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Abstract 

The ability to culture complex organs is currently an important goal in biomedical research. It 

is possible to grow organoids (3D organ-like structures)in vitro; however, a major limitation 

of organoids, and other 3D culturesystems, is the lack of a vascular network. Protocols 

developed for establishing in vitro vascular networks typically use human or rodent cells. A 

major technical challenge is the culture of functional (perfused) networks. In this rapidly 

advancing field, some microfluidic devices are now getting close to the goal of an artificially 

perfused vascular network. Another development is the emergence of the zebrafish as a 

complementary model to mammals. In this review, we discuss the culture of endothelial 

cells and vascular networks from mammalian cells, and examine the prospects for using 

zebrafish cells for this objective. We also look into the future and consider how vascular 

networks in vitro might be successfully perfused using microfluidic technology.  
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1. Introduction 

In multicellular animals, nutrients and oxygen are carried by the cardiovascular system, and 

diffuse directly into the tissues[1]. Similarly, waste products are removed from the tissues by 

the same system. This allows the tissues to grow and develop into functional organs[1]. The 

cells in a living tissue are within 100-200 µm range of a blood capillary[2]. This is important 

for the survival of the cells as the oxygen and nutrients cannot diffuse through the tissue 

beyond this range [3].A blood supply (vasculature connected to a pump) has therefore 

evolved to overcome the constraint on growth imposed by limited diffusion.  

One area where blood vessel development is relevant is tissue engineering for regenerative 

medicine and organ transplantation [4]. Currently, the lack of vascularization of tissues in 

vitro is a major hurdle in reaching this objective [5, 6]. This is unfortunate because cultured, 

vascularized tissues could not only have clinical applications [4], but could also be used as an 

alternative to whole animal models in research [7]. There are currently great efforts directed 

towards growing cells and tissues from a patient’s own body (autologous transplantation), in 

order to overcome the potential danger of allogenic (from another individual) graft 

rejection, and graft-versus-host reactions[8, 9].  

With current tissue culture techniques, tissues cannot be grown more than 100-200 µm in 

thickness, primarily because of the limited diffusion of nutrients and oxygen [10]. Tumor 

cells grown in non-adherent culture can develop into spherical masses (spheroids) up to 

3mm in diameter, typically with a core of cells that are dead or dying due to diffusion 

limitation [11]. Similarly, masses of normal (non-malignant) cells grown in vitro are called 

organoids, and are currently the focus of great interest in biomedical research because they 

show some organization of tissues resembling in vivo organs[12]. We believe that the 

development of anin vitro vascular network could improve the culturing of spheroids and 

organoids (Figure 1) by allowing the tissues to grow and function in a way that is closer to 

the in vivosituation [13].  

Other applications ofvascular network culture could be fundamental studies of vascular 

development[14];recapitulating disease conditions such as the retinal microvascular 

abnormalities seen in diabetes[15]or the abnormal angiogenesis in tumor development[16]; 
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testing anti-angiogenic compounds in cancer research [17] or candidate drugs for their safe 

clinical application [18]; and studies in vascular regenerative medicine [19] (Figure 1). 

 
Figure 1: Potential applications of a vascular network culture. 

 

It has long been known from the field of human and animal surgery, including transplant 

surgery, that tissue can become re-vascularized when grafted to a suitable site[20, 21]. 

Similarly, developmental studies have shown that embryonic tissues can also readily become 

re-vascularized, and continue to grow into functional organs, when transplanted to various 

locations in the embryo[22].Furthermore, embryonic organ primordia can become 

vascularized if transplanted not only to the embryo itself, but to the vascular network in the 

extra-embryonic membranes. A good example of this is the chicken embryo chorioallantoic 

membrane (CAM) system[23, 24]. In that model, organ primordia are placed onto the highly 

vascular CAM, the blood vessels first having been scratched to open them up. The organ 

primordia can then form a vascular connection with the CAM vessels, and undergo 

reasonable growth and morphogenesis. The CAM, however, is highly sensitive to 

environmental factors [25], therefore the development of the tissue graft is not perfect, 

possibly because it is not submerged in a supporting volume of fluid, but rather is exposed to 

in vitro vascular network 

drug screening tumor biology 

organ engineering 

regenerative medicine 

organoid culture 
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the air. In a sense, therefore, the CAM and other developmental systems show that the 

growth of organs on vascular beds is a possibility. What is needed, however, is a vascular 

bed ex vivo that is perfused by some kind of microfluidic system. 

Most of the current research describing vasculogenesis (de novo formation of blood vessels 

from progenitor cells)and angiogenesis (formation of blood vessels from existing blood 

vessels) uses mammalian models, mainly mice. However, these models are fairly expensive, 

time consumingand require ethical and other permissions[26]. Endothelial cell lines such as 

human umbilical vein endothelial cells (HUVECs) are commonly used for developing in vitro 

vascular networks[27].Other sources for developing such cultures include embryonic or adult 

stem cells or tissue explants. The uses and limitations of these techniques are discussed in 

detail in the following sections. 

Zebrafish can be an alternative to mammalian models for studying vascular 

development[28].The zebrafish produce a large number of fertilized eggs at low cost; the 

embryos are externally fertilized and therefore readily accessiblefor experiments[29].In 

some jurisdictions, zebrafish embryos have fewer ethical restrictions. For example, in the 

European Union, the Directive 2010/63/EU on the protection of experimental animals allows 

zebrafish embryos to be used until 5 days post fertilization (dpf)without 

restriction[30].Finally, the zebrafish genome has been sequenced and there is a high level of 

conservation between zebrafish and human protein coding genes [31]. This similarity 

supports the use of zebrafish to model various human diseases [32, 33].Because of these 

advantages, the zebrafish is currently emerging as a model species to study vasculogenesis 

and angiogenesisin vivo[28]. Transgenic reporter lines are proving very useful in these 

studies [28].  

In this review we give a general overview of vascular development in vivo and the role of 

various factors in the development of vasculature.Then, we review the current procedures 

used to culture vascular networks using mammalian endothelial cells and tissue explants. 

Then,we review the use of zebrafish to study various aspects of vasculogenesis and 

angiogenesis in vivo. We look forward by summarizing the potential use of zebrafish model 

for in vitro studies of vascular development.Organoids (organ-like structuresin vitro, lacking a 

vascular network) which have a limited ability to undergo organogenesis, are discussed in 
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the next section. Finally, we summarize studies that use microfluidic technology to develop 

perfusable vascular networks, and we discuss their potential in the field of tissue 

engineering. 

2. Development of vasculaturein vivo 

Formation of a vascular system is an essential process in embryonic development. Because 

multicellular tissues cannot survive without a blood supply, the cardiovascular system is one 

of the earliest systems formed during embryogenesis[34, 35]. The endothelial precursor cells 

(angioblasts) differentiate into endothelial cells and undergo the process of vasculogenesis 

in early embryos to form the primitive blood vessels [36].Studies on zebrafish have shown 

thatthe angioblasts appear in the lateral mesoderm, migrate to the midline of the embryo 

and form the first blood vessels [37]. In adult mice and humans,endothelial progenitor cells 

reside in the bone marrow asmultipotent adult progenitor cells, and contribute to the 

formation of new blood vessels [38]. 

Further development of blood vessels takes place by the extension of the pre-

existingvascular network through the process ofsprouting and non-sprouting angiogenesis 

[39].During angiogenic sprouting, some endothelial cells within the existing blood vessel are 

selected as tip cells, and migrate in the direction of angiogenic stimuli[40]. The surrounding 

extracellular matrix is degraded by specific proteases released during the process [41]. 

Meanwhile, the stalk cells (endothelial cells following the tip cells) proliferate to extend the 

blood vessel[40]. Further in development the vascular network also extends through 

intussusceptive or non-sprouting angiogenesis [42]. The mature blood vessels attain arterial, 

venous and lymphatic differentiation types having different structures and functions [43]. 

Endothelial differentiation and blood vessel formation is a complex process which requires a 

number of growth factors, cell types and extracellular matrix (ECM) components, discussed 

in the following section. 
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3. Factors controlling vasculogenesis and angiogenesisin vivo 

3.1. Protein factors influencing vascular development 

The differentiation of endothelial cells and the formation of blood vessels is mainly 

controlled by several protein factors[44].Important protein factors in this context are 

summarized inTable 1. Some of these factors are released by the endothelial cells 

themselves, other factors are stabilizing signals released by other cell types[44]. The 

differentiation of angioblasts is induced mainly by fibroblast growth factor 2 (FGF-2) and 

bone morphogenic protein-4 (BMP-4) [43]. FGF-2inducesthe expression of vascular 

endothelial growth factor (VEGF) and other important chemokines required to control 

vascular morphogenesis[45]. The importance of FGF-2 for vascular formation has been 

shown in studies on quail and zebrafish embryos [46, 47].Similarly, BMP-4 deficiency is 

associated with severe abnormalities in early mouse embryos, including the lack of a well-

organized vasculature [48]. 

Among the endothelial growth factors, VEGFs play the predominant role in regulating the 

formation of blood vessels [49]. The VEGF family consists of several VEGF genes of which 

VEGF-A, which interacts with endothelial cells through VEGF receptor 2 (VEGFR2 also known 

as KDR or FLK1), is the main component responsible for the viability and proliferation of 

endothelial cells [50]. The VEGF mRNA is alternatively spliced resulting in four different 

isoforms of VEGF (VEGF121, VEGF165, VEGF189, VEGF206), denoted by the number of amino 

acids in their peptide chain[51]. These isoforms, having different rates of diffusion in the 

ECM due to differences in their heparin binding ability, generate a gradient, producing 

chemical signals for the directional migration of newly forming capillaries [52].VEGFs also 

have important roles in the differentiation, migration and cell-cell adhesion of endothelial 

cells, as well asstimulating sprouting angiogenesis and the activationof tip cells[53]. 

Placental growth factor (PlGF), a member of VEGF family expressed in the placenta of early 

mammalian embryos,has a role in the activation of VEGFR2 and establishing interaction 

between VEGF-A and VEGFR2 [54]. PlGFhas been demonstrated to increase the angiogenic 

potential of VEGF in ischemic myocardium in mouse [55]. PlGFexpression is normally low in 

adult tissues, buthigh in pathological conditions, especially in cancer, where it promotes 

tumour angiogenesis[56]. 
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Table 1. Description and role of different proteins involved in vascular development. 
Protein Type  Name  Origin Role in vascular development Ref. 
Secreted 
protein  

VEGF-A, B 
and C 

Endothelial and 
parenchymal 
cells 

VEGF-A: endothelial cellsurvival factor, main 
regulator of vascular development; VEGF-
B:coronary vascularization; VEGF-C:lymphatic 
system 

[51] 

PlGF Mesenchymal 
cells 

Embryonic vascular development, pathological 
angiogenesis 

[54] 

PDGF-B Endothelial cells Vessel maturation;binds to PDGF receptor-β on 
pericytes 

[49] 

FGF-2 Multiple cell 
types 

Differentiation of angioblasts; stimulation of 
VEGF expression; maintenance of vascular 
integrity  

[43, 45] 

Ang-1 Mural cells Maintenance of endothelial cell quiescence; 
stabilization of vessel walls  

[44, 49] 

Ang-2 Angiogenic tip 
cells 

Acts as antagonist of Ang-1; promotes 
endothelial cell proliferation 

[44, 49] 

TGF-β Endothelial and 
mesenchymal 
cells 

Embryonic vascular development; induces 
vascular smooth muscle cell differentiation 

[57, 58] 

BMP-4 Mesoderm  Differentiation of angioblasts; induction of VEGF 
expression 

[43, 59] 

 Egfl-7 Endothelial cells Facilitates tube formation by coordinating 
endothelial cell-cell contact and migration. 

[60] 

Membrane 
proteins 

VEGFR1, 
R2 and R3 

Endothelial and 
hematopoietic  
cells 

VEGFR1 and R2 bind to VEGF-A, B and PlGF. 
VEGFR2 is the main mediator of angiogenesis. R3 
binds to VEGF-C 

[51] 

Ephrin-B2 
and B4 

Endothelial cells Specification of arteries and veins [43, 44] 

VE-
cadherin 

Endothelial cells Maintenance of endothelial cell-cell contact and 
inhibition of endothelial proliferation 

[61] 

Dll-4 Endothelial tip 
cells 

Induces Notch signalling in response to VEGF-A in 
sprouting angiogenesis 

[62] 

Notch-1 
and 4 

Endothelial stalk 
cells 

Restricts formation of endothelial tip-cell in 
response to Dll-4, ensures directional sprouting 

[62] 

Abbreviations: Ang, angiopoietin; BMP, bone morphogenetic protein; Dll, delta like ligand; FGF, fibroblast 
growth factor; PDGF,platelet-derived growth factor; PlGF, placental growth factor; TGF-β, transforming 
growth factor β; VE-cadherin, vascular endothelial cadherin; VEGF, vascular endothelial growth factor; VEGFR, 
vascular endothelial growth factor receptor. 
 

Other growth factors involved in the spreading and maturation of blood vessels include 

angiopoietins (Ang-1 and Ang-2)[63], platelet-derived growth factor-B (PDGF-B) [64] and 

transforming growth factor β (TGF-β) [65], reviewed in Refs. [44, 49]. Epidermal growth 

factor (EGF)-like domain-7 is also secreted by endothelial cells, which facilitatesthe 

formation of vascular tubes[60].Many other transcription factors and signalling molecules 

have been identified to be involved in the differentiation of endothelial cells and the 

regulation of vascular development reviewed in Ref.[66].In response to low oxygen levels in 

the tissues, Hypoxia inducible factors (HIFs) regulates the expression of a number of pro-

angiogenic factors including VEGF, PlGF, Ang-1, Ang-2 and PDGF-B[67]. The HIFs are 
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considered to be the principle mediators of in vivo vasculogenesis and angiogenesis at all 

developmental stages[67]. 

In addition to the secreted protein factors, membrane proteins on the surface of endothelial 

cells also play an important role in vascular morphogenesis (Table 1). Examples of these 

membrane proteins include vascular endothelial cadherin (VE-cadherin), which functions to 

maintain endothelial cell-cell contact during VEGF-induced migration[61];and delta like 

ligand-4 and Notch-1, which specifythe endothelial tipvs. stalk cells during sprouting 

angiogenesis[62]. 

3.2. Role of other cell types in vascular development 

In addition to the secreted and membrane-bound protein factors discussed above, cell types 

other than endothelial cells also contribute to the formation of blood vessels. Pericytes and 

smooth muscle cells promote the proliferation and survival of endothelial cells and provide 

structural support to the blood vessels [68, 69]. Pericytes possess a number of receptors 

specific for the binding of angiogenic growth factors (such as PDGF-B and TGF-β) released by 

endothelial cells[70]. Similarly, the receptor for Ang-1 (a growth factor released by pericytes 

and other mural cells) is expressed on endothelial cells. This interaction between pericytes 

and endothelial cells contributes to angiogenic sprouting, vessel maturation and 

maintenance[70]. In the blood vessels of the central nervous system, pericytes have been 

reported to express tight and adherens junction proteins, thus regulating the permeability of 

blood-brain barrier [71]. 

Macrophagesare reported to be involved in connecting two blood vessel sprouts in the 

process called anastomosis [72]. A similar function is performed by microglial cells in the 

central nervous system, promoting the development of a complex vascular network [73]. 

Under certain conditions (e.g. hypoxia), the parenchymal cells (neurons, hepatocytes, 

myocytes etc.) release angiogenic growth factors to initiate sprouting angiogenesis 

[74].Platelets have been shown to contain isolated granules with stored pro- or anti-

angiogenic factors[75]. These granules are released selectively upon distinct stimulation 

pathways, favouring or hinderingangiogenesis [76]. Similarly, adipose stromal cells(a 

population of adult stem cells residing in fat tissue) release growth factors (such as VEGF, 

TGF-β and FGF) under ischemic conditions, promoting angiogenesis[77]. 
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3.3. Role of extracellular matrix 

Extracellular matrix (ECM)contributes to the formation and diversity of blood vessels in 

several ways including: (i) maintaining the histological structure and elasticity of the vessels, 

(ii)regulating the proliferation and differentiation of endothelial cells, and (iii) transporting, 

modifying or blocking the angiogenic growth factors[78].The ECM is a complex network of 

macromolecules and its composition and properties are highly variable among different 

tissues, affecting the tissue-specific differentiation of stem cells [79]. The protein 

components of ECM interact specifically with the transmembrane protein integrinswhich 

activate signalling pathways inside the cells,resulting in expression of particular genes that 

influence cellular differentiation [80].The biophysical properties of ECM (stiffness, elasticity 

etc.) are also thought to induce cellular pathways (collectively known as 

mechanotransduction pathways) affecting cell behaviour and fate [81]. 

Endothelial cells synthesize their own ECM, the major components of which typically include 

collagen type-IV, nidogens, heparansulfate proteoglycans and laminins [82]. Research on the 

ECM of blood vessels have shown the presence of different ECM components at different 

stages of vascular development [83]. In the beginning of the process, the endothelial cells 

adhere to and migrate on a laminin-rich ECM which is later replaced by a collagen type-I rich 

ECM to support vascular tube formation [83]. Another layer of ECM in the wall of blood 

vessels (the medial layer or tunica media) is synthesized by smooth muscle cells and includes 

fibrillin microfibrils, collagens and elastin as major components [84].Large vessels have an 

outer adventitial layer of ECM, containing fibronectin, fibrillar collagen and other proteins 

[84].The ECM of actively growing blood vessels also contains higher levels of fibronectin and 

its distinct splice isoforms, compared to the ECM of quiescent vessels [85].At sites of injury, 

platelets secrete fibrinogen which coagulates into a fibrin clot providing a substrate for 

wound healing [86]. 

The effect of collagen type-I, fibrin [87], collagen type-IV [88], fibronectin [89] and laminin 

[90] on vascular development in vitro has also been demonstrated. Matrigel® contains 

Engelbreth-Holm-Swarm tumor-derived ECM and has been used for various in vitro and in 

vivo angiogenesis assays [91].The composition of Matrigel® includes collagen type-IV, 

laminin, entactin and heparansulfate proteoglycan as well as growth factors such as FGF, 

PDGF, EGF and TGF-β [91]. In addition to these naturally-derived ECM components, synthetic 
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biopolymers (such as polyethylene glycol and poly-D-lysine) have also been proven to 

enhance vasculogenesis and angiogenesis in vitro [92, 93]. 

3.4. Haemodynamic factors 

Shear stress generated by blood flow on the luminal surface of endothelial cells is a 

mechanical factor that induces intracellular biochemical pathways resulting in gene 

expression changes and the modulation of the structure and function of blood vessels [94]. 

Heparin binding EGF-like growth factor is one such factor which is expressed in response to 

reduced blood flow and induces vessel narrowing [95]. Other molecular pathways involved 

in vascular remodelling are reported to be regulated by changes in shear stress leading to 

the expression of PlGF [96], Notch-1 [97], and Smad6 (involved in TGB-β signalling) proteins 

[98]. 

Microfluidic culture of endothelial cells is currently an emerging technology which mimics 

the physiological shear stress on cultured cells to achieve the goal of culturing functional 

blood vessels for tissue engineering [13, 99]. A number of techniques for culturing vascular 

networks have been described in which endothelial growth factors, ECM components and 

microfluidics are combined (see following sections for detailed discussion);however, the 

development of fully functional blood vessels still remains a challenge [99]. 

4. Culture of vascular networks using endothelial cells 

Pure endothelial cell populations can develop into vascular network-like structures in culture 

[27]. However, these networks are not sufficiently robust to be used for tissue engineering; 

they are mainly used to screen pro- and anti-angiogenic compounds for activity. Pure 

endothelial cell populations are derived from various sources including embryonic stem cells, 

induced pluripotent stem cells and adult tissues (Figure 2; [100]). Human macro- and micro-

vascular endothelial cells are commercially available [101-104]and have the ability to form 

vascular networks in vitro. The most commonly used endothelial cells in this regard are the 

HUVECs [27, 90, 105-110], derived from the veins of the umbilical cord (Table 2). Other 

endothelial cell types such as bovine aortic endothelial cells [111] and rat aortic endothelial 

cells [112] have also been used to culture vascular networks. 

 



12 
 

 

 
Figure 2. Schematic overview of three possible approaches to establishing cultures 
of vascular networks. Stem cells, depending on their source, could be embryonic 
stem cells, mesenchymal stem cells, or induced pluripotent cells. Endothelial cells are 
in blue; diverse supporting cells are represented schematically by red and yellow.  

 

By contrast, the culture of well-defined vascular networks with a lumen requires the co-

culture of multiple cell types with endothelial cells [100]. The important supporting cell 

types,known to induce network formation by endothelial cells, include pericytes[113], 

animal or human embryos or adult tissues 

stem cells organ explant 

cell differentiation 

pure endothelial cells 

vascular sprouting 

co-culture 

vascular network formation in extracellular matrix 
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mesenchymal stem cells [109], fibroblasts [107], hepatocytes [114], smooth muscle 

cells[115] and adipose-derived stem cells (ASCs) [106]. The importance of fibroblasts in 

enhancing angiogenesis has been shown in co-culture with HUVECs[107, 116]. Growth 

factors derived from fibroblast cultures in conditioned medium have also been shown to 

increase vascular morphogenesis and vessel stability from HUVECs in 3D fibrin 

gels[108].Furthermore, the ECM components and angiogenic growth factors secreted by 

fibroblasts have been found to be critical for vascular tube formation from HUVECs[117].  

The culture of vascular networks is established in naturally-derived matrices (such as 

Matrigel® [116], collagen type-I [118] and fibrin [106]); as well as in synthetic matrices ( such 

as Puramatix™ [87] and polyethylene glycol hydrogel [119]) both of which types mimic 

native ECM. These matrices are particularly valuable for promoting successful vascular 

morphogenesis in vitro [92]. For a vascular network formation, the endothelial cells may be 

cultured on a 2D surface coated with one or a combination of these gel matrices; or in a 3D 

gel matrix (Table 2). In one study with HUVECs, increasing the thickness of Matrigel®was 

shown to increase the mean vascular cord length, and to decrease the network density 

[119].Combinations of different gel components can be used to mimic the complexity of 

natural ECM. The addition of laminin to collagen type-I scaffoldshas been shown to increase 

network formation and VEGFR2 expression by HUVECs in culture[90]. Similarly, increased 

network formation from HUVECs was observed in composite collagen type-I/fibrin matrix 

compared to pure collagen [110]. 

Studies in which vascular networks are cultured from endothelial cells have revealed the 

important role of several cellular and molecular factors. In one study, ASCs were found to 

enhance vascular network formation from HUVECs in 3D fibrin gels [106]. That study showed 

that the expression of angiogenesis related genes (VE-cadherin, VEGFR2) and proteins 

(VEGF, FGF, Ang-1) was higher in ASCs/HUVECs co-culture compared to pure HUVECs culture 

[106]. ASCs have also been shown to be critical for vascular network formation from blood 

vascular and lymphatic endothelial cells [120].Studies on human dermal microvascular 

endothelial cells have revealed the role of VEGF in specialization of the tip endothelial cells 

and their directional migration to form capillary-like structures [121]. Similarly, inducing the 

Notch signalling pathway upregulated VEGF-A, VEGF-B and VEGF-R1 expressions, and 
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promoted vascular network formation in co-cultured mouse brain microvascular endothelial 

cells and ASCs in 3D collagen type-I gel [122]. 

Table 2. Endothelial cell cultures for vascular morphogenesis. 
Interacting 
Cell types 

Culture 
strategy 

ECM 
Substrate 

Medium 
additives 

Main outcomes Possible 
applications 

Ref. 

HUVEC 2D BME EGM-2 Vascular network formation. Drug screening [27] 
HUVEC 
HBMSC 

3D Col-1 + 
Laminin 

EGM, 
DMEM 

Laminin and HBMSCs 
promoted vascular network 
formation. 

Tissue 
engineering 

[90] 

HUVEC 2D Matrigel® RPMI 1640 The anti-angiogenic effect of 
WIF-1 was reversed by 
hypoxic conditions. 

Cancer research [105] 

HUVEC 
ASC 

3D Fibrin EGM-2 Vasculogenesis was more 
stable in co-culture with 
ASC. 

Tissue 
engineering 

[106] 

HUVEC 
HDF 

2D  M199, 
ECGS, CS 

HDF co-culture and bio-
active silicate stimulated 
network formation. 

Tissue 
engineering 

[107] 

HUVEC 
SF 

3D  Fibrin  EGM-2,  
VEGF, bFGF, 
Ang-1, TGF-
β 

Fibroblast derived-growth 
factors enhancedsprouting, 
lumen formation and vessel 
stability.  

Developmental 
studies 

[108] 

HUVEC 
hES-MC 

3D Col-1 + Fbn DMEM/F12, 
VEGF, bFGF, 
HGF 

hES-MC and HGF stabilized 
vascular network. 

Regenerative 
medicine, drug 
screening  

[109] 

HUVEC  
MSC 

3D Col-1 + 
fibrin 

EGM-2, 
DMEM 

Increasing fibrin 
concentration increased 
vascular morphogenesis. 

Tissue 
engineering 

[110] 

BAEC 2D  Matrigel® DMEM,  
VEGF, rGAL-
8 

GAL-8 promoted endothelial 
cell migration and capillary 
formation. 

Cancer research [111] 

RAEC 2D Matrigel® DMEM,  
VEGF, 
roxarsone 

Roxarsone promoted 
vascular formation in vitro. 

Cancer research [112] 

EVC 
Pericytes 

3D Col-1, HA-
hydrogel 

EGM-2 Pericytes enhanced network 
formation and stability. 

Regenerative 
medicine 

[113] 

CC-SMC 
CJ-EC 

3D Fibrin  M199 Co-culture with SMCs 
increased length and density 
of vessels formed by 
endothelial cells. 

Tissue 
engineering 

[115] 

HUVEC 
HDF 

2D Matrigel® EGM-2 Capillary-like network 
formed only in co-cultures 
with HDF. 

Tissue 
engineering, 
regenerative 
medicine 

[116] 

HMVEC 
HDF 

2D Col-1 EBM-2 Revealed Collagen binding 
to specific integrin on 
endothelial cells activating 
tube formation pathways. 

Developmental 
studies 

[118] 

HUVEC 2D Matrigel®, 
PEG 

Medium 
200 

Matrix thickness and 
stiffness affected vascular 
cord length and network 
density. 

Tissue 
engineering 

[119] 

BEC  
LEC 

2D or 
3D 

Fibrin  EGM-2, 
VEGF-C 

BEC and LEC formed 
separate networks, both 

Tissue 
engineering, drug 

[120] 
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ASC requiredco-culture with 
ASCs. 

screening 

RBMVEC 
ASC 

3D Col-1 DMEM Stimulation of Notch 1 
pathway enhanced 
vasculogenesis. 

Regenerative 
medicine 

[122] 

Abbreviations: Ang-1, angiopoietin-1; ASC, adipose-derived stem cells; BAEC, bovine aortic endothelial cells; 
BEC, blood vascular endothelial cells; CC-SMC, canine carotid artery-derived smooth muscle cells; CJ-EC, canine 
jugular vein-derived endothelial cells; bFGF, basic fibroblast growth factor; BME, basement membrane extract 
(Trevigen); Col-1, collagen type-I; CS, calcium silicate; DMEM, Dulbecco’s modified Eagle’s medium; EBM, 
endothelial basal medium; ECGS, endothelial cell growth supplement (Promocell); ECM, extracellular matrix; 
EGM, endothelial growth medium; EVCs, early vascular cells;F12, Ham’s F-12 medium; Fbn, fibronectin; HA-
hydrogel, hyaluronic acid based hydrogel; HBMSC, human bone marrow-derived mesenchymal stem cells; HDF, 
human dermal fibroblasts; hES-MC, human embryonic stem cell derived mesenchymal cells; HGF, hepatocyte 
growth factor; HMVEC, human dermal microvascular endothelial cells;HUVEC, human umbilical vein 
endothelial cells; LEC, lymphatic endothelial cells;M199, medium 199 (Lonza); MSC, mesenchymal stem cells; 
NHLF, human normal lung fibroblasts; PEG, polyethylene glycol hydrogel;RAEC, rat aortic endothelial cells; 
RBMVEC, rat brain microvascular endothelial cells;rGAL8, recombinant galectin-8; RPMI, Roswell Park 
Memorial Institute medium (Gibco); SF, skin fibroblasts; TGF-β, transforming growth factor beta; VEGF, vascular 
endothelial growth factor; WIF-1, Wnt inhibitory factor-1. 
 

4.1. Limitations of endothelial cell culture 

Endothelial cell cultures are relatively easy to maintain. However, there are certain 

limitations which need to be considered while carrying out endothelial culture. A blood 

vascular network constitutes a number of vessel types, from large vessels to micro vessels, 

and each vessel type has its own unique properties (including endothelial cell subtypes). 

Therefore it is challenging to attempt to recapitulate the formation of different vessel types 

using a homogeneous endothelial cell population [123]. Primary endothelial cell cultures are 

usually derived from terminally differentiated tissues; these cells have limited proliferative 

and regenerative capacity, and a short life span in vitro [124, 125].  

Endothelial cells derived from different sites within the same tissue express different genes 

and respond differently to the same pro- or anti- angiogenic factors [126]. This supports the 

idea of functional subtypes among endothelial cells. Endothelial cells can be immortalised; 

however, this may change their behaviour and response to stimuli [127]. Immortalised 

endothelial cells may alter their gene expression and physiological properties with repeated 

passaging in vitro, resulting in loss of vasculogenesis efficiency [127]. The non-endothelial 

cell types that support in vitro vascular network formation from endothelial cells (e.g. 

fibroblasts), may represent an undesirable cell type if the resultant culture is to be used for 

tissue engineering [100]. 
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5. Use of stem cells for in vitro vasculogenesis  

In recent years, stem cells have increasingly been used to develop vascular cultures; this is 

because stem cells have several advantages over terminally differentiated endothelial cells 

[19]. Stem cells are multipotent or pluripotent in nature, they show self-renewal, and their 

differentiation along various cell lineages can be manipulated by fine-tuning the culture 

conditions [19]. A few examples of the stem cells that can be used for endothelial, and 

ultimately vascular, differentiation are summarized in Table 3. Three main stem cell types 

used are: (i) embryonic stem cells (ESCs) [128], (ii) induced pluripotent stem cells (iPSCs) 

[129] and(iii) mesenchymal stem cells (MSCs) [130]. 

In addition, endothelial progenitor cells (EPCs), which originate in the bone marrow and 

contribute to the formation of new blood vessels in adults, are also useful in the study of in 

vitro vasculogenesis [125]. The differentiated endothelial cells arising from stem cells directly 

undergo vasculogenesis because of the presence of other cell types that have also 

differentiated from the stem cells.Alternatively, the endothelial cells can be isolated from 

the stem cell culture, without the unwanted additional cell types, and used for vascular 

morphogenesis (either in pure culture or co-culture with defined cell types) [113].  

One of the advantages of using ESCs is that they can differentiate into multiple vascular cell 

lineages simultaneously in culture. In principle, these different lineages can contribute to the 

newly-formed vessels (neovessels) in a way that closely resembles the in vivo vasculogenesis 

in early embryos [19, 131]. Endothelial differentiation and vascular morphogenesis in ESCs is 

controlled by culture conditions (such as the presence of growth factors in the medium and 

the use of feeder layers of stromal cells, or a substratum consisting of a natural or synthetic 

hydrogel [131, 132]). 

One approach to inducing the differentiation of ESCs in culture is to allow them to first 

aggregate into spherical cell masses, called embryoid bodies (EBs), in suspension 

culture[133]. The use of EBs as an intermediate step is common when ESCs are cultured for 

vascular differentiation (Table 3) [134]. In the absence of anti-differentiation factors (e.g. 

leukaemia inhibitory factor in mouse and feeder cell layer in human), ESCs differentiate into 

EBs consisting of mesodermal, ectodermal and endodermal lineages, similar to early 

embryogenesis [135]. In 2D (adherent) cultures the EB cells tend to proliferate and give rise 
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to undesired cell types such as fibroblasts [133]. By contrast, in 3D culture (suspension or 

gels), the proliferation of EB cells is limited, allowing greater control of the differentiation of 

the desired cell type [133]. Significant effects of different factors, such as culture substrate 

(collagen type-IV or fibronectin), cell seeding density, concentration of VEGF and FGF in 

medium, and culture duration, have been observed on the endothelial differentiation in 

human, mouse and zebrafish ESC culture [88, 136]. Similarly, TGF-β has been identified to 

induce vascular differentiation in human ESCs [137]. 

Table 3. The use of stem cell technology for endothelial differentiation and vascular development. 
Stem 
cell type 

Culture 
strategy 

ECM 
Substrate  

Medium 
additives 

Main findings  Possible applications Ref. 

mESC EB static 3D Col-1 IMDM, EPO, 
VEGF, bFGF,  

RSK and TTK protein kinases 
modulated vascular 
formation. 

Cancer research, 
drug screening 

[128] 

mESC EB static 3D Matrigel® αMEM, 
VEGF 

Reporter proteins in vascular 
cells allowed track of 
vascular development. 

Developmental 
studies 

[138] 

mESC Static 3D Col-1 IMDM, 
VEGF, bFGF  

EB formation and angiogenic 
sprouting. 

Drug screening [139] 

mESC Static 2D Gelatin  DMEM, 
VEGF 

Endothelial differentiation 
and vascular network 
formation. 

Developmental 
studies, drug 
screening 

[140] 

mESC EB static 2D Col-1 DMEM, 
VEGF 

VEGF receptors are involved 
in tip cell selection and 
sprouting. 

Developmental 
studies 

[141] 

mESC EB static 3D Col-1 IMDM, EPO, 
VEGF, bFGF 

Culture strategy, ECM 
substrate and growth factors 
effected vascular 
differentiation. 

Drug screening [142] 

hESC Static 2D Matrigel® EGM-2, 
BMP-4 

BMP-4 increased vascular 
differentiation.  

Developmental 
studies, angiogenic 
therapy 

[143] 

hESC Static non-
adherent 

 Knockout 
DMEM 

Spontaneous endothelial 
differentiation and Vascular 
sprouting. 

Tissue engineering, 
regenerative 
medicine 

[144] 

miPSC EB static 3D Col-1 DMEM, 
VEGF 

TP73 gene regulates 
endothelial differentiation 
and vascular network 
formation. 

Cancer research [145] 

hiPSC Static 2D Fbn IMDM, 
VEGF, bFGF 

Formation of vessel-like 
structures. 

Tissue engineering, 
regenerative 
medicine 

[146] 

hAFSC Static  
2D 

Matrigel® EGM-2, 
VEGF 

EGM and VEGF promoted 
endothelial differentiation 
and vascular formation. 

Tissue engineering, 
angiogenic therapy 

[130] 

hAFSC Flow* 
2D 

Matrigel® EGM-2 Shear stress promoted 
endothelial differentiation 
and vascular cord formation. 

Regenerative 
medicine 

[147] 

hTMSC Static 3D Fibrin  EGM-2 TMSCs promoted and 
stabilized vessel formation 
from endothelial cells. 

Tissue engineering, 
regenerative 
medicine 

[148] 
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Abbreviations: αMEM, alpha-minimal essential medium (Cellgro); bFGF, basic fibroblast growth factor; BMP-4, 
bone morphogenetic protein-4; Col-1, collagen type-I; DMEM, Dulbecco’s modified Eagle’s medium; EB, 
embryoid body intermediate; ECM, extracellular matrix; EGM, endothelial growth medium (Cambrex or 
Clonetics); EPO, erythropoietin; Fbn, fibronectin; Flow*, on the margins of the bottom of a flask on an orbital 
shaker; hAFSC, human amniotic fluid-derived stem cells; hESC, human embryonic stem cells; IMDM, Iscove’s 
modified Dulbecco’s medium; mESC, mouse embryonic stem cells; miPSC, mouse induced pluripotent stem 
cells; RSK, ribosomal S6 kinase; Static, static replacement culture; TP73, tumor protein-73; TTK, threonine and 
tyrosine kinase; VEGF, vascular endothelial growth factor. 
 

Another important stem cell type, similar to ESCs in pluripotency and differentiation events, 

is the iPSCs[149]. An advantage of iPSCs is that they can be generated by genetic 

reprogramming of any adult somatic cell population, and therefore raise fewer ethical 

concerns compared to ESCs [19]. Endothelial differentiation in iPSCs can be induced by 

applying similar methods used for differentiation of ESCs [150]. Furthermore, gene 

expression in endothelial cells derived from ESCs and iPSCs is very similar [150]. MSCs are 

multipotent stem cells residing in adult tissues; they have limited differentiation potential 

compared to ESCs and iPSCs[19]. Endothelial differentiation in human amniotic fluid derived 

MSCs has been shown to be inducible by VEGF [130]. MSCs derived from various tissues 

(bone marrow, hair follicle, adipose tissue and muscles) have been used for vascular 

regeneration studies reviewed in Ref. [19]. In some studies the MSCs have been reported to 

promote and stabilize vascular network formation from HUVECs (Table 2). 

In addition to the use of pluripotent and multipotent stem cells for endothelial 

differentiation and in vitro vasculogenesis, the unipotent EPCs also have the ability to 

differentiate into mature endothelial cells and form vascular tubes in culture [125]. The 

advantage of EPCs for culturing vascular networks is that these cells can be easily obtained 

from adult tissues such as peripheral blood [19].  In vitro studies have shown that the early 

EPCs do not directly undergo vascularization, but release factors to stimulate angiogenesis in 

distantly-cultured endothelial cells in a transwell[125]. Co-culture with MSCs has been 

proven to enhance vascular formation from EPCs both in vitro and after implantation in vivo 

[151, 152]. 

5.1. Issues and drawbacks with stem cell culture 

Although stem cell technology has several advantages for vascular engineering and 

regenerative therapy, there are some limitations to its use [19]. Thus, while ESCs have been 

extensively studied in laboratory animals such as mouse and rats, and stable cell lines have 
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been developed from these animals, the technique has been proven less successful for other 

species such as cattle, goat and dogs [149]. Furthermore, the very complexity of vascular 

differentiation from ESCs means that the growth factors necessary to support the generation 

and maintenance of multiple cell types need to be laboriously optimised [153]. Furthermore, 

the use of human ESCs for research raise ethical concerns [19]. 

ESCs and iPSCs are both pluripotent, and therefore it is challenging to direct the 

differentiation towards a specific lineage, and to obtain high quality pure cell cultures [149]. 

The iPSCs are developed by transfection of somatic cells with pluripotency genes; however, 

the efficiency of the process is very low (less than 1%) [154]. The iPSCs (in contrast to ESCs) 

are derived from adult differentiated cells by de-differentiation. Then, if re-differentiated 

into a specific cell type, they attain some of the characteristics of that cell type but are not 

identical to their normal counterparts [154]. Other issues with stem cells is that the isolation 

of MSCs from adult tissues requires invasive surgical procedures, and only yields small 

numbers of cells; the proliferation of these cells is also limited in vitro[155]. Furthermore, 

the MSCs isolated from different tissues or life stages are not the same, and therefore have 

different culture requirements and angiogenic potentials [156]. 

The isolation and culture methods for EPCs are only relatively recently developed (Asaharaet 

al., 1997 [157]). For this reason, there is no standard protocol among researchers. It should 

be noted that there are no specific markers for EPCs because many of the genes expressed 

by EPCs are also expressed in hematopoietic progenitors [158]. Similar to the iPSCs and 

MSCs, the number of EPCs found in isolated adult tissue cells is very low, and this greatly 

limits their study [19]. Finally, analysis of EPCs in long-term culture has shown that the late 

passage cells (45 days after the initiation of the primary culture) have changed morphology, 

reduced their proliferation rate, show high β-galactosidase expression and loss of vascular 

network formation ability, compared to the early passaged cells [159]. 

6. Use of tissue explants for in vitro angiogenesis  

An important strategy for vascular morphogenesis in vitrois to stimulate the growth of the 

blood vessels existing in isolated sections or fragments of specific tissues[127].The 

development of a well-defined blood vascular network requires the incorporation of 
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multiple cell types both in vivo and in vitro, as discussed in the previous sections. The use of 

tissue explants is important in this context, because these explants already contain multiple 

cell types, and the angiogenesis stimulated in these cultures closely represents the 

corresponding process in vivo[127].Furthermore, tissue explant experiments are relatively 

easy to perform and allow a large number of cultures to be derived from a single tissue 

sample[160].  

Various tissue explants have been shown to have the ability to develop vascular sprouts in 

vitro (Table 4). Examples include cross sections of aorta called aortic rings [161]; metatarsal 

bones [162]; retina fragments [163]; choroid-sclera fragments [164]; and adipose tissue 

[165]. In most cases, the tissues for explant preparation are isolated from developing rodent 

embryos or neonates. Tissue explants from other species such as chick embryo aortic arch 

[166], rabbit aorta [167] and pig carotid artery [168] have also been adapted for sprouting 

angiogenesis. Furthermore, angiogenic sprouting has also been reported from human tissue 

explants e.g. adipose tissue [165], aortic explants from aborted embryos [169], placental 

explants [170, 171] and umbilical artery rings [172]. 

Explant cultures are usually established in a 3D gel matrix in the presence of angiogenic 

growth factors, and are examined for microvessel outgrowth (vascular sprouting)[127, 173]. 

The aortic ring model from various species is the most commonly used explant for studying 

in vitro angiogenesis (Table 4). The stimulatory effect of various factors, such as angiogenic 

growth factors (especially VEGF) and ECM components, on the growth of vascular sprouts 

from aortic ring have been extensively studied, reviewed in Ref. [174]. Recentlydeveloped 

explant cultures, using fetal metatarsals from mice, have shown advantages over the aortic 

ring model, in that they do not require a 3D matrix and exogenous growth factors for 

vascular sprouting [162].In general, explant cultures can serve as an intermediate between 

the endothelial cell culture on the one hand, and in vivo models on the other. They are also 

thought to be more reliable for studying the mechanisms of angiogenesis andtesting the role 

of regulatory factors [175]. 

6.1. Limitations of explant cultures 

Besides the advantages of explant cultures, certain limitations need to be addressed before 

the technique can be fully accepted for research in tissue engineering and regenerative 
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medicine. The mouse aortic ring model shows significant variability in microvessel sprouting 

from explants isolated from different age and strain of animals [176]. Variability in outcome 

has also been reported using explants isolated from different vessel types (artery or vein) of 

the same individual animal [177]. The vascular sprouts in the aortic ring model regress over 

time in culture (with peak sprouting between days 6 and 7), and this limits the analysis time 

and increases variability in results with culture duration [161]. Furthermore, the aortic rings 

are derived from large vessels, and therefore do not truly represent in vivo angiogenesis, 

which is a microvascular process [127]. 

Table 4. Tissue explants used for sprouting angiogenesis in vitro. 
Tissue 
explant 

Culture 
strategy 

ECM 
Substrate  

Medium 
additives 

Main findings  Possible 
applications  

Ref. 

mAR Static 3D Col-1 Opti-MEM, 
VEGF 

VEGF and collagen 
increased vessel sprouting. 

Drug screening [161] 

mAR Static 3D Col-1 MCDB131, 
VEGF  

Age of the mouse inversely 
affected vascular sprouting 
from explant. 

Drug screening [178] 

mAR Static 3D Col-1 ESFM Endostatin inhibited 
vascular sprouting by 
modulating endothelial 
cell-ECM interaction. 

Cancer research [179] 

rAR Static 3D Matrigel® EGM-200 Ascorbate inhibited 
sprouting angiogenesis.  

Cancer research [180] 

hUAR Static 3D BME EGM-2 Capillary spouting upon 
VEGF stimulation. 

Cancer research, 
drug screening  

[172] 

cAA Static 2D Matrige® bFGF, VEGF Chemical compound 
releasing nitric oxide 
inhibited angiogenesis 

Cancer research, 
drug screening 

[181] 

mAT static 3D Col-1 MCDB131, 
VEGF  

Angiogenic sprouting. Drug screening [182] 

hAT Static 2D Matrigel® EBM-2, 
EGM-2MV 

Angiogenic capacity 
reflected donor’s 
physiology.  

Angiogenic therapy, 
drug screening  

[165] 

mRE Static 2D PTFE DMEM, 
VEGF 

VEGF stimulated vascular 
sprouting. 

Drug screening [183] 

mRE Static 3D Fibrin  DMEM, 
VEGF 

VEGF stimulated sprouting 
angiogenesis in a dose 
dependent manner. 

Drug screening [184] 

mMT Static 2D Gelatin OR 
col-1 

αMEM Vascular sprouting 
occurred without 
additional growth factors. 

Developmental 
studies, drug 
screening 

[162] 

mMT Static 2D  αMEM, 
VEGF 

VEGF recovered the 
impaired vascular 
sprouting in endoglin 
deficient explants. 

Diseases modelling, 
drug screening 

[185] 

mPE Static 2D Col-1 M199, VEGF, 
bFGF 

Isoforms of VEGF 
differentially stimulated 
vascular sprouting. 

Developmental 
studies 

[186] 
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Abbreviations: αMEM, alpha-minimal essential medium; bFGF, basic fibroblast growth factor; BME, basement 
membrane extract (BD Biosciences); cAA, chick aortic arch; Col-1, collagen type-I; DMEM, Dulbecco’s modified 
Eagle’s medium; EBM, endothelial basal medium (Lonza); ECM, extracellular matrix; EGM-MV, endothelial 
growth medium microvascular; EGM, endothelial growth medium (Cascade Biologics); ESFM, endothelial 
serum-free medium (Life Technologies); hAT, human adipose tissue explant; hUAR, human umbilical arterial 
ring; M199, medium 199 (Gibco); mAR, mouse aortic ring; mAT, mouse adipose tissue explant; MCDB131, basal 
medium (Invitrogen); mMT, mouse metatarsal explant; mPE, mouse proepicardium explant; mRE, mouse 
retinal explant; Opti-MEM, minimal essential reduced-serum medium (Gibco); PTFE, polytetrafluroethylene 
membrane; rAR, rat aortic ring; Static, static replacement culture; VEGF, vascular endothelial growth factor. 

Tissues containing microvascular networks (e.g. adipose tissue and retina) can be used for 

explant preparation. However, these tissues are more difficult to isolate and, like the aortic 

explant, show variability between experiments [163]. The high levels of capillary sprouting 

observed in adipose tissue explant cultures are in many senses an advantage; however they 

do make it difficult to identify all the sprouts individually and interpret the results [165]. 

Similarly, angiogenic sprouts from fetal mouse metatarsal explants present microvascular 

features; however, their isolation and culture procedures also require advanced technical 

skills, which are key to the reproducibility of the research[162]. Finally, the metatarsal and 

chick aortic arch explants are isolated from developing embryos and have high proliferative 

capacity; therefore, angiogenesis in these models does not represent the in vivo situation in 

adults [127]. 

7. Zebrafish: a new model species for studying in vivo 

vasculogenesis and angiogenesis 

The zebrafish is a freshwater teleost fish [187] that is emerging as a model of choice for 

studying vasculogenesis and angiogenesis[188]. The embryos and larvae are often used in 

these studies because of their external fertilization, optical transparency at early stages, and 

the ease of exposure to test substances (by simply adding the compound to the swimming 

water) [189]. Furthermore, the genome comparison study has revealed that there is at least 

one orthologue in zebrafish genome for more than 70% of human protein coding genes [31]. 

Vascular development and function in zebrafish are relatively conserved, compared to the 

same processes in other vertebrates [188]. 

The embryos develop a simple vascular system with circulating blood as early as 24 hours 

post fertilization (hpf) [37]. Vascular development can be directly observed non-invasively in 
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the living, transparent embryo [28]. Enhanced visualization of vascular development can be 

achieved by injecting fluorescent micro particles into the blood stream, or by using 

transgenic lines such as kdrl:GFP and fli:GFPthat express green fluorescent protein (GFP) in 

vascular cells [28].  

For these and other reasons, vascular development in zebrafish — from early differentiation 

of angioblasts to the maturation of blood vessels—has been extensively studied [32, 37, 190, 

191]. Studies have shown similar angiogenic responses to the test substance irisin, in 

zebrafish embryos in vivo, and in HUVECs in vitro[192]. In another example, the genetic 

mutation (gridlock), which causes aortic malformations and congenital heart defects in 

humans, showed similar phenotypic effects in zebrafish [193]. Zebrafish have been 

successfully utilized to model several human vascular diseases reviewed in Ref.[32].  

Similarly, a zebrafish in vivo xenograft model has been developed to study human 

carcinomas [194]. These studies have shown successful invasion, metastasis and 

extravasation of various human tumorcells in zebrafish embryos and adults [194]. It has 

been demonstrated that the transplantation of human WM-266-4 melanoma cells and 

breast adenocarcinoma cells in zebrafish embryos induced angiogenesis in the host 

vasculature; this led to the formation and infiltration of neovessels into the tumor 

masses[195, 196].Other examples of human carcinomas studied in zebrafish include breast 

cancer bone metastasis [197], uveal melanoma [198] and retinoblastoma [199].  

The zebrafish possesses remarkable regenerative capacity in several organs (including the 

caudal fin and heart [200, 201]) which makes it a useful model for studying regeneration 

[202]. The regeneration of organs also involves the regeneration of blood vessels, and 

therefore the regenerative capacity of zebrafish is also important for vascular regeneration 

studies [28]. 

7.1. Zebrafish transgenic reporter lines for vascular studies 

Several transgenic lines have been developed for zebrafish which express fluorescent 

proteins under vascular cell specific promoters [28]. These transgenic lines allow the tracking 

of the differentiation, proliferation and migration of individual cells during vascular 

developmentin vivo and in vitro [28]. Moreover, different transgenes can be combined in the 

same embryo,as was done with a line (scl-PAC:GFP) expressing fluorescent proteins in both 
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endothelial and blood cells; that line permitted the observation of the development of the 

vascular system and blood flow simultaneously [203]. 

The most important transgenic line that we are utilizing to study vascular development in 

zebrafish is the kdrl:GFP line (Figure 3A). This transgenic line isalso known as Tg(kdr:eGFP) or 

Tg(flk1:eGFP) [204]. In this line, GFP is specifically expressed in endothelial cells under the 

control of the VEGFR2 or kdr-like gene [204]. The kdrl:GFP line allows high resolution analysis 

of single cell migration and vascular development in living embryos [204].The utility of 

kdrl:GFP zebrafish embryos has been confirmed as a high-throughput model for screening 

the effect of toxic compounds on vascular development[205].  

Other transgenic zebrafish lines are available for vascular studies, although they have some 

limitations. For example, In Tg(Tie2:eGFP) the GFP expression is relatively weak in the 

vascular cells[206]. Similarly, in Tg(fli1:eGFP) the GFP is expressed in certain non-vascular 

cells which interferes with the results especially in the head region of the embryo [204]. 

Furthermore, studies on Tg(fli1:eGFP) have shown changes in the gene expression of a 

number of genes, compared to the wild type embryos, which may affect the results while 

using transgenic zebrafish for experiments [207]. 

In summary, zebrafish is a high-throughput, easily quantifiable, fast developing and relatively 

inexpensive in vivo model for vascular studies. However, there are some drawbacks 

associated with this model. For example, the relevance of zebrafish embryo model to 

understand human angiogenesis is questioned, as there is a large evolutionary time 

difference between the two species [175]. Therefore, preclinical drug screening in zebrafish 

should always be followed by validation in mammalian models beforegoing to clinical trials 

[28]. 

8. Future prospects for using zebrafish cells for in vitro 

vasculogenesis and angiogenesis 

In principle, many of the techniques discussed in the previous sections for in 

vitrovasculogenesis and angiogenesis (using mammalian endothelial cells, ESCs and tissue 

explants), can also be adapted for use in the zebrafish model. With the availability of primary 

embryonic cells due to high fecundity of the species, and easy cell isolation procedures, the 
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drawbacks associated with adapted cell lines can be avoided [208]. In addition to the above 

mentioned characteristics, zebrafish also possess specific desirable features for in vitro 

applications. 

8.1. Cell culture techniques in zebrafish 

The external fertilization andlarge number of fast developing embryos, allow easy harvesting 

of large numbers of cells and quantities of tissues from different developmental stages[209]. 

Zebrafish cells grow at a lower temperature (26-28 °C) than chick and mouse cells and do not 

usually require a CO2-enriched atmosphere [209]. These properties allow zebrafish cells to 

be grownat room temperature, although the use of a simple incubator is recommended to 

help maintain sterile conditions[209]. The protective covering of the chorion, which is 

present until hatching at around 48 hpf, partly isolates the embryos from the 

environment[210]. This is important for in vitro studies because it maintains the embryos in 

an aseptic condition[211]. 

To harvest sterile cells or tissues from zebrafish embryos it is necessary to decontaminate 

the surface of the chorion. Using this approach, it is possible to isolate and culture sterile 

cells from blastula (3 hpf) or gastrula (24 hpf) stage embryos [209, 212].In a recent study, we 

have shown that embryos with a chorion decontaminated at 24 hpf could be further 

cultured to 5 dpfunder aseptic conditions [173]. The tissues and cells isolated from these 

embryos were successfully maintained free of contamination for eight days in culture.  

8.2. Zebrafish embryonic stem cells 

As is the case with mouse and human ESCs, it is possible to maintain zebrafish ESCs in a 

pluripotent state inlong-term culture[213].In zebrafish and medaka, the ESCs can be derived 

from the embryo before the blastocyst stage; these cells may possess a higher degree of 

pluripotency (and even totipotency), compared to mammalian ESCs derived from 

blastocysts[214].When differentiation inhibition factors are depleted in the culture medium, 

the zebrafish ESCs have the ability to undergo differentiation into a range of specialized cell 

types [212].The spontaneous differentiation of zebrafish ESCs into neuron-like cells, muscle-

like cells, embryonic carcinoma-like cells and fibroblast-like cellshas been demonstrated 

[209, 212, 215]. However, little is known about the condition needed to induce specific 

differentiation in ESCs from zebrafish. 
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Figure 3: Confocal images of transgenic zebrafish kdrl:GFP whole embryo (A) and EB culture (B-D). (A) A 5 dpf 
kdrl:GFP embryo showing florescent endothelial cells forming blood vessels. Scale bar, 200 µm. (B, C and D) 
Developing embryoid body on subsequent days of culture (day 1, day 6 and day 8, respectively) on a mixture of 
collagen type-I, Geltrex™ and fibrin substratum, showing the development of vascular network-like structures 
from kdrl:GFP+ endothelial cells. Scale bars, 100 µm. 
 

The induction of myogenic differentiation in zebrafish primary ESCs has been shown by 

culturing these cells on a laminin substratum, in medium containing insulin [216], FGF [217] 

or sonic hedgehog protein [218]. In another study, the seeding density (between 1 and 2 × 

104 cells/cm2) of zebrafish primary ESCs, co-culture with a zebrafish fibroblast-like cell line 

(ZF4) and medium supplementation with insulin, were found to induce cardiomyocyte 

differentiation [219]. Similarly, an increase in the generation of primordial germ 

cellresembling-cells was found in zebrafish blastocyst cell cultures after the addition of BMP-

4, EGF and retinoic acid to the medium [220]. Furthermore, the use of FGF and VEGF have 

been shown to increase differentiation towards the endothelial cell lineage in zebrafish 

blastocyst cells [221]. 

Zebrafish blastocyst cells aggregate into EBs in culture. We have shown that the percentage 

of endothelial-like (kdrl:GFP+) cells in EBs is increased by culturing them in suspension (i.e. 

hanging drop culture)rather than in adherent culture, and by adding endothelial growth 

supplements, including VEGF, to the medium [136]. We found that the kdrl:GFP+ cells in EB 

culturesform vascular network-like structures on hydrogel substrates (Figure 3B-D). 

A 

B C D 
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8.3. Cultures of specialised zebrafish cell types 

Attempts have been made to develop cultures of specialised cell types using progenitor cells 

isolated from zebrafish embryos.In one study, neural crest cells, isolated from dissociated 14 

hpf (10-somite stage) embryos, were maintained in culture [222]. These cells were shown to 

proliferate, migrate and differentiate into neurons, chondrocytes and glial cells in vitro[222]. 

Strategies have also been described for the culture of primary neurons from developing 

brain and spinal cord cells of zebrafish embryos [223]. We have found that the endothelial 

cells in dissociated hearts, isolated from 5 dpf zebrafish embryos,form colonies ona 

fibronectin substratum; however, these cultures could only be maintained for short periods, 

possibly because of low seeding-density [173]. 

These studies suggest that zebrafish embryonic cell culture can be an important model for 

studying endothelial differentiation and vascular morphogenesis in vitro. In principle, it could 

be possible to use zebrafish kdrl:GFP embryos for the isolation of endothelial cells using 

fluorescence activated cell sorting (FACS). The development of these cells into vascular 

networks in response to various signals could then be readily tracked in live cultures without 

the need to fix and stain them. Furthermore, tissues and organ explants from zebrafish 

embryos can be a promising model for sprouting angiogenesis, as we have shown using liver 

and heart explants from 5 dpf embryos [173]. 

In summary, the zebrafish allows easy access to large numbers of primary cells, and vascular 

development in cultures derived from these cells occurs in a complex environment of other 

cell types. In contrast, it is difficult to access primary cells and tissues in mammalian models, 

and the vascular culture using endothelial cell lines such as HUVECs does not reflect the 

complex process in vivo. 

8.4. Disadvantages of zebrafish in vitro model 

Zebrafish embryonic cell cultures usually combine cells or tissues from a large number of 

individuals due to the small size of embryos [216]. As a result, the cell population obtained is 

genetically heterogeneous, and may not be ideal for gene expression analysis [216]. Despite 

the simplicity of the required culture conditions (i.e. low incubation temperature and no 

requirement for a CO2-enriched atmosphere), studies have shown that zebrafish primary 

embryonic cells require a complex medium containing FGF and fish embryo extract for their 
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growth [213]. The lower incubation temperature for zebrafish cells may not be ideal for 

human cells if a co-culture has to be established. 

The zebrafish embryonic cells usually have to be cultured on a feeder layer of growth-

arrested cells to maintain their pluripotency [211]. The development of vascular network in 

primary zebrafish embryonic cells and tissues in the presence of other supporting cell types 

may be considered as an advantage as it closely mimic the in vivo situation. However, this 

provides less control over the in vitro vascular development compared to endothelial cell 

lines. Furthermore, because the zebrafish is a relatively new research model, the 

differentiation and culture conditions for its cells still needs to be optimised. 

9. Organoids: un-vascularized organotypic cultures 

A remarkable capacity for self-organization in vitro is shown by stem cells (embryonic or 

adult pluripotent stem cells) and primary tissues (organ explants or dissociated cells). This 

capacity allows them to develop into ‘organoids’ — 3D cell masseswith organ-like 

properties[224]. In an organoid, multiple organ-specific cell types are arranged together, 

recapitulating some properties (structural and functional) of an organ [225]. The ability to 

control the differentiation in pluripotent stem cells makes them a model of choice for 

organoid cultures[226]. Using these cells, organoids of a number of organs including brain, 

retina, stomach, intestine, lungs, liver and pancreas, have been developed (reviewed in Ref. 

[12]).The organoid culture not only allowsthe study of developmental processes,it also 

represents an emerging model system to study diseases, to screen toxicants, and to develop 

personalized and regenerative medicine[12, 226]. 

These and other studies suggest organoids might be a good starting point in the effort to 

develop more complex organ cultures. However, certain limitations of organoid cultures 

need to be overcome. First, because the cells in an organoid show self-organization, the 

degree of experiment control over organoid organization is limited; this means 

thatindividual organoids within the same culture may show cellular heterogeneity[227]. This 

affects the reproducibility of the results [227].Second, some tissues, such as neural tube and 

brain,are not easy to establish in 3D culture, although successes are increasingly being 
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reported [228]. Finally, the simultaneous effect of growth factors and extracellular matrix in 

these cultures may inhibit some pathways required for organogenesis [229]. 

The major issue with organoids, as with other tissue engineering approaches,is the lack of 

vascularization. This necessarily means that organoids are diffusion-limited and cannot fully 

develop into mature organs in vitro[228]. One study demonstrated the development of 3D 

neural organoid constructs with a vascular network inside, by co-culturing neural progenitor 

cells, endothelial cells, MSCs and macrophage precursors [230]. A similar neurovascular 

spheroid model has been developed using primary cortical tissue cells isolated from 1-3 days 

postnatal mice and rats [231]. In another study theintestinal organoids developed from 

human ESCs were implanted in mice under the kidney capsule[232]. These organoids further 

expanded, maturated and demonstrated intestinal morphology and function after 

vascularization by the host vasculature[232].  

Taking it a step further, the use of decellularized whole organs as scaffolds for culturing bio-

artificial organs are now gaining interest. In this technique the cell population of an organ is 

removed by perfusion with detergents or by mechanical means, while retaining the original  

three dimensional shape of the extracellular matrix[233]. These organ scaffolds are then 

repopulated with stem cells, endothelial cells or a mixture of specific cell types (depending 

on which organ was used) to generate an organ culture [233]. Using this strategy Ottet al. 

have developed a heart construct using decellularized rat heart seeded with cardiac or 

endothelial cells [234]. The recellularized construct retained the physiological structure of 

the heart and showed contractions, pump function and response to drugs [234].Similarly, 

decellularized rat intestine becomes vascularized when human endothelial cells are seeded 

into its empty vascular channels[235]. 

10. Beyond organoids: microfluidics and the development of a 

functional vascular network 

In this final section we want to look at some future prospects in the field of in vitro vascular 

networks. These networks will always remain of limited value unless they support a 

functional blood flow. In a living animal, this flow is powered by the heart. But how can 

blood flow be initiated and maintained in a culture system? One obvious answer is to use 
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microfluidic technologies to pump blood or some nutrient liquid through the vascular 

network. 

Microfluidic systems give control over the biophysical and biochemical microenvironment of 

cells, allowing the analysis of complex interactions between different cell types and the 

respective signalling molecules [236].Microfluidic devices(chips) are made from various 

material (including glass and poly dimethyl-siloxane), using microfabrication techniques. 

They contain hollow channels that can be filled with ECM components and medium [13]. The 

devices can simply be connected to a medium reservoir to generate a passive flow through 

the channels; or to a pump for more constant flow rate (Table 5).Using unique combinations 

of materials (with different structural and mechanical properties), microfabrication 

techniques, ECM components, growth factors, cell types and flow rates, a controlled 

environment can be created to promote vascular development [236]. 

These properties of microfluidic systemsmight, in the future, be adaptable to the 

vascularisation of organoids in vitro. This, in turn, could allow more advanced development, 

by providing chemical cues and nutrient/waste exchange through a perfusable vascular bed. 

Connecting an organoid culture to a microfluidic vascular bed would also allow the required 

changes in gene expression in response to the shear stress generated by the flow of 

medium.  

Microfluidicscould also make it possible to manipulate the course of organogenesis in 

organoid cultures. For example, the flow rate could be increased with time to fulfil the 

increasing nutrient requirements of the growing tissue. Designing a microfluidic device with 

multiple channels connected to different parts of the culture chamber, could also allow the 

delivery of a specific growth factor to aspecific region of the developing organ. Furthermore, 

a microfluidic vascularized organ culture would make it possible to visualize the core of 

optically dense tissues by introducing staining solutions through the vasculature. 

10.1. Examples of microfluidic vascular culture systems 

The microfluidic systems designed for culturing vascular networks are summarized in Table 5 

and Figure 4. In one example of vascular culture in a microfluidic system, HUVECs and 

human lung fibroblasts were co-cultured in a perfused 3D fibrin gel [237]. Thenetworks that 

developed allowed the transport of nutrients, molecules and cells, and also showed 
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physiological responses to flow-induced shear stress [237]. The flow rate in this experiment 

was 5 µL/min, which generated a shear stress of 0.31 - 7.22 dyne/cm2. This value is close to 

the physiological level of shear stress (1 to 10 dyne/cm2) [237]. It should be noted that the 

shear stress generated by a particular flow rate depends on the dimensions of the 

microfluidic channels. In the same microfluidic device the authors showed that the presence 

of flow (regardless of flow direction) facilitates vasculogenesis by HUVECs, and that 

angiogenic sprouting occurs only in the direction opposite to the flow direction[238]. 

Similarly, angiogenic sprouting in 3D collagen type-I gel from HUVEC cultures in a 

microfluidic device showed morphological features resembling in vivo angiogenesis [239]. 

Table 5. Microfluidic devices for the culture of vascular networks. 
Device 
design* 

Cell types 
used 

Flow 
conditio
n 

3D 
matrix 

Medium 
additive
s 

Main outcomes Possible 
applications 

Ref. 

 

HMVEC Passive  Col-1, 
PDL 

EGM-
2MV, 
VEGF 

Endothelial tube-like 
structures regressed in 
PDL treated channel after 
2-3 days.  

Tissue 
engineering 

[93] 

 HUVEC 
NHLF 
HPP 

Active: 
5 
µL/min 

Fibrin EGM-2 Perfusable 3D vascular 
network. 

Tissue 
engineering, 
drug screening 

[237] 

 HUVEC 
NHLF 

Passive Fibrin  EGM-2 Flow stimulated 
angiogenic sprouting 
opposite to direction of 
flow. 

Cancer 
research 

[238] 

 HUVEC Passive  Col-1 EGM-2 Directional neovessel 
growth in response to 
angiogenic signals. 

Drug 
screening 

[239] 

 HUVEC 
HBMSC 
OB 

Active: 
2 
µL/min  

Fibrin  EGM-
2MV, 
VEGF, 
Ang1 

Tumorcellextravasation 
into the surrounding 
bone-mimicking matrix. 

Cancer 
research, drug 
screening 

[240] 

 HUVEC 
NHLF 

Passive  Fibrin  EGM-2 Easy quantification of 
tumor cell extravasation. 

Cancer 
research 

[241] 

 HMVEC Active: 
1-2 
µL/min 

Col-1 EGM-
2MV, 
VEGF 

Metalloproteinases 
modulated the length and 
diameter of vessels in 3D 
ECM.  

Developmenta
l studies, 
tissue 
engineering 

[242] 

 ECFC-EC 
NHLF 
CC 

Passive  Fibrin, 
laminin 

EGM-2 A vascularized tumor 
model responding to 
chemical stimuli. 

Cancer 
research 

[243] 

 iPSC-EC 
NHLF 

Passive  Fibrin  VVM iPSC-ECs formed inter-
connected capillaries with 
lumina 

Disease 
modelling, 
drug screening 

[244] 

 iPSC-EC Passive  PEG VVM, 
VEGF 

iPSC-ECs self-organized 
into tubular networks, 
VEGF enhanced network 
formation. 

Tissue 
engineering, 
drug screening 

[245] 
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ECFC-EC 
NHLF 
 

Passive: 
0-1 
mm/s** 

Fibrin  EGM-2, 
VEGF, 
bFGF, 
5% O2 

Endothelial cells self-
organized into a perfused 
interconnected capillary 
network. 

Tissue 
engineering, 
drug screening 

[246] 

 ECFC-EC 
NHLF 
 

Passive: 
8-100 
µm/s** 

Fibrin  EGM-2, 
20% O2 

Flow modulated cellular 
communications between 
different chambers by 
carrying cell-secreted 
morphogens. 

Drug 
screening 

[247] 

 

HUVEC 
HBVP 

Passive: 
10 
µL/min 

Col-1 M199, 
ECGS, 
VEGF, 
bFGF 

The vascular cells showed 
an inflammatory 
response when 
stimulated. 

Diseases 
modelling 

[248] 

 HUVEC Passive: 
0.7-8 
µL/min 

POMaC EGM-
2MV 

The pre-formed vascular 
network allowed the 
growth of tissues and 
showed physiological 
responses.  

Tissue 
engineering, 
drug screening 

[249] 

 
HPMEC 
AEC 

Active: 
0.3 
µL/min 

Col-1 EBM-2 Capillary side responded 
physiologically to alveolar 
infection by releasing 
cytokines. 

Drug 
screening 

[250] 

 RBME 
RCC 

Passive  Fbn, 
PDL 

Neuroba
sal™, 
bFGF 

Vascular side stimulation 
with TNF-α activated 
microglia and astrocytes 
on the neural side. 

Disease 
modelling, 
drug screening 

[251] 

 HBMVEC 
hiPSC-CN 
Astrocytes 
Pericytes 

Active: 
2 
µL/min 

Lamini
n, Col-1 

EBM-2 The BBB model increased 
permeability and 
activated cytokines in 
response to LPS 
stimulation. 

Disease 
modelling, 
drug screening 

[252] 

 

ZBC-EB Active: 
20 
µL/min 

Col-1, 
Geltrex
™, 
fibrin 

LDF, 
VEGF, 
EGS, 
bFGF 

The endothelial cells in 
the EBsformed longer and 
wider sprouts in 
microfluidic culture.  

Drug 
screening 

[173] 

Abbreviations and symbols:Active, flow is generated by a pump with constant flow rate; PDL, poly-D-lysine; AEC, 
alveolar epithelial cells; Ang-1, angiopoietin-1; bFGF, basic fibroblast growth factor; CC, cancer cells (colorectal, 
breast or melanoma cell line); Col-1, collagen type-I; EBM, endothelial basal medium; ECFC-EC, human 
endothelial colony forming cell-derived endothelial cells;ECGS, endothelial cell growth supplement;EGM, 
endothelial growth medium; EGM-2MV, endothelial growth medium microvascular;Fbn, fibronectin;HBMSC, 
human bone marrow-derived mesenchymal stem cells; HBMVEC, human brain-derived microvascular endothelial 
cells;HBVP, human brain vascular pericytes;hiPSC-CN, humaninduced pluripotent stem cell-derived cortical 
neurons; HMVEC, human dermal microvascular endothelial cells; HPMEC, human pulmonary microvascular 
endothelial cells;HPP, human placental pericytes; HUVEC, human umbilical vein endothelial cells; iPSC-EC, human 
induced pluripotent stem cells-derived endothelial cells;M199, medium 199 (Lonza); NHLF, human normal lung 
fibroblasts; OB, osteoblasts; Passive, the flow is generated by hydrostatic pressure of the medium in a reservoir; 
PEG, polyethylene glycol hydrogel;POMaC, poly(octamethylene maleate (anhydride) citrate); RBME, rat brain 
microvascular endothelial cells; RCC, E-18 rat cortical cells; TNF-α, tumor necrosis factor alpha; VEGF, vascular 
endothelial growth factor; VVM, VascuLife® VEGF medium; ZBC-EB, zebrafish blastocyst cell-derived embryoid 
bodies; *, see Figure 4 for further description of device design; **, flow velocity calculated by tracking the 
movement of fluorescent dextran particles through the network. 
 
These studies employed a commonly-used microfluidic design containing a middle channel 

filled with ECM, and interconnected with two side channels which conduct the medium flow 

(Figure 4A).In this device the vascular network is connected to the media channels through 
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the lumen openings[241]. This allows the vascular network to be perfused by chemical 

compounds or cells. The device allows rapid quantification of changes in vascular networks 

in response to test compounds[241].Using the same design, Jeon et al. have shown the 

extravasation of cancer cells, introduced through the perfused vascular network, into the 

surrounding bone-mimicking matrix [240]. In a similar device, human colorectal or breast 

cancer cells co-cultured with endothelial cellsin 3D ECM in the middle channel have been 

shown to develop into vascularizedtumor aggregates[243]. These tumor-like structures 

showed reduced growth, and sometimes even regression occurred,in response to standard 

vascular targeting therapies infused via the microvessels[243]. 

Based on a similar principle, Moya et al.[246] designed a chambered central channel with 

each chamber connected to the two microfluidic channels on either side through a 30 µm 

pore (Figure 4B). In that study the authors demonstrated that the endothelial cells, co-

cultured with fibroblasts in 3D fibrin matrix in the central chambers, self-assembled into an 

interconnected capillary network,that anastomosed on each side to the channels (Table 5). 

This device allows the culture of multiple, vascularized microtissues which were nearly 

identical between the different chambers[253]. The geometry of microfluidic channels and 

media reservoirs in this device, allow better control over the flow distribution in each 

chamber to generate near physiological shear stress [253]. Furthermore, these channels also 

allowed the transport of chemical signals from one culture chamber to the other [247].Using 

a modified version of this device, with an extended central chamber connected by multiple 

pores to the side channels, Hsu et al.have shown that interstitial flow and hypoxia can 

independently stimulate vasculogenesis [254].  

Another device (Figure 4C) mimics the alveolar capillary interface by allowing the culture of 

human pulmonary microvascular endothelial cells on one side, and alveolar epithelial cells 

on the other, of a porous membrane inside a microfluidic channel[250]. This device allows 

the transport of chemical signals from one compartment to the other on stimulation [250]. 

This technique can be applied to develop other organ models (such as intestine, kidney, liver 

and blood-brain barrier), by culturing the corresponding cells in the device [255].An 

alternative approach is the pre-moulded hollow network (Figure 4D) in a 3D collagen type-I 

matrixwith embedded supporting cells (in this case, human brain vascular pericytes)[248].In 



34 
 

that study, the HUVECswere seeded into the cavities of cast, which first formed a lining to 

the cast channels, and then formed vascular sprouts into the surrounding matrix [248]. 

  

 
 

 
Figure 4. Microfluidic devices commonly used for culturing vascular-like networks. (A) 
Three channel microfluidic device [238, 240]. The middle channel (m) is filled with 
extracellular matrix with embedded cells. The two side channels (s) conduct the medium 
flow (arrows). (B) Device with a central culture chamber connected to two channels on 
either side [246]. Endothelial cells embedded in 3D matrix in the central chamber self-
organize into a network, allowing medium perfusion from one channel to the other. (C) 
Microfluidic device mimicking capillary-tissue interface with endothelial cells on one side 
and epithelial cells on other side of a porous membrane [250]. The medium flow (arrows) 
can be established on the endothelial side only, or on both sides. (D) In this device, 
endothelial cells line the built-in channels cut into a hydrogel with embedded supporting 
cells [248, 249]. (E) A microfluidic channel slide with a 3D matrix plug (P) in the middle of 
the channel [173]. The medium flows on either side of the plug (a small amount may 
penetrate the gel by diffusion). Note that (B and D) comes closest to a growing vascular 
bed connected to the microfluidic system. Arrows showing the direction of the medium 
flow. For further discussion of microfluidic devices in the field of vascular culture, see 
Refs. [13, 99, 256]. 

 

In a similar device, a perfused vasculature has been developed by seeding HUVECs inside 

moulded channels in a synthetic scaffold [249]. The network thus formed was able to 

vascularize cardiac and hepatic tissues cultured on the outside of the scaffold. The material 

used for the scaffold in that study waspoly(octamethylene maleate (anhydride) citrate) 

(POMaC;a biodegrade-able and biocompatible scaffold) [249]. In that setup, the micro pores 

A B 

C 
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D 
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incorporated into the scaffold allowed the uptake of nutrients, chemical compounds and 

cells from the vessels, and the release of metabolites into the vessels by the surrounding 

tissue [249].By increasing the flow rate (from 0.7 to 8.0 µL/min) across the lifespan of the 

culture, this device allowed the growth of tissues of up to 2 mm thickness. 

In most of the cases discussed above, endothelial cell lines are used to culturevascular 

networksin a microfluidic system. The stem cells and explant cultures have been very little 

used in such studies. We have shown that zebrafish EBs embedded in a 3D matrix(mixed 

collagen type-I, Geltrex™ and fibrin gel components),formed longer and wider vascular 

sprouts when cultured in a microfluidic channel (Figure 4E) compared to the conventional 

(static) 96-well plates[173]. 

10.2. Technical challenges for the future 

As we have discussed above, scientists are getting closer to reaching the goal of a functional 

vascular network perfused by microfluidics in vitro. However, there are some severe 

technical challengesto be overcome. Presumably, some kind of synthetic interface or 

connector will be needed to connect the living vessels with microfluidic system. Another 

major challenge will be to maintain an increasing blood flow as the tissue explant, attached 

to the vascular network, grows in size. Thus, the growing tissue will require vessels of 

increasing diameter, and this in turn will require an expanding connection to the microfluidic 

system. Solutions to these problems will require intensive research.  

11. Conclusions 

In summary, the techniques developed for in vitrovascular network formation in mammals 

are producing rapid advances in our understanding. They can also be applied to zebrafish 

cells and tissues. For its benefits such as easy access to primary embryonic cells,availability 

of transgenic lines to visualize endothelial cells andconserved molecular pathways, the 

zebrafish can be a significant first-step model for studying in vitro vascular development. 

Lack of a functional vascular system is currently the major limitation to take the organoid 

technology a step further to develop whole organ culture.In recent years, microfluidic 

technology have shown great advances in developing in vitroperfused vascular networks. 

Ultimately, the future of tissue culture and organ culture will be greatly extended if a 
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functional vascular network can be developed, that have the ability to transport the required 

factors for the growth and to remove metabolites of the tissues in vitro. The major 

challenges in establishing such a system,that the future studies must overcome, would be to 

recapitulate the key features of vascular system such as barrier function and vasoactivity, 

besides weather or not the vascular network is perfusable. Further research will be required 

to develop a microfluidic system in which there is a remodelling of the vascular-to-hardware 

connection, as would be essential in order to meet the increasing demands of the growing 

tissue. 
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