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DISINTEGRATION OF POSITIVE ISOMETRIC GROUP

REPRESENTATIONS ON Lp-SPACES

MARCEL DE JEU AND JAN ROZENDAAL

Abstract. Let G be a Polish locally compact group acting on a Polish space X
with a G-invariant probability measure µ. We factorize the integral with re-
spect to µ in terms of the integrals with respect to the ergodic measures on X,
and show that Lp(X, µ) (1 ≤ p < ∞) is G-equivariantly isometrically lattice
isomorphic to an Lp-direct integral of the spaces Lp(X, λ), where λ ranges over
the ergodic measures on X. This yields a disintegration of the canonical repre-
sentation of G as isometric lattice automorphisms of Lp(X, µ) as an Lp-direct
integral of order indecomposable representations.

If (X′, µ′) is a probability space, and, for some 1 ≤ q < ∞, G acts in a
strongly continuous manner on Lq(X′, µ′) as isometric lattice automorphisms
that leave the constants fixed, then G acts on Lp(X′, µ′) in a similar fashion
for all 1 ≤ p < ∞. Moreover, there exists an alternative model in which
these representations originate from a continuous action of G on a compact
Hausdorff space. If (X′, µ′) is separable, the representation of G on Lp(X′, µ′)
can then be disintegrated into order indecomposable representations.

The notions of Lp-direct integrals of Banach spaces and representations
that are developed extend those in the literature.

1. Introduction and overview

There is an extensive literature on unitary group representations. Apart from an
intrinsic interest and mathematical relevance, the wish to understand such represen-
tations originates from quantum theory, where the unitary representations of the
symmetry group of a physical system have a natural role. However, in many cases
where a symmetry yields a unitary representation of the pertinent symmetry group,
there is also a family of canonical representations on Banach lattices. The rotation
group of R3 acts on the 2-sphere in a measure preserving fashion, yielding a canon-
ical unitary representation on L2(S2, dσ), but there are, in fact, canonical strongly
continuous representations as isometric lattice automorphisms of the (real) Banach
lattice Lp(S2, dσ) for all 1 ≤ p < ∞. Likewise, for all 1 ≤ p < ∞, the motion group
of Rd acts in a strongly continuous fashion as isometric lattice automorphisms on
the Banach lattice Lp(Rd, dx). Representations of groups as isometric lattice au-
tomorphisms of Banach lattices are quite common. In spite of this, not much is
known about such representations or, for that matter, about the related positive
representations of ordered Banach algebras and Banach lattice algebras in Banach
lattices; the material in [5–8,23,24] is a modest start at best. Nevertheless, it seems
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quite natural to investigate such representations. Moreover, given the long-term
success, in a Hilbert space context, of the passage from single operator theory to
groups and algebras and their representations—a development that was initially
also stimulated and guided by the wish to understand unitary group representa-
tions—it seems promising to develop a similar theory for representations in Banach
lattices.

One of the highlights in abstract representation theory in Hilbert spaces is the
insight that every strongly continuous unitary representation of a separable locally
compact Hausdorff group on a separable Hilbert space can be disintegrated into irre-
ducible unitary representations. This follows from a similar theorem for C∗-algebras
and the standard relation between the unitary representations of a group and the
non-degenerate representations of its group C∗-algebra; see [9, Theorem 8.5.2 and
18.7.6]. Every representation is thus built from irreducible ones. Is something anal-
ogous possible for strongly continuous actions of a locally compact Hausdorff group
as isometric lattice automorphisms of Banach lattices? This seems a natural guid-
ing question when studying representations in an ordered context. It is still very
far from having been answered in general, and presumably one will have to restrict
oneself to a class of suitable Banach lattices. After all, the unitary theory works
particularly well in just one space, namely ℓ2, and it seems doubtful that there can
be a uniform answer for the existing diversity of Banach lattices.

What, exactly, should ‘irreducible’ mean in an ordered context? When searching
for the parallel with unitary representations it is actually more convenient to think
of irreducible unitary representations as indecomposable unitary representations,
which happens to be the same notion, and look for the analogue of the latter.
Given a representation of a group G as lattice automorphisms of two vector lattices
E1 and E2, there is a natural representation of G as lattice automorphisms of the
vector lattice E = E1 ⊕ E2. If a representation of G as lattice automorphisms
of a given vector lattice E is not such an order direct sum of two non-trivial sub-
representations, then one will want to call it order indecomposable. Actually, if
E = E1 ⊕ E2 is an order direct sum of vector lattices, then more is true than one
would perhaps expect. E1 and E2 are automatically projection bands, and they
are each other’s disjoint complement; this is a special case of [25, Theorem 11.3].
Coming from the other side, if a projection band in E is invariant under a group
of lattice automorphisms, then so is its disjoint complement, and hence there is a
corresponding decomposition of the representation into two sub-representations as
lattice automorphisms. All in all, we have the following natural definition.

Definition 1.1. Let E be a vector lattice, and let ρ be a homomorphism from G
into the group of lattice automorphisms of E. Then the representation ρ is order
indecomposable if {0} and E are the only G-invariant projection bands in E.

Note that G acts on E as lattice automorphisms precisely when it acts as positive
operators; hence one can also refer to such a representation as a positive represen-
tation of G on E.

It is a non-trivial fact that an order indecomposable positive representation of a
finite group on a Dedekind complete vector lattice is finite dimensional; this follows
from [6, Theorem 3.14]. It is also possible to show that every finite dimensional
positive representation of a finite group on an Archimedean vector lattice is an
order direct sum of order indecomposable positive representations, where the latter
can be classified [6, Theorem 4.10 and Corollary 4.11]. This answers our question
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about disintegrating finite dimensional positive representations of finite groups. The
matter is still open for infinite dimensional positive representations of finite groups.

For positive representations of an abstract group G on a normalized Banach
sequence space E, it is true that the representation is a (generally infinite) order
direct sum of order indecomposable positive representations; see [7, Theorem 5.7].
If the group has compact image in the strong operator topology, and E has order
continuous norm (this includes the spaces ℓp for 1 ≤ p < ∞), then these order inde-
composable positive representations are all finite dimensional. This is an analogue
of the well known theorem for unitary representations of compact Hausdorff groups.

At the time of writing, not much (if anything) seems to be known about disinte-
gration of positive group representations into order indecomposable representations
beyond the above results. These are both concerned with compact groups and, anal-
ogously to the unitary case, the disintegration is then a discrete summation. In the
present paper, a technically more challenging context is considered, and we con-
sider a class of positive representations where the disintegration can be of a truly
continuous nature. This disintegration is obtained in two main steps.

This first main step—we omit the necessary conditions for the sake of clar-
ity—consists of a disintegration into order indecomposable representations of the
representations of a locally compact Hausdorff group G as isometric lattice auto-
morphisms of Lp-spaces, as canonically associated with an action of G on a Borel
probability space (X,µ) with invariant measure µ. Such a representation is order
indecomposable precisely when µ is ergodic. One might therefore hope that, some-
how, a disintegration of µ into ergodic measures λ will yield a disintegration of
the canonical positive representation on Lp(X,µ) in terms of the order indecom-
posable canonical representations on Lp(X,λ) for ergodic λ. This can in fact be
done, and Theorem 4.9 clarifies what ‘somehow’ is here: in a G-equivariant fashion,
the Banach lattice Lp(X,µ) is an Lp-direct integral of the Banach lattices Lp(X,λ)
for ergodic λ, where the Lp-direct integral is with respect to a Borel probability
measure on the set of ergodic measures. Apart from the framework of direct in-
tegrals of Banach spaces as such, which could also have representation theoretical
applications in other contexts, the principal ingredient for the proof of this result
is a factorization of the integral over X with respect to µ in terms of those with
respect to the ergodic measures; see Theorem 4.5. In spite of its aesthetic appeal,
we are not aware of a reference for the pertinent formula in this Tonelli–Fubini-type
theorem, which itself is based on the aforementioned disintegration of µ into ergodic
measures.

Aside, let us briefly mention that there is no uniqueness statement concerning
the isomorphism classes occurring in the disintegration Theorem 4.9. Given the
subtleties necessary in the study of Type I groups and C∗-algebras in the Hilbert
space context, it does not seem to be realistic to strive for such a result at this
moment.

The second main step consists of removing the hypothesis that the given represen-
tation of G on Lp(X,µ) originate from an action on the underlying probability space
(X,µ). Under mild conditions, it can be shown that an action of G on Lp(X,µ) as
isometric lattice automorphisms that leave the constants fixed, can be transferred to
another model where there is such an underlying action; see Theorem 5.14. We are
then back in the ergodic theoretical context, and combination with the result from
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the first main step yields a disintegration result for these representations into or-
der indecomposable representations as well. The pertinent Theorem 5.15 should be
thought of as an ordered relative of the general unitary disintegration result [9, The-
orem 18.7.6]. The key transfer Theorem 5.14 for this step is strongly inspired by
the material in [10], and it is a pleasure to thank Markus Haase for drawing our
attention to this.

It seems that, for practical purposes, our main results have a rather broad range
of validity; we will now make a few technical remarks to support this statement.
One of the re-occurring hypotheses in this paper is that a space be Polish (i.e.
separable and metrizable in a complete metric). For a locally compact Hausdorff
space, being Polish is equivalent to being second countable; see [16, Theorem 5.3].
Thus all Lie groups are Polish (for a more extensive list of Polish groups see [2,
Section 1.3]), and, more generally, so are all differentiable manifolds. Therefore,
the factorization Theorem 4.5 and the disintegration Theorem 4.9—for which the
underlying Polish space X need not even be locally compact—are applicable to all
actions of Lie groups on differentiable manifolds. In a similar vein, we note that
it follows from the combination of [3, Vol. I, Exercise 1.12.102] and [3, Vol. II,
Example 6.5.2] that the measure space (X,µ) is always separable whenever X is
a separable metric space and µ is a Borel probability measure on X . Therefore,
the disintegration Theorem 5.15, where this separability is assumed, covers several
commonly occurring situations as well.

This paper is organized as follows.
In Section 2, we introduce some terminology and notation, and establish a few

preliminary results on order indecomposability and strong continuity of canonical
representations of groups on Lp-spaces.

The first part of Section 3 is concerned with an extension of part of the theory
of direct integrals of Banach spaces and Banach lattices in [15]. The measurable
families of norms figuring in [15] are not sufficient for our context, where a measur-
able family of semi-norms occurs naturally. Moreover, our measures need not be
complete. We generalize the theory accordingly. After that, Lp-direct integrals of
representations are introduced, and possible perspectives in representation theory
are briefly discussed. The usual direct integrals of representations on separable
Hilbert spaces are shown to be special cases of the general formalism.

Section 4 contains the results of the first main step, i.e. the factorization Theo-
rem 4.5 and the disintegration Theorem 4.9 in the case of an action on the underly-
ing measure space. As a worked example, we give a concrete disintegration of the
representations of the unit circle on the Lp-spaces of the closed unit disk, as these
are canonically associated with the action of the circle on this disk as rotations.

Section 5 is concerned with disintegrating representations when there is (initially)
no action on an underlying measure space. Its main result, the disintegration
Theorem 5.15, is our ordered relative of the general unitary disintegration in [9,
Theorem 18.7.6].

Section 6 contains some remarks on the current status of the theory and on
possible further developments.

Reading guide. Even though this paper was motivated by a representation the-
oretical question in an ordered context (as is reflected in the terminology of the
present section), the interpretation of the main results as answers to this question
is almost just an afterthought. The reader can find definitions and terminology
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concerning vector lattices in e.g. [25], but, if so desired, the limited number of oc-
currences of this terminology in the sequel that go beyond the notions of a vector
lattice and a lattice homomorphism can also safely be ignored. The paper can
then be read from a primarily ergodic theoretical, functional analytical, or general
representation theoretical perspective.

2. Preliminaries

In this section, we fix terminology and notation, and establish a few preliminary
results on group representations.

2.1. Terminology and notation. All vector spaces, except the Hilbert spaces in
Section 3.3, are over the real numbers. This is no essential restriction, as the results
in this paper extend to complex Lp-spaces and (in Section 3) to complex Banach
spaces and Banach lattices in an obvious manner, but this convention reduces the
necessary terminology and size of the proofs.

Topological spaces are not assumed to be Hausdorff. A topological space is called
locally compact if every point has an open neighbourhood with compact closure.

If X is a topological space, then Cc(X) and Cb(X) denote the continuous func-
tions on X that have compact support and that are bounded, respectively.

Topological groups are groups for which inversion is continuous and multiplica-
tion is continuous in two variables simultaneously. They are not assumed to be
Hausdorff or locally compact.

A topological dynamical system is a pair (G,X), where the topological group G
acts as homeomorphisms on the topological space X such that the map (g, x) 7→ gx
is continuous from G ×X to X . The system is called Polish if both G and X are
Polish.

A measure on a σ-algebra is σ-additive and takes values in [0,∞]. It is not
assumed to be σ-finite. If X is a topological space, then a Borel measure is a
measure on the Borel σ-algebra of X , without any further assumptions.

For (X,µ) a measure space and 1 ≤ p ≤ ∞, Lp(X,µ) denotes the semi-normed
space of all p-integrable extended functions f : X → R ∪ {−∞,∞}, and Lp(X,µ)
denotes the Banach lattice of all equivalence classes of extended functions f ∈
Lp(X,µ), under µ-almost everywhere equality. We will often work with an extended
function f that is an element of Lp(X,µ) for different measures µ on X , and we
will consider the equivalence classes of f in Lp(X,µ) for these µ. It is essential to
keep a clear distinction between these objects, so (with the exception of Section 5)
we do not identify functions that are equal almost everywhere, and, when p is fixed,
we denote the equivalence class in Lp(X,µ) of an element f ∈ Lp(X,µ) by [f ]µ.

In the same vein, if V is a vector space, ω is an index, and ‖ · ‖ω is a semi-norm
on V , then we denote the equivalence class of x ∈ V in V/ ker(‖ · ‖ω) by [x]ω .

If Y is a subset of X , then 1Y is the characteristic function of Y on X .
If B is a normed space, then L(B) denotes the bounded linear operators on B.

2.2. Preliminaries on group representations. Suppose that the abstract group
G acts as measure preserving transformations on the measure space (X,µ). We
then say that µ is a G-invariant measure. In this case, for every 1 ≤ p < ∞,
ρµ(g)[f ]µ := [x 7→ f(g−1x)]µ is a well-defined representation of G as isometric lat-
tice isomorphisms of Lp(X,µ). We will refer to this representation (and to similarly
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defined representations on other function spaces) as the canonical representation
on Lp(X,µ); in the literature this is also called a Koopman representation.

A measurable subset Y of X is µ-essentially G-invariant if µ(gY ∆ Y ) = 0 for
all g ∈ G, where Y ∆ gY := (Y ∪ gY ) \ (Y ∩ gY ) is the symmetric difference of Y
and gY . An ergodic measure on X is a G-invariant measure µ such that µ(Y ) = 0
or µ(Y ) = 1 for each µ-essentially G-invariant measurable subset Y of X .

We will now investigate the relationship between the ergodicity of the measure
µ and the order indecomposability of ρµ : G → L(Lp(X,µ)). This is essential for
the representation theoretical interpretation of our disintegration results, but not
for these results as such, so that the reader with a primarily ergodic theoretical or
functional analytic nterest can skip the next two results. We need the following
lemma, which follows easily from [25, p. 44].

Lemma 2.1. Let (X,µ) be a σ-finite measure space, and let 1 ≤ p ≤ ∞. If Y ⊆ X
is measurable, let

BY = {[f ]µ ∈ Lp(X,µ) : f(y) = 0 for µ-almost all y ∈ Y } .

Then BY is a projection band in Lp(X,µ), and all projection bands in Lp(X,µ) are
of this form. If Y1 and Y2 are measurable subsets of X, then BY1 = BY2 if and only
if µ(Y1∆Y2) = 0.

Recall that the measure algebra Aµ of (X,µ) consists of the equivalence classes
[Y ]µ of measurable subsets Y ofX , where Y1 and Y2 are equivalent when µ(Y1∆Y2) =
0. Lemma 2.1 shows that there is a bijection between the elements of Aµ and the
projection bands in Lp(X,µ), where an element of [Y ]µ of the measure algebra
corresponds to the well-defined band B[Y ]µ := BY .

If an abstract group G′ acts as positive operators on Lp(X,µ), then it permutes
the projection bands in Lp(X,µ). If, as is the case for our group G, this positive
action originates canonically from an action as measure preserving transformations
on (X,µ), then G also acts canonically on Aµ: for g ∈ G and [Y ] ∈ Aµ, the action
g[Y ]µ := [gY ]µ is well-defined. These two actions are compatible with the map
[Y ]µ 7→ B[Y ]µ . This is the content of part (1) of the next result, and it is exploited
in parts (2), (3), and (4).

Proposition 2.2. Let G be an abstract group, acting as measure preserving trans-
formations on a σ-finite measure space (X,µ), and let 1 ≤ p ≤ ∞.

(1) If [Y ]µ ∈ Aµ, and B[Y ]µ is the corresponding projection band in Lp(X,µ),
then ρµ(g)B[Y ]µ = Bg[Y ]µ (g ∈ G).

(2) For g ∈ G, the projection bands in Lp(X,µ) that are fixed by g correspond
to the fixed points of g in Aµ.

(3) The G-invariant projection bands in Lp(X,µ) correspond to the fixed points
of G in Aµ.

(4) The canonical representation ρµ : G → L(Lp(X,µ)) of G as isometric
lattice automorphisms on Lp(X,µ) is order indecomposable if and only if µ
is ergodic.

Proof. As for (1), let [f ]µ ∈ B[Y ]µ , so that µ({Y ∩ suppf}) = 0. By the invariance
of µ, we have µ({gY ∩ g suppf}) = 0. Since g suppf = supp gf , we see that µ({gY ∩
supp gf}) = 0, i.e. ρµ(g)[f ]µ ∈ BgY = B[gY ]µ = Bg[Y ]µ . Hence ρµ(g)B[Y ]µ ⊆ Bg[Y ]µ .

Then also ρµ(g)
−1Bg[Y ]µ = ρµ(g

−1)B[gY ]µ ⊆ Bg−1[gY ]µ) = B[Y ]µ , so that Bg[Y ]µ ⊆
ρµ(g)B[Y ]µ .
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The parts (2) and (3) are immediate from (1).
As for (4), we know from (2) that ρµ is order indecomposable if and only if [∅]µ

and [X ]µ are the only points of Aµ that are fixed by the G-action. The latter
condition is equivalent to the ergodicity of µ. �

As a further preliminary, we will now investigate the strong continuity of canon-
ical representations of topological groups on spaces of continuous functions with
compact support and on Lp-spaces, the latter being our principal point of interest.
The matter is usually considered in the context of a locally compact Hausdorff group
and a locally compact Hausdorff space (see e.g. [13, p. 68]), but more can be said.
The results clarify natural questions concerning our context (see e.g. Corollary 2.8),
and, in view of possible future study of canonical group actions on Lp-spaces, this
seems a natural moment to collect a few basic facts in a sharp formulation.

A reference for the following result would be desirable, but we are not aware of
one for the statement in this generality. The left and right uniform continuity of
compactly supported continuous functions on a locally compact Hausdorff group
(see [13, Proposition 2.6]) are special cases.

Lemma 2.3. Let (G,X) be a topological dynamical system. Then the canonical rep-
resentation ρ of G as isometric lattice automorphisms of (Cc(X), ‖ · ‖∞) is strongly
continuous.

Proof. It is sufficient to prove that g 7→ ρ(g)f is continuous at e for each f ∈ Cc(X).
Let ǫ > 0. For each x ∈ X , there exist a symmetric open neighbourhood Ux of e in G
and an open neighbourhood Vx of x in X such that |f(g−1y)− f(x)| < ǫ/2 for all
g ∈ Ux and y ∈ Vx. Let

⋃n
i=1 Vxi

be a finite cover of suppf , and put U =
⋂n

i=1 Uxi
.

If x ∈ suppf , say x ∈ Vxi0
, and g ∈ U ⊆ Uxi0

, then |f(g−1x)− f(x)| ≤ |f(g−1x)−
f(xi0)| + |f(x) − f(xi0 )| < ǫ/2 + ǫ/2 = ǫ. Since U is symmetric, we also have
|f(gx)− f(x)| < ǫ for all x ∈ suppf and g ∈ U . Therefore, if g ∈ U and x ∈ X are
such that g−1x ∈ suppf , we have |f(g−1x) − f(x)| = |f(g(g−1x)) − f(g−1x)| < ǫ.
We have now shown that, for g ∈ U , |f(g−1x) − f(x)| < ǫ whenever x ∈ suppf or
g−1x ∈ suppf . Since |f(g−1x)− f(x)| = 0 for all remaining x, we are done. �

Proposition 2.4. Let (G,X) be a topological dynamical system, and assume that
G is locally compact. Let µ be a Borel measure on X that is finite on compact
subsets of X. Then, for 1 ≤ p < ∞, the canonical representation ρµ of G as
possibly unbounded lattice automorphisms of (Cc(X), ‖ · ‖p) is strongly continuous.
If µ is G-invariant, then the canonical representation ρµ of G as isometric lattice
automorphisms of the closure of Cc(X) in Lp(X,µ) is strongly continuous.

Proof. Let f ∈ Cc(X), g0 ∈ G, and ǫ > 0 be given. Choose an open neighbourhood
V of e in G with compact closure. Then g0V · suppf is compact, hence has finite
measure. By Lemma 2.3, there exist an open neighbourhood U of e in G such that
µ(g0V · suppf)‖ρµ(g)f − ρµ(g0)f‖

p
∞ < ǫp for all g ∈ g0U . We may assume that
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U ⊆ V . Then, for g ∈ g0U ,

‖ρµ(g)f − ρµ(g0)f‖
p
p =

∫

X

|(ρµ(g)f)(x) − (ρµ(g0)f)(x)|
p dµ(x)

=

∫

g suppf∪g0 suppf

|(ρµ(g)f)(x)− (ρµ(g0)f)(x)|
p dµ(x)

≤

∫

g0V ·suppf

|(ρµ(g)f)(x)− (ρµ(g0)f)(x)|
p dµ(x)

≤

∫

g0V ·suppf

‖ρµ(g)f − ρµ(g0)f‖
p
∞ dµ(x)

< ǫp.

The final statement follows from a 3ǫ-argument. �

Proposition 2.4 points at the heart of the matter: under a mild condition on
the G-invariant Borel measure µ, the natural representation subspace for G in
Lp(X,µ) is the closure of Cc(X). In some cases, this closure equals Lp(X,µ), and
we include this well-known result for the sake of completeness. For this, recall
(see [1, Definition 18.4]) that a Borel measure µ on a locally compact Hausdorff
space is said to be regular if

µ(K) < ∞ for all compact subsets K of X,

µ(Y ) = inf{µ(V ) : Y ⊆ V, V open} for all Borel subsets Y of X,

and

µ(V ) = sup{µ(K) : K ⊆ V, K compact} for all open subsets V of X.

For such a measure, Cc(X) is dense in Lp(X,µ); see [1, Theorem 31.11]. Combina-
tion with Proposition 2.4 gives the following, generalizing the well-known fact that
the left and right regular representations of a locally compact Hausdorff group G
on Lp(G) are strongly continuous for 1 ≤ p < ∞; see [13, Proposition 2.41].

Corollary 2.5. Let (G,X) be a topological dynamical system, and assume that
G is locally compact and that X is a locally compact Hausdorff space. Let µ be
a G-invariant regular Borel measure on X. Then, for 1 ≤ p < ∞, the canonical
representation ρµ of G as isometric lattice automorphisms of Lp(X,µ) is strongly
continuous.

Although [13, p. 68]—where it is assumed that G is Hausdorff—mentions that
the above result holds, and it is likewise stated—for locally compact second count-
able Hausdorff G and X—without proof on [18, p. 875], we are not aware of a
reference for an actual proof of this folklore result, nor for one of the more basic
Proposition 2.4.

If G and X are not both locally compact, the proof of the strong continuity in
Corollary 2.5 breaks down. However, there is an alternative context where a similar
result can still be established along similar lines.

Lemma 2.6. Let X be a metric space, and let µ be a Borel probability measure on
X. Then Cb(X) is dense in Lp(X,µ) for 1 ≤ p < ∞.

Proof. It is sufficient to approximate the characteristic function 1Y of an arbitrary
Borel subset Y of X by elements of Cb(X). Since we know from [16, Theorem 17.10]
that, for every Borel subset Y of X , µ(Y ) = inf{µ(U) : Y ⊆ U, U open}, it is
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already sufficient to approximate 1U for an arbitrary open subset U of X . We may
assume that U 6= X . In that case, let fn(x) = min(1, nd(x, U c)) (n = 1, 2, . . .).
Then fn ∈ Cb(X) and 0 ≤ fn ↑ 1U , so that ‖fn − 1U‖p → 0 as n → ∞ by the
dominated convergence theorem. �

Proposition 2.7. Let G be a first countable group, acting as Borel measurable
transformations on a metric space X with a G-invariant Borel probability measure µ.
Suppose that, for all x ∈ X, the map g 7→ gx is continuous from G to X. Then, for
1 ≤ p < ∞, the canonical representation ρµ of G as isometric lattice automorphisms
of Lp(X,µ) is strongly continuous.

Proof. In view of Lemma 2.6 and a 3ǫ-argument, it is sufficient to prove that the
map g 7→ ρµ(g)f is continuous for each f ∈ Cb(X). Since G is first countable,
continuity at a point g ∈ G is the same as sequential continuity at g. If gn → g as
n → ∞, then gnf → gf pointwise as n → ∞, by the continuity assumption on the
G-action and the continuity of f . The dominated convergence theorem then yields
that ‖ρµ(gn)f − ρµ(g)f‖p → 0 as n → ∞. �

As a very special case, let us explicitly mention the strong continuity of the
representation in Section 4.

Corollary 2.8. Let (G,X) be a Polish topological dynamical system, and suppose
that µ is a G-invariant Borel probability measure on X. Then, for each 1 ≤ p < ∞,
the canonical representation ρµ of G as isometric lattice automorphisms of Lp(X,µ)
is strongly continuous.

Remark 2.9. Every Borel probability measure on a Polish space is regular; this
follows from [16, Theorem 17.10] and [3, Vol. II, Theorem 7.1.7]. However, since
local compactness of G and X are not assumed in Corollary 2.8, Corollary 2.5 is
still not applicable here.

3. Lp-direct integrals of Banach spaces and representations

This section provides the framework for the disintegration Theorems 4.9 and 5.15.
We start by defining Lp-direct integrals of Banach spaces and Banach lattices

in the spirit of [15, Sections 6.1 and 7.2]. The idea in [15] is, roughly, to begin
with a ‘core’ vector space V that is supplied with a (suitable) family of norms
‖ · ‖ω, depending on the points ω of a measure space (Ω, ν). If {Bω}ω∈Ω is the
corresponding family of Banach space completions of V , then one can consider
sections from Ω to

⊔
ω∈ΩBω. There is a natural notion of measurable sections,

and the Bω are ‘glued together’ by restricting attention to measurable sections and
identifying measurable sections that are ν-almost everywhere equal. For any Köthe
spaceE associated with (Ω, ν), one can then require, for a measurable section s, that
the function ω 7→ ‖s(ω)‖ be in E. If E satisfies appropriate additional properties,
then the equivalence classes of such sections form a Banach space, which is called
the E-direct integral of the family {Bω}ω∈Ω.

In Section 3.1, this program is carried out for E = Lp(Ω, ν) (1 ≤ p < ∞), but
with two noticeable modifications as compared to [15]. The first is that the family
of norms figuring in [15, p. 61] is replaced with a family of semi-norms. The need for
this comes up quite naturally in our context, and it seems to the authors that this
may also be the case elsewhere. The second difference is that the measure ν need
not be complete. Completeness of measures is the standing assumption in [15, p. 5],
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but the measure we will apply the formalism to in Section 4 need not be complete.
One has to be extra cautious then, and particularly in a vector-valued context; the
proof of Proposition 3.2 may serve as evidence for this. Since, in addition, the
proofs—in a technically more convenient context—in [15] of the type of results that
we need are sometimes more indicated than given in full, we found it necessary to
give the applicable details for our case, rather than refer the reader to [15] with
the task to make the pertinent modifications. As a consequence of this choice of
presentation, we are also able to give a precise discussion of the relation with the
Bochner integral (see Remark 3.3) and with the usual theory of direct integrals of
separable Hilbert spaces and of decomposable operators (see Section 3.3), proving
that these are particular cases of the general theory in this section.

In Section 3.2, we define decomposable operators and the Lp-direct integral of a
decomposable family of representations of a group G, which is a representation of G
on the Lp-direct integral of Banach spaces from Section 3.1. One way to obtain such
a decomposable family of representations is when it originates from one common
‘core’ representation ρ̃ of G on the ‘core’ vector space V . Even though it is all fairly
natural, we are not aware of previous similar work in the context of (dis)integrating
representations.

As shown in Section 3.3, the framework in Section 3.2 includes the usual theory
of direct integrals of (representations on) separable Hilbert spaces.

Finally, in Section 3.4, we sketch a perspective that a more or less obvious ex-
tension of the formalism could have in representation theory.

3.1. Lp-direct integrals of Banach spaces. We will now define Lp-direct inte-
grals of a suitable family of Banach spaces. These are Banach spaces that generalize
the Bochner Lp-spaces (see Remark 3.3) and the direct integrals of separable Hilbert
spaces (see Section 3.3).

Let (Ω, ν) be a measure space, and let V be a vector space. For clarity, let us
recall that our measures need not be finite (or even σ-finite) or complete. We say
that a collection {‖ · ‖ω}ω∈Ω is a measurable family of semi-norms on V if ‖ · ‖ω is

a semi-norm on V for each ω ∈ Ω, and ω 7→ ‖x‖ω is a measurable function on Ω for
each x ∈ V . For later use, let us record that this is the same as requiring that the
(identical) function ω 7→ ‖[x]ω‖ω is a measurable function on Ω for all x ∈ V , where
‖[x]ω‖ω is the value of the induced norm ‖ · ‖ω on V/ ker(‖ · ‖ω) at the equivalence
class [x]ω of x in V/ ker(‖ · ‖ω).

Let {Bω}ω∈Ω be a collection of Banach spaces and suppose that {‖ · ‖ω}ω∈Ω
is a measurable family of semi-norms on V such that, for each ω ∈ Ω, Bω is the
Banach space completion of V/ ker(‖ · ‖ω) with respect to the induced norm ‖ · ‖ω on
V/ ker(‖ · ‖ω). Then we say that {Bω}ω∈Ω is a measurable family of Banach spaces
over (Ω, ν, V ). For conciseness, we usually do not explicitly mention the specific
measurable family of semi-norms {‖ · ‖ω}ω∈Ω on V that gives rise to {Bω}ω∈Ω, as
this family will generally be clear from the context.

Analogously, suppose that V is a vector lattice and that {‖ · ‖ω}ω∈Ω is a measur-
able family of lattice semi-norms on V such that, for each ω ∈ Ω, Bω is the Banach
lattice completion of V/ ker(‖ · ‖ω) with respect to the induced lattice norm ‖ · ‖ω
and the induced ordering on V/ ker(‖ · ‖ω). Then we say that a family {Bω}ω∈Ω

of Banach lattices is a measurable family of Banach lattices over (Ω, ν, V ). When
using this terminology, we will tacitly assume that V is a vector lattice, and that
the ‖ · ‖ω are lattice semi-norms.
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Let {Bω}ω∈Ω be a measurable family of Banach spaces over (Ω, ν, V ). We say
that a map s : Ω →

⊔
ω∈ΩBω is a section of {Bω}ω∈Ω if s(ω) ∈ Bω for each ω ∈ Ω.

A simple section is a section s for which there exist n ∈ N, x1, . . . , xn ∈ V , and
measurable subsets A1, . . . , An of Ω such that s(ω) = [

∑n
k=1 1Ak

(ω)xk]ω for all

ω ∈ Ω. Choosing the Ak disjoint, we have ‖s(ω)‖ω =
∑n

k=1 1Ak
(ω)‖[xk]ω‖ω, so

that the function ω 7→ ‖s(ω)‖ω on Ω is measurable for each simple section s.
A section s of {Bω}ω∈Ω is said to be measurable if there exists a sequence (sk)

∞
k=1

of simple sections such that, for all ω ∈ Ω, sk(ω) → s(ω) in Bω as k → ∞. Then
clearly ‖sk(ω)‖ω → ‖s(ω)‖ω for all ω ∈ Ω as k → ∞, and hence, as a consequence of
the measurability of the functions ω 7→ ‖sk(ω)‖ω on Ω, the function ω 7→ ‖s(ω)‖ω is
a measurable function on Ω for each measurable section s. The measurable sections
form a vector space, and we will denote the section that maps every ω ∈ Ω to the
zero element of Bω simply by 0. We also note that, if A is a measurable subset
of Ω and s is a simple section, then 1As (defined in the obvious pointwise way) is
again a simple section. It follows easily from this that the measurable sections are
a module over the measurable functions on Ω under pointwise operations.

We define the direct integral
∫ ⊕

Ω
Bω dν(ω) of {Bω}ω∈Ω with respect to ν to be

the space of all equivalence classes [s]ν of measurable sections s of {Bω}ω∈Ω, where
two measurable sections are equivalent if they agree ν-almost everywhere on Ω. We

say that the Bω are the fibers of
∫ ⊕

Ω Bω dν(ω), and we introduce a vector space

structure on
∫ ⊕

Ω Bω dν(ω) in the usual representative-independent way.
If {Bω}ω∈Ω is a measurable family of Banach lattices over (Ω, ν, V ), then, in

addition, we can meaningfully define a natural partial ordering on
∫ ⊕

Ω Bω dν(ω) by

[s]ν ≥ [t]ν ⇔ s(ω) ≥ t(ω) for ν-almost all ω ∈ Ω

for [s]ν , [t]ν ∈
∫ ⊕

Ω
Bω dν(ω). Then

∫ ⊕

Ω
Bω dν(ω) is an ordered vector space. In fact,

it is a vector lattice. For the latter statement, note that the pointwise supremum
and infimum of two measurable sections are measurable again, as a consequence of
the continuity of the lattice operations in each Bω and the fact that the pointwise
supremum and infimum of two simple sections are simple sections again. It is then

easily verified that, for [s]ν , [t]ν ∈
∫ ⊕

Ω Bω dν(ω), [s]ν ∨ [t]ν exists in
∫ ⊕

Ω Bω dν(ω),

and that, in fact, [s]ν ∨ [t]ν = [s ∨ t]ν , where [s ∨ t]ν ∈
∫ ⊕

Ω Bω dν(ω) is defined by
(s ∨ t)(ω) := s(ω) ∨ t(ω) (ω ∈ Ω). The expression for the infimum is similar.

For p ∈ [1,∞), we let the Lp-direct integral
(∫ ⊕

Ω
Bω dν(ω)

)

Lp
of {Bω}ω∈Ω with

respect to ν be the subset of
∫ ⊕

Ω
Bω dν(ω) consisting of those [s]ν ∈

∫ ⊕

Ω
Bω dν(ω)

such that the function ω 7→ ‖s(ω)‖ω, which we know to be measurable, is in Lp(Ω, ν).
This criterion is evidently independent of the particular representative s of [s]ν ,
and we call [s]ν and its representatives p-integrable (with respect to ν). It follows

from the triangle inequality for each ‖ · ‖ω that
(∫ ⊕

Ω
Bω dν(ω)

)

Lp
is a subspace of

∫ ⊕

Ω Bω dν(ω) and that

‖[s]ν‖p :=

(∫

Ω

‖s(ω)‖pωdν

)1/p

([s]ν ∈

(∫ ⊕

Ω

Bω dν(ω)

)

Lp

)(3.1)

defines a norm [s]ν 7→ ‖[s]ν‖p on
(∫ ⊕

Ω Bω dν(ω)
)

Lp
.
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If V is a vector lattice and {Bω}ω∈Ω is a measurable family of Banach lattices

over (Ω, ν, V ), then it is easily verified that
(∫ ⊕

Ω
Bω dν(ω)

)

Lp
is a vector sublattice

of
∫ ⊕

Ω Bω(ω) dν, and that (3.1) supplies it with a lattice norm.
The Lp-direct integrals of Banach spaces, as defined above, are, in fact, Banach

spaces. To show this, we will (have to) use that the equivalence classes of the
p-integrable simple sections are dense. This density, which is also a key ingredi-
ent of the proof of the disintegration Theorem 4.9, is established in the following
stronger result, based on a familiar truncation argument as in e.g. [20, proof of
Proposition 2.16].

Lemma 3.1. Let (Ω, ν) be a measure space, let V be a vector space, and let p ∈
[1,∞). Let {Bω}ω∈Ω be a measurable family of Banach spaces over (Ω, ν, V ), and

let [s]ν ∈
(∫ ⊕

Ω Bω dν(ω)
)

Lp
. Then, for each ǫ > 0, there exists a sequence (sk)

∞
k=1

of p-integrable simple sections such that ‖sk(ω)‖ω ≤ (1 + ǫ)‖s(ω)‖ω for all k ∈ N

and ω ∈ Ω, sk(ω) → s(ω) in Bω as k → ∞ for all ω ∈ Ω, and ‖[s]ν − [sk]ν‖p → 0
as k → ∞.

If {Bω}ω∈Ω is a measurable family of Banach lattices over (Ω, ν, V ) and [s]ν ≥ 0,
then the sequence (sk)

∞
k=1 can be chosen such that, in addition, [sk]ν ≥ 0 for all

k ∈ N.

Proof. Let [s]ν ∈
(∫ ⊕

Ω
Bω dν(ω)

)

Lp
. Then there exists a sequence (s′k)

∞
k=1 of simple

sections such that, for all ω ∈ Ω, s′k(ω) → s(ω) in Bω as k → ∞. For k ∈ N, let
Ak :=

{
ω ∈ Ω : ‖s′k(ω)‖ω ≤ (1 + ǫ)‖s(ω)‖ω

}
. Then Ak is a measurable subset of

Ω, hence the section sk, defined by sk := 1Ak
s′k, is simple again. Furthermore,

‖sk(ω)‖ω ≤ (1 + ǫ)‖s(ω)‖ω for all k and all ω ∈ Ω, so that each sk is p-integrable
with respect to ν. For all ω ∈ Ω, sk(ω) → s(ω) in Bω as k → ∞. It then follows

from the dominated convergence theorem that [sk]ν → [s]ν in
(∫ ⊕

Ω Bω dν(ω)
)

Lp
.

For the second statement, suppose that [s]ν ≥ 0, and let ǫ > 0. Choose a sequence
(s′k)

∞
k=1 of simple sections with the three properties in the first part of the lemma.

There exists a measurable subset A of Ω such that ν(A) = 0 and s(ω) ≥ 0 for all
ω ∈ Ac. Then the sequence (sk)

∞
k=1, given by sk(ω) := 1Ac(ω)s′k(ω)

++1A(ω)s
′
k(ω)

for k ∈ N and ω ∈ Ω, is as desired. �

We can now establish the completeness of Lp-direct integrals of Banach spaces.

Proposition 3.2. Let (Ω, ν) be a measure space, let V be a vector space, and let
1 ≤ p < ∞. If {Bω}ω∈Ω is a measurable family of Banach spaces over (Ω, ν, V ),

then
(∫ ⊕

Ω Bω dν(ω)
)

Lp
is a Banach space. If {Bω}ω∈Ω is a measurable family of

Banach lattices over (Ω, ν, V ), then
(∫ ⊕

Ω Bω dν(ω)
)

Lp
is a Banach lattice.

Proof. Let ([sk]ν)
∞
k=1 be a sequence in

(∫ ⊕

Ω Bω dν(ω)
)

Lp
such that

∑∞
k=1 ‖[sk]ν‖p <

∞. Following the standard proof (see e.g. [14, Theorem 6.6]), one shows that there
exists a measurable subsetA of Ω such that ν(Ac) = 0 and s(ω) := limn→∞

∑n
k=1 1A(ω)sk(ω)

exists for all ω ∈ Ω. If one knew s to be a measurable section, then the conclusion of
the standard proof would show that the series

∑∞
k=1[sk]ν converges to s. Now the

pointwise limit of a sequence of scalar-valued measurable functions is measurable,
and, more generally in the context of the Bochner integral, the limit of a sequence
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of strongly measurable functions is strongly measurable (a consequence of a version
of the non-trivial Pettis measurability theorem; see e.g. [4, Theorem E.9] for the
latter). In our context, however, we have no such result. Fortunately, the following
easily verified fact saves the day: If X is a normed space and Y is a dense subspace
with the property that every absolutely convergent series with terms from Y con-
verges in X , then X is a Banach space. With this and Lemma 3.1 in mind, we see
that it is sufficient to prove convergence of the series when the sk are simple sec-
tions. In that case, s is the pointwise limit of simple sections, hence is measurable
by definition. �

Remark 3.3.

(1) If V is a Banach space with norm ‖ · ‖, and if we take ‖ · ‖ω = ‖ · ‖ for all

ω ∈ Ω, then all Bω equal V . We claim that, in this case,
(∫ ⊕

Ω
Bω dν(ω)

)

Lp

is the Bochner space Lp(Ω, V, ν) as it is defined for an arbitrary measure
in [4, Appendix E]. To see this non-trivial fact, note that a section s is
now a function s : Ω → V . It follows from [4, Theorem E.9] (this is
a version of the Pettis measurability theorem) and [4, Proposition E.2]
that such a section is measurable in our terminology precisely if it is a
strongly measurable function in the terminology of [4, Appendix E]. Since
the Bochner spaces in [4, Appendix E] are defined (actually only for p = 1,
but this is immaterial), starting from the strongly measurable functions, in

the same canonical fashion as
(∫ ⊕

Ω Bω dν
)

Lp
is defined, starting from the

measurable sections, both spaces coincide.
(2) Although it is usually not observed as such, the direct integrals of separable

Hilbert spaces as they are defined in the literature are Bochner L2-spaces.
This follows from part 1 of the current remark and Section 3.3.

3.2. Decomposable operators and Lp-direct integrals of representations.

We will now define decomposable operators, and, subsequently, a decomposable
representation of a group on an Lp-direct integral of a measurable family of Banach
spaces, that can (and will) be called the Lp-direct integral of the fiberwise repre-
sentations. Both are a natural generalization of the corresponding notion in the
context of the usual direct integral of separable Hilbert spaces; see Section 3.3.

Let (Ω, ν) be a measure space, let V be a vector space, and let {Bω}ω∈Ω be a
measurable family of Banach spaces over (Ω, ν, V ), originating from the measurable
family of semi-norms {‖ · ‖ω}ω∈Ω on V . A decomposable operator T on {Bω}ω∈Ω

is a map ω 7→ Tω ∈ L(Bω) (ω ∈ Ω) such that, for each measurable section s, the
section Ts, defined by (Ts)(ω) := Tω(s(ω)), is measurable again, and such that the
(possibly non-measurable) function ω → ‖Tω‖ω is ν-essentially bounded. Then, for

1 ≤ p < ∞, T induces a bounded operator Tp (also denoted by
(∫ ⊕

Ω Tω dν(ω)
)

Lp
)

on
(∫ ⊕

Ω
Bω dν(ω)

)

Lp
: for [s]ν ∈

(∫ ⊕

Ω
Bω dν(ω)

)

Lp
, we let Tp[s]ν := [Ts]ν . If the

Bω are Banach lattices and ν-almost all Tω are positive operators, then Tp is a
positive operator. If ν-almost all Tω are lattice homomorphisms, then Tp is a
lattice homomorphism.

Let G be an abstract group. A decomposable representation ρ of G on {Bω}ω∈Ω

is a family {ρω}ω∈Ω, where ρω is a representation of G on Bω (ω ∈ Ω), such that,
for each g ∈ G, the map ω → ρω(g) is a decomposable operator on {Bω}ω∈Ω;
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we denote this decomposable operator by ρ(g). Then, for 1 ≤ p < ∞, the map ρ

induces a representation ρp of G as bounded operators on
(∫ ⊕

Ω Bω dν(ω)
)

Lp
, defined

by ρp(g) = (ρ(g))p =
(∫ ⊕

Ω ρω(g) dν(ω)
)

Lp
(g ∈ G). If the Bω are Banach lattices

and ν-almost all ρω are positive representations, then ρp is a positive representation.
We call ρp the Lp-direct integral of the representations {ρω}ω∈Ω with respect to ν,
and we write ρp =

(∫
Ω ρω dν(ω)

)
Lp .

If G is a topological group, it is easy to write down various conditions for the
decomposable representation {ρω}ω∈Ω of G on {Bω}ω∈Ω that are sufficient to ensure
the strong continuity of ρp, together with that of all ρω (ω ∈ Ω). A crude and p-
independent one is e.g. that there exists a constant M such that ‖ρω(g)‖ω ≤ M
for all g ∈ G and ω ∈ Ω, and that, for each x ∈ V and ǫ > 0, there exists a
neighbourhood Ux,ǫ of e in G such that ‖ρω(g)[x]ω − [x]ω‖ω < ǫ for all g ∈ Ux,ǫ

and ω ∈ Ω. Indeed, for each ω ∈ Ω, this certainly implies that, for all x ∈ V , the
map g 7→ ρω(g)[x]ω is continuous at e. By density, the uniform boundedness of the
ρω(g) then implies that, for all b ∈ Bω, the map g → ρω(g)bω is continuous at e;
consequently, this is true at all points of G. Hence each ρω is strongly continuous.
The condition also implies that, for each p-integrable simple section, the map g 7→
ρp(g)[s] is continuous at e. By the density statement in Lemma 3.1, the uniform
boundedness of the ρp(g) then implies that ρp is strongly continuous.

There is a natural way to obtain a decomposable operator on {Bω}ω∈Ω (and,

consequently, bounded operators on
(∫ ⊕

Ω
Bω dν(ω)

)

Lp
for 1 ≤ p < ∞) from one

suitable linear map on the ‘core’ space V , as follows. Suppose that T̃ is a linear
map on the abstract vector space V with the property that there exist constants

Mω (ω ∈ Ω) and M such
∥∥∥T̃ x

∥∥∥
ω
≤ Mω‖x‖ω (x ∈ V , ω ∈ Ω) and Mω ≤ M for

ν-almost all ω. Then, for all ω ∈ Ω, ker ‖ · ‖ω is T -invariant, hence there exists

a linear map on V/ ker ‖ · ‖ω , denoted by Tω, and given by Tω[x]ω = [T̃ x]ω (x ∈
V ). Then ‖Tω[x]ω‖ω ≤ Mω‖[x]w‖ω for all [x]ω ∈ V/ ker ‖ · ‖ω. This operator
extends to a bounded operator on Bω, still denoted by Tω, and then ‖Tω‖ω ≤ M
for ν-almost all ω. The point is that the family {Tω} (ω ∈ Ω) automatically

leaves the space
∫ ⊕

Ω
Bω dν(ω) of measurable section invariant, so that it defines

a decomposable operator T on {Bω}ω∈Ω. To see this, we first note that, if s ∈∫ ⊕

Ω Bω dν(ω) is a simple section, say s(ω) = [
∑n

k=1 1Ak
(ω)xk]ω (ω ∈ Ω) for some

n ∈ N, x1, . . . , xn ∈ V , and measurable subsets A1, . . . , An of Ω, then (Ts)(ω) =

Tω[
∑n

k=1 1Ak
(ω)xk]ω = [

∑n
k=1 1Ak

(ω)T̃ xk]ω. Hence T is a simple section again if
s is. If s is a measurable section, say s(ω) = limn→∞ sn(ω) (ω ∈ Ω) for simple
sections sn, then, as a consequence of the continuity of the Tω on Bω, we see that
(Ts)(ω) = Tω(s(ω)) = limn→∞ Tω(sn(ω)) = limn→∞(Tsn)(ω) (ω ∈ Ω). Hence Ts
is a measurable section again if s is, as desired, and the family {Tω}ω∈Ω is indeed
a decomposable operator. We conclude that, for 1 ≤ p < ∞, this ‘core’ linear map

T̃ gives rise to a bounded operator Tp on
∫ ⊕

Ω Bω dν(ω) such that ‖Tp‖ ≤ M .

If the Bω are Banach lattices, and T̃ is a positive operator on V , then all Tω and

Tp are positive operators. If T̃ is a lattice homomorphism, then all Tω and Tp are
lattice homomorphisms.

Consequently, there is also a natural way to obtain a decomposable representa-
tion of a group G from one ‘core’ representation ρ̃ of G on V . We say that ρ̃ is
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pointwise essentially bounded if, for all g ∈ G, there exist constants Mω,g (ω ∈ Ω)
and Mg such that ‖ρ̃(g)x‖ω ≤ Mω,g‖x‖ω for all x ∈ V and ω ∈ Ω, and Mω,g ≤ Mg

for ν-almost all ω. It is immediate from the above, applied to each ρ̃(g) (g ∈ G),
that there is a family {ρω}ω∈Ω of representations of G as bounded operators on the
spaces Bω that constitutes a decomposable representation ρ of G; these are deter-
mined by ρω(g)[x]ω = [ρ̃(g)x]ω (g ∈ G, x ∈ V, ω ∈ Ω). Therefore, for 1 ≤ p < ∞,

the Lp-direct integral ρp =
(∫ ⊕

Ω ρω dν(ω)
)

Lp
of the representations {ρω}ω∈Ω can

also be defined, and it lets G act as bounded operators on
(∫

ΩBω dν(ω)
)
Lp . If the

Bω are Banach lattices, and ρ̃ is a positive representation of G on V , then all ρω
are positive representations, and hence so is ρp (1 ≤ p < ∞).

As will become clear in Section 4, the Lp-direct integrals of positive representa-
tions that are the main concern of this paper are of the latter form. They originate
from one ‘core’ canonical positive representation of a group on one ‘core’ vector
space of simple functions on a measurable space, with Mg,ω = 1 for all g ∈ G and
ω ∈ Ω.

If, still in this context of a ‘core’ representation, one requires crudely that there
exists a constant M such that ‖ρ̃(g)x‖ω ≤ M‖x‖ω for all g ∈ G, x ∈ V , and
ω ∈ Ω, and that, for each x ∈ V and ǫ > 0, there exists a neighbourhood Ux,ǫ of e
in G such that ‖ρ̃(g)x− x‖ω < ǫ for all g ∈ Ux,ǫ and ω ∈ Ω, then the family of
representations {ρω}ω∈Ω satisfies the conditions as mentioned above. Therefore, in
that case all representations ρω (ω ∈ Ω) are strongly continuous, and so is their
Lp-direct integral ρp for 1 ≤ p < ∞.

3.3. Direct integrals of separable Hilbert spaces. In the spirit of the constant
fibers in the first part of Remark 3.3, we let V be a (possibly complex) separable
Hilbert space with norm ‖ · ‖, and we take ‖ · ‖ω = ‖ · ‖ for all ω ∈ Ω. We have al-

ready seen in Remark 3.3 (this is also true for non-separable V ) that
(∫ ⊕

Ω
Bω dν

)

L2

can be identified with the Bochner space L2(Ω, V, ν). If V is separable, then our
L2-direct integral is also the usual Hilbert space direct integral of copies of V over
Ω as defined in e.g. [19, p. 15–16], and our notion of decomposable operators also
coincides with the usual one as in [19, p. 18].

To see this, we first note that [4, Theorem E.9] and [4, Proposition E.2] imply
that our measurable sections are precisely the Borel measurable V -valued func-
tions on Ω, as a consequence of the separability of V . Consequently, our space(∫ ⊕

Ω Bω dν
)

L2
—that can be supplied with an inner product in the obvious way—of

(equivalence classes of) square integrable measurable sections coincides with the
space of (equivalence classes of) square integrable Borel measurable V -valued func-
tions, i.e. with the Hilbert space direct integral of copies of V as in [19, p. 15-16].

The decomposable operators T on this common space, as considered in [19, p. 18],
are a family of bounded operators {Tω}ω∈Ω such that the map ω 7→ ‖Tω‖ is ν-
essentially bounded and such that, for all x, y ∈ V , the function ω 7→ (Tωx, y)
is Borel measurable. This notion is the same as ours. To see this, let T be a
decomposable operator in our sense. Then, for each x ∈ V , the image of the
measurable section 1Ωx is a measurable section again, i.e. the map ω 7→ Tωx is a
measurable section for all x ∈ V . As already noted, this implies (and is in fact
equivalent to) the Borel measurability of this V -valued function. Certainly the
function ω 7→ (Tωx, y) is then Borel measurable for all y ∈ V , i.e. the operator
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T is decomposable in the sense of [19, p. 18]. Conversely, suppose that T is a
decomposable operator in the sense of [19, p. 18]. Then, for all x, y ∈ V , the
function ω 7→ (Tωx, y) is Borel measurable for all y ∈ V . As is easily seen, the
map ω 7→ (Tωs(ω), y) is then also Borel measurable for all simple sections s and all
y ∈ V . By the continuity of the Tω, the function ω 7→ (Tωs(ω), y) is then in fact
Borel measurable for all measurable sections s and all y ∈ V . By [4, Theorems E.9
and E.2], this implies that the map ω 7→ Tws(ω) is a measurable section in our sense
for all measurable sections s. Hence T is a decomposable operator in our sense.

We conclude that the theory of L2-direct integrals and their decomposable oper-
ators includes the usual one of direct integrals of copies of a separable Hilbert space
and their decomposable operators. In the Hilbert space context, the next step is to
piece together such direct integrals for the dimensions 1, 2, . . . ,∞. Since this is also
possible for the L2-direct integrals (see Section 3.4), the classical theory of direct
integrals of separable Hilbert spaces and their decomposable operators is included
in that for the general Banach space case.

3.4. Perspectives in representation theory. Although we do not need this our-
selves, we note that a natural further generalization of the material in Sections 3.1
and 3.2 is possible. First, as in [15], one can consider more general Köthe spaces than
Lp-spaces, provided that the proofs of Lemma 3.1 and Proposition 3.2 still work, or
that alternate proofs of completeness can be given that also control the measurabil-
ity issue. Second, as in [15, p. 61], one can work with a decomposition Ω =

⊔
α∈A Ωα

of the measure space into measurable parts. At a modest price of some extra re-
marks and notation, one can let the ‘core’ data (Vα, {ωα}ωα∈Ωα

) of a vector space
Vα and a measurable family of semi-norms on Vα depend on the part Ωα. If G is a
group, one can work with triples (Vα, {ωα}ωα∈Ωα

, ρα), where ρα is a decomposable
representation of G, consisting of a family of representations {ρωα

}ωα∈Ωα
of G on

the corresponding members of the associated family of Banach spaces {Bωα
}ωα∈Ωα

,
satisfying the appropriate boundedness condition. Depending on α, this ρα may or
may not originate from a common ‘core’ representation of G on Vα. If, for each
g ∈ G, there exists a constant Mg such that ‖ρωα

(g)xωα
‖ωα

≤ Mg‖xωα
‖ωα

for
all α ∈ A, ωα ∈ Ωα, and xωα

∈ Vα (this can obviously be relaxed), then the ρα
yield a representation of G as bounded operators on the entire direct integral of
Banach spaces over Ω. This representation can be viewed as the fiberwise represen-
tations ρωα

(α ∈ A,ωα ∈ Ω) having been ‘glued together’ via the requirement of
measurability in the constructions.

Thus the formalism provides a flexible way to construct a Banach space repre-
sentation of a group (or, with obvious modifications, of an algebra) that is a direct
integral of fiberwise representations on possibly different spaces. Coming from the
other direction, one can ask whether a given representation of a group or algebra on
a Banach space is of this form, where the fibers are to satisfy an additional condition,
or are to satisfy such a condition almost everywhere. Topological irreducibility or al-
gebraic irreducibility are natural conditions for general Banach spaces. For Banach
lattices and positive representations, order indecomposability—as in this paper—is
likewise natural. Theorems 4.9 and 5.15 shows that in certain situations a decom-
position of the latter type is possible, where a one-part Ω and a decomposable
representation on this single part that comes from one ‘core representation’ on the
pertinent single ‘core’ space V already suffice.
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4. Disintegration: action on underlying space

In this section, the principal aim is Theorem 4.9 in Section 4.2, giving a disintegra-
tion of canonical representations as isometric lattice automorphisms on Lp-spaces
into order indecomposables. The main tool for this is the factorization Theorem 4.5
for the integral over the space, as established in Section 4.1. We conclude with a
worked example in Section 4.3.

If X is a metric space, then we let P be the set of Borel probability measures on
X . If the group G acts as Borel measurable transformations on X , then I is the set
of all G-invariant Borel probability measures on X , and E is the set of all ergodic
Borel probability measures on X . Hence E ⊆ I ⊆ P . We suppress the space and
the group in the notation, as these will be clear from the context.

We recall that the canonical map from the set of Borel probability measures on
a metric space X into Cb(X)∗, the norm dual of the bounded continuous functions
on X , is injective; this follows from part of the argument to prove that (ii) implies
(iv) in [16, Theorem 17.20], combined with [16, Theorem 17.10]. We may thus view
P , I, and E as subsets of (Cb(X))∗, and we supply these sets with the induced
weak∗-topologies and the ensuing Borel σ-algebras.

4.1. Disintegrating the measure. The factorization Theorem 4.5 is based on a
disintegration theorem for the elements of I. In order to formulate the latter, and
also for future use, we start with a preliminary measurability result.

Lemma 4.1. Let X be a separable metric space, and let f : X → [0,∞] be a
Borel measurable extended function. Then the map P → [0,∞], defined by λ 7→∫
X
f(x) dλ(x), is Borel measurable.

Proof. We know from [22, Lemma 2.3] that the Borel σ-algebra of P is also the
smallest σ-algebra of subsets of P such that, for all Borel subsets Y of X , the
map P → [0, 1], defined by λ 7→ λ(Y ), is measurable. Thus the statement holds
if f = 1Y for a measurable subset Y of X . By linearity it also holds for simple
functions, and, using the monotone convergence theorem, it is then seen to be valid
for general Borel measurable f : X → [0,∞]. �

We will now summarize what we need from the work of Farrell [11] and Varadara-
jan [22], as it can be found in [26, Theorem 27.5.7]. Applying Lemma 4.1 to f = 1Y

for a Borel subset Y of X , we see that the integrand in part 3 of the following result
is Borel measurable.

Theorem 4.2. Let (G,X) be a Polish topological dynamical system, where G is lo-
cally compact. Suppose that I 6= ∅. Then E 6= ∅, and there exists a Borel measurable
map β : X → E, x 7→ βx, with the following properties:

(1) βgx = βx for all x ∈ X and g ∈ G;
(2) λ(β−1({λ})) = 1 for all λ ∈ E;
(3) For all µ ∈ I and all Borel subsets Y of X,

µ(Y ) =

∫

X

βx(Y ) dµ(x).

A map β as in Theorem 4.2 is called a decomposition map.

Remark 4.3.
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(1) If β and β′ are two decomposition maps, then they agree outside a Borel
subset of X that has zero measure under all invariant Borel probability
measures on X ; see [22, proof of Lemma 4.4].

(2) We mention for the sake of completeness that [26, Theorem 27.5.7] also
asserts that I and E are both Borel subsets of P . Furthermore, P is Polish;
see [26, p. 1118].

(3) It is worth noting that, if, in addition, G is compact, then the ergodic Borel
probability measures E on X are in one-to-one correspondence with the
orbits of G in X , as follows. For x0 ∈ X , one associates with the G-orbit
Gx0 the Borel measure λGx0 on X by

λGx0(Y ) := µG ({g ∈ G : gx0 ∈ Y }) ,(4.1)

where Y is a Borel subset X and µG is the normalized Haar measure on
G; this does not depend on the choice of the point x0 in the orbit. The
λGx0 is the unique ergodic Borel probability measure supported on Gx0,
and the map Gx0 7→ λGx0 is a bijection between the set of G-orbits and E ;
see [26, p. 1119]. Since λGx0 is simply the push-forward of µG to X via the
map g 7→ gx0 (g ∈ G), we then have, for every bounded Borel measurable
function f on X ,

(4.2)

∫

X

f(x) dµGx0(x) =

∫

G

f(gx0) dµG(g).

We will use this in Section 4.3.
(4) If (G,X) is a topological dynamical system, whereG is a compact Hausdorff

group and X is a locally compact Hausdorff space, then in [21] there is a
description of the invariant Baire measures on X that is not unsimilar to
Theorem 4.2. It seems plausible that also in this context factorization and
disintegration theorems analogous to Theorem 4.5 and 4.9 can be obtained.

(5) It is known that I 6= ∅ if, in addition, G is amenable and X is compact;
see [26, Theorem 5.5].

We fix a decomposition map β, and proceed towards the factorization Theo-
rem 4.5. We need the following preparatory lemma. The function f ′ that occurs
in it was also introduced in [22, Lemma 4.3] (with a similar statement) in the case
where f is a bounded Borel measurable function on X , but for us it essential that
f need not even be finite-valued.

Lemma 4.4. Let (G,X) be a Polish topological dynamical system, where G is
locally compact, let µ ∈ I, and let f : X → [0,∞] be a Borel measurable extended
function on X. For x ∈ X, define f ′(x) :=

∫
X f(t) dβx(t). Then f ′ : X → [0,∞] is

Borel measurable, and the equality
∫

X

f(x) dµ(x) =

∫

X

f ′(x) dµ(x).(4.3)

holds in [0,∞].

Proof. The Borel measurability of β and Lemma 4.1 imply that f ′ is Borel mea-
surable. For the equality of the integrals, we first suppose that f = 1Y for a Borel
subset Y of X . Then∫

X

f(x) dµ(x) = µ(Y ) =

∫

X

βx(Y ) dµ(x) =

∫

X

f ′(x) dµ(x)
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by part 3 of Theorem 4.2. By linearity, this extends to the case where f ≥ 0 is a
simple function. We now choose a sequence (fk)

∞
k=1 of simple functions such that

0 ≤ fk ↑ f pointwise on X . By the monotone convergence theorem, 0 ≤ f ′
k(x) ↑

f ′(x) for all x ∈ X as k → ∞. Two more applications of the monotone convergence
theorem, combined with what we have already shown for the fk, yield∫

X

f(x) dµ(x) = lim
k→∞

∫

X

fk(x) dµ(x) = lim
k→∞

∫

X

f ′
k(x) dµ(x) =

∫

X

f ′(x) dµ(x).

�

Now the proof of the factorization theorem for the integral, which is reminiscent
of the familiar combination of the Tonelli and Fubini theorems, is hardly more
than a formality. To this end, we let ν be the push-forward measure of µ via the
Borel measurable map β : X → E ; thus ν is the Borel probability measure on
E given by ν(A) := µ(β−1(A)) for a Borel subset A of E . By general principles,
see [4, Proposition 2.6.5], if h : E → [0,∞] is a Borel measurable extended function,
then the equality

∫

X

(h ◦ β)(x) dµ(x) =

∫

E

h(λ) dν(λ)(4.4)

holds in [0,∞].

Theorem 4.5. Let (G,X) be a Polish topological dynamical system, where G is
locally compact, and let µ ∈ I.

(1) If f : X → [0,∞] is Borel measurable, then the extended function λ 7→∫
X f(x) dλ(x), with values in [0,∞], is a Borel measurable function on E.

Furthermore, the equality
∫

X

f(x) dµ(x) =

∫

E

(∫

X

f(x) dλ(x)

)
dν(λ)

holds in [0,∞].
(2) If f ∈ L1(X,µ), then the set of λ ∈ E such that f /∈ L1(X,λ) is a Borel

subset of E that has ν-measure zero. For λ ∈ E, let If (λ) :=
∫
X f(x) dλ(x)

if f ∈ L1(X,λ), and let If (λ) := 0 if f /∈ L1(X,λ). Then If ∈ L1(E , ν),
and ∫

X

f(x) dµ(x) =

∫

E

If (λ) dν(λ).

Proof. As to the first statement, we define h(λ) =
∫
X f(t) dλ(t). Lemma 4.1 shows

that h is a Borel measurable function on E . In the notation of Lemma 4.4, we
have f ′ = h ◦ β, so that (4.3) reads as

∫
X f(x) dµ(x) =

∫
X(h ◦ β)(x) dµ(x). An

application of (4.4) completes the proof of the first part. The second statement
follows easily from an application of the first statement to the positive and negative
parts of f . �

Remark 4.6.

(1) It follows from part 1 of Remark 4.3 that ν does not depend on the choice
of the decomposition map β.

(2) If f is the characteristic function of a Borel subset Y of X , then Theo-
rem 4.5 asserts that µ(Y ) =

∫
E
λ(Y ) dν(λ). This formula occurs in [22,

Theorem 4.4]. We are not aware of a reference for the general theorem as
above.
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In the next section, we will need the following disintegration of the p-norm, valid
in the context of Theorem 4.5.

Corollary 4.7. Let 1 ≤ p < ∞, and let f ∈ Lp(X,µ). Then the set of λ ∈ E
such that f /∈ Lp(X,λ) is a Borel subset of E that has ν-measure zero. For λ ∈ E,
let nf(λ) := ‖f‖Lp(X,λ) if f ∈ Lp(X,λ), and let nf (λ) := 0 otherwise. Then

nf ∈ Lp(E , ν), and

‖f‖Lp(X,µ) = ‖nf‖Lp(E,ν) =

(∫

E

nf (λ)
p dν(λ)

)1/p

.(4.5)

Proof. Apply part 2 of Theorem 4.5 to |f |p. �

4.2. Disintegrating the representation. Throughout this section, (G,X) is a
Polish topological dynamical system, where G is locally compact, such that the set
I of G-invariant Borel probability measures on X is not empty, µ is an element
of I, and ν is the push-forward of µ to the ergodic Borel probability measures E
via a decomposition map β : X → E as in Section 4.1. We fix 1 ≤ p < ∞. G acts
canonically on Lp(X,µ) as isometric lattice isomorphisms, and, using the framework
provided in Section 3.1, we will now proceed to disintegrate this representation into
order indecomposables as an Lp-direct integral; see Theorem 4.9.

Let V be the vector lattice of all simple scalar-valued functions on X . For each
λ ∈ E (which will play the role of Ω in Section 3.1),

‖f‖λ := ‖f‖Lp(X,λ) (f ∈ V )

defines a lattice semi-norm on V ; the p-dependence has been suppressed in the nota-
tion for simplicity. By Corollary 4.7, λ 7→ ‖f‖λ is a Borel measurable function on E
for all f ∈ V . Hence, in the terminology of Section 3.1, {‖ · ‖λ}λ∈E

is a measurable

family of lattice semi-norms on V . For each λ ∈ E , the completion of V/ ker(‖ · ‖λ)
with respect to ‖ · ‖λ is the Banach lattice Lp(X,λ), so that {Lp(X,λ)}λ∈E is a
measurable family of Banach lattices over (E , ν, V ).

A section of {Lp(X,λ)}λ∈E is now a map s : E →
⊔

λ∈E L
p(X,λ) such that

s(λ) ∈ Lp(X,λ) for each λ ∈ E . A simple section is a section s for which there exist
n ∈ N, simple functions f1, . . . , fn onX , and Borel subsets A1, . . . , An of E such that
s(λ) = [

∑n
k=1 1Ak

(λ)fk]λ for all λ ∈ E . A section s of {Lp(X,λ)}λ∈E is measurable
if there exists a sequence (sk)

∞
k=1 of simple sections such that ‖s(λ)− sk(λ)‖λ → 0

as k → ∞ for all λ ∈ E .
The direct integral

∫ ⊕

E
Lp(X,λ) dν(λ) consists of the equivalence classes [s]ν (for

the equivalence relation of ν-almost everywhere equality) of measurable sections s

of {Lp(X,λ)}λ∈E ; the Lp-direct integral
(∫ ⊕

E Lp(X,λ) dν(λ)
)

Lp
consists of those

[s]ν ∈
∫ ⊕

E
Lp(X,λ) dν(λ) for which the (measurable) function λ 7→ ‖s(λ)‖Lp(X,λ) is

an element of Lp(E , ν), and it carries the norm

‖[s]ν‖p :=

(∫

E

‖s(λ)‖pλ dν(λ)

)1/p

([s]ν ∈

(∫ ⊕

E

Lp(X,λ) dν(λ)

)

Lp

).

By Proposition 3.2,
(∫ ⊕

E
Lp(X,λ) dν(λ)

)

Lp
is a Banach lattice when supplied with

this norm and with the ordering defined by

[s]ν ≥ 0 ⇔ s(λ) ≥ 0 in Lp(X,λ) for ν-almost all λ ∈ E
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for [s]ν ∈
(∫ ⊕

E Lp(X,λ) dν(λ)
)

Lp
.

After having thus set the scene, the first thing to show that is the Banach lattices

Lp(X,µ) and
(∫ ⊕

E
Lp(X,λ) dν(λ)

)

Lp
are isometrically lattice isomorphic. The basic

idea for the pertinent map is quite simple: if [f ]µ ∈ Lp(X,µ) is given, this should
correspond to the ν-equivalence class of the section λ 7→ [f ]λ (λ ∈ E). Apart from
measurability issues, there are two problems here: f need not be in Lp(X,λ) for all
λ, and the image of [f ]µ could conceivably depend on the chosen representative f .
As we will see, there exists a solution to the first problem such that the second does
not occur, and such that there are no measurability issues. We make some further
comments on this at the conclusion of the example in Section 4.3.

Implementing what will turn out to be the solution, we define, for f ∈ Lp(X,µ),
the section sf of {Lp(X,λ)}λ∈E by

sf (λ) :=

{
[f ]λ if f ∈ Lp(X,λ);

[0]λ otherwise.
(4.6)

We know from Corollary 4.7 that the exceptional set in this definition is a Borel
subset of E that has ν-measure zero. This easily implies that, for f, g ∈ Lp(X,µ)),

(4.7) sf+g(λ) = sf (λ) + sg(λ) for ν-almost λ ∈ E ,

and clearly

(4.8) sαf = αsf (α ∈ R, f ∈ Lp(X,µ)).

The following result takes care of measurability.

Lemma 4.8. Let f ∈ Lp(X,µ), and define sf as in (4.6). Then sf is a measurable
section of {Lp(X,λ)}λ∈E .

Proof. There exists a sequence (fk)
∞
k=1 ⊆ V such that, for all x ∈ X , |fk(x)| ≤

|f(x)| and fk(x) → f(x) as k → ∞. Let A := {λ ∈ E : f ∈ Lp(X,λ)}, and, for
k ∈ N, let sk(λ) := [1A(λ)fk]λ (λ ∈ E). Since A is a Borel subset of E , sk is a
simple section for each k ∈ N. For λ /∈ A, we have sk(λ) = [0]λ = sf (λ) for all
k ∈ N. For λ ∈ A, the dominated convergence theorem implies that

‖sf (λ)− sk(λ)‖λ = ‖[f ]λ − [fk]λ‖λ → 0

as k → ∞. Hence sk(λ) → sf (λ) for all λ ∈ E , and we conclude that sf is
measurable. �

If f, g ∈ Lp(X,µ), and [f ]µ = [g]µ, then, as the reader will easily verify, it
follows from an application of (4.5) to f − g that sf (λ) = sg(λ) for ν-almost λ ∈ E .

Therefore, there is a well-defined map S : Lp(X,µ) →
∫ ⊕

E Lp(X,λ) dν(λ), given by

S([f ]µ) := [sf ]ν(f ∈ Lp(X,µ)).

By (4.7) and (4.8), S is linear.
If f ∈ Lp(X,λ), then, in the notation of Corollary 4.7, nf(λ) = ‖sf (λ)‖λ for all

λ ∈ E . Since nf ∈ Lp(E , ν) by Corollary 4.7, we have S([f ]µ) ∈
(∫ ⊕

E Lp(X,λ) dν(λ)
)

Lp
.

In fact, (4.5) yields

‖[f ]µ‖Lp(X,µ) =

(∫

E

nf (λ)
p dν(λ)

)1/p

=

(∫

E

‖sf (λ)‖
p
λ dν(λ)

)1/p

= ‖S([f ]µ)‖p.
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We conclude that S is an isometry of Lp(X,µ) into
(∫ ⊕

E Lp(X,λ) dν(λ)
)

Lp
.

In fact, S is also surjective. To prove this, it is, according to the density statement
in Lemma 3.1, sufficient to prove that all ν-almost everywhere equivalence classes
of simple sections are in the range of S. For this, in turn, it is sufficient to prove
that the ν-almost everywhere equivalence class of every simple section of the form
s(λ) = [1A(λ)f ]λ, where A is a Borel subset of E and f ∈ V is a simple function
on X , is in the range of S. To this end, consider f ′ := 1β−1(A)f . Then f ′ is a
simple function on X , so f ′ ∈ Lp(X,µ). Since f ∈ Lp(X,λ) for all λ ∈ E , the
exceptional set in (4.6) is empty, and sf ′(λ) = [f ′]λ for all λ ∈ E . We claim
that sf ′ = s, i.e. that [1β−1(A)f ]λ = [1A(λ)f ]λ for all λ ∈ E . For this, we use

part 2 of Theorem 4.2, distinguishing two cases. If λ ∈ A, then β−1({λ}) ⊆
β−1(A) ⊆ X . Since λ(β−1({λ})) = λ(X) = 1, we have λ((β−1(A))c) = 0. But
then [1β−1(A)f ]λ = [f ]λ, and this equals [1A(λ)f ]λ = [1 · f ]λ. If λ /∈ A, then

β−1(A) ∩ β−1({λ}) = ∅, so that λ(β−1(A)) = 0. Hence [1β−1(A)f ]λ = [0]λ, and
again this equals [1A(λ)f ]λ = [0 · f ]λ. Thus sf ′ = s, as claimed, and then certainly
S([f ′]µ) = [sf ′ ]ν = [s]ν .

Furthermore, S is a lattice homomorphism. Indeed, if f ∈ Lp(X,µ) and λ ∈ E ,
then f ∈ Lp(X,λ) if and only if |f | ∈ Lp(X,λ). This implies that s|f |(λ) =
[|f |]λ = |[f ]λ| for all λ ∈ E . It follows form this that |S([f ]µ)| = S(|[f ]µ|) for all
f ∈ Lp(X,µ).

We conclude that S is an isometric lattice isomorphism between Lp(X,µ) and(∫ ⊕

E Lp(X,λ) dν(λ)
)

Lp
.

We will now show that, under S, the canonical representation of G on the space
Lp(X,µ) corresponds to the direct integral of the canonical representations of G on
the spaces Lp(X,λ) for λ ∈ E . To see this fact (which almost comes for free now), we
start—in the terminology of Section 3.2—with the canonical ‘core’ representation
ρ̃ of G on the vector space V of simple functions on X , defined by (ρ̃(g)f)(x) :=
f(g−1x) (g ∈ G, f ∈ V, x ∈ X). Since ‖ρ̃(g)f‖λ = ‖f‖λ (g ∈ G, f ∈ V ), this ‘core’
representation ρ̃ is pointwise essentially bounded. As explained in Section 3.2, there
is then a natural family {ρλ}λ∈E of associated representations of G as bounded
operators on the respective completions of the spaces (V/ ker ‖ · ‖λ, ‖ · ‖λ), i.e. on
the spaces Lp(X,λ) (λ ∈ E); these representations are determined by ρλ(g)[f ]λ =
[ρ̃(g)f ]λ (g ∈ G, f ∈ V, λ ∈ E). By the density of the equivalence classes of
the simple functions in each Lp(X,λ) (λ ∈ E), we see that these representations
ρλ, as originating from ρ̃, are precisely the natural representations of G on the
spaces Lp(X,λ). As is also explained in Section 3.2, measurability issues related
to families of operators are automatically taken care of in this situation of a ‘core’,

so that the family {ρλ}λ∈E is a decomposable representation ρp =
∫ ⊕

E
ρλ dν(λ)

of G as bounded operators on the Lp-direct integral
(∫ ⊕

E Lp(X,λ) dν(λ)
)

Lp
. We

claim that the canonical representation ρµ on Lp(X,µ) and the representation ρp on(∫ ⊕

E Lp(X,λ) dν(λ)
)

Lp
correspond under the isomorphism S between these spaces.

To see this, we let f ∈ V ⊆ Lp(X,µ) and g ∈ G. Then ρ̃(g)f ∈ Lp(X,λ) for all
λ ∈ E , so that sρ̃(g)f (λ) = [ρ̃(g)f ]λ for all λ ∈ E . Unwinding the definitions, we
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then see that

S(ρµ(g)[f ]µ) = S([ρ̃(g)f ]µ)

= [sρ̃(g)f ]ν

= [λ 7→ [ρ̃(g)f ]λ]ν

= [λ 7→ ρλ(g)[f ]λ]ν

=

(∫ ⊕

E

ρλ(g) dν(λ)

)

Lp

([λ 7→ [f ]λ]ν)

=

(∫ ⊕

E

ρλ(g) dν(λ)

)

Lp

([sf ]ν)

=

[(∫ ⊕

E

ρλ dν(λ)

)

Lp

(g)

]
(S([f ]µ)).

By the density of the µ-equivalence classes of the simple functions in Lp(X,µ), our
claim then follows.

We collect some of the main results so far in the following theorem. The added
final part follows from part 4 of Proposition 2.2, and it shows that the canonical
representation of G as isometric lattice automorphisms of Lp(X,µ) can be disinte-
grated into order indecomposable similar representations.

Theorem 4.9. Let (G,X) be a Polish topological dynamical system, where G is
locally compact. Suppose that there exists an invariant Borel probability measure µ
on X. Let E be the non-empty set of ergodic Borel probability measures on X, and
supply E with the weak∗-topology induced by Cb(X).

Let β : X → E be a decomposition map as in Theorem 4.2, and let ν be the
push-forward measure of µ via β, so that ν is a Borel probability measure on E that
is independent of the choice of β.

Let 1 ≤ p < ∞.

(1) Let V be the vector space of simple functions on X. Then {‖ · ‖λ}λ∈E is
a measurable family of semi-norms on V . The resulting family of comple-
tions of the spaces (V/ ker ‖ · ‖λ, ‖ · ‖λ) is the family {Lp(X,λ)}λ∈E , which
is a measurable family of Banach lattices over (E , ν, V ). Therefore, the Lp-

direct integral
(∫ ⊕

E
Lp(X,λ) dν(λ)

)

Lp
of this family with respect to ν can be

defined, and this space is a Banach lattice;

(2) Define S : Lp(X,µ) →
(∫ ⊕

E
Lp(X,λ) dν(λ)

)

Lp
by S([f ]µ) := [sf ]ν (f ∈

Lp(X,µ)), where sf is as defined in (4.6). Then S is an isometric lattice iso-

morphism between the Banach lattices Lp(X,µ) and
(∫ ⊕

E
Lp(X,λ) dν(λ)

)

Lp
;

(3) S is an intertwining operator between the canonical representation ρµ of
G as isometric lattice automorphisms of Lp(X,µ) and the representation(∫ ⊕

E
ρλ dν(λ)

)

Lp
on
(∫ ⊕

E
Lp(X,λ) dν(λ)

)

Lp
, which is the Lp-direct integral

of the family {ρλ}λ∈E of canonical representations of G as isometric lattice
automorphisms on the Banach lattices Lp(X,λ) (λ ∈ E). That is, for each
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g ∈ G, the following diagram commutes:

Lp(X,µ)
ρµ(g)

//

S
��

Lp(X,µ)

S
��(∫ ⊕

E Lp(X,λ) dν(λ)
)

Lp

(
∫

⊕

E
ρλ(g) dν(λ))

Lp
//

(∫ ⊕

E Lp(X,λ) dν(λ)
)

Lp

(4) For all λ ∈ E, the representation ρλ of G on the fiber Lp(X,λ) is order
indecomposable.

Remark 4.10. The strong continuity of the Lp-direct integral of representations
was briefly addressed in Section 2.2. Although strong continuity played no role
in the proofs, let us still mention that in the present context this is automatic:

according to Corollary 2.8, ρµ (and hence
(∫ ⊕

E ρλ dν(λ)
)

Lp
) and all ρλ (λ ∈ E) are

strongly continuous representations.

4.3. Worked example. We conclude this section with a simple example of a rep-
resentation that we disintegrate explicitly.

Let D := {z ∈ C : |z| ≤ 1} and let T := {z ∈ C : |z| = 1}. Then (T,D) is a Polish
topological dynamical system with compact group when supplied with the rotation
action: (z1, z2) 7→ z1z2 (z1 ∈ T, z2 ∈ D). We let µ be the normalized restriction of
the Lebesgue measure on R2 to the Borel σ-algebra of D. Then µ is a T-invariant
Borel probability measure on X . We fix 1 ≤ p < ∞. Our aim is to exhibit an
explicit disintegration of Lp(D, µ) and the representation of ρµ of T on this space,
as provided in abstracto by Theorem 4.9.

The first step is to determine the set E of ergodic Borel probability measures
on D. We know from part 3 of Remark 4.3 that these measures are in one-to-one
correspondence with the orbits of T, i.e. with the elements of the interval [0, 1]
that parameterizes the radius of the orbits. From (4.1) we infer an explicit formula
for the ergodic Borel probability measure λr corresponding to an orbit of radius
r ∈ [0, 1], namely

λr(Y ) =
1

2π

∫

[0,2π]

1Y (re
iθ) dθ,(4.9)

where Y is a Borel subset of D. More generally, if f : D → R is a bounded Borel
measurable function, then (4.2) gives, for r ∈ [0, 1],

(4.10)

∫

D

f(z) dλr(z) =
1

2π

∫

[0,2π]

f(reiθ) dθ.

The second step is to determine E as a topological space; recall that E is endowed
with the weak∗-topology via the inclusion E ⊆ Cb(D)

∗. We know that ϕ : [0, 1] → E ,
given by ϕ(r) = λr, is a bijection; we claim that it is even a homeomorphism. To
see this, let (rn)n∈N ⊆ [0, 1] and let rn → r ∈ [0, 1] as n → ∞. If f ∈ Cb(D), then,
using (4.10) and the dominated convergence theorem, we see that
∫

D

f(z) dλrn(z) =
1

2π

∫

[0,2π]

f(rne
iθ) dθ →

1

2π

∫

[0,2π]

f(reiθ) dθ =

∫

D

f(z) dλr(z)

as n → ∞. Hence ϕ is continuous. Since [0, 1] is compact and E is Hausdorff, we
conclude that ϕ is a homeomorphism.
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The third step is to find a decomposition map β : D → E . In this case (as for more
general actions of compact groups, where the ergodic Borel probability measures
are supported on orbits), this map is already uniquely determined by parts 1 and 2
of Theorem 4.2. Indeed, let r ∈ [0, 1]. Then part 2 shows that β−1({λr}) cannot
be disjoint from the orbit Tr (which is the support of λr), and subsequently part 1
implies that this set contains the entire orbit. Since β−1({λr1}) and β−1({λr2}) are
obviously disjoint for r1 6= r2, we must have β−1({λr} = Tr for all r ∈ [0, 1]. We
conclude that βreiθ = λr for r ∈ [0, 1] and θ ∈ R (so that β is, in fact, uniquely
determined here).

We know a priori from Theorem 4.2 that β is Borel measurable, but this can
also be seen directly. In fact, β is even continuous, because ϕ−1 ◦ β : D → [0, 1] is
continuous (it maps reiθ to r), and hence so is β = ϕ ◦ (ϕ−1 ◦ β).

We also know a priori that part 3 of Theorem 4.2 is satisfied for our µ, but using
(4.9) this can also be seen directly. Indeed, using polar coordinates we have, for a
Borel subset Y of D,

µ(Y ) =
1

π

∫

[0,1]

∫

[0,2π]

r1Y (re
iθ) dθ dr = 2

∫

[0,1]

rλr(Y ) dr

=
1

π

∫

[0,1]

∫

[0,2π]

rβreiθ(Y ) dθ dr =

∫

D

βz(Y ) dµ(z).

Theorem 4.9 gives a disintegration of the action of T on Lp(D, µ) as an Lp-direct
integral of representations with E as underlying point set, but it is more intuitive
to formulate this with [0, 1], which is homeomorphic to E , as underlying point set.
Therefore, we let ν be the push-forward measure of µ via ϕ−1 ◦β : D → [0, 1]. Thus,
if A is a Borel subset of [0, 1], then ν(A) = µ(β−1 ◦ ϕ(A)) = µ({z ∈ C : |z| ∈ A}).
Using polar coordinates, we see that

ν(A) = µ({reiθ : r ∈ A}) =
1

π

∫

[0,1]

∫

[0,2π]

r1A(|re
iθ|) dθ dr =

∫

[0,1]

1A · 2r dr.

We conclude that ν is the measure 2r dr on the Borel subsets of [0, 1]. For (say) a
bounded Borel measurable function f on D, part 2 of the factorization Theorem 4.5
then takes the form

(4.11)
1

π

∫

D

f(z) dµ(z) =

∫

[0,1]

(
1

2π

∫

[0,2π]

f(reiθ) dθ)

)
2r dr,

where (4.10) has been used. The validity of this formula in itself is, of course, clear;
the point is its interpretation as an instance of the factorization in Theorem 4.5.

Let V be the vector lattice of simple functions on D. According to Theorem 4.9,
{‖ · ‖λr

}
r∈[0,1]

is a measurable family of semi-norms on V , so that {Lp(D, λr)}r∈[0,1]

is a measurable family of Banach lattices over ([0, 1], ν, V ), and the Lp-direct integral(∫ ⊕

[0,1] L
p(D, λr) 2rdr

)

Lp
can be defined. Let S : Lp(D, µ) →

(∫ ⊕

[0,1] L
p(D, λr) 2r dr

)

X
be such that S([f ]µ) := [sf ]2rdr, where sf (r) = [f ]λr

if f ∈ Lp(D, λr), and
sf (r) = [0]λr

if f /∈ Lp(D, λr). The latter exceptional set is Borel measurable
and has 2r dr-measure zero. Equivalently, it has dr-measure zero (likewise, we could
have written [sf ]dr for [sf ]2rdr). Then, according to Theorem 4.9, S is a well-defined

isometric lattice isomorphism between Lp(D, µ) and
(∫ ⊕

[0,1] L
p(D, λr) 2r dr

)

Lp
. If

(for the ease of formulation) f is a bounded Borel measurable function on D, then
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the exceptional set is empty, and, using (4.10), the isometric nature of S at the
point [f ]µ ∈ Lp(X,µ) is an application of (4.11) to |f |p:

‖[f ]‖pµ =
1

π

∫

D

|f(z)|p dµ(z) =

∫

[0,1]

(
1

2π

∫

[0,2π]

|f(reiθ)|
p
dθ)

)
2r dr

=

∫

[0,1]

(∫

D

|f(z)|p dλr(z)

)
2r dr =

∫

[0,1]

‖sf (r)‖
p
λr

2r dr

= ‖S([f ]µ)‖
p
p.

Furthermore, S is an intertwining operator between the canonical representation

ρµ of T on Lp(D, µ) and the Lp-direct integral
(∫ ⊕

[0,1]
ρλr

2r dr
)

Lp
of the order

indecomposable representations ρλr
of T on the spaces Lp(D, λr). That is, for each

z ∈ T, the diagram

Lp(D, µ)
ρµ(z)

//

S
��

Lp(D, µ)

S
��(∫ ⊕

[0,1] L
p(D, λr) 2r dr

)

Lp

(∫
⊕

[0,1]
ρλr (z) 2r dr

)

Lp
//

(∫ ⊕

[0,1] L
p(D, λr) 2r dr

)

Lp

(4.12)

is commutative.
Intuitively, this is certainly plausible, since ‘restricting a function to an orbit’ is

clearly a T-equivariant operation, and the commutativity of diagram (4.12) merely
reflects that this is what the operator S tries to do. We write ‘tries to do’, and not
‘does’, because ‘restricting’ is meaningless for the elements of the actual domain of S,
which are µ-equivalence classes of measurable functions. The ‘actual’ intertwining
statement in Theorem 4.9 is, therefore, that this intuitive observation can be modi-
fied into a form that is meaningful and that survives during the measure-theoretical
constructions. In this case, it comes down to the following.

If there is an empty exceptional set in the definition of sf for f ∈ Lp(D, µ) (e.g. if
f is a bounded Borel measurable function), then, for each fixed r ∈ [0, 1], the value
sf (r) = [f ]λr

is clearly determined by the restriction of f to the corresponding orbit
of radius r. Since the characteristic function of this orbit is µ-almost everywhere
zero, it is likewise clear that [f ]λr

always depends on the choice of the representative
f of [f ]µ. Nevertheless, the 2rdr-equivalence class of the section r 7→ sf (r) = [f ]λr

does not depend on this choice. Moreover, the map S sending [f ]µ to this 2rdr-
equivalence class is (clearly) T-equivariant.

Furthermore, this can still be made to work when there is a non-empty excep-
tional set in the definition of sf ; i.e. when p-integrability of f is lost when f is
restricted to certain orbits. For each fixed orbit, there are evidently f ∈ Lp(X,µ)
for which this is the case, but for each fixed f ∈ Lp(X,µ) there are 2rdr-almost
none of such orbits.

5. Disintegration: general case

In Section 4, we started with a topological dynamical system (G,K) and a G-
invariant Borel probability measure onX . In that context, there existed canonically
associated strongly continuous representations of G as isometric lattice automor-
phisms of the spaces Lp(X,µ) (1 ≤ p < ∞) that fix the constants.
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In the current section, we turn the tables. We start with an (at first) abstract
group G and a probability space (X,µ), and we assume that, for some 1 ≤ p < ∞,
G acts as isometric lattice automorphisms of Lp(X,µ) such that the constants are
left fixed. It is then established that, in fact, G acts naturally in a similar manner
on Lp(X,µ) for all 1 ≤ p < ∞; see Corollary 5.10. Furthermore, if G is a locally
compact Hausdorff group and the original representation is strongly continuous,
then it is shown that there is an isomorphic model in which this G-action on all Lp-
spaces originates canonically from a measure preserving continuous G-action on a
compact Hausdorff space; see Theorem 5.14. Under mild additional assumptions, we
can then conclude from our disintegration Theorem 4.9 that, even though there was
originally no action of G on an underlying point set, the original representation(s) of
G on Lp(X,µ) can still be disintegrated into order indecomposable representations
as an Lp-direct integral. This leads to Theorem 5.15, which is an ordered relative
of the general unitary disintegration in [9, Theorem 18.7.6]

Remark 5.1. It follows from the combination of [3, Vol. I, Exercise 1.12.102], [3,
Vol. II, Example 6.5.2], and [3, Vol. I, Exercise 4.7.63] that, for 1 ≤ p < ∞,
Lp(X,µ) is always separable wheneverX is a separable metric space and µ is a Borel
probability measure on X . Therefore, the representation spaces in Section 4 are all
separable. Furthermore, we have observed in Remark 4.10 that the representations
on the relevant spaces in Section 4 are all strongly continuous. Neither of these
properties has played a role in the proofs so far. Quite to the contrary, in the
current section both properties will be essential in order to be able to exhibit a
model in Theorem 5.14 to which the disintegration Theorem 5.15 can subsequently
be applied.

Remark 5.2. With the exception of Remark 5.8, the combination of ideas, argu-
ments and results in Lemma 5.3 up to and including Theorem 5.14 is rather similar
to that in [10]. Unfortunately, we cannot directly apply results such as [10, Proposi-
tion 13.6 and Theorem 13.9]. The reason is that the so-called Markov operators on
Lp(X,µ) that are considered in [10] are positive operators T that fix the constants
and satisfy

∫
X
f dµ =

∫
X
f dµ for all f ∈ Lp(X,µ). Our point of departure, where T

preserves the norm rather than the integral, and is a lattice homomorphism rather
than merely a positive operator, is different. This necessitates an independent,
albeit similar, development; see also Remark 5.6.

We begin by showing that representations of an abstract group G as isometric
lattice automorphisms that fix the constants come in families.

There will be only one measure in this section, and we happily resort to the
usual practice of ignoring the distinction between equivalence classes of functions
and their representatives.

We start with the following key observation, see [10, Theorem 7.23.vi].

Lemma 5.3. Let (X,µ) be a probability space, and let T : L∞(X,µ) → L∞(X,µ)
be a lattice homomorphism that fixes the constants. Then T (|f |p) = |T (f)|p for all
f ∈ L∞(X,µ) and all 1 ≤ p < ∞.

Lemma 5.4. Let (X,µ) be a probability space, and let T : L∞(X,µ) → L∞(X,µ) be
a lattice homomorphism that fixes the constants. Then the following are equivalent:

(1)
∫
X
T (f) dµ =

∫
X
f dµ for all f ∈ L∞(X,µ);

(2) ‖T (f)‖1 = ‖f‖1 for all f ∈ L∞(X,µ);
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(3) There exists 1 ≤ p < ∞ such that ‖T (f)‖p = ‖f‖p for all f ∈ L∞(X,µ);

(4) For all 1 ≤ p < ∞, we have ‖T (f)‖p = ‖f‖p for all f ∈ L∞(X,µ).

Proof. To see that (1) implies (4), we use Lemma 5.3 to note that ‖T (f)‖pp =∫
X
|T (f)|p dµ =

∫
X
T (|f |p) dµ =

∫
X
|f |p dµ = ‖f‖pp.

It is clear that (4) implies (3).
To see that (3) implies (2), we invoke Lemma 5.3 to compute as follows:

‖T (f)‖1 =

∫

X

|T (f)| dµ =

∫

X

T (|f |) dµ =

∫

X

T
(∣∣∣
(
|f |1/p

)∣∣∣
p)

dµ

=

∫

X

∣∣∣T
(
|f |1/p

)∣∣∣
p

dµ =
∥∥∥T
(
|f |1/p

)∥∥∥
p

p
=
∥∥∥|f |1/p

∥∥∥
p

p

= ‖f‖1.

To see that (2) implies (1), we note that the equality in (1) is just the one in (2)
if f ≥ 0 (note that Tf ≥ 0 then). For general f , we then have
∫

X

T (f) dµ =

∫

X

(T (f))+ dµ−

∫

X

(T (f))− dµ =

∫

X

T (f+) dµ−

∫

X

T (f−) dµ

=

∫

X

f+ dµ−

∫

X

f− dµ =

∫

X

f dµ.

�

Fix 1 ≤ p < ∞, and consider a lattice homomorphism T : Lp(X,µ) → Lp(X,µ)
that leaves the constants fixed. Then T , being a positive operator on a Banach
lattice, is continuous in the p-norm. Furthermore, T leaves L∞(X,µ) invariant.
Indeed, if f ∈ L∞(X,µ), then |f | ≤ ‖f‖∞1X in the lattice Lp(X,µ). An application
of T shows that T (f) is in L∞(X) again, and also that T : L∞(X,µ) → L∞(X,µ)
is contractive in the supremum-norm. For later use, let us note that the latter
implies that a group of lattice automorphisms of Lp(X,µ) that fixes the constants
automatically acts on L∞(X) as isometric lattice automorphisms.

Using continuity and density arguments, the following result is now an easy
consequence of Lemma 5.4.

Lemma 5.5. Let (X,µ) be a probability space, let 1 ≤ p < ∞, and let T : Lp(X,µ) →
Lp(X,µ) be a lattice homomorphism that leaves 1X fixed. Then T leaves L∞(X,µ)
invariant, and the restriction of T to L∞(X,µ) is a contractive lattice homomor-
phism for the supremum-norm that leaves the constants fixed. Furthermore, the
following are equivalent:

(1)
∫
X T (f) dµ =

∫
X f dµ for all f ∈ L∞(X,µ);

(2)
∫
X T (f) dµ =

∫
X f dµ for all f ∈ Lp(X,µ);

(3) ‖T (f)‖p = ‖f‖p for all f ∈ Lp(µ,X).

Remark 5.6. In the terminology of [10, Section 13.1], the equivalence of (2) and
(3) in Lemma 5.5 implies that a lattice homomorphism T : Lp(X,µ) → Lp(X,µ)
that leaves the constants fixed is a Markov operator on Lp(X,µ) precisely when it
is an isometry.

Note that p is absent from part 1 of Lemma 5.5, but present in parts 2 and 3.
Lemma 5.4 has similar features. Using restriction to, and extension from, the
common dense subspace L∞(X,µ) of all spaces Lp(X,µ) (1 ≤ p < ∞), one readily
obtains the following result.
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Lemma 5.7. Let (X,µ) be a probability space, let 1 ≤ p ≤ q < ∞, and let
T : Lp(X,µ) → Lp(X,µ) be an isometric lattice homomorphism that leaves the
constants fixed. Then T leaves Lq(X,µ) ⊆ Lp(X,µ) invariant, and the restric-
tion T : Lq(X,µ) → Lq(X,µ) is an isometric lattice homomorphism that leaves the
constants fixed. Moreover, every isometric lattice homomorphism of Lq(X,µ) that
leaves the constants fixed can thus be obtained from a unique T .

Remark 5.8. There is an alternative way to understand why Lemma 5.7 holds.
According to Lamperti’s theorem [12, Theorem 3.2.5], the isometries of Lp(X,µ)
are, for 1 ≤ p 6= 2 < ∞ , the composition of a multiplication operator and an
operator that is induced by a regular set isomorphism. An inspection of the proof
shows that the theorem actually describes all disjointness preserving isometries;
this disjointness preserving property being automatic if p 6= 2. Consequently, if
1 ≤ p < ∞ is fixed, and T : Lp(X,µ) → Lp(X,µ) is an isometric lattice isomorphism
that fixes the constants, then the description in Lamperti’s theorem applies to the
operator T . Since T fixes the constants, the multiplication operator is the identity,
so that T is actually induced by a regular set isomorphism. Since T is an isometry,
this regular set isomorphism must be measure preserving. It is then clear why and
how T acts as isometric lattice automorphisms on all spaces Lp(X,µ): all these
actions arise from the same underlying measure preserving regular set isomorphism.
At the cost of invoking Lamperti’s result, and of some technical details of a different
nature, a different proof of Lemma 5.7 can thus be given.

If (X,µ) is a probability space, and if 1 ≤ p < ∞, then, as is well known, the
topology that is induced on {f ∈ L∞(X,µ) : ‖f‖∞ ≤ 1} by Lp(X,µ) does not
depend on p. As a first consequence, the spaces Lp(X,µ) for 1 ≤ p < ∞ are either
all separable, or all non-separable; their separability is known to be equivalent to
the separability of µ, see [3, Vol. I, Exercise 4.7.63]. As a second consequence,
when combined with Lemma 5.7 and with the already observed fact that a lattice
homomorphism of Lp(X,µ), that leaves the constants fixed, automatically leaves
{f ∈ L∞(X,µ) : ‖f‖∞ ≤ 1} invariant, this p-independence of the topology yields
the statement on the strong operator topology of the following result, which is in
the spirit of [10, Proposition 13.6].

Proposition 5.9. Let (X,µ) be a probability space, and let 1 ≤ p ≤ q < ∞.
Then the semigroup/group of isometric lattice homomorphisms/automorphisms of
Lp(X,µ) into/onto itself that leaves the constants fixed is, via the restriction map,
isomorphic to the semigroup/group of isometric lattice homomorphisms/automorphisms
of Lq(X,µ) into/onto itself that leaves the constants fixed. This isomorphism is a
homeomorphism for both the strong and the weak operator topologies as induced
from the bounded operators on Lp(X,µ) and Lq(X,µ).

We thus have the following result concerning our type of representations always
occurring in families.

Corollary 5.10. Let (X,µ) be a probability space, let G be a group, and let
1 ≤ p0 < ∞. Suppose that G acts on Lp0(X,µ) as isometric lattice automorphisms
that leave the constants fixed. Then G acts naturally on Lp(X,µ) as isometric lattice
automorphisms that leave the constants fixed for all 1 ≤ p < ∞. These represen-
tation spaces are either all separable, or all non-separable. If G is a topological
group, then these representations are either all strongly/weakly continuous, or all
strongly/weakly discontinuous.
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We will now proceed to show that, if G is a locally compact Hausdorff group,
there is a model that gives an addional ‘explanation’ of Corollary 5.10, in addition
to the observation in Remark 5.8. The main ideas leading to the pertinent Theo-
rem 5.14 are those employed in the proof of [10, Theorem 15.27], where the group
is compact and p = 1, but with a few technical modifications, so that they lead to a
stronger result that is valid for non-compact groups (a rather modest achievement)
and for all 1 ≤ p < ∞ simultaneously. The basic tool is an application of the
commutative Gelfand-Naimark theorem, and for this we need some preparations.

The proof of the following result is a technically strengthened variation on part
of the proof of [10, Theorem 15.27]. For this, invariant integration over the group
is needed, and this is the reason that the requirement that G be a locally compact
Hausdorff group becomes part of the hypotheses.

Lemma 5.11. Let (X,µ) be a probability space, let 1 ≤ p < ∞, and let ρ be
a strongly continuous representation of a locally compact Hausdorff group G on
Lp(X,µ) as isometric lattice automorphisms that leave the constants fixed. Then
there exists a G-invariant closed subalgebra Ap of (L∞(X,µ), ‖ · ‖∞) that contains
1X , is dense in Lp(X,µ), and is such that the restricted representation of G on
(Ap, ‖ · ‖∞) is strongly continuous. If µ is separable, and G is σ-compact, then Ap

can be taken to be a separable subalgebra of (L∞(X,µ), ‖ · ‖∞).

Proof. If f ∈ Lp(X,µ), and φ ∈ Cc(G), then, since the integrand is continuous and
compactly supported, the Lp(X,µ)-valued Bochner integral ρ(φ)f =

∫
X
φ(g)ρ(g)f dµG(g)

exists; here µG is a left-invariant Haar measure on G. If f ∈ L∞(X,µ), then ρ(φ)
is, in fact, an element of L∞(X,µ). To see this, choose, for n = 1, 2, . . ., a disjoint

partition suppφ =
⋃Nn

i=1 Ei of the compact set suppφ into measurable subsets Ei,
and gi ∈ Ei, such that ‖φ(g)ρ(g)f − φ(gi)ρ(gi)f‖p ≤ 1/n and |φ(g)− φ(gi)| ≤ 1/n

for all g ∈ Ei. It is easy to see that
∑Nn

i=1 µ(Ei)φ(gi)ρ(gi)f → ρ(φ)f in Lp(X,µ) as
n → ∞. Passing to a subsequence, we may assume that this convergence is point-
wise almost everywhere. On the other hand, we know that G acts as isometries on

(L∞(X,µ), ‖ · ‖∞), so that
∥∥∥
∑Nn

i=1 µ(Ei)φ(gi)ρ(gi)f
∥∥∥
∞

≤ µ(suppφ)‖φ‖∞ ‖f‖∞ for

all n. We conclude that ρ(φ)f is an element of L∞(X,µ), as claimed. Moreover,

since
∥∥∥
∑Nn

i=1 µ(Ei)φ(gi)ρ(gi)f
∥∥∥
∞

≤
∑Nn

i=1 ≤ |φ(gi)|µ(Ei)‖φ‖∞, we can let n → ∞

and conclude that ‖ρ(φ)f‖∞ ≤ ‖φ‖1‖φ‖∞‖f‖∞. It follows easily from the latter
inequality and the strong continuity of the left regular representation of G on L1(G)
that the map g 7→ ρ(g)ρ(φ)f from G into (L∞(X,µ), ‖ · ‖∞) is continuous.

After these preparations, we let

A′
p = {f ∈ L∞(X,µ) : g 7→ ρ(g)f is continous from G into (L∞(X,µ), ‖ · ‖∞)}.

Using that G acts as isometries on (L∞(X,µ), ‖ · ‖∞), one sees that A′
p is a closed

G-invariant subalgebra of (L∞(X,µ), ‖ · ‖∞) that contains 1X . It follows from our
preparations that A′

p is dense in Lp(X,µ).
For the general case, one can take Ap = A′

p. If µ is separable, and G is σ-compact,
we select a countable subset S of A′

p containing 1X that is dense in Lp(X,µ). If
f ∈ S, then ρ(G)f is a σ-compact, and hence a separable, subset of (A′

p, ‖ · ‖∞).
Therefore there exists a countable subset Gf of G, containing the identity element,

such that ρ(G)f ⊆ {ρ(g)f : g ∈ Gf}
‖ · ‖

∞ ⊆ A′
p. One can now take Ap to be the
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closed subalgebra of (L∞(X,µ), ‖ · ‖∞) that is generated by the ρ(g)f for f ∈ S
and g ∈ Gf . �

Remark 5.12. It is worth noting that every separable locally compact Hausdorff
group G is σ-compact. Indeed, there exists an open neighbourhood of V of e in
G that is σ-compact (according to [13, Proposition 2.4], V can even be taken to
be an open closed subgroup), and if S ⊂ G is a countable dense subset, then
G =

⋃
s∈S s(V ∩ V −1) is σ-compact.

The following result has no counterpart in [10]. It is needed when one wants to
transfer the ‘whole’ picture in Theorem 5.14, i.e. for all 1 ≤ p < ∞ simultaneously.

Proposition 5.13. Let (X,µ) be a probability space, let 1 ≤ p0 < ∞, and let ρ
be a strongly continuous representation of a locally compact Hausdorff group G on
Lp0(X,µ) as isometric lattice automorphisms that leave the constants fixed, so that
G acts naturally in a similar fashion on Lp(X,µ) for all 1 ≤ p < ∞. Then there
exists a G-invariant closed subalgebra A of (L∞(X,µ), ‖ · ‖∞) that contains 1X , is
dense in Lp(X,µ) for all 1 ≤ p < ∞, and is such that the restricted representation
of G on (A, ‖ · ‖∞) is strongly continuous. If µ is separable, and G is σ-compact,
then A can be taken to be a separable subalgebra of (L∞(X,µ), ‖ · ‖∞).

Proof. For n = 1, 2, . . ., choose an algebra An as in Lemma 5.11 that is dense in
Ln(X,µ), and let A be the closed subalgebra of (L∞(X,µ), ‖ · ‖∞) that is generated
by the An. �

The following ‘transfer theorem’ is a stronger version of [10, Theorem 15.27]. We
include the short proof for the convenience of the reader, but hasten to add that it
is a modest variation on that of [10, Theorem 15.27], where only p = 1 is considered
and where the group is compact.

Theorem 5.14. Let (X,µ) be a probability space, let 1 ≤ p0 < ∞, and let ρp0

be a strongly continuous representation of a locally compact Hausdorff group G on
Lp0(X,µ) as isometric lattice automorphisms that leave the constants fixed, so that
G acts naturally in a similar fashion on Lp(X,µ) for all 1 ≤ p < ∞.

Then there exist

(1) a topological dynamical system (G,K), where K is a compact Hausdorff
space;

(2) a G-invariant regular Borel probability measure µ̃ on K with supp µ̃ = K;
(3) a family {Φp}1≤p<∞ of isometric lattice isomorphisms Φp : Lp(X,µ) →

Lp(K, µ̃) that
(a) send 1X to 1K ;
(b) are compatible with the inclusions between Lp-spaces;
(c) intertwine the strongly continuous representations of G on the spaces

Lp(X,µ) with the canonical strongly continuous representations of G
on the spaces Lp(K, µ̃).

If µ is separable, and G is σ-compact, then K can be taken to be metrizable.

Proof. Choose an algebra A as in Proposition 5.13. By the commutative Gelfand-
Naimark theorem, there exist a compact Hausdorff space K and a unital isometric
algebra isomorphism Φ : (A, ‖ · ‖∞) → (C(K), ‖ · ‖∞). If A is separable, then
K is metrizable. We know from [10, Theorem 7.23.(iv)-(vi)] that Φ is a lattice
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isomorphism, that |f |p ∈ A for all f ∈ A and 1 ≤ p < ∞, and that

(5.1) Φ(|f |p) = |Φ(f)|p (f ∈ A, 1 ≤ p < ∞).

We transfer the strongly continuous action of G on (A, ‖ · ‖∞) to (C(K), ‖ · ‖∞) via
Φ. As is well known, this transferred action necessarily originates from a topological
dynamical system (G,K).

The Riesz representation theorem furnishes a regular Borel probability measure
µ̃ on K, easily seen to be of full support, such that

(5.2)

∫

K

Φ(f) dµ̃ =

∫

X

f dµ (f ∈ A).

Since Φ intertwines the G-actions on C(K) and A by construction, it is immediate
from (5.2) and part 1 of Lemma 5.5 that µ̃ isG-invariant. Furthermore, combination
of (5.1) and (5.2) shows that

∫

K

|Φ(f)|p dµ̃ =

∫

K

Φ(|f |p) dµ̃ =

∫

X

|f |p dµ (f ∈ A, 1 ≤ p < ∞).

Since, for all 1 ≤ p < ∞, A is dense in Lp(X,µ), and C(K) is dense in Lp(K,µ), by
extension we obtain a family of isometries Φp : Lp(X,µ) → Lp(K, µ̃) (1 ≤ p < ∞).
Since Φ is a lattice isomorphism, so are the Φp. The statements in parts 3b and 3c
are routinely verified. �

It is now clear that Theorems 5.14 can still be used to disintegrate representa-
tions even when there is no initial action on the underlying point set, since—under
mild conditions—the latter is furnished by Theorem 5.14. The result is the follow-
ing, which should be compared with the general unitary disintegration in [9, Theo-
rem 18.7.6]. Note the separability assumption on the probability space, needed to
ensure that the compact Hausdorff space from Theorem 5.14 is Polish.

Theorem 5.15. Let G be a locally compact Polish group, let 1 ≤ p0 < ∞, and let
(X,µ) be a separable probability space. Let ρp0 : G → L(Lp0 (X,µ)) be a strongly
continuous representation of G as isometric lattice automorphisms that leave the
constants fixed. Then, for all 1 ≤ p < ∞, there exists a representation ρp of G on
Lp(X,µ) with the same properties, that is obtained from ρp0 via restriction to, and
extension from, L∞(X,µ). Furthermore, there exist a Borel probability space (Ω, ν)
and a vector space V such that, for all 1 ≤ p < ∞, there exist

(1) a measurable family {Bp
ω}ω∈Ω of Banach lattices over (Ω, ν, V );

(2) a family of strongly continuous and order indecomposable representations
ρpω : G → L(Bp

ω) (ω ∈ Ω) of G as isometric lattice isomorphisms of Bp
ω;

(3) an isometric lattice isomorphism Sp : Lp(X,µ) →
(∫ ⊕

Ω
Bp

ω dν(ω)
)

Lp
such

that the following diagram commutes for all g ∈ G:

Lp(X,µ)
ρp(g)

//

Sp

��

Lp(X,µ)

Sp

��(∫ ⊕

Ω Bp
ω dν(ω)

)

Lp

(
∫

⊕

Ω
ρp
ω(g) dν(ω))

Lp
//

(∫ ⊕

Ω Bp
ω dν(ω)

)

Lp

Inspection of the proofs shows that there is some more information available. V
can be taken to be the vector lattice of all simple functions on the compact metric
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space K that is furnished by Theorem 5.14, Ω is then the set of all ergodic Borel
probability measures onK, and ν is then the push-forward of the measure µ̃ onK in
Theorem 5.14 to the set of ergodic Borel probability measures Ω, using a decompo-
sition map for µ̃ as in Section 4. The family {Bp

ω}ω∈Ω of Banach lattices is then the
family {Lp(K,ω)}ω∈Ω of Lp-spaces corresponding to the ergodic Borel probability
measures on K, and the representations ρpω are then the canonical representations
of G on these spaces.

6. Perspective

In Section 1, we put forward the task of disintegrating strongly continuous repre-
sentations of a locally compact group as isometric lattice automorphisms of Banach
lattices into similar representations that are order indecomposable. This would be
the analogue of what is known to be possible for strongly continuous unitary repre-
sentations of separable groups on separable Hilbert spaces. The Lp-spaces for finite
p are arguably the prime examples of Banach lattices that can serve as representa-
tion spaces, and in that case our goal was achieved in Theorem 5.15 for a certain
class of such representations. As explained in Section 1, this class already includes
e.g. all natural representations on Lp-spaces corresponding to topological actions
of Lie groups on compact manifolds with an invariant Borel probability measure.
Consequently, we now do not only know that the ensuing natural unitary repre-
sentation of the group on the pertinent (complex) L2-space is a direct integral of
irreducible (i.e. indecomposable) unitary representations, but also that the natural
representations of the group as isometric lattice automorphisms of the pertinent
real Lp-spaces for finite p are direct integrals of similar representations that are
order indecomposable.

Still, it is clear that Theorem 5.15 is only a first step in the study of the disin-
tegration of general strongly continuous group representations as isometric lattice
automorphisms of Lp-spaces. At a conceptual level, the main insight seems to be
that this is, in fact, possible for the representation in the present paper, and that (a
modification of) the direct integral theory in [15] provides the language to formalize
such a disintegration. This is not so clear at the outset.

It is hoped that further steps can be taken. One possible development, still for a
probability measure µ and a strongly continuous representation as isometric lattice
automorphisms that leave the constants fixed, would be to attempt to relax the
conditions in Theorem 5.15 that G be Polish and/or that the probability space be
separable. As is indicated in Remark 5.8, if the constants are fixed, then one is
‘actually’ looking at a measure preserving action of G on the measure algebra Aµ.
It is conceivable that Maharam’s work in [17] can then be used to improve on the
technical hypotheses in Theorem 5.15, since the main basic results (Theorems 1, 2a,
and 2b) in [17] do not involve any topology. They can be applied in the context
of any measure preserving abstract group action on a measure algebra, and yield
a decomposition of Aµ with respect to the sub-algebra of the fixed points of G in
Aµ. It is shown (see [17, Theorems 6 and 7]) that this can be used to yield an
ergodic decompositon of the group action at the level of measure spaces if G equals
the integers or the real numbers (which are, incidentally, both still Polish), and it
is mentioned (but not proved) that a similar theorem holds in more general cases.
It is open to investigation whether such a decomposition at the level of measure
spaces—once actually established for more generalG—can be pushed still further to
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the G-action on the Lp-spaces themselves, while at the same time incorporating the
(modified) direct integral formalism of [15]. There are definitely some measurability
issues to be taken care of, and perhaps the assumptions on G and µ in Theorem 5.15
are not only not too restrictive from a practical point of view, but also not so easy
to avoid when needing to ensure measurability in the proofs. After all, for the
disintegration of a strongly continuous unitary group representation both the group
and the Hilbert space are also required to be separable. On a positive note, since
our main sources for the ergodic decomposition in the present paper, Farrell’s 1962
paper [11], Varadarajan’s 1963 paper [22], and Zakrzewski’s 2002 overview [26],
make no use Maharam’s considerably earlier 1950 paper [17] (in fact, they do not
refer to her work at all), but concentrate on Borel spaces and group actions thereon,
such a general approach based on [17] would, to the knowledge of the authors,
certainly provide a new angle on the matter.

Another possible development is the bold leap to consider the most general case
of strongly continuous representations as isometric lattice automorphisms of Lp-
spaces—for possibly infinite measure µ—that do not necessarily arise from an un-
derlying measure preserving action. By Lamperti’s theorem [12, Theorem 3.2.5],
such operators are—this is true for σ-finite measures—always a composition of a
multiplication operator and an operator that arises from an (not necessarily mea-
sure preserving) action on Aµ; see also Remark 5.8 for p = 2. With this factorisation
available, as a next step one could e.g. try to adapt the approach via Borel spaces
as in [11], [22], or [26], or else attempt a route via measure algebras by generalizing
the material in [17].

Acknowledgements. We thank Markus Haase for pointing out various results in [10],
specifically [10, Theorem 15.27], and for discussions on the proofs of the latter
result and our Lemma 5.11. The authors are indebted to the anonymous referee for
pointing out the possible potential of Maharam’s work in [17] for the current line
of research.
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