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A B S T R A C T

Auditory cues are frequently used to support movement learning and rehabilitation, but the neural basis of this
behavioural effect is not yet clear. We investigated the microstructural neuroplasticity effects of adding musical
cues to a motor learning task. We hypothesised that music-cued, left-handed motor training would increase
fractional anisotropy (FA) in the contralateral arcuate fasciculus, a fibre tract connecting auditory, pre-motor
and motor regions. Thirty right-handed participants were assigned to a motor learning condition either with
(Music Group) or without (Control Group) musical cues. Participants completed 20 minutes of training three
times per week over four weeks. Diffusion tensor MRI and probabilistic neighbourhood tractography identified
FA, axial (AD) and radial (RD) diffusivity before and after training. Results revealed that FA increased sig-
nificantly in the right arcuate fasciculus of the Music group only, as hypothesised, with trends for AD to increase
and RD to decrease, a pattern of results consistent with activity-dependent increases in myelination. No sig-
nificant changes were found in the left ipsilateral arcuate fasciculus of either group. This is the first evidence that
adding musical cues to movement learning can induce rapid microstructural change in white matter pathways in
adults, with potential implications for therapeutic clinical practice.

1. Introduction

Moving physically to a steady beat is a universal human phenom-
enon, often occurring spontaneously and enjoyably in a musical context
(Chen, Zatorre, & Penhune, 2006; Schaefer &Overy, 2015). Accordingly,
auditory cues are increasingly used to support movement learning and
rehabilitation (Schaefer, 2014), with evidence suggesting that musical
stimuli can support physical exercise (Karageorghis & Priest, 2012),
movement rehabilitation after stroke (Thaut, 2005) and improve gait in
patients with Parkinson’s disease (Benoit et al., 2014; Thaut et al., 1996;
Dalla Bella, Benoit, Farrugia, Schwartz, & Kotz, 2015). However, the
neural basis of effective auditory-cued motor training is not yet fully
understood (Schaefer, Morcom, Roberts, & Overy, 2014).

A range of evidence suggests that high levels of musical training are
associated with neural differences in motor circuitry, including corti-
cospinal tracts (Imfeld, Oechslin, Meyer, Loenneker, & Jancke, 2009),
pyramidal tracts (Rüber, Lindenberg, & Schlaug, 2013), corpus callosum

(Schlaug, Jäncke, Huang, Staiger, & Steinmetz, 1995; Schmithorst &Wilke
2002; Steele, Bailey, Zatorre, & Penhune, 2013), and internal capsule
(Bengtsson et al., 2005; Han et al., 2009) (for a review see Moore,
Schaefer, Bastin, Roberts, &Overy, 2014). Further evidence suggests that
musical training can specifically affect auditory-motor circuitry (Bangert
et al., 2006; Baumann et al., 2007; Chen, Penhune, & Zatorre, 2008;
Herholz, Coffey, Pantev, & Zatorre, 2016; Palomar-Garcia, Zatorre,
Ventura-Campos, Bueicheku, &Avila, 2016; Zatorre, Chen, & Penhune,
2007). For example, short-term piano training has been shown to lead to
co-activation of auditory and motor regions during music listening tasks
(Bangert &Altenmüller, 2003; Lahav, Saltzman, & Schlaug, 2007) and en-
hanced activation in premotor cortex and brain areas associated with
sensorimotor integration (Herholz et al., 2016). In individual patient case
studies, Melodic Intonation Therapy (MIT) (Albert, Sparks, &Helm, 1973),
a speech therapy method involving synchronised singing and tapping, has
been found to lead to an increased number of fibres and increased tract
volume of the arcuate fasciculus, a major fibre tract connecting auditory
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and motor brain regions (Schlaug, Marchina, &Norton, 2009; Zipse,
Norton, Marchina, & Schlaug, 2012). Highly trained musicians have also
been found to show higher fractional anisotropy (FA) values and increased
tract volume in the arcuate fasciculus, when compared with non-musicians
(Halwani, Loui, Rüber, & Schlaug, 2011). Recent research confirms a
posterior termination of the arcuate fasciculus in the superior temporal
gyrus, containing primary auditory cortex (Maffei, Soria, Prats-
Galino, & Catani, 2015), and anterior termination in the inferior precentral
gyrus, containing both primary and premotor regions (Brown et al., 2014).
The arcuate fasciculus thus presents a strong candidate tract for the po-
tential neuroplasticity effects of auditory-cued motor training. Despite this,
to our knowledge, no controlled, longitudinal studies have yet investigated
this possibility (Moore et al., 2014).

The aim of the present study was to use diffusion tensor MRI (DT-
MRI) and probabilistic neighbourhood tractography (PNT; Clayden
et al., 2011) to investigate whether a short period of left-handed, music-
cued motor training would induce increased FA in the contralateral but
not ipsilateral arcuate fasciculus. DT-MRI and tractography allow for
detailed exploration of the white matter structure of the brain
via measurement of the direction and magnitude of water molecule
diffusion in segmented tracts-of-interest (Clayden, Storkey,
Maniega, & Bastin, 2009). In white matter, water molecule motion is
restricted such that diffusion is greater along than perpendicular to the
principal fibre direction. FA measures the directionality coherence of
water molecule diffusion and is frequently used to infer information
about white matter structure and connectivity (Basser, 1995), while
mean (MD), axial (AD) and radial (RD) diffusivity measure the total
magnitude of water diffusion and its components parallel and perpen-
dicular to the principal fibre direction, respectively (Song et al., 2002).
Together these parameters can provide an indication of levels of mye-
lination, axonal membrane integrity and other underlying biological
structures (Beaulieu, 2002; Beaulieu, 2014; Song et al., 2002; Wheeler-
Kingshott & Cercignani, 2009). PNT has several advantages over region-
of-interest, voxel-based and deterministic tractography methods, in-
cluding automatic tract segmentation rather than manual seed-point
placement (thus reducing observer bias) and tract segmentation
in native space rather than standard space, thereby allowing
subtler changes in white matter microstructure to be detected
(Clayden et al., 2011).

We designed a novel training paradigm in which participants
learned four sequences of eight finger-to-thumb opposition movements
with their left, non-dominant hand, using a visual display either with
(Music group) or without (Control group) musical cues. To explore
changes in the microstructural properties of the arcuate fasciculus we
compared FA, AD and RD biomarkers, obtained using PNT, in bilateral
arcuate fasciculi of both groups before and after training. We predicted
that left-handed, music-cued motor training would lead to increased FA
specifically in the right arcuate fasciculus of the Music group only.

2. Materials and methods

2.1. Participants

Thirty healthy volunteers aged 18–30 years were recruited using an
online student recruitment website at the University of Edinburgh, UK.
All participants were right-handed according to the Edinburgh
Handedness Inventory (Oldfield, 1971; mean = 81.90, SD = 17.26)
and had no history of neurological or psychiatric disorders. None of the
participants had more than six years (mean = 1.41, SD = 1.56 years)
of musical training and none were currently practising or learning to
play a musical instrument. The participants were quasi-randomly as-
signed (according to the order of recruitment) to either the Music
(n = 15; mean age = 21.27, SD = 1.98 years; 4 male) or Control
(n = 15; mean age = 21.33, SD = 2.38 years; 5 male) groups. All
participants gave informed written consent of their willingness to par-
ticipate and were reimbursed for their practice time and travel expenses

for attending the two MRI scans. The study was carried out in ac-
cordance with the Declaration of Helsinki and was approved by the
local ethics committee of the University of Edinburgh and the West of
Scotland Research Ethics Committee, UK (REC reference number 12/
WS/0229).

2.2. Stimuli

The training paradigm involved learning four sequences of eight
finger-to-thumb opposition movements (shown in Table 1) with the left
(non-dominant) hand (in order to allow greater potential for improve-
ment). For the purposes of the study, the second to fifth digits (i.e. index
to pinkie fingers) of the left hand were labelled from 1 to 4, respec-
tively. All participants were asked to practice the four sequences with
their left hand for 20 min, three times per week over a four-week
period.

For each sequence, an animated visual display was created con-
sisting of four vertical lines, one to represent each finger. Circles des-
cended the vertical lines onto a horizontal line near the bottom of the
screen, at which point participants touched the appropriate finger to
their thumb (Fig. 1), synchronising with the visual display. For the
Music group there was an additional soundtrack providing temporal
cues for each finger movement and pitch cues to indicate the correct
finger to move, thus establishing an auditory-motor relationship be-
tween the musical cues and corresponding finger movements. To ensure
that the four digits were equally involved during training, each in-
dividual finger was used at the start of one sequence, at the end of
another sequence and appeared a total of eight times overall within the
four sequences.

2.3. Procedure

Following recruitment and confirmation of inclusion criteria, par-
ticipants underwent an initial MRI scanning session and behavioural
assessment. Training then consisted of watching the videos online and
practising the appropriate motor sequences, followed by logging pro-
gress. Each video sequence was identified by the starting finger and had

Table 1
The four motor sequences of eight finger-to-thumb opposition
movements.

Sequence 1 1, 3, 2, 4, 3, 1, 3, 2
Sequence 2 2, 4, 3, 4, 1, 1, 2, 3
Sequence 3 3, 4, 1, 2, 4, 4, 2, 1
Sequence 4 4, 2, 1, 3, 2, 3, 1, 4

Fig. 1. A snap-shot ‘still’ from one of the training videos. From left to right the four
vertical lines represent the index to pinkie fingers of the left hand. As the video plays, the
circles move down the screen and when they reach the horizontal line the participant
moves the appropriate finger to touch the thumb; in the auditory-motor condition this
corresponds with an appropriate pitch cue and a steady beat. The red circle denotes the
start of the sequence.
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four levels of increasing difficulty, implemented by increasing the speed
of the visual display and tempo of the music (to ensure that the motor
exercise remained challenging throughout the four-week training
period). Each video ended with a so-called “30-s challenge”, also used
as a behavioural measure (see Section 2.4). Progression to each diffi-
culty level was determined via self-assessment, whereby participants
moved up a level (i.e. moved to a higher speed) once they were com-
fortably able to complete the preceding level. None of the participants
reached the final, most difficult level of training, indicating that the
task was sufficiently challenging and fit for purpose. Participants
scheduled three practice sessions evenly across the week (for example,
on Monday, Wednesday and Saturday) and practice was monitored,
with email reminders if practice sessions were missed (two participants,
one in each group, only completed 11 out of 12 practice sessions). After
two weeks, participants completed a mid-training behavioural test and
after four weeks, participants returned for a final behavioural test and a
second MRI scanning session.

2.4. Behavioural assessment and analysis

Following Karni et al. (1995), the measure chosen to assess motor
performance was the accurate completion of as many repetitions of a
particular sequence as possible during a 30-s time period, referred to as
the “30-s challenge” and identical to the practice task at the end of each
training video. Each sequence was displayed as a static visual image, for
all participants. Performance was assessed pre-, mid- and post-training
and included four Untrained sequences as well as the four Trained se-
quences (in order to test how well participants could apply their new
motor skill to an unfamiliar finger movement sequence). Thus, each
behavioural assessment consisted of eight 30-s challenges, with the
sequences presented in a different, counter-balanced order for each
participant. Data were recorded using an adapted Peregrine Gaming
Glove© (http://theperegrine.com) with software specifically designed
to register finger-to-thumb touches, developed by Minerva Design, UK.
For verification purposes, video data of the behavioural assessments
were obtained using a Canon PowerShot SX240 HS digital camera
mounted on a tripod.

The number of correctly performed sequences for each trial was
extracted and averaged for the Trained and Untrained sequences pre-,
mid- and post-training using MATLAB 2010a (Natick, USA). The
number of correct sequences performed for each sequence type
(Trained and Untrained) was compared between time-points (pre-, mid-
and post-training) and groups (Music and Control) using 3 × 2× 2
mixed ANOVA. Shapiro-Wilk Tests were used to confirm that the data
were normally distributed, thus establishing the suitability of para-
metric statistics, while Mauchly’s Tests of Sphericity were used to check
homogeneity of variance for ANOVA. Statistical analysis was performed
using IBM SPSS Statistics for Macintosh (Version 21.0, IBM Corp., 2012;
http://www.ibm.com/software/uk/analytics/spss) with a significance
threshold of p < 0.05.

2.5. Magnetic resonance imaging acquisition

DT-MRI data were acquired pre- and post-training at the Clinical
Research Imaging Centre (CRIC), University of Edinburgh, UK (http://
www.cric.ed.ac.uk), using a Siemens Magnetom Verio 3T MRI scanner
(http://www.healthcare.siemens.co.uk) with 12-channel matrix head
coil. The whole brain DT-MRI examination consisted of 6 T2-weighted
(b = 0 s mm−2) and sets of diffusion-weighted (b = 1000 s mm−2)
single-shot spin-echo echo-planar imaging (EPI) volumes acquired with
diffusion gradients applied in 56 non-collinear directions. Volumes were
acquired in the axial plane, with a field-of-view of 240 × 240 mm, 55
contiguous slice locations, and image matrix and slice thickness designed
to give 2.5 mm isotropic voxels. The repetition time (TR) and echo time
(TE) for each EPI volume were 10.2 s and 69.6 ms respectively, with a
total acquisition time of 11.03 min. The bandwidth was 2126 Hz/Pixel.

2.6. Quantitative tractography analysis

All DT-MRI data were converted from DICOM (http://dicom.nema.
org) to NIfTI-1 (http://nifti.nimh.nih.gov/nifti-1) format using the
TractoR package for fibre tracking analysis (http://www.tractor-mri.
org.uk). FSL tools (http://www.fmrib.ox.ac.uk/fsl) were then used to
extract the brain, remove bulk subject motion and eddy current induced
distortions by registering all subsequent volumes to the first T2-
weighted EPI volume (Jenkinson & Smith, 2001), estimate the water
diffusion tensor and calculate parametric maps of FA, AD and RD from
its eigenvalues using DTIFIT.

Tract-average measures of the three water diffusion biomarkers
within the bilateral arcuate fasciculi were determined using probabil-
istic neighbourhood tractography (PNT; Clayden et al., 2011). The
principal advantage of PNT compared with region-of-interest and voxel-
based methods (e.g. Tract-Based Spatial Statistics; Smith et al., 2006) is
the automatic tract segmentation method, which can identify the same
fasciculus in different participants using probabilistic tract shape
modelling. This reduces observer bias in comparison with methods that,
for example, require manual seed-point placement to initiate tracking
within fasciculi-of-interest. In addition, PNT segments the tract of in-
terest in native space, rather than standard space, thereby allowing
subtle changes to be detected as well as accounting for individual dif-
ferences in white matter structure and potentially providing a more
accurate representation of underlying anatomy, compared with stan-
dard space techniques. Re-test coefficients of variance for FA values
obtained using PNT have previously been reported to be comparable
with other analysis methods (Clayden et al., 2009).

In PNT, multiple native space seed points are automatically placed
in a neighbourhood surrounding a seed point transferred from Montréal
Neurological Institute standard space for each tract-of-interest. The
reconstructed tracts from each seed-point are then compared and the
tract that best matches a predefined reference tract in terms of both
length and shape selected automatically from this group of ‘candidate’
tracts. Using the TractoR package (http://www.tractor-mri.org.uk),
models of the bilateral arcuate fasciculi were segmented for each sub-
ject from underlying connectivity data produced using FSL’s BedpostX/
ProbTrackX algorithm with a two fibre model per voxel (Behrens et al.,
2003) by generating a set of candidate tracts from a 7 × 7 × 7
neighbourhood of voxels centred on the reference seed point (right (38,
−44, 24 mm) and left (−36, −40, 28 mm) arcuate fasciculus). The
seed point that produced the best-matched tract to the reference was
then passed back to FSL’s BedpostX/ProbTrackX algorithm to generate
a tract mask from which tract-averaged values of FA, AD and RD,
weighted by connection probability, were determined for the left and
right arcuate fasciculi. All segmented tracts were visually assessed by an
experienced operator (MEB) who was blinded to each subject’s group
status. Tracts that were not an anatomically plausible representation of
the fasciculus-of-interest were removed from further analysis, an ap-
proach that removes any noise in the data caused by the inclusion of
water diffusion biomarker measurements from structures not within the
tract of interest. An example of the right arcuate fasciculus segmented
using PNT in a representative subject is shown in Fig. 2.

2.7. Statistical analysis of imaging data

Statistical analysis was performed using IBM SPSS Statistics for
Macintosh (Version 21.0, IBM Corp., 2012). Shapiro-Wilk tests were
used to confirm that all data were normally distributed, whilst
Mauchly’s Tests of Sphericity or Levene's Test of Variance Equality, as
appropriate, tested homogeneity of variance. Comparisons of FA, AD
and RD values from the bilateral arcuate fasciculi were made between
groups (Music and Control) and time-points (pre- and post-training)
separately for each hemisphere using 2 (time) × 2 (group) mixed
ANOVAs with a significance threshold of p < 0.05.
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3. Results

3.1. Participants

Following appropriate screening of the reconstructed bilateral arc-
uate fasciculi by an experienced observer (see Section 2.6), three par-
ticipants were excluded from further analysis, resulting in 14 partici-
pants in the Music group (mean age = 21.36, SD = 2.02 years; 3 male)
and 13 in the Non-Music group (mean age = 21.54, SD = 2.47 years; 4
male). Independent samples t-tests (two-tailed) revealed no significant
between-group differences in age, musical experience, initial motor
performance or any of the DT-MRI biomarkers in bilateral arcuate
fasciculi prior to training.

3.2. Behavioural results

At the end of the training period participants reached varying levels of
difficulty on the training videos (levels one, two and three, but not four).
The mean number of motor sequences performed correctly in 30 s during
the behavioural test was calculated for each group at each time point for
both Trained and Untrained sequences (Fig. 3). Mauchly’s test indicated
that assumption of sphericity had been violated thus Greenhouse-Geisser
corrections were applied. A 3 × 2× 2 ANOVA revealed a main effect of
time-point (F(1.52,37.90) = 393.90; p < 0.001) and sequence type
(Trained or Untrained) (F(1,25) = 100.53; p < 0.001), as well as a sig-
nificant time-point × sequence type interaction (F(1.57,39.15) = 92.71;
p < 0.001). These results indicate that both groups significantly im-
proved their motor performance for all sequences over time and made
significantly greater improvements in Trained sequences compared with
Untrained sequences. There were no main effects of group, with no be-
tween-group differences at any time-point. Post-hoc 2(sequence
type) × 2(group) ANOVAs confirmed a significant effect of sequence type
mid (F(1,25) = 80.36; p < 0.001) and post-training (F(1,25) = 209.33;
p < 0.001) but not pre-training, as would be expected. Pearson’s corre-
lation analyses (two-tailed) confirmed a significant relationship between
pre and post-training performance across all participants for both Trained
(r(25) = 0.78; p < 0.001) and Untrained sequences (r(25) = 0.72;
p < 0.001), and a significant relationship between pre-training perfor-
mance and FA in the contralateral, right (r(25) = 0.54; p < 0.01), but
not ipsilateral, left (p=0.26) arcuate fasciculus, indicating the appro-
priateness of the training paradigm to the tract of interest.

3.3. FA changes in the arcuate fasciculi

Mean tract-averaged FA values in the arcuate fasciculi were calcu-
lated for each group pre- and post-training (Table 2). For the right

arcuate fasciculus, a mixed 2 × 2 ANOVA revealed a significant effect
of group (F(1,25) = 4.53; p = 0.04) and a significant interaction be-
tween group and time-point (F(1,25) = 4.92; p = 0.04). Post-hoc
paired samples t-tests (two-tailed) indicated that FA values increased
significantly over time in the Music group (t(13) = 2.36; p = 0.04)
with a medium effect size (Cohen’s d = 0.63) with no significant
change in the Control group (t(12) = −0.97; p = 0.35), supporting the
experimental hypothesis (Fig. 4). In order to identify whether changes
in FA were related to changes in behavioural performance, Pearson’s
correlations were conducted for both Trained and Untrained sequences,
within each group and across all participants. No significant relation-
ships were found, indicating that the FA changes were specifically as-
sociated with the type of training involved (music-cued), rather than
with changes in behavioural performance. The equivalent ANOVAs, t-
tests and correlations were conducted for the FA values from the left
arcuate fasciculus, with no significant effects or interactions found for
this tract, thus supporting the specificity of the effects of the left-handed
music-cued motor training on the right (i.e. contralateral) arcuate fas-
ciculus.

3.4. AD and RD changes in the arcuate fasciculi

In order to investigate the possible microstructural change under-
lying the observed FA increase, mean tract-averaged AD and RD values
in bilateral arcuate fasciculi were calculated for each group pre- and
post-training (Table 2). For the right arcuate fasciculus, mixed 2 × 2
ANOVAs revealed a significant interaction between group and time-
point for RD (F(1,25) = 5.46; p = 0.03), whilst for AD there was a
trend towards a main effect of group (F(1,25) = 3.63; p = 0.07).
Paired t-tests revealed that for the Music group only there was a trend
for RD to decrease (t(13) = −2.07; p = 0.06), with a medium effect
size (d = 0.55) and AD to increase over the training period (t(13)
= 1.89; p= 0.08), again with a medium effect size (d = 0.51), in-
dicating increased water diffusion parallel to the fibre direction. The
equivalent ANOVAs and t-tests were conducted for the AD and RD va-
lues from the left arcuate fasciculus, with no significant effects or in-
teractions found for this tract in either group, indicating that the effects
were specific to the right hemisphere.

4. Discussion

To our knowledge this is the first evidence that a short, four-week
period of music-cued motor training can induce rapid, localised neu-
roplasticity in white matter structure. Our initial hypothesis was sup-
ported, namely increased FA was found in the right arcuate fasciculus in
the Music group but not the Control group, in the absence of any change
in left arcuate fasciculus FA (or behavioural differences between
groups). The auditory-motor neuroplasticity effects were thus specific
to the type of training and to the hemisphere contralateral to the
trained hand, and not related to behavioural performance. We interpret
this result to reflect increased structural connectivity in the white
matter tract connecting auditory and motor regions, after a period of
auditory-motor training activity.

The rapid plasticity observed in the arcuate fasciculus lends support
to previous research suggesting that white matter differences observed
between musicians and non-musicians (Halwani et al., 2011) are likely
to be at least partly training-induced, rather than a result of pre-existing
differences. Intervention studies of MIT with stroke patients have also
reported structural changes in the arcuate fasciculus in individual and
small groups of subjects (Schlaug et al., 2009; Zipse et al., 2012), al-
though in these cases the training duration and intensity reported was
between 112 and 120 hours over 15–16 weeks, compared with just four
hours over a four-week training period employed here. Thus, the pre-
sent study with 27 healthy adults provides evidence that even a short,
relatively low-intensity period of auditory-motor training can induce
rapid, training-style related structural changes in the arcuate fasciculus.

Fig. 2. Whole brain white matter map with right arcuate fasciculus identified from
probabilistic neighbourhood tractography (insert) indicated in red for a 23 year-old fe-
male volunteer.
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This four-week timeframe is consistent with Scholz, Klein, Behrens, and
Johansen-Berg (2009), who reported increases in FA in white matter
underlying the right posterior intraparietal sulcus following six weeks
of juggling training, and Langer, Hänggi, Müller, Simmen, and Jäncke
(2012), who reported decreases in left (contralateral) corticospinal tract
FA following 16 days of right upper-limb immobilisation.

Elucidation of the potential mechanism causing an increase in FA is
complex and will require further work. Several mechanisms could be in-
volved (Jones, Knösche, & Turner, 2013; Wheeler-Kingshott & Cercignani,
2009) including increased myelination, changes in axonal membrane
structure, increases in axon diameter, fibre packing density or increased
fibre number (Beaulieu, 2002; Beaulieu, 2014; Jones et al., 2013; Wheeler-
Kingshott & Cercignani, 2009). The growth of new axons in the mature
brain is unlikely for this study, given the short four-week training period
(Wang, Casadio, Weber, Mussa-Ivaldi, & Parrish, 2014), thus increased
fibre numbers is unlikely to have caused the observed changes. Increased
myelination, axon diameter or fibre packing density, or changes in the
axonal membrane structure could all potentially underlie our FA result.

Importantly though, in addition to significantly increased FA in the
right arcuate fasciculus, we found increased AD and decreased RD at

trend level. This pattern is indicative of increased water molecule dif-
fusivity parallel to the main fibre direction and suggests the possibility
of increased myelination (Song et al., 2002). Myelination is associated
with impulse conduction velocity (Ullén, 2009) and is crucial for both
the rapid transfer (Lundgaard et al., 2013) and synchronisation (Fields,
2008) of information between different brain regions. Myelination has
been shown to be essential for learning new motor tasks in rats
(McKenzie et al., 2014), while learning a unilateral motor reaching task
has previously been shown to result in increased FA and myelination in
the rat brain, specifically in white matter underlying sensorimotor areas
contralateral to the trained paw (Sampaio-Baptista et al., 2013). These
results are consistent with our finding of a significant increase in FA
contralateral to the trained hand, confirming that the changes in water
diffusion biomarkers observed in the present study may reflect learning-
related increases in myelination. Myelination can be modulated by
neuronal activity (Chang, Redmond, & Chan, 2016; Lundgaard et al.,
2013), and given that the arcuate fasciculus connects auditory and
motor brain regions (Brown et al., 2014; Catani & Jones, 2005; Maffei
et al., 2015), our music-cued motor task is likely to have increased
neural activity along this tract. Thus, we believe that activity-dependent

Fig. 3. Scatter and line graph showing the number of correct Trained
and Untrained sequences performed within 30 s by the Music
(n = 14) and Control (n = 13) groups pre-, mid- and post-training.
Error bars represent± 1 SD.

Table 2
Mean FA, AD and RD values (SD) in bilateral arcuate fasciculi for both groups pre- and post-training, and p values showing the significance of any change between time-points.

Right arcuate fasciculus Left arcuate fasciculus

Group Pre Post t value p value Pre Post t value p value

FA Music 0.47
(0.03)

0.49
(0.04)

2.36 0.04 0.49
(0.04)

0.48
(0.04)

−0.55 0.60

Control 0.46
(0.03)

0.45
(0.04)

−0.97 0.35 0.49
(0.04)

0.49
(0.03)

−0.49 0.63

AD 10−6 mm2 s−1 Music 1126.00
(38.85)

1142.00
(28.35)

1.89 0.08 1170.63
(50.36)

1170.53
(39.82)

−0.01 0.99

Control 1106.76
(52.21)

1106.20
(43.83)

−0.05 0.96 1166.50
(49.64)

1147.81
(50.90)

−1.38 0.19

RD 10−6 mm2 s−1 Music 524.93
(33.67)

507.69
(39.53)

−2.07 0.06 519.61
(35.18)

527.98
(38.82)

0.93 0.37

Control 518.75
(23.23)

529.60
(36.51)

1.25 0.24 517.69
(29.47)

517.30
(26.02)

−0.07 0.94
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myelination is the most plausible (though not necessarily the only)
mechanism underlying the observed increases in FA and AD and decline
in RD.

A further key finding of the present study is that the neuroplasticity
effects found in the Music group occurred in the absence of behavioural
performance differences between groups or indeed correlations with
increases in behavioural performance. This suggests that in the current
study, changes observed in FA, AD and RD were related specifically to
the style of training (music-cued) rather than the skill level achieved,
leading us to conclude that the use of musical cues promoted a style of
motor learning involving different perception-action mechanisms, as
opposed to promoting better or faster learning. These results may be
especially relevant in a rehabilitation context, for example if the desired
outcome is improved fronto-temporal connectivity. Future investiga-
tion, ideally with larger numbers of participants, of the effects of dif-
ferent kinds of movement cues and longer training periods, may further
clarify the specific effects of using auditory cues during motor learning.
Importantly, extension of these findings to individuals who need
movement rehabilitation may also reveal differences that are specific to
particular patient groups.

In a clinical context, these findings may thus have significant im-
plications for post-stroke movement rehabilitation where structural
reorganisation is key for functional motor recovery (Dimyan & Cohen,
2011). Persistent, residual impairments in motor function are common
in stroke survivors (Broeks, Lankhorst, Rumping, & Prevo, 1999; Wade,
Langton-Hewer, Wood, Skilbeck, & Ismail, 1983), thus designing effec-
tive rehabilitation interventions to improve recovery prospects is vital.
The internet-based training paradigm used in the present study has the
potential to be adapted to allow stroke patients to undergo rehabilita-
tion in their own home, whilst receiving support from a therapist. No
additional specialist equipment is required, only a computer or tablet
and headphones, meaning it has the potential to be cost-effective. We
also note that the training paradigm used here was much shorter and
less intensive than in studies that have reported changes in arcuate
fasciculus following MIT in stroke patients (Norton, Zipse,
Marchina, & Schlaug, 2009; Zipse et al., 2012), thus the present study
provides important evidence to suggest that microstructural changes in
white matter pathways can occur rapidly, at least in young, healthy
volunteers. This finding compliments prior work showing that just two
to six weeks of music training with adults can lead to significant
changes in neural responses to auditory musical stimuli
(Bangert & Altenmüller, 2003; Lahav et al., 2007; Lappe, Trainor,
Herholz, & Pantev, 2011).

We note that the increase in FA found in the right arcuate fasciculus
of the Music group was relatively small. However, the increase was

statistically significant (p < 0.05), showed a medium effect size
(d = 0.63), was only found contralaterally, is in line with findings from
both animal models and human movement learning studies (e.g.
Sampaio-Baptista et al., 2013; Wang et al., 2014) and is further sup-
ported by the increase in AD and decrease in RD found at trend level.
The relatively small effect may be related to the very short training
period and relatively small sample size.

In conclusion, we investigated white matter plasticity in the arcuate
fasciculus in the young, healthy adult brain using a novel auditory-
motor training paradigm. To our knowledge, this is the first time mu-
sical cues have been applied to fine motor skill learning and combined
with DT-MRI and PNT in a longitudinal design. We found increased FA
in the right arcuate fasciculus following four weeks of left-handed
music-cued motor training, suggesting that such motor training can
drive rapid microstructural change in relevant white matter pathways.
Despite making comparable behavioural improvements, the same
structural changes were not observed in the arcuate fasciculus of par-
ticipants in the Control group who completed identical motor training
without musical cueing, suggesting that the effect was specific to the
use of musical cues. In the absence of behavioural differences, the
neuroplasticity effect seen in the Music group suggests that the use of
auditory cues promotes a learning style involving different sensory
systems, as opposed to promoting better or faster learning. Our results
may be relevant to, for example, post-stroke movement rehabilitation,
where structural reorganisation is likely to be essential for physical
rehabilitation (Dimyan & Cohen, 2011). Future research will be re-
quired to investigate the application of musical cues in movement re-
habilitation and to elucidate the optimum type of auditory stimulus to
support movement learning and rehabilitation.
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