain anomalous
topological phases.

In oriented scattering networks, this phase rotation sym-
metry subtly enters at two different levels. First, it relates the
evolution operator of certain networks to that of a Floquet-like
system and allows for the definition of topological invariants.
More precisely, a particular class of cyclic oriented networks
is introduced in Sec. III, where the particular structure and
connectivity of the scattering network constrains its evolution
operator to possess a particular phase rotation symmetry,
which we call a structure constraint. This observation leads
to several important results as it enables us to understand the
structure of the evolution operator spectrum of the network
model. Due to this insight, we are able to directly define a bulk
topological invariant characterizing the system. The structure
constraint also enables us to explicit the relationship between
(cyclic) oriented network models and Floquet stepwise dy-
namics, and to define another bulk topological invariant for
such dynamics. Indeed, both topological invariants are related
and equivalent, as we finally show in Sec. V.

The second role of the phase rotation symmetry in scattering
networks is to provide an interpretation of the vanishing of first
Chern numbers, which is found in specific networks [7,8]. At
particular points of the phase diagram, another phase rotation
symmetry, stronger than the structure constraint, may exist and
enforce this vanishing. This allows us to propose a qualitative
way to identify, in real space, whether a given oriented network
may exhibit a vanishing first Chern number phase, which is
developed in Sec. IV.

II. UNITARY EVOLUTIONS AND THE PHASE
ROTATION SYMMETRY

A. Unitary evolutions and their phase spectra

We consider systems described by a unitary evolution oper-
ator U (t). This evolution may be derived from the microscopic
description of the system, or rather be an effective description
of the relevant degrees of freedom. We focus on situations
where it is sensible to concentrate on the evolution operator
U = U (T ) after some finite time T . Time-periodic dynamics
provide the most common example of such a situation, as
the evolution operator after one period U (T ) (here called the
Floquet operator) describes the evolution of the system on long
time scales. As we shall see in the next section, there are other
cases where such a description is relevant; this is in particular
the case of oriented scattering networks, the study of which
constitutes the bulk of Sec. III.

In a crystal, discrete space periodicity enables to block-
diagonalize the evolution operator into a family of Bloch
evolution operators U (k), which are finite matrices, and are
labeled by a quasimomentum k living on a d-dimensional torus
called the Brillouin torus (we will only consider the case d = 2
here). The spectrum of the evolution operator U is called its
phase spectrum. Its eigenstates |ψn(k)〉 satisfy the eigenvalue
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FIG. 2. Phase spectrum. Illustration of a phase spectrum with four
bands and four gaps.

equation

U (k) |ψn(k)〉 = e−iεn(k) |ψn(k)〉 , (3)

where the eigenphases εn(k), which constitute the phase
spectrum, are confined on the unit circle in the complex plane.
The minus sign in (3) is arbitrary; it is chosen here for the
analogy between U and the evolution operator.

Generically, the phase spectrum displays phase bands
separated from each other by phase gaps, as illustrated in
Fig. 2. Each band corresponds to a family of orthogonal
projectors k �→ P (k), which describe the spectral projector
on the corresponding arc in the unit circle.

B. The phase rotation symmetry

Unitary systems share the particularity to have a periodic
spectrum. This allows us to consider a rotation of those spectra
by an angle ζ , corresponding to the transformation e−iε →
e−i(ε+ζ ), as depicted in Fig. 3.

We consider situations where the phase spectrum is invari-
ant under such a phase rotation. Although a symmetry of the
phase spectrum can be accidental, this situation is not typical
and instead we consider situations where the invariance of the
phase spectrum under such a phase rotation is associated to a
phase rotation symmetry of the form

Z UZ −1 = eiζ U, (4)

where Z is a unitary phase rotation operator acting on the
states of the Hilbert space.

The phase rotation symmetry (4) is the evidence of a
redundancy in the description of the system. Indeed, if |ψ〉
is an eigenstate of U with eigenvalue e−iε, then Z |ψ〉 is
also an eigenstate of U , with the eigenvalue e−i(ε+ζ ); more

ζ

rotation

FIG. 3. The phase rotation. On the level of the spectrum, a phase
rotation of angle ζ maps eigenvalues e−iε to e−i(ε+ζ ).

generally, Z m |ψ〉 (with m an integer) is an eigenstate of U

with eigenvalue e−i(ε+mζ ).
Crucially, such a “symmetry” has no equivalent in Hamilto-

nian systems, as it would correspond to an unphysical energy
translation E → E + �E. In contrast, it can arise in “unitary
systems” as the phase spectrum lies on a circle.

When ζ/2π is irrational, the irrational rotation of the
Floquet spectrum ensures that it is fully gapless. On the other
hand, when ζ/2π = m/M is a rational, where m/M is an
irreducible fraction, a phase is mapped to itself applying the
phase rotation M times. Phases being defined modulo 2π it
is sufficient to consider 0 � ζ � 2π , so we can set m = 1
without loss of generality. As we are interested in gapped
unitary operators, we will focus on cases where ζ = 2π/M ,
where M is an integer. The phase rotation symmetry (4) then
reads

Z UZ −1 = ei2π/MU . (5)

In practice, it is more convenient to use the Bloch version of this
symmetry. Assuming that the operator Z is local in space (i.e.,
it does not couple different unit cells), (5) straightforwardly
translates as Z U (k)Z −1 = ei2π/MU (k), where U (k) is the
Fourier transform of U . As the variable k is not affected by the
phase rotation, we will omit it when the meaning is clear.

Let us assume that U has a gap around e−iη. Then, due to
the phase rotation symmetry (5), there is also a gap around
e−i(η+2π/M). A fundamental domain F for the phase rotation
symmetry is then defined by the interval between these two
values, so that it represents the shorter arc that links e−iη and
e−i(η+2π/M) on the unit circle (see Fig. 4). The fundamental
domain F plays a role similar to that of a unit cell: starting from
the part of the spectrum over the arc F , the whole spectrum is
recovered by M successive applications of the phase rotation
of an angle 2π/M (for eigenvalues) and of the unitary operator
Z (for eigenvectors) as illustrated in Fig. 4.

Phase rotation symmetry allows one to reduce the descrip-
tion of the system by removing its redundancy, essentially
by keeping only the eigenstates in one fundamental domain.
As an example, this reduction procedure will be carried out
explicitly in the case where Z M = Id during the study of
oriented scattering networks in Sec. III, and it will allow us to
account for the topological properties of such systems.

Notice that (5) implies that

Z UMZ −1 = UM, (6)

which has the usual form of an actual symmetry (with an
equivalent in Hamiltonian systems) for UM . Equation (6)
means that the system recovers a symmetry represented by
the operator Z after M successive identical evolutions.

Besides, the M th power of the phase rotation operator is
also a symmetry of U , as

Z MUZ −M = U. (7)

In general, this symmetry can be arbitrary. When Z M is scalar
and U is gapped, the phase rotation operator assumes the
particular form

Z � diag(1,ei2π/M,ei2π×2/M, . . . ,ei2π(M−1)/M ) ⊗ Id = Z0

(8)
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FIG. 4. Examples of phase rotation invariant spectra. The spectra are invariant under a rotation of 2π/M , with (a) M = 2 and [(b) and (c)]
M = 3. In all cases, a fundamental domain F for the symmetry can be chosen. For our purposes, the most convenient choice is an interval of
length 2π/M with both ends lying in a spectral gap. In each case, a possible choice of fundamental domain is represented in purple.

in an adequate basis, which emphasizes its cyclic behavior (see
Appendix A).

C. Topological states and the phase rotation symmetry

As we have seen, phase rotation symmetry enables to
reduce the degrees of freedom in the description of the
system. Another important consequence of this symmetry is
to impose particular constraints on the topological properties
of the system. As we shall see, a crucial consequence of the
phase rotation symmetry is that the spectral projector over one
fundamental domain has a vanishing first Chern number.

For concreteness, we focus on two-dimensional crystals in
the following. Each band of the evolution operator U carries
a first Chern number, which is computed from the projector
family k �→ P (k) as

C1(P ) = i

2π

∫
tr PdP ∧ dP . (9)

Let us recall two important properties of the first Chern
number, which will be useful later. First, it is invariant under
conjugation by a constant unitary operator U ,

C1(UPU−1) = C1(P ). (10)

Moreover, it is additive: if P and Q are mutually orthogonal
projector families (so PQ = 0 = QP ), then

C1(P + Q) = C1(P ) + C1(Q). (11)

A nonvanishing first Chern number signals a nontrivial
bulk topology of the system, which manifests itself in the
appearance of robust chiral edge states at the boundary of
a finite sample. When U corresponds to a time-independent
Hamiltonian evolution, the first Chern numbers fully char-
acterize the bulk topological properties of the system (at
least in the Altland-Zirnbauer symmetry class A). In general,
however, this is not the case: there are the so-called anomalous
topological phases which display a nontrivial topology despite
having vanishing first Chern numbers [1,2]. Such topological
properties are instead captured by taking into account the full
time-dependent evolution in the bulk [2], and not only the bulk
evolution operator after a finite amount of time.

1. Consequences of the phase rotation symmetry

Let us denote by 	 the spectral projector on states with
eigenvalues e−iε ∈ F , i.e., on a fundamental domain. The

spectral projector 	m on the m-th rotated fundamental domain
e−i2πm/MF is then obtained by the action of Z as 	m =
Z m	Z −m. Due to the invariance of the first Chern number
under conjugation by a constant unitary operator (10), all the
rotated fundamental domains have the same first Chern number

C1(	m) = C1(Z m	Z −m) = C1(	). (12)

Second, as these projectors sum to identity

M−1∑
m=0

Z m	Z −m = Id (13)

and due to the additivity of the first Chern number (11), we
infer that

C1(	) = 0. (14)

As a consequence, the first Chern number of the spectral
projector on any rotated fundamental domain vanishes. This is
one of the main results of this paper.

In general, the projector 	 on a fundamental domain F of
the phase rotation symmetry does not correspond to a single
band, as there may be phase gaps inside of F (see Fig. 4). In
the particular situation where 	 does correspond to a single
band,1 we say that the evolution operator is endowed with a
strong phase rotation symmetry. It follows from the previous
discussion that in this situation, the first Chern numbers of each
band in the spectrum of U (T ) vanish. As a consequence, the
corresponding phase is either topologically trivial or anoma-
lous. This observation is particularly interesting as it provides
an explanation to the prevalence of anomalous topological
states in certain contexts. When time-reversal symmetry is
broken, we typically expect the appearance of nonvanishing
first Chern numbers, at least when the corresponding phase
does not include a time-reversal invariant point. However, there
are systems where only anomalous phases appear (a concrete
example is discussed in Sec. III C): this surprising behavior is
explained by the existence of a phase rotation symmetry (at
least at particular points of the phase diagram), which prevents

1A single band does not necessarily correspond to a single state.
The projector 	 may have a rank higher than one, provided that the
corresponding eigenstates of U are degenerate (at least at some point
of the Brillouin torus).
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nonvanishing first Chern numbers from appearing, despite the
breaking of time-reversal symmetry.

III. ORIENTED SCATTERING NETWORK MODELS
AND PERIODIC SEQUENCES OF STEPS

A. Introduction

The propagation of waves in a time-reversal breaking
metamaterial can be described by an oriented scattering
network composed of unitary scattering matrices (the nodes)
connected to each other by oriented links. The dynamics of
waves in the network model are then described by a unitary
evolution operator which contains all the vertex scattering
matrices as well as the connectivity of the network.

Oriented networks models were originally introduced by
Chalker and Coddington to describe the Hall plateau transition
[11,12]. In a semiclassical picture, electronic wave packets
in a disordered two-dimensional electron gas under strong
magnetic field follow the equipotentials of the smooth disorder
potential, in a direction fixed by the magnetic field. The
quantum Hall transition essentially arises when the equipo-
tentials of the disorder percolate; however, near the transition,
the relevant equipotentials approach the saddle points of the
disorder potential and become closer and closer. Hence wave
packets can tunnel from an equipotential to another giving
rise to “quantum percolation” [11] (see also Ref. [20] for
a pedagogical introduction). This process is described by
scattering matrices, one per saddle point, within the Chalker–
Coddington model [11] that distorts the equipotentials into a
periodic square lattice of such scattering matrices connected by
incoming and outgoing directed links, the so-called L-lattice.
Remarkably, this oriented network model captures most of the
essential features of the Hall plateau transition. In the original
model [11], random phases are added on each link to take into
account the Aharanov-Bohm phase accumulated on the closed
disorder equipotentials of various sizes. A fully space-periodic
oriented network, without such random phases, was introduced
by Ho and Chalker [12], who showed that a Dirac equation
emerged from an expansion of a discrete evolution operator of
the scattering network model.

More recently, Liang, Pasek, and Chong [7,8] introduced
a similar formalism to investigate the properties of an array
of coupled photonic resonators beyond tight-binding descrip-
tions. In such a system, the coupling between resonators
is described by unitary scattering matrices that encode the
transmission and reflection coefficients of the optical signal,
rather than by an effective tight-binding Hamiltonian. The
same formalism was also applied to sound waves in arrays
of acoustic circulators by Khanikaev et al. [13]. In both
situations, the light or sound waves in the system are described
by a huge scattering matrix, which can be understood as
the evolution operator of the system. Notably, robust chiral
edge states appear in a finite system, precisely in the phase
gap(s) of the bulk scattering matrix. This is not a surprise in
light of the connection with the quantum Hall effect. What is
more surprising is that Liang, Pasek, and Chong unveiled that
photonic arrays support anomalous topological states similar
to that described by Rudner et al. in periodically driven systems
[2], despite the lack of explicit time dependence of the system.

The existence of such anomalous topological states appears
to be a fundamental property of unitary systems, as it crucially
depends on the periodicity of the phase spectrum; such
a behavior may in principle emerge whenever a unitary
description of the system is adopted [9]. In contrast, they are
not captured in an effective tight-binding description [7,17].

As we have seen in Sec. II C 1, the pervasiveness of
anomalous phases can be attributed to the existence of
particular constraints, like a phase rotation symmetry. This
is indeed the case in oriented scattering networks, where
anomalous phases can be tracked down to the existence of
particular “symmetric points” of the phase diagram where a
phase rotation symmetry is present. As we shall see, such
phase rotation symmetries can further be interpreted in terms
of classical loop configurations of the oriented network. This
interpretation is particularly powerful as it allows one to design
anomalous phases in a straightforward way.

In a potentially topological anomalous system, first Chern
numbers are not sufficient to distinguish the possible topolog-
ical phases (as they are always zero), and more precise bulk
invariants are required. Crucially, the unidirectionality of the
links plays a similar role to that of time as it forces the wave
packets to visit the vertices in a given order which is determined
by the connectivity of the network. In the following, we
define a class of scattering networks, cyclic oriented networks,
where it is possible to map the network model to a (stepwise)
time-dependent system to study its properties. This mapping
is allowed by the existence of a structure constraint which
encodes the particular connectivity of the cyclic oriented
network. On the level of the evolution operator describing
the entire scattering network, this constraint manifests itself as
a phase rotation symmetry, which allows for the definition of
bulk topological invariants that fully characterize the network
model.

B. Oriented scattering network models

In general, oriented scattering network models consist of
a directed graph, composed of a set of vertices (or nodes)
representing scattering matrices, which are connected to each
other by directed edges (or links) over which flows a directed
current [20]. At each vertex v, the number bv of incoming
links is equal to the number of outgoing links to guarantee
the unitarity of scattering events, which are described by
a scattering matrix Sv ∈ U (bv), which relates the incoming
amplitudes cin

e on each incoming edge e to the outgoing
amplitudes cout

f on each outgoing edge f by

cout
f = (Sv)f e cin

e . (15)

Here, we will only consider spatially periodic graphs. There
may be several scattering matrices in a unit cell, but for
simplicity we will further assume that all scattering matrices
have the same size b, i.e., that each vertex is connected to the
same number of links. The most simple nontrivial situations
is b = 2, where matrices are U(2) rotations, and it is usually
possible to reduce any network model to this situation [20,21].

While network models can be used in any space dimension,
we shall focus on two-dimensional systems. Waves in such a
spatially periodic network are described by a unitary Bloch
scattering matrix. In the bulk, Bloch reduction gives a matrix
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FIG. 5. L-lattice. (a) The L-lattice as a square Bravais lattice with
basis vectors ex and ey , with its four inequivalent links and two
inequivalent nodes. A unit cell is enhanced in red and detailed in (b).

S(kx,ky) from which one can hope to extract topological
invariants. In a finite cylinder geometry, a bigger matrix
Scylinder(ky) (whose size depends on the height of the cylinder)
describes both the bulk and the edge states of the finite system.
In both cases, we obtain a periodic phase spectrum: as usually
in topological systems, the bulk phase gaps host the chiral
anomalous edge states that appear in a finite geometry.

C. An archetypal example: the L-lattice

One of the simplest examples of oriented scattering
networks is the L-lattice, which was introduced by Chalker
and Coddington [11]. We illustrate the main focal points of
our analysis on this example, namely (i) the definition of
bulk topological invariants that fully characterize the network
model and (ii) the existence of special points of the phase
diagram where a strong version of the phase rotation symmetry
ensures the vanishing of the first Chern numbers, allowing only
for anomalous topological phases.

The L-lattice is an oriented network model on a square
Bravais lattice with two inequivalent vertices and four
inequivalent oriented links per unit cell (which somehow
ressembles two L letters connected together). More precisely,
the unit cell is composed of two vertices U1 and U2 and
of four inequivalent oriented links (a1,b1,a2,b2) connecting
the vertices, as represented in Fig. 5. The unitary matrices
Uj ∈ U (2) encode how amplitudes on their two incoming links

U1

U2

a2

b1

b2a1

(a) a unit cell

U1

U2

a2

a1

b2

b1

(b) another unit cell

FIG. 6. Two possible unit cells of the L-lattice.

are scattered into their two outgoing links, as(
a2(x,y,t + T )

b2(x,y,t + T )

)
= U1

(
a1(x,y,t)

b1(x,y,t)

)
(16)

and (
a1(x,y + 1,t + T )

b1(x − 1,y,t + T )

)
= U2

(
a2(x,y,t)

b2(x − 1,y + 1,t)

)
. (17)

For simplicity, we choose the parametrization

Uj =
(

cos θj sin θj

− sin θj cos θj

)
(18)

of the vertex scattering matrices, where the parameters θj

control the transmission and reflection at each vertex. Complex
phases can be introduced but will not change the properties we
discuss here, namely the existence of two distinct topological
phases both with vanishing first Chern numbers [7]. Moreover,
for convenience and to compare with [7], we focus on
the situation where both angles are controlled by a single
parameter θ = θ2 = π/2 − θ1.

A state |ψ〉 of the system is given by a set of amplitudes
{a1(x,y), b1(x,y), a2(x,y), b2(x,y)} for all positions (x,y) in
the square Bravais lattice. Following Ho and Chalker [12], we
consider the discrete evolution operator S that describes the
evolution of a state |ψ〉 after its amplitude on each link has
been scattered at the nodes of the network. In other words,
this operator effectively describes the scattering processes at
all the nodes simultaneously.

When focusing on the stationary bulk states, we can assume
translation invariance and Fourier transform both the stationary
states and the evolution operator into their block-diagonal
Bloch version. The Bloch version of the Ho-Chalker evolution
operator reads

S(k) =
(

0 U2(k)

U1(k) 0

)
(19)

in the Bloch basis (a1(k),b1(k),a2(k),b2(k)), where k is in the
two-dimensional Brillouin zone. For the choice of unit cell
shown in Fig. 5(b), the two unitary blocks are given by

U1(k) =
(

sin θ cos θ

− cos θ sin θ

)
and

U2(k) =
(

cos θ e−iky sin θ e−ikx

− sin θ eikx cos θ eiky

)
. (20)

The block-antidiagonal form (19) of the evolution operator
is reminiscent of the cyclic structure of the oriented network:
as a1 and b1 are oriented from U2 to U1, whereas a2 and b2 are
oriented from U1 to U2, a wave packet traveling in the network
will always encounter a succession U1 → U2 → U1 → U2 →
· · · of nodes (and will never, for example, come across two
successive U1 nodes). It is convenient to reframe this particular
block-antidiagonal form in terms of the structure constraint

DS(k)D−1 = −S(k), where D =
(

Id 0

0 −Id

)
, (21)

where Id is here the two-by-two identity matrix. We recognize a
particular case of the phase rotation symmetry (5) with Z = D

and M = 2. As we shall see in Sec. III D, such a structure
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θ = 0

π/2

π

3π/2

phase I

phase II

FIG. 7. Phase diagram and loops configurations of the L-Lattice.
(Do not confuse with the phase spectrum of Figs. 4 and 9.) The
L-lattice hosts two gapped phases with a transition at θ = π/4.
When varying θ , each of these phases can be continuously deformed
into lattices of clockwise (θ = 0) or anticlockwise (θ = π/2) loops,
that both satisfy a phase rotation symmetry with one band in the
fundamental domain.

constraint can be generalized to a whole class of network
models. (On first sight, this particular case may look like a
chiral symmetry, but this is not the case as S is an evolution
operator and not a Hamiltonian.)

The well-known phase diagram of the L-lattice [7,12] with
respect to the parameter θ is represented in Fig. 7. Due to the
form of matrices Uj , it is π -periodic with respect to θ , and
we can restrict the discussion to a range of that length. The
phase spectrum of S(k) consists in four bands that touch at the
critical value θc = π/4, and this critical point separates two
phases where the four bands are well-defined (i.e., separated by
gaps), which we call phases I and II. Notably, such phases are
topologically inequivalent, a smoking gun evidence of which
is the existence of robust chiral edge states at an interface
between them (see Fig. 8).

Following a longstanding analogy between network models
and Floquet stepwise evolutions [18,19], Liang, Pasek, and
Chong [7,8] studied the topology of network models by
focusing on the Floquet operator UF(k) = U2(k)U1(k), which
represents a sequence of two steps, in contrast with the
Ho-Chalker evolution operator S(k) that accounts for the dif-
ferent scattering processes simultaneously. The equivalence
between both points of view is rooted into the existence
of the structure constraint (21). Due to this phase rotation
symmetry, the description of the system from the point of view
of the Ho-Chalker evolution operator S(k) is redundant, and its
spectrum reduced to a fundamental domain is directly related
to the (entire) spectrum of UF(k). The structure constraint
enables to define bulk invariants that characterize the network
model: for each bulk gap e−iη of the Ho-Chalker evolution
operator k �→ S(k), there is a bulk invariant

WHC
η [S] ∈ Z, (22)

θ = π/2 θ = 0 θ = π/2

(a)
x

y

−π π
−π

π

ε

ky

(b)

FIG. 8. Interfaces of the L-lattice. We consider interfaces between
the two phases of the L-lattice in a cylinder geometry (the system has
periodic boundary conditions in the x direction and is infinite in the y

direction). This allows one to (i) avoid potential ambiguities due to the
relative character of the invariant and (ii) confirm that the existence of
chiral edge states is indeed due to the bulk topology, and not merely
from the oriented nature of the links. Remarkably, the two chiral
edge states (one at each interface) are found to have different group
velocities, which is consistent with the simple intuitive sketch in (a)
where one of the two channels (in red) can flow easily rather than
the other one (in blue) is forced to propagate in pilgrimage, resulting
in a decreasing of its velocity along the y axis compared to that of
the other boundary state. (a) Interfaces between two networks with
respectively θ = 0 and π/2. The system in periodic in both direction
and finite in the x direction. At the two interfaces, edge states with
different velocity, in sign and amplitude, arise. (b) Eigenvalues of the
corresponding Ho-Chalker evolution operator with θ ≈ 0 and ≈π/2
for clarity. Bulk states are represented in green, the fast boundary
state in red, and the slow boundary state in blue. The code used to
compute the phase spectra and the topological invariants is available
at Ref. [22].

which essentially accounts for the number of edge states
appearing in the bulk gap e−iη when an interface is considered.
We defer the definition of such invariants to the Sec. V, but
we will now discuss their essential properties. The redundancy
expressed by the phase rotation symmetry (21) is translated at
the level of such invariants by the identity

WHC
η [S] = WHC

η+2π/M [S], (23)

where M = 2 in the case of the L-lattice.
Crucially, this invariant is relative to a reference evolution

which has to be chosen arbitrarily. For the unit cell in Fig. 5,
we obtain WHC

0 [SI] = 1 and WHC
π/2[SI] = 1 in phase I and

WHC
0 [SII] = 0 and WHC

π/2[SII] = 0 for phase II. A different
choice of unit cell leads to different values for the invariants
(see Table I for an example, and Sec. V B 4 for a more detailed
discussion), yet the differences between invariants do not
depend on particular choices. Usually, only such differences
carry a physical meaning; for example, their variation at an
interface is expected to give the algebraic number of chiral edge
states (counted with chirality) in the corresponding bulk gap.
Particular physical situations may, however, naturally select
only one unit cell.

1. Classical loop configurations and anomalous phases

When the scattering matrices Uj correspond to full reflec-
tion or full transmission, they do not split an incoming wave
packet. In this situation, they describe a classical or ballistic
propagation (as opposed to a wavelike propagation). In the
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TABLE I. Relative invariants for the L-lattice. The values of the
invariants are given for two choices of a unit cell (a) and (b), for the
two phases I and II, and for the two gaps η = 0 and π . We observe
that the values do not coincide when the unit cell changes, but that
the difference between two phases W HC

η [SI] − W HC
η [SII] is invariant

with respect to the choice of the unit cell, as it is expected for a
physically observable quantity. The chosen unit cells are represented
in Fig. 6, and a more detailed account of the choice of the reference
evolution is explained in the general case, in Sec. V B 4. The code
used to compute the phase spectra and the topological invariants is
available at Ref. [22].

unit cell (a) (b)

W HC
0 [SI] 1 0

W HC
0 [SII] 0 −1

W HC
0 [SI] − W HC

0 [SII] 1 1

W HC
π/2[SI] 1 0

W HC
π/2[SII] 0 −1

W HC
π/2[SI] − W HC

π/2[SII] 1 1

L-lattice, such a behavior arises at two special points of the
phase diagram (do not confuse with the phase spectrum),
when θ = 0 or θ = π/2 (see Fig. 7). Here, we observe
that the network is composed only of small loops, and the
corresponding point of the phase diagram is therefore called
a classical loop configuration. Notably, such loops rotate
clockwise in phase I and counter-clockwise in phase II. Away
from the classical configurations, the network model can
be understood as a superposition of more complicated loop
configurations, where the loops now extend over several unit
cells. The direction of rotation of such loops is preserved
all over the gapped phase, and the transition at θ = π/4
between clockwise and counter-clockwise phases is marked
by a percolation of the possible trajectories, which allows for
a path through the entire system.

Notably, a strong version of the phase rotation symmetry
is satisfied at the points at the classical loop configurations,
which ensures that the band structure at those points is either
trivial or anomalous, a property which extends to the entire
gapped phase, as topological invariants cannot change unless
a gap closes. In these two situations, a unitary operator Zθ can
be found so that

ZθS(k)Z −1
θ = iS(k) (24)

with

Z0 =
(−σz 0

0 iσz

)
and Zπ/2 =

(−σz 0

0 −iσz

)
(25)

meaning that there is only one band in the fundamental domain
of the phase rotation symmetry. As shown in Sec. II C 1, this
directly implies the vanishing of the first Chern number of
each band. In Sec. IV, we will see that such classical loop
configurations provide, along with phase rotation symmetry, a
valuable tool to design anomalous phases in network models.

In the following, we first generalize this set of observations
to a more general class of scattering networks, cyclic oriented
networks (Sec. III D). Their precise definition allows us
to elucidate the correspondence between the Ho-Chalker-

like description and the reduced Floquet-like description
(Sec. III D 2), which sets the ground for a proper definition
of bulk topological invariants for this class of network models
(Sec. V). As a byproduct, we also propose a standard way to
define topological invariants for a stepwise (or “discrete time”)
evolution.

D. Cyclic oriented networks and the phase rotation symmetry

1. The structure constraint

The orientation of the links of the L-lattice is such that
a wave packet traveling on the network will encounter the
nodes U1 and U2 in a cyclic way during its evolution,
namely, in a periodic sequence of the form · · · → U2 →
U1 → U2 → U1 → · · · (there are, for example, no U1 → U1

in this sequence). From the point of view of the wave packet,
the situation is similar to a stepwise evolution periodic in
time, similar to the Floquet dynamics with a (Bloch)-Floquet
operator UF = U2(k)U1(k). As we shall see, there is indeed
a mapping between a particular class of network models that
generalize the L-lattice and stepwise Floquet evolutions.

A cyclic oriented network is a (space-periodic) oriented
network where any path along the directed edges is constrained
to travel through a periodic sequence of the nodes, always in the
same order · · · → Us → U1 → U2 → · · · → Us−1 → Us →
U1 → · · · , where Uj ∈ U (b) describes the scattering events at
the corresponding node. A unit cell of such a network consists
in s nodes and b × s oriented links (in the examples, we will
always consider b = 2). As we shall see, such a network model
can be mapped to a time-periodic stepwise evolution composed
of s unitary operations Un ∈ U (b).

Let us denote by an,bn,cn, . . . the incoming amplitudes
at the node Un, and by an+1,bn+1,cn+1, . . . the outgoing
amplitudes at the same node (which are, on the cyclic network,
the incoming amplitudes on the next node Un+1). In reciprocal
space, the Ho-Chalker evolution operator of such a network
then reads

S(k) =

⎛⎜⎜⎜⎜⎝
0 0 · · · Us(k)

U1(k) 0 · · · 0
...

. . .
. . .

...

0 · · · Us−1(k) 0

⎞⎟⎟⎟⎟⎠ ∈ U (b × s)

(26)

in the Bloch basis (a1(k),b1(k),a2(k),b2(k), . . . as(k),bs(k)).
As for the L-lattice, the form of S(k) in this well-chosen

basis is reminiscent of the cyclic structure of the oriented
network. We interpret it as stemming from the existence of a
structure constraint

DS(k)D−1 = ei2π/sS(k), (27)

where D is the block-diagonal unitary matrix that reads

D = diag(1,ei2π/s,ei4π/s, . . . ,ei2(s−1)π/s) ⊗ Idb ∈ U (b × s)

(28)

in the same basis as S(k), which is the standard phase
rotation operator (8) that satisfies Ds = Id. Although the
explicit expressions (26) and (28) for the Ho-Chalker evolution
operator and its symmetry might depend on the basis and unit
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cell choices, they will be modified in a covariant way so that
constraint (27) will always be preserved.

Cyclic oriented networks with a given number s of
nonequivalent nodes and b of incoming links per node define an
equivalence class of network models (where the connectivity
of the underlying graph is fixed). The structure constraint
(27) implements the restriction to this equivalence class at the
level of the Ho-Chalker evolution operators S(k) ∈ U (b × s)
in Bloch representation, and evolutions that preserve Eq. (27)
therefore stay in the corresponding class.

Indeed, the structure constraint is a particular case of the
phase rotation symmetry (5), where Z = D and with M = s,
and the cyclic form (26) of the evolution operator highlights the
reduction in the number of degrees of freedom enabled by the
existence of the phase rotation symmetry.2 As a consequence,
the spectrum of S is redundant: more precisely, it is obtained
by s − 1 successive rotations of the spectrum contained in
a fundamental domain of length 2π/s. Moreover, the total
first Chern number of the bands of S(k) in such a fundamental
domain vanishes. This set of properties will allow us to develop
a mapping between the network model and a stepwise Floquet
evolution. To do so, the first step is to relate the spectrum of
the Ho-Chalker evolution operator S to the spectrum of an
associated Floquet evolution operator.

2. Two points of view: simultaneous steps and sequence of steps

The particular form (26) of the Ho-Chalker evolution
operator S imposed by the structure constraint (27) implies
that its sth power Ss is block-diagonal and reads

Ss = diag
(
U

(1)
F ,U

(2)
F , · · · ,U

(s)
F

)
(29)

in the same basis as Eq. (26), where U
(n)
F ∈ U (b) denotes the

cyclic permutation of the Floquet operator starting at step n,
namely

U
(n)
F = Un−1 · · ·U2U1Us · · · Un+1Un . (30)

The restriction to a fundamental domain of the spectrum of
the Ho-Chalker operator S is identical to the spectrum of the
Floquet operators U

(n)
F ∈ U (b), up to a constant scaling factor,

as illustrated in Fig. 9. In this sense, S can be reduced to the
smaller-dimensional operator U

(n)
F . The eigenstates of the U

(n)
F

can be obtained from the eigenstates of S. The converse is not
fully possible without the knowledge of the matrices Uj (k),
but we will see that the first Chern numbers of the bands of
any of the U

(n)
F (for any given n) entirely determine the ones

of S.
Let |ψ〉 be an eigenstate of S with eigenvalue λ, so that

S |ψ〉 = λ |ψ〉, and thus Ss |ψ〉 = λs |ψ〉. Decomposing the
vector |ψ〉 into s smaller vectors |ϕ(r)〉 as

|ψ〉 = (|ϕ(1)〉 , · · · , |ϕ(s)〉)T , (31)

it follows from (26) that

Un |ϕ(n)〉 = λ |ϕ(n−1)〉 (32)

2The number of degrees of freedom is reduced from s2 b2 for a
generic unitary matrix to s b2 when it is taken into account.

Spectrum of S

F

D2 |ψ2〉

D2 |ψ1〉

D |ψ2〉

D |ψ1〉

|ψ2〉

|ψ1〉

c

-c

c

-c

c

-c

|ϕ(n)
2 〉

|ϕ(n)
1 〉

Spectrum of U
(n)
F

c

-c

FIG. 9. Relation between the spectra of S and U
(n)
F . The spectrum

of S restricted to a fundamental domain F of the phase rotation
constraint corresponding to the structure constraint is in direct
correspondence with the (full) spectra of all blocks U

(n)
F of the

repeated evolution operator Ss . By phase rotation symmetry D, the
first Chern number on the fundamental domain F is zero, and thus
the two bands of F are opposite first Chern numbers.

and we infer from Eq. (29) the eigenvalue equation for the
Floquet operators:

U
(n)
F |ϕ(n)〉 = λs |ϕ(n)〉 . (33)

Importantly, the phase spectrum of U
(n)
F does not depend on

n, meaning that the Floquet spectrum is invariant under a
change of the origin of time, as expected. This construction
can be applied to the set of b × s/s = b eigenvectors |ψj 〉
of S with eigenvalues λj in the fundamental domain F to
obtain two linearly independent eigenstates |ϕ(n)

j 〉 of U
(n)
F . As

a consequence, we have on the one hand

S =
s−1∑
r=0

b∑
j=1

e−i2πr/sλjD
r |ψj 〉〈ψj | D−r (34)

and on the other hand,

U
(n)
F =

b∑
j=1

λs
j

∣∣ϕ(n)
j

〉〈
ϕ

(n)
j

∣∣ (35)

where the correspondence between |ψj 〉 and |ϕ(n)
j 〉 is given by

(31) and illustrated in Fig. 9.
Indeed, the complete correspondence between the Ho-

Chalker description and the Floquet description involves, on
one side, the Ho-Chalker evolution operator S(k) and, on
the other side, the stepwise Floquet evolution with steps
(U1, . . . ,Us) [as opposed to only the Floquet operator U

(n)
F ,

from which it is not possible to reconstruct S(k) entirely]. In
particular, both points of view allow for a complete topological
characterization of the system. However, we have seen that
the phase spectrum of the Floquet operator U

(n)
F is enough to

reconstruct the phase spectrum of S, and we will see in the
next paragraph that this is also true for the first Chern numbers
of their bands.

3. Consequences on the first Chern numbers

We have seen that the spectra of the Ho-Chalker operator
S(k) and of the Floquet operator U

(n)
F are in direct correspon-
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dence, and can be obtained from one another, possibly up to
a constant phase. In addition, the first Chern numbers of their
bands are also in direct correspondence. More precisely, let
P F

η,η′ be the projector on states between the gaps η and η′ of

U
(n)
F , and let P HC

η/s,η′/s be the projector on states between the
gaps η/s and η′/s of S. Then,

C1
(
P F

η,η′
) = C1

(
P HC

η/s,η′/s
)
. (36)

Although a more direct proof could be devised, we infer
this identity from our results on the complete topological
characterization of network models, which is discussed in the
last section, and in particular from Eq. (63) (which is proven
in Appendix C) and the relation (45).

A particular but typical situation arises when all bands
are well-defined and composed of only one state. Then, the
spectrum of S is composed of b × s bands separated from
each other by b × s gaps. Due to the phase rotation symmetry,
it is sufficient to consider the b bands in a fundamental domain
described by projectors P [ψj ] = |ψj 〉 〈ψj |, with j = 1, . . . ,b.
The Floquet operator U

(n)
F has also b bands corresponding to

projectors P [ϕ(n)
j ] = |ϕ(n)

j 〉 〈ϕ(n)
j |, and Eq. (36) simplifies into

C1(P [ψj ]) = C1
(
P

[
ϕ

(n)
j

])
. (37)

This illustrates that the first Chern number of a band j of
a generalized Ho-Chalker operator is simply obtained from
any of its associated Floquet operators U

(n)
F (k), as sketched in

Fig. 9. Equation (37) is of practical importance, since U
(n)
F has

a smaller dimension than that of S.
To obtain a vanishing first Chern number phase (where

C1(P [ψj ]) = 0 for all of the b × s bands of S), it is therefore
enough to show that the Floquet operator U

(n)
F has a vanishing

first Chern number phase (where C1(P [ϕ(n)
j ]) = 0). This is

far easier, as we have to deal with U (b) matrices instead of
larger U (b × s) matrices. As we have seen in Sec. II C 1, this is
achieved when U

(n)
F is endowed with a (strong) phase rotation

symmetry (5), with only one band in the fundamental domain,
that is to say, when there is a unitary operator Z ∈ U (b) such
that

Z U
(n)
F (k)Z −1 = ei2π/bU

(n)
F (k) . (38)

For b = 2, such a constraint is similar to the “phase shift”
property pointed out by Asbóth and Edge in two-dimensional
discrete-time quantum walks [10].

IV. VANISHING FIRST CHERN NUMBER PHASES
AND CLASSICAL LOOP CONFIGURATIONS

A. Procedure to identify vanishing first Chern number
phases in network models

The Ho-Chalker evolution operators S of cyclic oriented
networks always have a phase rotation symmetry with Z = D,
so that there are b bands in the fundamental domain (in this
section, we will always consider situations where b = 2). This
allows one to reduce the dimension of the problem and map it
onto the Floquet dynamics. However, this does not guarantee
the vanishing of the first Chern numbers. To obtain anomalous
phases where all first Chern numbers vanish, an extra condition
has to be found on the Floquet operator, such as Eq. (38),

where another phase rotation symmetry applies to U
(n)
F . This

approach is tantamount to the one consisting in directly finding
out a “stronger” phase rotation symmetry for the Ho-Chalker
evolution operator S with only one band in the fundamental
domain, as discussed in Sec. III C on an example. Yet, it is
usually convenient to work in the Floquet point of view where
smaller matrices are involved, as discussed in Sec. III D 3.

In this section, we introduce a simple qualitative method
to establish whether a cyclic oriented network has a vanishing
first Chern number phase or not. Our analysis lies on two
points.

First, we identify the possible classical loops configura-
tions, as we did for the L-lattice (see Sec. III C). These
configurations are obtained by considering the possible loops
in the unit cell when the nodes are either fully transmitting
or fully reflecting. Intuitively, these configurations ensure that
the phase being described is gapped, since the amplitude of a
state cannot escape from a loop to propagate in the network.

Second, we associate a Floquet operator U
(n)
F to each

classical loop configuration (as the first Chern numbers do not
depend on the choice of the starting node, we can arbitrarily
choose one of them). Importantly, the Floquet operator is a
product of either diagonal or antidiagonal step operators Un,
because of the classical loop structure, and it is therefore itself
either diagonal or antidiagonal. Depending on its form, one
can possibly conclude about the existence of a phase rotation
symmetry (38) for the Floquet operator by easily exhibiting
a suitable phase rotation operator Z . In particular, if UF is
antidiagonal, then Eq. (38) is always satisfied with Z = σz,
which guaranties the vanishing of the first Chern number of
bands of the Floquet operator, and therefore the vanishing
of the first Chern number of the bands of the Ho-Chalker
evolution operator. Let us now apply this analysis to concrete
cyclic oriented networks.

B. The L-lattice (s = 2)

The two loops configurations of the L-lattice have already
been discussed in Sec. III C (see Fig. 7), where we exhibited
a rotation phase symmetric operator for the Ho-Chalker
evolution operator. As discussed above, one can equivalently
consider any of the associated Floquet operator U

(n)
F . In phase I,

a loop corresponds to the sequence a1 → b2 → b1, → a2 →
a1 meaning that U1 is antidiagonal (it changes a to b and b

to a) and U2 is diagonal. Their product is thus antidiagonal,
and the first Chern numbers therefore vanish. In phase II, a
loop corresponds to the sequence a1 → a2 → b1 → b2 → a1,
meaning that U1 is diagonal and U2 is antidiagonal. Again,
their product is antidiagonal and the first Chern numbers
vanish. This is of course in agreement with the analysis of
the Ho-Chalker operator done in Sec. III C. This reasoning
can now be applied to cyclic oriented networks beyond the
L-lattice.

C. The oriented Kagome lattice (s = 3)

The cyclic oriented network with s = 3 corresponds to a
Kagome lattice shown in Fig. 10(a). In this case, the unit cell
is composed of s = 3 inequivalent nodes Uj (j ∈ [1,s]) and
2s = 6 inequivalent oriented links denoted by (aj ,bj ) [see
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FIG. 10. Oriented Kagome lattice. (a) Oriented Kagome lattice
with six inequivalent links and three inequivalent nodes per unit cell
enhanced in red and detailed in (b).

Fig. 10(b)]. Note that the oriented Kagome lattice has been
considered to describe arrays of optical coupled resonators
arranged in a honeycomb lattice by Pasek and Chong [8].

This oriented network allows for different possible loops
configurations. Let us identify some of those which necessarily
correspond to a vanishing first Chern number phase. Following
the method discussed above, we select loops such that the
product of the three Uj ’s is antidiagonal. As previously, Uj is
antidiagonal if it changes a ↔ b and is diagonal otherwise.
With this in mind, it is clear that the two configurations
represented in Figs. 11(a) and 11(b) correspond to a vanishing

first Chern number phase. Indeed, for the loops sketched
in Fig. 11(a), U1 is antidiagonal, whereas U2 and U3 are
diagonal, and for the loops shown in Fig. 11(b), all the Uj ’s
are antidiagonal. These results are confirmed by a direct
diagonalization of the phase spectrum in a strip geometry
which exhibits, for each of these two configurations, an equal
(algebraic) number of edge states in each gap [0 in the spectrum
(d) and 1 per edge in the spectrum (e) of the Fig. 11], as
expected for a vanishing first Chern number phase. In contrast,
if one considers a case where any incoming amplitude to a node
is partially scattered onto each outgoing link, then this does not
correspond to a loops configuration and UF is neither diagonal
nor diagonal [see Fig. 11(c)]. Thus, provided such a phase is
gapped, the first Chern numbers may not vanish, as shown in
Fig. 11(f).

This analysis gives one an insight on the control of the
first Chern number. However, to discriminate a topologically
trivial phase [Fig. 11(d)] from an anomalous topological one
(with zero first Chern number and edge states [Fig. 11(e)), it
is still required to compute the topological invariants defined
in Sec. V B.

V. TOPOLOGICAL CHARACTERIZATION OF CYCLIC
SCATTERING NETWORK MODELS

We now want to fully characterize cyclic scattering network
models, and in particular to account for anomalous phases.

(a) (b) (c)

−π π
−π

π

ε

k‖

(d)

−π π
−π

π

ε

k‖

(e)

−π π
−π

π

ε

k‖

(f)

FIG. 11. Examples of loops configurations in the oriented Kagome lattice (a) and (b) Loops configurations that display a vanishing first
Chern number phase. The phase spectra (d) and (e) for these configurations in a ribbon geometry confirm this result, and reveal that (a)
corresponds to a trivial topological phase (with no edge state in the gaps), whereas (b) corresponds to an anomalous topological one (with one
chiral edge state per edge in each gap). The configuration (c) displays no loop so that only the first Chern number on a fundamental domain is
constrained to vanish. The phase spectrum on a strip geometry (f) confirms this result.
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Both the Ho-Chalker and the Floquet points of view provide
ways to define proper bulk topological invariants, which
crucially depend on the existence of the structure constraint
(27). In both cases, we interpolate the discrete evolution to a
continuous one, in order to use the tools of homotopy theory.
A first step in this direction is to properly define topological
invariants for a stepwise evolution; the Sec. V A is devoted to
this task. Equipped with this tool, it is possible to actually de-
fine topological invariants for the network model in Sec. V B.
In the Ho-Chalker point of view, we require the interpolation to
always satisfy the structure constraint of the oriented network
to be able to define meaningful invariants. No such requirement
is necessary in the Floquet point of view, as the reduction to
the stepwise dynamics already takes the structure constraint
into account. Indeed, both points of view are equivalent, and
the corresponding invariants can be related one to another.

A. Topological characterization of a stepwise evolution

A topological characterization of periodically driven sys-
tems was proposed by Rudner, Lindner, Berg, and Levin [2]
for systems without specific symmetries in two dimensions. A
topological invariant Wη can be assigned to each spectral gap
η of the Bloch-Floquet operator U (t = T ,k), thus remarkably
establishing a new bulk-boundary correspondence for peri-
odically driven systems [2]. This index Wη[U ] is defined as
the degree (or winding number) of a “periodized evolution
operator” Vη(t,k) built from the full evolution operator U (t,k).
This method is applicable both to Floquet systems actually
periodically driven in time, and to lattices of evanescently
coupled light waveguides when the paraxial direction of
propagation plays somehow the role of time [23]. In contrast,
stepwise evolutions like (2) are not continuous maps, as
opposed to the usual evolution operator (1). Hence the index
W is not directly applicable to such evolutions.

In the following, we propose a systematic procedure to
extend Rudner et al.’s [2] W index to discrete evolutions.
In order to do so, an interpolating continuous-time evolution
must be associated to any stepwise evolution U = UN · · · U1.
The main idea is that when the stepwise evolution is correctly
specified, one can assume that each step Un is generated by
a time-independent Hamiltonian Hn, so that Un = e−iτnHn for
some duration τn. The description of the stepwise evolution
does not contain more information. A similar method, where
a Hamiltonian realizing the discrete-time quantum walk is
explicitly constructed, was described by Asbóth and Edge [10].

1. Topological characterization of a continuous unitary evolution

In this paragraph, we review the construction by Rudner
et al. [2] of a topological invariant Wη for unitary evolutions,
and define all the tools required for the upcoming construction.
We start with a continuous unitary evolution U (t,k) from
an origin time t = 0 to a finite time t = T , and assume
that U (T ) is gapped. It is then convenient to define a time-
independent effective Hamiltonian H eff(k). In the context of
Floquet theory of periodically driven systems, such an effective
Hamiltonian would generate the “stroboscopic evolution”
at discrete times U (nT ) = [U (T )]n. Namely, we want that
U (T ,k) = e−i T H eff(k). A crucial point of reference [2] is that
the effective Hamiltonian is not unique, as it is defined as a

logarithm of the Floquet operator. More precisely, the branch
cut η of the logarithm must be chosen in a spectral gap
of the Floquet operator U (T ), to define (e.g., by spectral
decomposition)

H eff
η (k) = i

T
log−η U (T ,k), (39)

where the complex logarithm with branch cut along an ray
with angle −η ∈ R is defined as

log−η(eiϕ) = iϕ for − η − 2π < ϕ < −η. (40)

The periodized evolution operator is then defined as3

Vη(t,k) = U (k,t)eitH eff
η (k). (41)

Finally, as Vη is periodic both in time and on the Brillouin
zone BZ, the bulk topological index is defined as its degree or
winding number

Wη[U ] ≡ deg(Vη) ∈ Z, (42)

where the degree of a periodic map is formally defined as

deg(Vη) ≡ 1

24π2

∫
[0,T ]×BZ

(Vη)∗χ

where (Vη)∗χ = tr
[(

V −1
η dVη

)3]
. (43)

When η and η′ are in the same spectral gap of U (T ) (called
the quasienergy spectrum in the context of periodically driven
systems), then Wη[U ] = Wη′[U ] (and indeed, Wη+2π [U ] =
Wη[U ]). When there are several gaps in the phase spectrum,
however, there are as many topological invariants defined for
the unitary evolution.

Remarkably, the interface between two driven systems with
bulk evolution operators Uleft and Uright carries nes(η) topolog-
ically protected chiral edge states (counted algebraically with
chirality) in the gap of quasienergy η with [2]

nes(η) = Wη[Uleft] − Wη[Uright]. (44)

At equilibrium, the first Chern numbers of energy bands
are sufficient to characterize the topology of quantum Hall
like systems. In a periodically driven system, the quasienergy
bands can also carry a nonzero first Chern number. Rudner
et al. [2] showed that even though the data of all the first Chern
numbers is not sufficient to fully characterize the topology of
Floquet states, they are still significant, and give the variation in
the W invariant between the gaps above and below the band.
More precisely, let −2π < η1,η2 < 0 be two quasienergies
and Pη1,η2 (k) the spectral projector on states with quasienergy
between η1 and η2, i.e., on eigenstates with eigenvalues e−iη

in the arc joining e−iη1 and e−iη2 clockwise on the circle U(1).
The difference between the gap invariants W is then related to
the first Chern number C1 of the quasienergy band in between
by

Wη2 [U ] − Wη1 [U ] = −C1(Pη1,η2 ). (45)

3Although different from the original one from Ref. [2], this
definition is equivalent and leads to the same topological invariant,
see Appendix C in Ref. [24].
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2. Interpolating a discrete-time evolution

In a stepwise evolution, one only knows the evolution
operator at several discrete times. We would like to interpolate
such data to a physically relevant continuous evolution. As
such, an interpolation is not unique, we need a specification
to construct it in a unique way, or at least to get equivalent
interpolations from the point of view of topological properties.
The main idea is that the choice of the interpolation should not
“add” or “remove” anything to the topology.

Roughly speaking, each step Ui should be interpolated from
the identity Id through an evolution of the form Uint = e−itHi

for some effective Hamiltonian Hi . The choice of an interpo-
lation where the phases grow linearly is, however, a natural
choice in this context [25], as it necessarily corresponds
to a trivial evolution when all first Chern numbers of Hi

vanish. In this situation all such interpolations are actually
equivalent. In the general case where the step operators
may carry nonzero first Chern numbers, we must assume
that each step operator stems from a constant Hamiltonian,
and moreover that the evolution was sufficiently short with
respect to the characteristic time scales of the Hamiltonian.
This hypothesis is necessary to accurately interpolate the
discrete-time evolution, as it ensures that the gap η = −π of
the step operator is trivial. Without this additional information,
there are not enough data to unambiguously reconstruct the
evolution (essentially because it is not sufficiently discretized
to capture all the physical information of the system).

We first consider the evolution operator generated by a
(known) constant Hamiltonian, i.e., to do the one-step version
in a situation where the result is known. A time-independent
Hamiltonian H generates a step evolution operator UF =
U1 = e−iT H . In this case, we already know that the correct
interpolation is indeed

U (t) = e−itH . (46)

To express it in terms of the step operator U1 only, we use the
effective Hamiltonian, defined in (39), corresponding to U1

and with logarithm branch cut η = −π . We have

H eff
η=−π [e−iHT ] = H (47)

at least for a small enough4 T . We may then interpolate the
evolution ending with the step operator U1 by

Uint[U1](t) ≡ exp
(−itH eff

−π [U1]
)
, (48)

and we see that this formula immediately generalizes to any
step operator U1, even without knowing some underlying time
dynamics. Besides this definition being natural as the choice
of cut, η = −π ensures that when U1 = e−iT H (for T small
enough) we recover

Uint[U1](t) = e−itH . (49)

This is obviously true in t = T whatever the choice of η is,
but it is not necessarily valid for intermediate times. Besides,

4To be precise, the maximum energy in absolute value max |σ (H )|
of H should be smaller than π/T , or h/2T if we restore the Planck
constant. In this way, there is always a gap around the eigenvalue
e−iπ .

t

etc.

0 t1 t2 ts

Id U1 U2U1 Us · · ·U1

Uint[U1] Uint[U2]

FIG. 12. Construction of the interpolation of a stepwise evolution.
The evolution is constituted of s time-ordered step operators Uj .
A time tj is attributed to each step and a continuous map is
systematically built to interpolate between two successive steps. It
follows a continuous map t → U (t) from Id to U

(1)
F .

with this choice,

Wη[Uint[U1]] = deg
[

exp
(−itH eff

−π [U1]
)

exp
(
itH eff

η [U1]
)]

= −C1(P−π,η) (50)

correctly accounts for the topology of the time-independent
system (e.g., for η = 0 it gives, up to the usual sign, the first
Chern number of the valence band).

We now move on to the general case. When there are
several steps in the stepwise evolution, a natural interpolation
of the full evolution consists in concatenating the one-step
interpolations (see Fig. 12). Thus, for each step operator Ui

involved in a stepwise evolution, an explicit interpolation is
given by definition (48), as long as this operator is gapped
around −π , so that it coincides with time evolution when
Uj actually comes from a Hamiltonian dynamics. When Uj

is gapped, but not at phase −π , a constant (k independent)
rotation of the phase spectrum can be factored out of the step
operator. When the step operator has vanishing first Chern
numbers, all interpolations by constant effective Hamiltonians
are topologically equivalent, so any choice of such a rotation
is acceptable. On the other hand, when the step operator has
nonvanishing first Chern numbers, we must provide additional
data for the interpolation to be unique, and the hypothesis of
a trivial gap around −π is a natural and sufficient choice. The
critical case where the step operator Uj is gapless is discussed
in Sec. V B 5.

To be precise, let us consider a time-periodic stepwise
evolution of period T , namely, the data of several times
t1, . . . ,ts and ts = T and corresponding unitary operators
U1, . . . ,Us . We assume that such operators are gapped at phase
−π . The evolution operator is only defined at discrete times
pT + tj for 1 � j < s and p ∈ N as

U (pT + tj ) = UjUj−1 · · ·U1
(
U

(1)
F

)p
and U (0) = Id,

(51)

where

U
(1)
F = UsUs−1 · · ·U1. (52)

Indeed, U
(1)
F = U (T ). We interpolate this evolution as

U (t) = Uint[Uj ]

(
t − tj−1

tj − tj−1
T

)
Uj−1 · · ·U1

for tj−1 � t � tj , (53)

where by convention t0 = 0 and ts = T (indeed, the first step
is simply the correctly rescaled Uint[U1]). We can then extend
the previous notation by setting

Uint[U1, . . . ,Us] = Û (t), (54)
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where it is implied that U1, . . . ,Us are in the right order. Note
that the choice of times tj for the interpolation is completely
arbitrary and will not influence its topological properties.

Equivalently, we may consider the piecewise constant
Hamiltonian

H (t) = Heff
−π [Uj ] for tj−1 � t � tj (55)

with t0 = 0 and ts = T , and consider the corresponding
evolution operator.

3. Topological invariants for discrete evolutions

The previous construction allows us to define the topo-
logical invariant associated with the stepwise evolution as
the topological invariant associated with this continuous-time
evolution as

W SWE
η

[
U

(1)
F

] = Wη[Uint[U1, . . . ,Us]]. (56)

Note that functionally, W SWE
η [U (1)

F ] depends on the entire se-

quence of steps (U1, . . . ,Us) and not only on their product U (1)
F .

This invariant is indeed associated with an ordered sequence
of steps, but is invariant under any circular permutation of the
step sequence. Such permutations correspond to the Floquet
operators U

(n)
F = Un−1 · · · U2U1Us · · · Un+1Un defined in (30),

and one has

W SWE
η

[
U

(1)
F

] = W SWE
η

[
U

(n)
F

] ∀ n ∈ 1, . . . ,s . (57)

This property simply means that the choice of origin of time
(i.e., the first step) is not relevant for a periodic system,
similarly to Floquet systems with a continuous time evolution.
We, however, give an independent and explicit proof of this
property in Appendix B, based on the fact that W SWE

η is a
degree computation [see Eq. (42)] and hence invariant under
homotopy (i.e., under smooth deformations). We show that the
two periodized interpolations are homotopic, so their degrees
coincide. Although it was devised with oriented scattering
networks in mind, this construction is applicable to any
stepwise evolutions like discrete-time quantum walks.

B. Topological invariants for cyclic network models

Equipped with tools to define topological invariants for
stepwise evolutions, we can now move on the case of cyclic
scattering networks. Physically, the effective Floquet stepwise
evolution essentially describes the evolution from the point of
view of one wave packet traveling on the network, whereas
the Ho-Chalker point of view consists in studying the global
evolution of the entire network.

1. The Floquet point of view

As we have seen in Sec. III D 2, a cyclic oriented network
model can be mapped to a time-periodic stepwise evolution
with steps (U1,U2, . . . ,Us), where k �→ Uj (k) ∈ U (b) are
maps from the Brillouin zone to the unitary group. In this
Floquet point of view, such step operators are multiplied
(in the right order) to obtain the Floquet operator U

(n)
F =

Un−1 · · · U2U1Us · · · Un+1Un associated to the network model.
Hence we simply apply the results of Sec. V A to define as a

topological invariant of the network the quantity

W SWE
η

[
U

(1)
F

] ∈ Z (58)

defined in Eq. (56), which, as we said before, does actually not
depend on the choice of the first step.

2. The Ho-Chalker point of view

We would like now to apply the same reasoning for the
Ho-Chalker evolution operator S(k) ∈ U (b × s). It is still
possible to interpolate from the identity to S(k). However, this
method does not take into account the nature of the scattering
network, which is expressed by the structure constraint (27),
and is likely to fail. A strong evidence in this direction is that
we do not expect to observe anomalous topological phases
(with vanishing first Chern numbers) in this situation, as the
interpolation effectively reproduces the effect of a constant
Hamiltonian Heff

−π [S], and Eq. (50) tells that the degree of a
single-step evolution only captures first Chern numbers. As
it is clear from the examples that such phases do exist (see
Sec. III C), this construction fails to capture the full topology
of the network model.

To fully take into account the structure of the cyclic oriented
network, we need a somehow more complex interpolation.
Starting from the structure constraint (27) forS, which encodes
the particular relations between the different links of the
network, we propose instead the following interpolation:

Uint,HC[S](t)

=

⎛⎜⎜⎜⎜⎝
0 0 · · · Uint[Us](t)

Uint[U1](t) 0 · · · 0
...

. . .
. . .

...

0 · · · Uint[Us−1](t) 0

⎞⎟⎟⎟⎟⎠
∈ U (b × s), (59)

which has to be compared with (26). Crucially, the structure
constraint (27) is satisfied all along this interpolation, namely,
for every t ∈ [0,T ], we have

D Uint,HC[S](t) D−1 = ei2π/s Uint,HC[S](t). (60)

We then define

WHC
η [S] = Wη[Uint,HC[S]] ∈ Z (61)

as the invariant for the S matrix describing the one-step
evolution of a cyclic oriented network.

3. Relation between the topological invariants:
equivalence between both points of view

So far, we have defined two different topological invariants
for a cyclic oriented network: (1) WHC

η is associated to the one-
step Ho-Chalker evolution operator S describing the network
model and (2) W SWE

η is associated to the stepwise Floquet
evolution constituted of s steps (U1, . . . ,Us), the product of
which is a Floquet operator U

(n)
F . We expect that such invariants

are related, especially in view of the relation (29) between Ss

and the U
(n)
F .

Because of the structure constraint (27), the spectrum of
S is redundant and can be fully deduced from a fundamental
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domain F (as illustrated in Fig. 9). This property translates
simply on the invariant WHC

η , which are also partially redun-
dant. Namely, from Eq. (45), we have

WHC
η+ 2π

s

[S] = WHC
η [S] − C1(Pη,η+ 2π

s
) = WHC

η [S] (62)

since the first Chern number on a fundamental domain
vanishes, C1(Pη,η+ 2π

s
) = C1(	) = 0, see Eq. (14). As a

consequence, WHC
η [S] is 2π/s-periodic and the system is

fully characterized by computing the W invariant over a
fundamental domain only.5

We are now able to state the main result of this section, that
is,

WHC
η/s [S] = W SWE

η

[
U

(n)
F

]
. (63)

On the left-hand side, we know from (62) and from the
previous paragraph that the invariant is defined for η/s without
ambiguity, so that the previous formula is still 2π -periodic in
η. On the right-hand side, we know [see (57) and Appendix B]
that the invariants associated to any U

(n)
F with n ∈ 1, . . . ,s are

all equal.
The previous equality can be interpreted as follows: the

topological information6 from the one-step evolution of an
oriented network ruled by S ∈ U (b × s) is fully equivalent to
the one from the s-step stepwise Floquet evolution with steps
(U1, . . . ,Us) with Uj ∈ U (b) leading to the Floquet operator
U

(1)
F ∈ U (b) or any of its cyclic permutations U

(n)
F that appear

in the block-diagonal operator Ss . From the topological point
of view, these are two equivalent descriptions of the same
problem.

The identity (63) is proven by direct computation of
both invariants, which are proven equal through the relation
between Ss and U

(n)
F . The actual proof is quite technical and

therefore postponed to Appendix C, but we encourage the
reader to have a glimpse at it.

4. The relative nature of the invariants

As we have seen in the example of the L-lattice in Sec. III C,
the invariants for cyclic oriented networks are actually relative
invariants, in a way which is very similar (and formally
equivalent for s = 2) to the standard chiral symmetric (class
AIII) topological insulators, which are very clearly discussed
in Ref. [26]. More precisely, such invariants are relative to
reference evolution which satisfies the structure constraint.
There is indeed a large “gauge freedom” in this choice: starting
from a given reference evolution Uref, the conjugation by
any change of basis matrix M(k) commuting with D gives
another equally valid reference evolution M(k)UrefM

−1(k).
The relative invariants with respect to such evolutions are
indeed generally not equal.

This relative character of the topological invariants is
particularly clear in the Ho-Chalker point of view, where the
reference evolution is indeed chosen as the constant Bloch

5Note that this applies for any phase rotation symmetric systems,
and not only cyclic oriented networks.

6In particular, note that the W ’s also contain the first Chern numbers
of the different bands.

evolution operator

Uref(t,k) =

⎛⎜⎜⎜⎜⎝
0 0 · · · Id

Id 0 · · · 0
...

. . .
. . .

...

0 · · · Id 0

⎞⎟⎟⎟⎟⎠ (64)

satisfying the structure constraint and from which the interpo-
lation starts. Though it may not be as obvious, the invariant
defined in the Floquet point of view is indeed also relative.

Notably, the choice as a reference of the Bloch evolution
operator Uref(t,k) defined in Eq. (64) makes the invariants
depend on the choice of the unit cell, as we have observed in the
case of the L-lattice. This is because the Bloch representation
as a k-dependent matrix Uref(t,k) [like in Eq. (64)] of the
operator Uref(t) (acting on the Hilbert space) actually depends
on the choice of the unit cell [27]. Importantly, the difference
of topological indices at an interface and for a given gap is
well defined and unambiguous.

5. Gapless steps and their ambiguities

Let us illustrate a possible ambiguity of our definitions
in the case of the L-lattice (see Sec. III C). In classical loop
configurations, at θ = 0 and θ = π , we observe that the step
operator U2(k) is gapless. In principle, this prevents from
defining a proper topological invariant. On the other hand,
this situation should only arise in critical situations when (a
part of) the nodes behave classically (as perfectly reflecting
or transmitting elements). Such situations could either arise at
the middle of a phase or at a transition point. In the first case
(an example of which is provided by the L-lattice), we expect
that the limit values of the invariants on all sides of the critical
manifold should agree: in this case, the common limit value
can be taken as the value of the invariant at that point. On the
other hand, when the critical point marks a phase transition,
we do not expect a well-defined topological invariant, and the
various limits are indeed expected to disagree.

VI. CONCLUSION

In this paper, we have introduced the phase rotation
symmetry, a new symmetry specific to dynamical systems
described by a unitary operator, which has no equivalent in
Hamiltonian systems. We then illustrated its power on our
main subject, the description and the topology of oriented
scattering network models.

As we have seen, the phase rotation symmetry is the signal
of a redundancy in the description of the system, and allows
one to reduce and simplify this description, but also to better
understand the internal structure of the system. We introduced
a particular class of cyclic scattering networks where wave
packets always encounter the same cycle of nodes. At the
level of their evolution operator, such network models are
characterized by a particular phase rotation symmetry, which
is always present, and which we call a structure constraint.
Two important consequences stem from the existence of
this particular phase rotation symmetry. The first one is
that the description of the cyclic network model can be
reduced to a particular form, and then fully mapped into
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a stepwise Floquet dynamics. This mapping justifies and
expresses the relationship between scattering networks and
Floquet dynamics found in several works [8,12,18,19]. A
second consequence is that the structure constraint allows
one to define bulk topological invariants, which fully account
for the topology of the network model, and in particular for
topological anomalous phases. Even though such phases were
already experimentally observed [15,16], such an invariant was
not known until now. Notably, the topological invariants can be
defined directly from the constrained evolution operator of the
network model, or from the corresponding Floquet dynamics:
both points of view indeed coincide, but they may be equally
useful in different situations.

Scattering network models notably allow for topological
anomalous phases, where the system is topologically nontrivial
despite the vanishing of all first Chern numbers. Such phases
are particularly interesting, and we may want to design them.
Although the phase rotation symmetry alone is not sufficient
to ensure that a phase is topologically anomalous, a strong
version of this property is actually enough to ensure that all
first Chern numbers vanish, which is of clear interest to the
design of anomalous phases. An example of a procedure to
identify anomalous phases in network models based on phase
rotation symmetries in classical loop configurations is also
proposed, which can also be applied to engineer anomalous
Floquet phases in other kinds of systems.

Whilst it was mainly used to study scattering networks,
the phase rotation symmetry is a new item in the toolbox
of (potentially topological) general unitary evolutions, where
it can be applied both as a reduction procedure and as a
design principle. Several generalizations of the phase rotation
symmetry can be imagined, for example, where the symmetry
operator is antiunitary, i.e., where

Z UZ −1 = eiζ U. (65)

It is also possible to consider more exotic generalizations:
the antiunitary phase rotation constraint can be reformulated
as Z UZ −1 = eiζ U (with different Z and ζ ), and we can
consider other constraints where U is replaced by, e.g.,
U−1 (which corresponds to an actual chiral symmetry when
ζ = 0), UT or Uα . Some of such generalizations seem to

appear in stepwise evolutions. Indeed, another very simple
generalization, which should be physically relevant, consists of
including the possibility of a nontrivial action on the Brillouin
zone, where, for example, a constraint like Z U (k)Z −1 =
eiζ U (−k) could be considered. This assortment of examples
aims at highlighting that the world of “unitary” dynamical
evolutions is far richer than its Hamiltonian counterpart: new
kinds of effective constraints or symmetries can emerge,
the phase rotation symmetry being the prime example of
such. Whether such constraints deserve or not to be named
“symmetries” depends on the context and on the meaning we
attribute to the word. For instance, the phase rotation symmetry
does indicate a redundancy in the description, which may be
“broken” in other physical situations. As such, we believe that
this label is indeed relevant in the context of the effective
description of wave propagation. The structure constraint of
cyclic scattering networks seems to “protect” the topological
phase, in the same way than standard symmetries are necessary
for symmetry-protected topological phases to exist.

This statement can serve as an interpretation of the fact that
our approach to characterize the topology of oriented scattering
networks only covers the particular class of cyclic network
models. Other kinds of (spatially periodic) network models
exist, which can also display anomalous topological states, yet
evade our characterization. A topological characterization of
such systems based on the same principle should be possible,
but requires further analysis. Another open question involves
the effects of a structure-constraint-breaking defects or disor-
der on the topological phases. Physically, such imperfections
are not necessarily present in experimental realizations, but
they may arise quite naturally, and we expect they should at
some point spoil the topology; the question is to what extend
they may be tolerated while still keeping protected edge states.
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APPENDIX A: THE STANDARD PHASE ROTATION OPERATOR

Let us consider a phase rotation operator Z for the evolution operator U , such that

Z UZ −1 = ei2π/MU. (A1)

In general, the phase rotation operator has no special form. In this appendix, we show that when (1) the M th power of Z is
scalar,7 that is to say Z M = eiφ Id and (2) the evolution operator U is gapped, then the phase rotation operator Z assumes the
standard form

Z � Z0 ≡ diag(1,ei2π/M,ei4π/M, . . . ,ei2π(M−1)/M ) ⊗ Idb ∈ U (b × M) (A2)

in an adequate basis. The standard phase rotation operator emphasizes the cyclic nature of the phase rotation symmetry
(fundamental domains are simply rotated by the action of the operator Z0). When Z is a phase rotation symmetry of U

(namely, Z UZ −1 = ei2π/MU ) and R is a symmetry of U (namely, RUR−1 = U ), then Z R and RZ are both phase rotation
symmetries of U . Hence many phase rotation symmetries can be constructed from the standard phase rotation operator Z0, when

7In particular, this is necessarily the case in an irreducible representation space, where all symmetries, including Z M , are scalar.
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it is a phase rotation symmetry of U , which may not be reduced to the standard form. In general, it may also happen that the
operator Z = Z0R is a phase rotation symmetry, while Z0 is not.

Let us now prove the preceding statement. First, we redefine the phase rotation operator so that Z M = Id by replacing Z
with e−iφ/MZ .

Let then F be a fundamental domain for the phase rotation symmetry, chosen to have its ends in a gap of U (this is possible
because we assumed that U is gapped, as explained in Sec. II B). Let ψ1, . . . ,ψb be the eigenstates of U with eigenvalue in F .
Because of the phase rotation symmetry, the family

(ψi, . . . ,ψb,Z ψ1, . . . ,Z ψb, . . . ,Z
M−1ψ1, . . . ,Z

M−1ψb) (A3)

is a basis. In this basis, Z is block-diagonal, and assumes the form

Z � B ⊗ Idb, (A4)

where B reads

B �

⎛⎜⎜⎜⎜⎝
0 0 · · · 1

1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0

⎞⎟⎟⎟⎟⎠. (A5)

As B is a M × M circulant matrix, it is diagonalizable and its eigenvalues are the M th roots of unity. Hence Z is then diagonalized
as

Z � diag(1,ei2π/M,ei2π×2/M, . . . ,ei2π(M−1)/M ) ⊗ Idb, (A6)

which concludes the proof.

APPENDIX B: PROOF OF THE EQUALITY BETWEEN THE SWE-INVARIANTS OF ALL CIRCULAR PERMUTATIONS U (n)
F

We start by proving identity (57) for n = 2, namely, W SWE
η [U (1)

F ] = W SWE
η [U (2)

F ], in order not to overload the explicit
expressions. The generalization to any n is straightforward, as discussed in the end of the paragraph. The choice of times tj in
interpolation (53) is completely arbitrary and does not change the value invariant: they actually do not appear in the computation,
as it can be seen in expression (C7), for example. Thus, from now on, we can chose the natural and regular time-step: tj = jT /s,
so from the definitions (41) and (42) the computation of W SWE

η [U (1)
F ] is reduced to the degree of the map:

V (1)
η (t,k) =

⎧⎪⎪⎨⎪⎪⎩
Uint[U1](ts)eitH eff

η [U (1)
F ], 0 � t � T

s
,

Uint[Uj ]((t − (j − 1) T
s

)s)Uj−1 . . . U1eitH eff
η [U (1)

F ], (j − 1) T
s

� t � j T
s
,

Uint[Us]((t − (s − 1) T
s

)s)Us−1 . . . U1eitH eff
η [U (1)

F ], (s − 1) T
s

� t � T ,

(B1)

which is defined piecewise for j ∈ {1, . . . s}, and where we dropped the k dependency on the right-hand side. Similarly, the
computation of W SWE

η [U (2)
F ] is reduced to the degree of the map:

V (2)
η (t,k) =

⎧⎪⎪⎨⎪⎪⎩
Uint[U2](ts)eitH eff

η [U (2)
F ], 0 � t � T

s
,

Uint[Uj+1]((t − (j − 1) T
s

)s)Uj . . . U2eitH eff
η [U (2)

F ], (j − 1) T
s

� t � j T
s
,

Uint[U1]((t − (s − 1) T
s

)s)Us . . . U2eitH eff
η [U (2)

F ], (s − 1) T
s

� t � T .

(B2)

In order to show that the degrees of these two maps are equal, we will use the homotopy invariance of the degree [2]. Consider
the following smooth deformation:

Ṽ (r; t,k) = V (2)
η (t,k)Uint[U1](rT ,k)eir T

s
H eff

η [U (1)
F ](k), (B3)

where r ∈ [0,1] is a deformation parameter. Obviously, one has Ṽ (0; t,k) = V (2)
η (t,k). The expression at r = 1 is somehow close

to V (1)
η since Uint[U1](T ,k) = U1. We deduce from (30) that

U
(2)
F = U1U

(1)
F U−1

1 ⇒ eitH eff
η [U (2)

F ] = U1eitH eff
η [U (1)

F ]U−1
1 , (B4)

which follows from the spectral decomposition of definition (39). Hence

Ṽ (1; t,k) =

⎧⎪⎪⎨⎪⎪⎩
Uint[U2](ts)U1ei(t+ T

s
)H eff

η [U (1)
F ], 0 � t � T

s
,

Uint[Uj+1]((t − (j − 1) T
s

)s)Uj . . . U2U1ei(t+ T
s

)H eff
η [U (1)

F ], (j − 1) T
s

� t � j T
s
,

Uint[U1]((t − (s − 1) T
s

)s)Us . . . U2U1ei(t+ T
s

)H eff
η [U (1)

F ], (s − 1) T
s

� t � T ,

(B5)
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which looks like V (1)
η but somewhat shifted in time. By homotopy invariance

W SWE
η

[
U

(2)
F

] = deg
(
V (2)

η

) = deg(Ṽ (0; ·)) = deg(Ṽ (1; ·)) (B6)

and the degree integral formula (43) can be decomposed in pieces corresponding to the different steps:

24π2 deg (Ṽ (1; ·)) =
s−1∑
j=1

∫
BZ

∫ jT /s

(j−1)T/s

(
Uint[Uj+1]

((
t − (j − 1) T

s

)
s
)
Uj . . . U1ei(t+ T

s
)H eff

η [U (1)
F ]

)∗
χ

+
∫

BZ

∫ T

(s−1)T/s

(
Uint[U1]

((
t − (s − 1) T

s

)
s
)
ei(t−(s−1) T

s
)H eff

η [U (1)
F ]

)∗
χ, (B7)

where BZ is the Brillouin zone and where in the last part we have used the fact that

Us . . . U1 = U
(1)
F = e−iTHeff

η

[
U

(1)
F

]
. (B8)

Then by a change of variable t �→ t − T/s for the first term, and t �→ t − (s − 1)T/s for the second, we end up by reordering
the terms as

24π2 deg(Ṽ (1; ·)) =
s∑

j=1

∫
BZ

∫ jT /s

(j−1)T/s

(
Uint[Uj ]

((
t − (j − 1) T

s

)
s
)
Uj−1 . . . U1eitH eff

η [U (1)
F ]

)∗
χ

= 24π2 deg
(
V (1)

η

) = 24π2W SWE
η

[
U

(1)
F

]
, (B9)

where the empty product Uj−1 . . . U1 is the identity for j = 1. This concludes the proof.
The generalization to W SWE

η [U (1)
F ] = W SWE

η [U (n)
F ] for any n is straightforward by noticing that

U
(n)
F = (Un−1 . . . U1) U

(1)
F (Un−1 . . . U1)−1 (B10)

and by defining the corresponding homotopy

Ṽ (r; t,k) = V (n)
η (t,k)Uint[Un−1 . . . U1](rT ,k)eir(n−1) T

s
H eff

η [U (1)
F ](k). (B11)

APPENDIX C: PROOF OF THE IDENTITY (63) BETWEEN THE ONE-STEP AND THE STEPWISE INVARIANTS

The proof of the identity (63) between the one-step invariant WHC
η/s [S] in the Ho-Chalker point of view and the stepwise

invariant W SWE
η [U (n)

F ] in the Floquet point of view is done by direct computation of each invariant, and using the fact that Ss is

related to the U
(n)
F .

First we start with the one-step evolution invariant

WHC
η [S] = 1

24π2

∫
[0,T ]×BZ

(
Uint,D[S]eitH eff

η [S]
)∗

χ, (C1)

see (42) and (59), where V ∗χ = tr((V −1dV )3). Then, using identity

(AB)∗χ = A∗χ + B�χ − 3d tr(A−1dAdB B−1) (C2)

(see, e.g., Appendix A of Ref. [24]), we get

WHC
η [S] = 1

24π2

∫
[0,T ]×BZ

(Uint,D[S])∗χ + 1

24π2

∫
[0,T ]×BZ

(
eitH eff

η [S]
)∗

χ. (C3)

Indeed, by Stokes formula, the third term is vanishing since it is reduced to an integration over the boundaries t = 0 and
t = T of [0,T ] × BZ. At t = 0, the two maps are constant (k-independent) and at t = T we get Uint,HC[S](T ) = S whereas
eiT H eff

η [S] = S−1, leading to tr(S−1dSd(S−1)S) = − tr(S−1dS)2 = 0 by antisymmetry. Note that even if the two quantities in the
latter equation are not integers any more, they will however, respectively, coincide with some terms coming from the computation
of W for the SWE. Before that, the first part can already be improved by noticing that

U−1
int,HC[S]dUint,HC[S] = diag

(
U−1

int [U1]dUint[U1], . . . ,U−1
int [Us]dUint[Us]

)
= diag

(
eitH eff

−π [U1]de−itH eff
−π [U1], . . . , eitH eff

−π [Us ]e−itH eff
−π [Us ]

)
, (C4)

see (59) and (48), so that finally

WHC
η [S] = 1

24π2

∫
[0,T ]×BZ

s∑
n=1

(e−itH eff
−π [Un])∗χ + 1

24π2

∫
[0,T ]×BZ

(eitH eff
η [S])∗χ. (C5)
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On the other hand, the invariant of the SWE is computed similarly: from definitions (56) and (53), separating and rescaling
the time of each step tj−1 � t � tj in the integral by a change of variables t ′ = (t − tj−1)/(tj − tj−1), one has the following
decomposition:

W SWE
η

[
U

(1)
F

] = 1

24π2

∫
[0,T ]×BZ

(Uint[U1])∗χ + (Uint[U2]U1)∗χ + · · · + (Uint[Us]Us−1 . . . U1)∗χ + 1

24π2

∫
[0,T ]×BZ

(eitH eff
η [U (1)

F ])∗χ.

(C6)

Then using again identity (C2), the fact that U ∗
n χ = 0 since χ is a 3-form and Un only depends on the two-dimensional variable

k and not on t , and the boundary values of Uint[Un] = Id, Un at t = 0, T , respectively, we get

W SWE
η

[
U

(1)
F

] = 1

24π2

∫
[0,T ]×BZ

s∑
n=1

(
e−itH eff

−π [Un]
)∗

χ + (
eitH eff

η [U (1)
F ]

)∗
χ

− 1

8π2

∫
BZ

s∑
n=2

tr
(
U−1

n dUnd(Un−1 . . . U1)(Un−1 . . . U1)−1
)
. (C7)

We see similarities between (C5) and the latter equation, however, it involves the particular choice of U
(1)
F whereas the first one

involves S that is in some sense more symmetric. Hence, to see the equality between the two invariants, we use the following
trick: since all the W SWE

η [U (j )
F ] are all equal from Appendix B, we can symmetrize the previous quantity as

W SWE
η

[
U

(1)
F

] = 1

s

s∑
j=1

W SWE
η

[
U

(j )
F

] = 1

24π2

∫
[0,T ]×BZ

s∑
n=1

(
e−itH eff

−π [Un]
)∗

χ + 1

s

s∑
j=1

(
eitH eff

η [U (j )
F ]

)∗
χ

− 1

8π2

∫
BZ

1

s

(
s∑

n=2

tr
(
U−1

n dUnd(Un−1 . . . U1)(Un−1 . . . U1)−1
)+ �

)
. (C8)

Indeed, the first term is already symmetric and then remain unchanged, whereas the two other terms appear symmetrized, where
� corresponds to all the possible cyclic permutations.

For example, when s = 3, the last term is simply equal to

1

3

(
3∑

n=2

tr
(
U−1

n dUnd(Un−1 . . . U1)(Un−1 . . . U1)−1
)+ �

)
= 1

3

(
U−1

2 dU2d(U1)U−1
1 + U3dU3d(U2U1)(U2U1)−1

+ U−1
3 dU3d(U2)U−1

2 + U1dU1d(U3U2)(U3U2)−1

+ U−1
1 dU1d(U3)U−1

3 + U2dU2d(U1U3)(U1U3)−1
)

(C9)

each line corresponding to one of the cyclic permutations of (3,2,1), namely, (1,3,2) and (2,1,3).
Coming back to the general case and comparing (C5) with (C8), we see that the identity between the two invariants holds if

and only if we have the following equality:

1

24π2

∫
[0,T ]×BZ

(
eitH eff

η/s [S])∗
χ = 1

24π2

∫
[0,T ]×BZ

1

s

s∑
j=1

(
eitH eff

η [U (j )
F ]

)∗
χ

− 1

8π2

∫
BZ

1

s

(
s∑

n=2

tr
(
U−1

n dUnd(Un−1 . . . U1)(Un−1 . . . U1)−1)+ �
)

. (C10)

Note the difference of parameters in the effective Hamiltonians, coming from (63). This equality will be proved using the spectral
decompositions of S and Ss . The spectral decomposition of S is

S =
s−1∑
r=0

b∑
j=1

e−i2πr/sλjD
r |ψj 〉 〈ψj | D−r (C11)

due to the structure constraint (27), see Eq. (34). Hence

H eff
η [S] = i

s−1∑
r=0

b∑
j=1

ln−η(λj )Dr |ψj 〉 〈ψj | D−r + 2π

s−1∑
r=1

b∑
j=1

r

s
Dr |ψj 〉 〈ψj | D−r . (C12)
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Besides, the sth power of S reads

Ss =
s−1∑
r=0

b∑
j=1

λs
jD

r |ψj 〉 〈ψj | D−r , (C13)

so its effective Hamiltonian is

H eff
η [Ss] = i

s−1∑
r=0

b∑
j=1

s ln−η(λj )Dr |ψj 〉 〈ψj | D−r . (C14)

The two effective Hamiltonians are indeed not equal for the same branch cut. However, if λs = eiϕ with −η − 2π < ϕ < −η,
then

− η

s
− 2π < −η

s
− 2π

s
<

ϕ

s
< −η

s
, (C15)

from which we deduce (using the definition (40) of the logarithm) that

H eff
η [Ss] = sH eff

η/s[S] + 2π

s−1∑
r=1

b∑
j=1

rDr |ψj 〉 〈ψj | D−r . (C16)

On top of that, since Ss is block diagonal, we immediately deduce its effective Hamiltonian in terms of the U
(n)
F from (29), so

we finally get

diag
(
H eff

η

[
U

(1)
F

]
, . . . ,H eff

η

[
U

(s)
F

]) = sH eff
η/s[S] + 2π

s−1∑
r=1

b∑
j=1

rDr |ψj 〉 〈ψj | D−r . (C17)

We now wish to take the exponential of it times this equality, and to compute the 3-form χ on the result. The two terms on the
right-hand side commute because they are both decomposed on the mutually orthogonal projectors Dr |ψj 〉 〈ψj | D−r , and the
left-hand side is block-diagonal so

s∑
n=1

(
eitH eff

η [U (n)
F ]

)∗
χ =

((
eitH eff

η/s [S])s
s−1∏
r=1

Drei2πrt	D−r

)∗

χ, (C18)

where 	 ≡ |ψ1〉〈ψ1| + · · · + |ψb〉〈ψb| is the projector on the fundamental domain F of S as explained in Sec. II B. Using again
identity (C2), we get

1

24π2

∫
[0,T ]×BZ

((
eitH eff

η/s [S])s
s−1∏
r=1

Drei2πrt	D−r

)∗

χ = 1

24π2

∫
[0,T ]×BZ

((
eitH eff

η/s [S])s)∗
χ +

s−1∑
r=1

(Drei2πrt	D−r )∗χ + 0, (C19)

where the 0 comes from the fact that e−i2πrt	 = Id both at t = 0 and 1. First, using identity (A13) of [28] and Eq. (14), we have

1

24π2

∫
[0,T ]×BZ

(Drei2πrt	D−r )∗χ = −r C1(Dr	D−r ) = −r C1(	) = 0 (C20)

for every r = 1, . . . ,s − 1, so that

1

24π2

∫
[0,T ]×BZ

s∑
n=1

(eitH eff
η [U (n)

F ])∗χ = 1

24π2

∫
[0,T ]×BZ

((
eitH eff

η/s [S])s)∗
χ. (C21)

Then, by induction on s of identity (C2), and with the fact that eitH eff
η/s [S] = S−1 at t = T we get

1

24π2

∫
[0,T ]×BZ

((
eitH eff

η/s [S])s)∗
χ = s

1

24π2

∫
[0,T ]×BZ

(
eitH eff

η/s [S])∗
χ + 1

8π2

∫
BZ

s−1∑
k=1

tr(S−1dSd(Sk)S−k). (C22)

Finally, because of the specific form of S given by (26), d(Sk)S−k is always block-diagonal for any k, with blocks of the form
d(Un . . . Un−k+1)(Un . . . Un−k+1)−1 and all the corresponding cyclic permutations. From which we infer

s−1∑
k=1

tr(S−1dSd(Sk)S−k) =
(

s∑
n=2

tr
(
U−1

n dUnd(Un−1 . . . U1)(Un−1 . . . U1)−1
)+ �

)
. (C23)
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Putting all together the last three equations, we get

1

24π2

∫
[0,T ]×BZ

s∑
n=1

(
eitH eff

η [U (n)
F ]

)∗
χ = s

1

24π2

∫
[0,T ]×BZ

(
eitH eff

η/s [S])∗
χ

+ 1

8π2

∫
BZ

(
s∑

n=2

tr
(
U−1

n dUnd(Un−1 . . . U1)(Un−1 . . . U1)−1
)+ �

)
, (C24)

which establishes the equality (C10) and completes the proof of identity (63) between the two invariants.
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(2014).
[28] M. Fruchart, Phys. Rev. B 93, 115429 (2016).

205413-21

https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1038/ncomms13756
https://doi.org/10.1038/ncomms13756
https://doi.org/10.1038/ncomms13756
https://doi.org/10.1038/ncomms13756
https://doi.org/10.1038/ncomms13918
https://doi.org/10.1038/ncomms13918
https://doi.org/10.1038/ncomms13918
https://doi.org/10.1038/ncomms13918
https://doi.org/10.1103/PhysRevA.94.013620
https://doi.org/10.1103/PhysRevA.94.013620
https://doi.org/10.1103/PhysRevA.94.013620
https://doi.org/10.1103/PhysRevA.94.013620
https://doi.org/10.1103/PhysRevA.82.033429
https://doi.org/10.1103/PhysRevA.82.033429
https://doi.org/10.1103/PhysRevA.82.033429
https://doi.org/10.1103/PhysRevA.82.033429
https://doi.org/10.1103/PhysRevLett.110.203904
https://doi.org/10.1103/PhysRevLett.110.203904
https://doi.org/10.1103/PhysRevLett.110.203904
https://doi.org/10.1103/PhysRevLett.110.203904
https://doi.org/10.1103/PhysRevB.89.075113
https://doi.org/10.1103/PhysRevB.89.075113
https://doi.org/10.1103/PhysRevB.89.075113
https://doi.org/10.1103/PhysRevB.89.075113
https://doi.org/10.1088/1367-2630/17/11/115008
https://doi.org/10.1088/1367-2630/17/11/115008
https://doi.org/10.1088/1367-2630/17/11/115008
https://doi.org/10.1088/1367-2630/17/11/115008
https://doi.org/10.1103/PhysRevA.91.022324
https://doi.org/10.1103/PhysRevA.91.022324
https://doi.org/10.1103/PhysRevA.91.022324
https://doi.org/10.1103/PhysRevA.91.022324
https://doi.org/10.1088/0022-3719/21/14/008
https://doi.org/10.1088/0022-3719/21/14/008
https://doi.org/10.1088/0022-3719/21/14/008
https://doi.org/10.1088/0022-3719/21/14/008
https://doi.org/10.1103/PhysRevB.54.8708
https://doi.org/10.1103/PhysRevB.54.8708
https://doi.org/10.1103/PhysRevB.54.8708
https://doi.org/10.1103/PhysRevB.54.8708
https://doi.org/10.1038/ncomms9260
https://doi.org/10.1038/ncomms9260
https://doi.org/10.1038/ncomms9260
https://doi.org/10.1038/ncomms9260
http://arxiv.org/abs/arXiv:1610.06873
https://doi.org/10.1103/PhysRevX.5.011012
https://doi.org/10.1103/PhysRevX.5.011012
https://doi.org/10.1103/PhysRevX.5.011012
https://doi.org/10.1103/PhysRevX.5.011012
https://doi.org/10.1038/ncomms11619
https://doi.org/10.1038/ncomms11619
https://doi.org/10.1038/ncomms11619
https://doi.org/10.1038/ncomms11619
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphys2063
https://doi.org/10.1142/S0129183199000449
https://doi.org/10.1142/S0129183199000449
https://doi.org/10.1142/S0129183199000449
https://doi.org/10.1142/S0129183199000449
https://doi.org/10.1103/PhysRevB.59.15836
https://doi.org/10.1103/PhysRevB.59.15836
https://doi.org/10.1103/PhysRevB.59.15836
https://doi.org/10.1103/PhysRevB.59.15836
https://doi.org/10.1007/s00220-005-1304-y
https://doi.org/10.1007/s00220-005-1304-y
https://doi.org/10.1007/s00220-005-1304-y
https://doi.org/10.1007/s00220-005-1304-y
http://link.aps.org/supplemental/10.1103/PhysRevB.95.205413
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1016/j.nuclphysb.2015.05.009
https://doi.org/10.1016/j.nuclphysb.2015.05.009
https://doi.org/10.1016/j.nuclphysb.2015.05.009
https://doi.org/10.1016/j.nuclphysb.2015.05.009
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1142/S021988781550098X
https://doi.org/10.1142/S021988781550098X
https://doi.org/10.1142/S021988781550098X
https://doi.org/10.1142/S021988781550098X
https://doi.org/10.1209/0295-5075/106/60002
https://doi.org/10.1209/0295-5075/106/60002
https://doi.org/10.1209/0295-5075/106/60002
https://doi.org/10.1209/0295-5075/106/60002
https://doi.org/10.1103/PhysRevB.93.115429
https://doi.org/10.1103/PhysRevB.93.115429
https://doi.org/10.1103/PhysRevB.93.115429
https://doi.org/10.1103/PhysRevB.93.115429



