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Abstract

Lay Abstract—The gene encoding the oxytocin receptor (OXTR), localized on chromosome 

3p25, is considered a promising candidate for explaining genetic vulnerability to autistic traits. 

Although several lines of evidence implicate OXTR SNP rs53576 (G/A) variation in social 

behavior, findings have been inconsistent, possibly because DNA methylation after stress exposure 

was eliminated from consideration. This study investigated the main and interactive effects of 

OXTR rs53576 genotype, stress exposure, and OXTR methylation on child autistic traits. Prenatal 

maternal stress exposure, but not OXTR rs53576 genotype and OXTR methylation, showed a main 

effect on child autistic traits. For child autistic traits in general and social communication problems 

in particular, we observed a significant OXTR rs53576 genotype by OXTR methylation 

interaction. More specifically, OXTR methylation levels were positively associated with social 

problems for OXTR rs53576 G-allele homozygous children but not for A-allele carriers. These 

results highlight the importance of incorporating epi-allelic information and support the role of 

OXTR methylation in child autistic traits.
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Scientific Abstract—Findings of studies investigating OXTR SNP rs53576 (G-A) variation in 

social behavior have been inconsistent, possibly because DNA methylation after stress exposure 

was eliminated from consideration. Our goal was to examine OXTR rs53576 allele-specific 

sensitivity for neonatal OXTR DNA methylation in relation to (1) a prenatal maternal stress 

composite, and (2) child autistic traits. Prospective data from fetal life to age 6 years were 

collected in a total of 743 children participating in the Generation R Study. Prenatal maternal 

stress exposure was uniquely associated with child autistic traits but was unrelated to OXTR 
methylation across both OXTR rs53576 G-allele homozygous children and A-allele carriers. For 

child autistic traits in general and social communication problems in particular, we observed a 

significant OXTR rs53576 genotype by OXTR methylation interaction in the absence of main 

effects, suggesting that opposing effects cancelled each other out. Indeed, OXTR methylation 

levels were positively associated with social problems for OXTR rs53576 G-allele homozygous 

children but not for A-allele carriers. These results highlight the importance of incorporating epi-

allelic information and support the role of OXTR methylation in child autistic traits.
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DNA methylation; oxytocin receptor gene (OXTR); autistic traits; stress exposure

Introduction

Autistic traits manifest early in life and indicate impairments in social interaction and 

communication as well as patterns of restrictive, repetitive interests and behaviors 

(American Psychiatric Association, 2013). Given the high heritability estimates for autistic 

traits (Hallmayer et al., 2011; Lichtenstein et al., 2010), much research has focused on 

unraveling their genetic underpinnings. Although previous studies have identified multiple 

genetic variants associated with autistic traits (Freitag, 2007; Geschwind, 2011; Liu et al., 

2015; Persico & Napolioni, 2013), effect sizes are small and cannot explain the high 

heritability estimates derived from twin studies. Here we investigate the main and interactive 

effects of stress exposure, OXTR rs53576 genotype, and OXTR methylation on child autistic 

traits.

The gene encoding the oxytocin receptor (OXTR), localized on chromosome 3p25, is 

considered a promising candidate for explaining genetic vulnerability to autistic traits 

(Yamasue, 2013). Although several lines of evidence implicate OXTR SNP rs53576 (G/A) 

variation in social behavior (e.g., Liu et al., 2010; Park et al., 2010; Wermter et al., 2010; Wu 

et al., 2005), the results to date have been inconclusive. Whereas some studies indicated that 

the rs53576 A-allele is a “risk” allele for impaired social functioning in children and 

adolescents (Liu et al., 2010; Wermter et al., 2010; Wu et al., 2005), others reported that the 

A-allele is associated with better social cognitive ability (Park et al., 2010). According to a 

recent meta-analysis, however, the OXTR rs53576 genotype is unrelated to social behavior 

or autistic traits (Bakermans-Kranenburg & Van IJzendoorn, 2014) However, the studies 

included in this meta-analysis did not examine the influence of epigenetic alterations.

A potential mechanism underlying the risk for autistic traits is the epigenetic process of 

DNA methylation. DNA methylation is involved in the transcriptional regulation of gene 
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expression that can be influenced by environmental exposures (Szyf, 2011). Higher levels of 

prenatal maternal stress exposure (e.g., maternal psychopathology, criminal behaviors, 

substance use) have been associated with higher methylation levels of the OXTR CpG island 

in neonates (Cecil et al., 2014). Elevated methylation of the OXTR CpG island, in turn, has 

been associated with suppressed gene expression (Kusui et al., 2001) and lower levels of 

circulating oxytocin (Dadds et al., 2014). Also of interest, Gregory et al. (2009) reported that 

elevated methylation of the OXTR CpG island decreased OXTR expression in the temporal 

cortex in autistic patients versus non-autistic controls. These findings suggest that OXTR 
methylation is functionally relevant to transcriptional regulation and possibly to the etiology 

of autistic traits.

It is increasingly recognized that DNA methylation patterns and associations may be allele-

specific (Meaburn et al., 2010). For example, Van der Knaap et al. (2015) showed that 

stressful life events were positively associated with methylation of the serotonin transporter 

gene (SLC6A4) in the serotonin-transporter-linked polymorphic region (5HTTLPR) 

protective ll variant but not in the sl/ss variants. Van IJzendoorn et al. (2010) reported that 

methylation of the SLC6A4 gene at 5HTTLPR was positively associated with risk of 

unresolved loss or trauma in the 5HTTLPR ll variant but not in the sl and ss variants. 

Interestingly, elevated methylation of the ss variant was related to a decreased risk of 

unresolved loss or trauma. Elevated methylation of gene promoters is generally expected to 

decrease gene expression, and DNA methylation might (1) nullify the effect of the protective 

allele, resulting in a functionality equivalent to the risk allele or (2) mask the effect of risk 

alleles (Van der Knaap et al., 2015; Van IJzendoorn et al., 2010).

Recently, Ziegler et al (2015) showed that OXTR methylation was predominant in social 

anxiety patients carrying the OXTR rs53576 A-allele. Similarly, Reiner et al (2015) reported 

that, in their sample of clinically depressed women and healthy controls, OXTR rs53576 A-

allele carriers exhibited significantly increased OXTR methylation levels. These studies 

provide suggestive evidence that OXTR methylation is allele-specific and might mask or 

reveal associations between OXTR rs53576 genotype and phenotype. However, it is not yet 

known whether carriers of the OXTR rs53576 G- and A-alleles are equally sensitive (1) to 

methylation after stress exposure and (2) to an increased risk for autistic traits by varying 

OXTR methylation.

The objective of the current study was to examine OXTR rs53576 allele-specific sensitivity 

for OXTR methylation in relation to (1) prenatal maternal stress exposure, and (2) child 

autistic traits at age 6. First, we investigated the extent to which prenatal maternal stress 

exposure interacted with OXTR rs53576 genotype in the prediction of OXTR methylation 

variation among neonates. Second, we investigated the extent to which prenatal maternal 

stress exposure and neonatal OXTR methylation combined either additively or interactively 

with OXTR rs53576 genotype to influence child autistic traits.
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Method

Setting

The current study was conducted in a subsample of children participating in the Generation 

R Study, a population-based prospective cohort from fetal life onwards in Rotterdam, the 

Netherlands. The design and sample characteristics of the Generation R Study have been 

described in detail elsewhere (Jaddoe et al., 2012). The study is in accordance with the 

guidelines proposed in the World Medical Association Declaration of Helsinki and has been 

approved by the Medical Ethics Committee of the Erasmus University Medical Center, 

Rotterdam. Written informed consent was obtained for all participating children. The 

subsample, known as the Generation R Focus Study, is ethnically homogeneous to exclude 

possible confounding or effect modification by ethnicity.

Study Population

DNA was collected from cord blood samples at birth. Information on autistic traits was 

obtained by two questionnaires when the children were 6 years of age. For 829 children, 

information on both OXTR DNA methylation and autistic traits was available. We excluded 

51 children with missing data on OXTR rs53576 genotype and an additional 35 children 

with missing data on prenatal maternal stress exposure. Overall, 743 children were included 

in one or more of our analyses. Sample characteristics are presented in Table 1.

Measures

Prenatal stress exposure—A prenatal cumulative stress composite had been previously 

created based on maternal reports (Rijlaarsdam et al., 2016), covering four stress domains: 

(i) life stress (e.g., death in family, illness, work problems), (ii) contextual stress (e.g., 

financial difficulties, housing problems), (iii) personal stress (e.g., psychopathology, 

substance abuse), and (iv) interpersonal stress (e.g., family relationship difficulties, 

arguments with friends). For each domain, items were summed and divided by the number 

of completed items, allowing a maximum of 25% missing data. Inter-correlations between 

the risk domain scores were positive and statistically significant (all p < .001). We used 

confirmatory factor analysis (CFA) in Mplus (Muthén & Muthén, 1998-2012) to assess the 

internal reliability of the stress domains and to extract one cumulative prenatal stress 

composite, with higher scores indicating greater stress exposure. CFA showed good model 

fit (RMSEA; acceptable fit ≤ 0.08; CFI and TLI; acceptable fit ≥ 0.90) (Browne & Cudeck, 

1993; Hu & Bentler, 1999). The prenatal maternal stress exposure score was logarithmic 

(Log 10) transformed to approximate a normal distribution.

Genotyping—DNA from cord blood was genotyped on Illumina 610 K/ 660 W platforms. 

Basic quality checks for each SNP included sample call rates (≥97.5%), SNP call rates 

(≥98%), minor allele frequency (MAF) ≥0.1% and deviation from the Hardy Weinberg 

equilibrium (p < 10-6). Samples were also checked for excess heterozygosity, gender 

accuracy, relatedness, and missing data. Following the quality control steps, phased 

genotype data were imputed to build 37 (hg19) of HapMap reference panel, using the 

MACH software (Li et al., 2010).

Rijlaarsdam et al. Page 4

Autism Res. Author manuscript; available in PMC 2018 March 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The distribution of rs53576 was: 42.4% GG, 47.1% GA, and 10.5% AA. There was no 

deviation of genotype frequencies from Hardy-Weinberg-Equilibrium [χ2(1) = 1.77, p = .

18]. Due to the skewed distribution of rs53576 genotype, and in line with previous research 

(Reiner et al., 2015), we used a dominant model contrasting A-allele carriers (AA/AG 

genotype) versus GG homozygotes.

DNA methylation data—Five hundred nanograms of DNA from cord blood (birth) 

underwent bisulfite conversion using the EZ-96 DNA Methylation Kit (Zymo Research 

Corporation, Irvine, USA). Illumina Infinium HumanMethylation450 BeadChips (Illumina 

Inc., San Diego, USA) were run following standardized criteria. Quality control checks for 

each sample included status of bisulfite conversion, sample call rates, color balance, staining 

efficiency, extension efficiency, hybridization performance, and stripping efficiency after 

extension. The present study included the 969 neonates who had DNA methylation data that 

passed quality control. Furthermore, all probes identified as having (i) a single nucleotide 

polymorphism in the single base extension site with a frequency of > 1% in the GoNLv4 

reference panel (Francioli et al., 2014) or (ii) non-optimal binding (non-mapping or mapping 

multiple times to either the normal or the bisulfite-converted genome) were removed from 

the dataset. Samples were normalized using the Dasen method described by Pidsley et al. 

(2013) and dye bias corrected (Touleimat & Tost, 2012). Normalized values are beta-values, 

which represent the methylation level at a CpG probe for each neonate. The current study 

was restricted to three probes (cg02192228, cg04523291, cg15317815;located within the 

OXTR CpG island; hg19; chr3:8808962–8811280), previously identified in the 450k 

HumanMethylation array, using a similar population and phenotype definition (Cecil et al., 

2014). These probes showed strong positive correlations (range r = 0.64 to 0.82, all p < 

0.001) and their beta-values were averaged to represent an OXTR methylation score. Data 

inspection revealed three outliers (z-score > 3.29), which were winsorized (i.e., transformed 

to match the next highest value).

Child autistic traits—Child autistic traits were assessed via parental ratings using an 18-

item short form of the Social Responsiveness Scale (SRS; Constantino, 2002; Constantino et 

al., 2003) when children were 6.0 (SD = 0.29) years of age. Specifically, children’s social 

responsiveness in the past six months was rated on a 4-point scale, ranging from 0 (never 
true) to 3 (almost always true). In the present study, the SRS total scale was used, as were 

the three subscales for further analysis. These subscales index social communication, social 

cognition, and autistic mannerisms. The SRS total scale correlated with the 13-item 

Pervasive Developmental Problems (PDP) scale of the Child Behavior Checklist (CBCL; 

Achenbach & Rescorla, 2000) (r = .50, p < .001), which was included in a sensitivity 

analysis (mean age = 6.0 years, SD = 0.20). The child outcome scores were logarithmic (Log 

10) transformed to approximate a normal distribution

Covariates—We adjusted for several covariates, including family background 

characteristics (i.e., child sex, child age, and maternal smoking during pregnancy), technical 

covariates (i.e., the sample’s array number and position on the array) and cell type 

proportions. Following the methods developed by Houseman et al. (2012), we included 

estimated proportions of cells in whole blood [proportion of CD8+ T-cells, CD4+ T-cells, 
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natural killer (NK) cells, B-cells, monocytes and granulocytes] to adjust for cell type 

composition (Houseman et al., 2012).

Information on child sex was obtained from midwife and hospital registries at birth. 

Information on maternal tobacco smoking was obtained by postal questionnaires in early, 

mid- and late pregnancy. Maternal smoking was categorized on the basis of all three 

questionnaires into “never smoked during pregnancy or quit as soon as pregnancy was 

known” versus “continued smoking during pregnancy”. Other family background 

characteristics, such as socio-economic status and prenatal maternal psychopathology, were 

already accounted for in the prenatal stress exposure score.

In follow-up analyses, we additionally adjusted for child nonverbal IQ and postnatal 

maternal depression. Child nonverbal IQ was assessed at age 6.0 years (SD = 0.28) using 

two subtests of the validated Dutch test battery ‘Snijders-Oomen Niet-verbale 

Intelligentietest–Revisie’ (SON-R 2½-7; Tellegen et al., 2005); Mosaics (spatial 

visualization abilities) and Categories (abstract reasoning abilities). Raw test scores were 

converted into nonverbal IQ scores using norms tailored to exact age. Maternal depression 

was assessed using the Brief Symptom Inventory (BSI; De Beurs, 2004; Derogatis & 

Melisaratos, 1983) when children were 3.03 (SD = 0.06) years of age. The BSI is a validated 

53-item self-report questionnaire, which is widely used in clinical and research settings. 

From this questionnaire, the 5-item subscale on depression was used. The depression score 

was logarithmic (Log 10) transformed to approximate a normal distribution.

Other potential confounders include maternal major depressive disorder (MDD) and 

medication (e.g., SSRI) use. This concerns rather small numbers (nMDD = 11; nSSRI = 8) in 

our population-based cohort, and we showed that offspring DNA methylation did not differ 

for maternal MDD, t(669) = 0.53, p = .599, or SSRI use, t(666) = 0.30, p = .296. Hence, 

these variables were not included as covariates.

Statistical Analysis

Linear regression analysis with product terms was performed in SPSS version 23 (IBM 

Corporation) to test our research questions. First, we examined OXTR rs53576 allele-

specific sensitivity for OXTR methylation in relation to prenatal maternal stress exposure. In 

the first step of the regression equation, we entered prenatal stress exposure, OXTR rs53576 

genotype, and covariates. In the second step, we entered the prenatal stress exposure x 

OXTR rs53576 genotype interaction.

Second, we examined OXTR rs53576 allele-specific sensitivity for OXTR methylation in 

relation to child autistic traits at age 6. In the first step, we entered OXTR methylation, 

OXTR rs53576 genotype, and covariates. We also accounted for prenatal stress exposure. In 

the second step, we entered the OXTR methylation x OXTR rs53576 genotype interaction. 

We also accounted for interactions of OXTR methylation and OXTR rs53576 genotype with 

prenatal stress exposure. Next to two-way interactions (step 2: OXTR methylation x prenatal 

stress exposure; OXTR rs53576 genotype x prenatal stress exposure), we also added a three-

way interaction (step 3: OXTR methylation x OXTR rs53576 genotype x prenatal stress 

exposure). All independent variables were mean-centered prior to analysis.
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Furthermore, we tested (1) the extent to which the observed findings were independent of 

child IQ and postnatal maternal depressive symptoms and (2) sex differences. Missing 

values on child IQ (n = 120) and postnatal maternal depressive symptoms (n = 61) were 

handled by use of the Markov Chain Monte Carlo multiple imputation technique with 

Predictive Mean Matching for continuous variables in SPSS. A total of five datasets were 

generated and parameter estimates were averaged over the set of analyses. Because we did 

not impute data of outcome measures, the study population differs per analysis (N = 680 in 

all primary analyses; N=721 in the sensitivity analysis using the CBCL PDP score).

Results

OXTR Methylation

Overall prenatal maternal stress exposure was unrelated to OXTR methylation, β = -.002, p 
= .940, across both OXTR rs53576 G-allele homozygous children and A-allele carriers, β 
for interaction = -.05, p = .122. Similarly, the specific prenatal maternal stress domains (i.e., 

life stress, contextual stress, personal stress, and interpersonal stress) were unrelated to 

OXTR methylation. This finding argues against a mediating role of OXTR methylation in 

the association between prenatal stress exposure and child autistic traits. There was no main 

effect of OXTR rs53576 genotype on OXTR methylation, β = .03, p = .318.

Child Autistic Traits

Table 2 shows the final regression model of child autistic traits (SRS social total problem 

scale and subscales: social communication, social cognition, and autistic mannerisms). Step 

1 explained a significant amount of variance in social total problem scores, R2 = .061, p < .

001, with a significant main effect of prenatal stress exposure, β = .15, p < .001, but not of 

OXTR rs53576 genotype, p = .381, or OXTR methylation, p =.967. Steps 2 and 3 produced 

non-significant increases in R2 (ΔR2 = .008, p = .134 and ΔR2 = .001, p = .409, 

respectively). With the non-significant prenatal stress exposure x methylation interaction and 

the prenatal stress exposure x OXTR rs53576 genotype interaction excluded from step 2, 

however, the increase in R2 (ΔR2 = .006) was significant, due to the significant OXTR 
methylation x OXTR rs53576 genotype interaction, β = .08, p = .038. Thus, the final, most 

parsimonious model as presented in Table 2 included all main effects (OXTR methylation, 

OXTR rs53576 genotype, and prenatal stress exposure) and the interaction effect of interest 

(OXTR methylation x OXTR rs53576 genotype).

As shown in Table 2, this OXTR methylation x OXTR rs53576 genotype interaction was 

specific to social communication problem scores, β = .08, p = .044. The association between 

OXTR methylation and communication problem scores was stronger for G-allele 

homozygous children (β = .14, p = .068) than for A-allele carriers (β = -.03, p = .639). Of 

note, despite these numerical differences between the association of OXTR methylation with 

communication problem scores for G-allele homozygous children versus A-allele carriers, 

neither contrast was statistically significant. The observed interaction between OXTR 
methylation and OXTR rs53576 genotype remained significant after adjustment for child IQ, 

β = .08, p = .038, and postnatal maternal depressive symptoms, β = .08, p = .028, as well as 

after the inclusion of the sex x OXTR methylation, sex x OXTR rs53576 genotype, and sex x 
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OXTR methylation x OXTR rs53576 genotype interactions (all p > .05), β = .08, p = .045. 

The observed interaction also held when we excluded children with the highest levels of 

autistic traits, based on cutoffs for screening in a population-based setting [SRS weighted 

scores > 1.078 in boys (n = 6) and > 1.00 in girls (n = 1)] (Constantino, 2002), β = .09, p = .

029. Furthermore, a similar OXTR methylation x OXTR rs53576 genotype interaction 

emerged in the analysis of CBCL pervasive developmental problems, β = .11, p = .004 (N = 

721), as well as in the analysis of averaged SRS and CBCL scores, β = .12, p = .003 (N = 

658). Increased levels of methylation were statistically significantly associated with more 

CBCL pervasive developmental problems and higher averaged SRS and CBCL scores in 

OXTR rs53576 G-allele homozygous children (β = .22, p = .004 and β = .21, p = .005, 

respectively) but not in A-allele carriers (β = -.08, p = .200 and β = -.09, p = .138, 

respectively). Thus, according to these latter findings, OXTR rs53576 G-allele homozygous 

children with higher levels of OXTR DNA methylation had higher social problem scores.

As a follow-up analysis, we examined the three CpGs included in the OXTR DNA 

methylation score separately. The OXTR rs53576 genotype x DNA methylation interaction 

was statistically significant for cg15317815 (β = .10, p = .010) but not for cg04523291 (β 
= .06, p = .131) and cg02192228 (β = .05, p = .219).

Discussion

The objective of this prospective population-based study was to examine OXTR rs53576 

allele-specific sensitivity for neonatal OXTR methylation in relation to (1) prenatal maternal 

stress exposure, and (2) child autistic traits at age 6. Our main finding was that OXTR 
rs53576 genotype and methylation of the OXTR CpG island contributed interactively, but 

not additively, to child autistic traits in general and social communication problems in 

particular. Specifically, the association between OXTR methylation and communication 

problem scores was stronger for G-allele homozygous children than for A-allele carriers. 

Prenatal maternal stress exposure was uniquely associated with child autistic traits but was 

unrelated to OXTR methylation across both OXTR rs53576 G-allele homozygous children 

and A-allele carriers.

The current findings extend those of others who have demonstrated that autistic traits may 

arise from genetic factors (Freitag, 2007; Geschwind, 2011; Liu et al., 2015; Persico & 

Napolioni, 2013) whose expression may be regulated by DNA methylation. Previous studies 

suggest, although not unequivocally, that the OXTR rs53576 A-allele is a “risk allele” for 

autistic traits (Liu et al., 2010; Wermter et al., 2010; Wu et al., 2005). Elevated methylation 

of the OXTR CpG island is expected to decrease gene expression (Kusui et al., 2001) and 

levels of circulating oxytocin (Dadds et al., 2014). Thus, OXTR methylation may decrease 

the expression of the otherwise protective OXTR rs53576 GG-allele and elevate the risk for 

autistic traits. Consequently, one would expect the social communication problems of G-

allele homozygous children to resemble more closely those of A-allele carriers. Future 

research will be needed to establish the functional relevance of the observed findings to gene 

expression and modulation of oxytocin levels in the brain.

Rijlaarsdam et al. Page 8

Autism Res. Author manuscript; available in PMC 2018 March 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



OXTR methylation and OXTR rs53576 genotype were not interrelated but combined 

interactively to influence child autistic traits. This finding of no allele-specific methylation is 

discordant with those of Reiner et al. (2015) and Ziegler et al. (2015), suggesting that OXTR 
rs53576 A-allele carriers exhibit significantly increased OXTR methylation levels. 

Furthermore, in contrast to the study by Cecil et al. (2014), OXTR methylation did not 

associate with prenatal stress exposure. Inconsistent findings may be explained, at least in 

part, by differences in sample composition. Ziegler et al (2015) showed that, when analyzing 

social anxiety patients and healthy controls separately, rs53576 allele-specific OXTR 
methylation was driven by the patient group. Furthermore, according to Cecil et al. (2014), 

the association between prenatal maternal personal stress and OXTR methylation was 

observed only for early-onset persistent conduct problems youth with low versus high 

internalizing problems.

Particular strengths of the current study are the prospective population-based design and the 

inclusion of a wide range of covariates (e.g., child and family characteristics, cellular 

heterogeneity of the blood cells). Including child IQ and maternal postnatal depressive 

symptoms as covariates, and excluding children with the highest autistic trait scores, did not 

change the results. Interestingly, the observed OXTR methylation x OXTR rs53576 

genotype interaction did not differ between boys and girls and extended to child pervasive 

developmental problems. Of note, the observed interaction reflected shared variance rather 

than variance due to solely autistic traits or pervasive developmental problems.

Several limitations should also be considered. First, because DNA methylation was assessed 

only once (i.e., at birth), stress-induced changes in DNA methylation could not be examined. 

Longitudinal research is needed to more fully establish the relationships between stress 

exposure and DNA methylation in the prediction of child autistic traits. Second, the 

magnitude of the observed associations was not large, and replication in larger 

epidemiological samples is warranted. Third, all measures except OXTR DNA methylation 

and genotype were based on maternal reports, raising the possibility of shared method 

variance between prenatal maternal stress exposure and child autistic symptoms. Fourth, our 

European-ancestry sample decreased generalizability. In a recent meta-analysis on oxytocin-

related behavior, the combined overall effect size for rs53576 was heterogeneous in the total 

set of studies, but homogeneous in the studies with mainly European participants 

(Bakermans-Kranenburg & Van IJzendoorn, 2014). Thus, although our ethnically 

homogeneous sample is informative, investigations in other ethnicities are warranted to 

address the generalizability of our findings. Finally, although some studies have shown that 

blood samples are adequate proxies of DNA methylation in other tissues such as the brain 

(Farre et al., 2015; Houtepen et al., 2016), the OXTR gene might be differentially expressed 

in different tissues. Therefore, it will be important to establish the extent to which our 

findings reflect associations in the brain. Also, there was no validation of the DNA 

methylation patterns using different techniques, such as pyrosequencing. The present results 

should be considered hypothesis-generating and in need of replication.

This candidate gene study focused on the specific hypothesis that OXTR rs53576 genotype 

and methylation of the OXTR CpG island contributed interactively to child autistic traits at 

age 6. A focused approach optimizes the statistical power of the methylation by genotype 
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interaction analyses. Given that other OXTR variants (e.g., rs2254298, see Bakermans-

Kranenburg & Van IJzendoorn, 2014) have also been suggested to be associated with child 

social behavior, rs2254298 allele-specific sensitivity for neonatal OXTR DNA methylation 

in relation to prenatal maternal stress exposure and child autistic traits may be one of the 

promising avenues for future research. Furthermore, the current study focused on offspring 

OXTR genotype and DNA methylation at birth, which are all independent of postnatal risk. 

It will be important to investigate not only maternal stress during pregnancy, but also pre-

pregnancy (e.g., a maternal history of childhood abuse, see Heim et al., 2009) and postnatal 

(e.g., post-traumatic stress, see Eidelman-Rothman et al., 2015) stress exposure, as well as 

their relative, temporal contributions to offspring OXTR DNA methylation and autistic traits.

In conclusion, the current findings support previous research linking prenatal maternal stress 

exposure and child autistic traits, but additionally point to molecular genetic differences that 

may be implicated in gene expression as a factor contributing to autistic traits. We observed 

a significant OXTR rs53576 genotype x OXTR methylation interaction in the absence of 

main effects, suggesting that opposing effects on child social problems cancelled each other 

out. Indeed, OXTR methylation increased the risk for social problems in OXTR rs53576 G-

allele homozygous children but not in A-allele carriers. These findings might point to a 

genetic differential susceptibility model (Bakermans-Kranenburg & Van IJzendoorn, 2015). 

The importance of incorporating epi-allelic information had been previously demonstrated in 

the context of, for example, SLC6A4 methylation, 5HTTLPR genotype, stressful life events 

and unresolved loss or trauma (Van der Knaap et al., 2015; Van IJzendoorn et al., 2010), but 

not yet in the context of OXTR methylation, OXTR rs53576 genotype and child autistic 

traits. The apparent inconsistency in the literature on OXTR rs53576 genotype and social 

functioning might be explained, at least in part, by varying OXTR methylation.
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Table 1
Sample Characteristics (N = 743)

Oxytocin Receptor Gene (OXTR) rs53576 genotype

AA/AG
(n = 428)

GG
(n = 315)

Prenatal stress exposure, score (log) 0.15 ± 0.10 0.14 ± 0.10

OXTR methylation at birth, score 0.20 ± 0.05 0.20 ± 0.05

SRS total score at age 6, score (log) 0.07 ± 0.06 0.07 ± 0.07

     Social communication, score (log) 0.06 ± 0.07 0.07 ± 0.08

     Social cognition, score (log) 0.10 ± 0.09 0.11 ± 0.10

     Autistic mannerisms, score (log) 0.04 ± 0.07 0.04 ± 0.07

Pervasive developmental problems at age 6, score (log) 0.37 ± 0.28 0.41 ± 0.29

Sex child (% boy) 53.0 48.6

Child nonverbal IQ, score 99.83 ± 15.38 100.23 ± 14.48

Maternal smoking during pregnancy (% yes) 11.0 12.7

Maternal postnatal depressive symptoms, score (log) 0.03 ± 0.07 0.04 ± 0.08

Note. Unless otherwise specified, values represent mean ± SD. No significant group differences were observed.
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