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Abstract. Mobile radio tomography applies moving agents that perform
wireless signal strength measurements in order to reconstruct an image
of objects inside an area of interest. We propose a toolchain to facilitate
automated agent planning, data collection, and dynamic tomographic
reconstruction. Preliminary experiments show that the approach is feasible
and results in smooth images that clearly depict objects at the expected
locations when using missions that sufficiently cover the area of interest.
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1 Introduction

Radio tomography is a technique for measuring the signal strength of low-frequency
radio waves exchanged between sensors around an area, and reconstructing
information about objects in that area. We send a signal between a source and
target sensor of a bidirectional link. The signal passes through objects that
attenuate it, resulting in a detectably weaker signal at the receiving end. This
phenomenon makes it possible to determine where objects are located. The typical
setup for radio tomography is illustrated in Fig. 1 (left), in which the sensors are
situated on the boundaries in an evenly distributed manner. Gray lines represent
unobstructed links and red lines indicate links attenuated by the object.

Radio tomography has several benefits over other detection techniques. We
can see through walls, smoke or other obstacles. The technique does not require
objects to carry sensor devices. The radio waves are non-intrusive, with no
permanent effects on people. The technique is less privacy-invasive than optical
cameras as the possible level of detail is inherently limited due to the nature of
the radio waves. It is not possible to accurately identify a person, but we do aim
for reconstructed objects that we recognize as such.

A static sensor network with a large number of affordable sensors, placed
around an area of interest, can be used to reconstruct and visualize a smooth
image in real time [15]. The drawbacks of a static network are the requirement of
a large number of sensors and the inability to resolve gaps in the sensor coverage
or to react to information obtained through the reconstruction.
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Fig. 1: The sensor network and the physical realization of a vehicle.

One way to resolve these issues is to move the sensors around using agents,
which are realized as autonomous vehicles as pictured in Fig. 1 (right). We
position them along a grid which defines discrete and precise sensor positions.
These positions produce a matrix of coordinate-based pixels in the reconstructed
image. In comparison to the static setup, we require fewer sensors and less
prior knowledge about the area. We may adapt the coverage dynamically, for
example by zooming in on a part of the area. We name this concept mobile radio
tomography, which includes both the agent-based measurement collection and
the dynamic reconstruction approach.

In this paper, we present our toolchain for mobile radio tomography using
intelligent agents, as an engineering effort that builds upon and combines several
techniques. In Sect. 2 we describe the key challenges for mobile radio tomography
and the components in our toolchain that address them. We then cover two
such challenges in greater detail: (i) planning the paths of the agents in Sect. 3,
and (ii) reconstructing an image from the measurements in Sect. 4. Results for
real-world experiments are presented in Sect. 5, followed by conclusions and
further research in Sect. 6. This paper is based on two master’s theses on the
subject of mobile radio tomography [10,14].

2 Toolchain

Compared to existing localization and mapping techniques that use statically
positioned sensors [11,15], radio tomographic imaging with dynamically positioned
agents leads to several new challenges. In particular, routes must be planned for
each agent such that they obtain isotropic sampling of the network while also
shortening the total scanning time and ensuring collision-free movement. Images
must be reconstructed from the measurements in real time, requiring algorithms
and models that work with a restricted set of data that is potentially incomplete
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and certainly noisy. Synchronization between the agents must be interleaved with
data acquisition using a robust communication protocol.

To deal with these challenges, we developed an open-source, component-based
toolchain. The toolchain is mainly written in Python, with low-level hardware
components written in C. The diagram in Fig. 2 shows the toolchain’s components.

Vehicle

RF sensor

Mission

Monitor Search algorithm

Reconstruction

Vehicle control

Collision avoidance

Waypoint assignment

Multiobjective optimization

Planning

Weight matrix

Weighting model

Reconstruction algorithm

Fig. 2: Diagram of components in the toolchain.

The planning components generate missions for signal strength measurements, as
discussed in Sect. 3. The problem of devising a set of link positions to measure is
solved by an evolutionary multiobjective algorithm that simulates reconstruction
models to ensure that the links cover the entire network. Next, a waypoint
assignment algorithm distributes the sensor positions for each link over the
vehicles. A path graph search algorithm prevents the vehicles from clashing.

Execution of the mission is taken care of by the vehicle control components.
The monitor oversees the process and tracks auxiliary sensors on the vehicles,
such as distance sensors for obstacle detection. It makes the RF (radio frequency)
sensor perform the signal strength measurements and it may use the search
algorithm for collision avoidance during a mission. The mission consists of the
waypoints for the vehicle and provides instructions to the vehicle controller.
During a mission, this causes the vehicle to move toward the next waypoint.

The reconstruction component converts the signal strength measurements to
a two-dimensional visualization of the area of interest. We describe this process
in detail in Sect. 4. The weight matrix determines which pixels are intersected
by a link, and a weighting model describes how the contents of pixels contribute
to a measured signal strength.

3 Missions

We instruct the autonomous vehicles to travel to specific locations around
the area of interest, that two-by-two correspond to the positions where sensor
measurements must be performed. A vehicle executes its mission, which consists
of waypoints denoting locations to be visited in order. We wish to plan the
mission algorithmically instead of assigning waypoints by hand. The vehicles
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perform measurements together while traversing short and safe paths that do not
conflict with concurrent routes. This problem is related to various multi-agent
vehicle routing problems with synchronization constraints [6,9,13]. We propose a
two-stage algorithm, and describe both parts in text as well as pseudocode.

We assume that we know which links we measure for collecting tomographic
data; later on we generate these links using an evolutionary algorithm. To measure
a link, sensors must be placed at two positions at the same time. We distribute
these tasks over the vehicles. Our assignment algorithm is given as input a set

P = {(p1,1, p1,2), (p2,1, p2,2), . . . , (pω,1, pω,2)} (1)

with ω location pairs of coordinate tuples (two-dimensional vectors), and a set
V = {v1, v2, . . . , vη} of η ≥ 2 vehicles, initially located at coordinate tuples
S1, S2, . . . , Sη. Now define U = {(u, v) |u ∈ V, v ∈ V, u 6= v}, the pairwise unique
permutations of the vehicles, e.g., with two vehicles, this is U = {(v1, v2), (v2, v1)}.

Our greedy assignment in Algorithm 1 then works as follows: for each vehicle
pair ϑ = (va, vb) ∈ U and each sensor pair ρ = (pc,1, pc,2) ∈ P , determine the
distances d1(ϑ, ρ) = ‖Sa − pc,1‖1 and d2(ϑ, ρ) = ‖Sb − pc,2‖1. We use the L1

norm ‖·‖1 to only move in cardinal directions on a grid; in other applications
we may use the L2 norm ‖·‖2. Next, take the maximal distance (since one agent
must wait for the other to perform a measurement), and finally select the overall
minimal pair combination, i.e., solve the following optimization problem:

arg min
(ϑ,ρ)∈U×P

(
max(d1(ϑ, ρ), d2(ϑ, ρ))

)
(2)

Algorithm 1 Greedy waypoint assignment

1: procedure Assign(S1, S2, . . . , Sη, P, V )
2: let Ai be a sequence of waypoints for each vehicle vi, with i = 1, 2, . . . , η
3: U ← {(u, v) |u ∈ V, v ∈ V, u 6= v}
4: while P 6= ∅ do
5: δm ←∞
6: for all (ϑ, ρ) ∈ U × P do . ϑ = (va, vb) and ρ = (pc,1, pc,2)
7: d← max(‖Sa − pc,1‖1 , ‖Sb − pc,2‖1)
8: if d < δm then
9: δm ← d, ϑm ← ϑ and ρm ← ρ

10: end if
11: end for . ϑm = (va, vb) and ρm = (pc,1, pc,2)
12: append pc,1 to the assignment Aa for vehicle va
13: append pc,2 to the assignment Ab for vehicle vb
14: Sa ← pc,1 and Sb ← pc,2
15: remove ρm from the set P
16: end while
17: return the assignments A1, A2, . . . , Aη
18: end procedure
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The selected positions are then assigned to the chosen vehicle pair, and removed
from P . Additionally, Sa becomes the first position and Sb becomes the second
sensor position. The greedy algorithm then continues with the next step, until P
is empty, thus providing a complete assignment for each vehicle.

Secondly, we design a straightforward collision avoidance algorithm that
searches for routes between waypoints that do not conflict with any concurrent
route of another vehicle; see Algorithm 2. The algorithm is kept simple in order
to incorporate it into an evolutionary algorithm (see [7,12] for more intricate
methods which result in optimized routes). We use a path graph search algorithm
to find a safe route that crosses no other routes. Once a vehicle performs a
measurement involving another vehicle, their prior routes no longer conflict.

Algorithm 2 Collision avoidance

1: procedure Avoid(V, S1, S2, . . . , Sη, vp, vq, Np)
2: let W1,W2, . . . ,Wη be sets, with Wi = {vi} for i = 1, 2, . . . , η
3: let G be a graph of discrete positions and connections in the area
4: remove incoming edges of nodes in G that enter forbidden areas
5: remove incoming edges of S1, S2, . . . , Sη from G
6: let R1, . . . , Rη be empty sequences of routes
7: for all vi ∈ V \Wp do
8: remove the edges for nodes in Ri from G
9: end for

10: R∗ ← Search(G,Sp, Np) . find a safe path R∗ in G from Sp to Np
11: append R∗ to Rp
12: reinsert the edges for Sp into the graph G
13: remove incoming edges for the node Np
14: Sp ← Np and Wp ←Wp ∪ {vq}
15: for all vi ∈ V do
16: if vi /∈Wp then
17: reinsert the edges for nodes traversed by the path Ri into G
18: end if
19: if vi 6= vp and Wi = V then
20: clear the sequence Ri
21: Wi ← {vi}
22: end if
23: end for
24: return Rp
25: end procedure

Let vp be the vehicle that we currently assign the position Np to, and vq the vehicle
that will visit the other sensor position. We also initialize sets W1,W2, . . . ,Wη,
where each Wi indicates with which other vehicles the given vehicle vi has recently
performed a measurement. We assume that the search algorithm is given as input
a graph G, start point Sp and end point Np, and outputs a route of intermediate
points R∗, or an empty sequence if there is no safe path.
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We use the collision avoidance algorithm every time the waypoint assignment
algorithm assigns a position to a vehicle, so twice per step. Thus, we detect
problematic situations as they occur, which are either solved via detours (although
the vehicle might also search for a faster safe path while the mission takes place),
or by rejecting the entire assignment. The resulting assignments should be
collision-free, assuming that all vehicles follow their assigned route and wait
for each other at synchronization points, where they also perform their signal
strength measurements.

In order to supply the waypoint assignment algorithms with a non-static
set of sensor positions P (see (1)), we utilize an evolutionary multiobjective
algorithm [8]. The iterative algorithm generates a set of positions and alters
it in such a way that it theoretically converges toward an optimal assignment.
We keep a population (X1, X2, . . . , Xµ) of multiple individuals, each of which
contains variables that encode the positions in an adequate form. After a random
initialization, the algorithm performs iterations in which it selects a random
individual Xi and slightly mutates it to form a new individual [2].

In our situation, the variables of an individual encode coordinates for positions
around the area of interest, and possibly inside of it as well. Define m(i) as the
number of pairs of positions that are correctly placed, such that the link between
the positions intersects the network. Using these positions, we can deduce other
information, such as a weight matrix A(i) (containing link influence on pixels; see
Sect. 4), for each individual Xi. The algorithm then removes an individual that
is infeasible according to the domain of the variable or due to the constraints
in (3) and (4), such as a minimum number of valid links ζ. The constraints are
wrapped into a combined feasibility value in (5):

Q
(i)
1 : ∃j : ∀k : A

(i)
j,k 6= 0 (3) Q

(i)
2 : m(i) ≥ ζ (4)

fi =

{
0 if ¬Q(i)

1 ∨ ¬Q
(i)
2

1 if Q
(i)
1 ∧Q

(i)
2

(5)

In the case that all constraints and domain restrictions are met by each individual,
the multiobjective algorithm uses a different selection procedure based on the
objective functions. We remove an individual if its objective values are strictly
higher than those of one dominating individual in the population. If none of
the individuals are dominated, we remove the one with the minimum crowding
distance [5]. The crowding distance is defined as the area around the individual
within the objective space. We can place the objective values in this space as a
plotted function, which is known as the Pareto front.

We provide two objective functions that the evolutionary multiobjective
algorithm should minimize. Certain parts of the algorithm favor two over more
than two objectives, which is why we combine related functions as terms of
one overarching objective. Maximization problems, such as achieving optimal
coverage area with the generated links, are converted to minimization objectives
by negating them. The objective functions in (6) and (7) describe desirable
properties for intersecting links and minimized distances, respectively:
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g1(Xi) = −
m(i)∑
j=1

n∑
k=1

A
(i)
j,k (6)

g2(Xi) = δ ·

m(i)∑
j=1

∥∥∥p(i)j,1 − p(i)j,2∥∥∥
2

+ (1− δ) · T (i) (7)

In the entire selection step of the evolutionary algorithm, we use the reconstruction,
waypoint assignment and collision avoidance algorithms to check that a new
individual adheres to the constraints and to calculate the objective values.
Aside from the link weight matrix A(i) for one individual Xi, we calculate the
pairwise L2 norms between sensor positions, and T (i), the sum of minimized route
distances (2), weighted by a factor δ. These algorithms generate missions that
provide sufficient network coverage. When we stop the evolutionary multiobjective
algorithm, we can manually select one of the individuals and use the mission it
generates, using the Pareto front as a reference for balanced objective values [5].

4 Reconstruction

The reconstruction phase takes care of converting a sequence of signal strength
measurements to a two-dimensional image of size m × n pixels that may be
visualized. Let M = {(s1, t1, r1), . . . , (sk, tk, rk)} be the input, in which si and ti
are pairs of integers indicating the x and y coordinates on the grid for the source
and target sensor i, respectively, ri is the received signal strength indicator (RSSI )
and k is the total number of measurements. We express the conversion problem
algebraically as Ax = b. Here, b is a column vector of RSSI values (r1, r2, . . . , rk)T ,
x is a column vector of m · n pixel values (in row-major order) and A is a weight
matrix that describes how the RSSI values are to be distributed over the pixels
that are intersected by the link, according to a weighting model.

In general, signal strength measurements contain a large amount of noise due to
multipath interference. The wireless sensors send signals in all directions, and thus
more signals than those traveling in the line-of-sight path may reach the target
sensor, causing interference. This phenomenon is especially problematic in indoor
environments due to reflection of signals. Although techniques exist to include
an estimate of the contribution of noise inside the model [15], we suppress noise
outside the model using calibration measurements and regularization algorithms.
The difficulty lies in the fact that the reconstruction problem is an ill-posed inverse
problem, which we have to solve for highly noisy and unstable measurements.

The weight matrix A defines the mapping between the input b and the output
x. If and only if the contents of a pixel with index i attenuate a link with index `,
then the weight w`,i in row ` and column i is nonzero. Given a link `, a weighting
model determines which pixels have an influence on this link and are thus assigned
nonzero weights. The weights may be normalized using the link length d` to favor
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shorter links [16]. The variable d`,i is the sum of distances from the center of
pixel i to the two endpoints of link `.

The line model in (8) assumes that the signal strength is determined by
objects on the line-of-sight path, as shown in Fig. 3a; the ellipse model in (9) is
based on the definition of Fresnel zones:

w`,i =

{
1 if link ` intersects pixel i

0 otherwise
(8)

w`,i =

{
1/
√
d` if d`,i < d` + λ

0 otherwise
(9) w`,i = e−(d`,i−d`)

2/2σ2

(10)

Fresnel zones, used to describe path loss in communication theory, are ellipsoidal
regions with focal points at the endpoints of the link and a minor axis diameter
λ. Only pixels inside this region are assigned a nonzero weight, as seen in Fig. 3b.
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(a) Line model
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(b) Ellipse model
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(c) Gaussian model

Fig. 3: Illustration of weight assignment for a link from (0, 0) to (16, 16) by the
weighting models.

Moreover, we introduce a new Gaussian model in (10). This model is based on
the assumption that the distribution of noise conforms to a Gaussian distribution.
The log-distance path loss model is a signal propagation model that describes
this assumption as well [1].

The general Gaussian function is defined as f(x) = α e−(x−µ)
2/2σ2

. In this
equation α is the height of the curve’s peak, µ is the location of the peak’s center
and σ is the standard deviation that controls the width of the top of the curve.
The Gaussian model uses the Gaussian function to assign weights for the pixels.
Most weight is assigned to pixels on the line-of-sight path and less weight is
assigned to pixels that are farther away, depending on their distance from the
line-of-sight path (d`,i − d`). We specifically use a Gaussian function with α = 1
and µ = 0 since this ensures that pixels on the line-of-sight path get the highest
weight, as depicted in Fig. 3c. The parameter σ may be tuned as in practice
there appears to be a wide range of suitable values.
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Due to the ill-posed nature of the problem, in general there exists no exact
solution for Ax = b because A is not invertible. Instead, we attempt to find a
solution xmin that minimizes the error using least squares approximation [3] as
defined in (11), where R(x) is a regularization term:

xmin = arg min
x

(
‖Ax− b ‖ 22 +R(x)

)
(11)

The singular value decomposition (SVD) of A may be used to solve this and is
defined as A = UΣV T , in which U and V are orthogonal matrices and Σ is a
diagonal matrix with singular values [16]. If we use the exact variant of singular
value decomposition which does not apply any regularization, then we have the
regularization term R(x) = 0. Truncated singular value decomposition (TSVD) is
a regularization method that only keeps the τ largest singular values in the SVD
and is defined as A = UτΣτV

T
τ [16]. Small singular values have low significance

for the solution and become erratic when taking the reciprocals for Σ. Moreover,
the truncated singular value decomposition is faster to compute, which is an
important property for reconstructing images in real time.

While the dimensionality reduction from TSVD does stabilize the solution, the
resulting images may still contain unstable spots. Iterative regularization methods
incorporate desired characteristics of the reconstructed images. Total variation
minimization (TV, see [16]) enforces that the reconstructed images are smooth,
i.e., that the differences between neighboring pixels are as small as possible, by
favoring solutions that minimize variability in the resulting image. The gradient
∇x of x is a measure of the variability of the solution. The regularization term

in (11) is set to R(x) = α
∑ξ−1
i=0

√
(∇x)

2
i + β, in which ξ is the number of

elements in ∇x. The parameter α indicates the importance of a smooth solution
and leads to a trade-off as a high value indicates more noise suppression, but
less correspondence to the actual measurements. The term is not squared, so we
need an optimization algorithm for the minimization. The parameter β is a small
value that prevents discontinuity in the derivative when x = 0, as that generally
needs to be supplied to optimization algorithms.

Finally, let us consider another measure of variability. Maximum entropy
minimization (ME ) smoothens the solution by minimizing its entropy. Entropy is
a concept in thermodynamics that provides a measure of the amount of disorder
in a structure. The Shannon entropy is defined as H = −

∑γ−1
i=0 qi log2(qi),

in which γ is the number of unique gray levels in the solution and qi is the
probability that gray level i occurs in the solution. Low entropy indicates a low
variation in gray levels (which we observe as noise). While this regularization
technique is well-known [4], we have found no previous work discussing its
application to radio tomographic imaging. The regularization term in (11) is set
to R(x) = αH. We calculate a numerical approximation of the derivative. The
described reconstruction methods and weighting models allow us to obtain a
clear image of the area.
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5 Experiments

To study the effectiveness of our approach, we perform a series of experiments.
Two vehicles drive around on the boundaries of a 20× 20 grid in an otherwise
empty experiment room. We use hand-made missions that apply common patterns
used in tomography, such as fan beams. With this setup we create a dataset with
two persons standing in the middle of the left side and in the bottom right corner
of the network, and a dataset with one person standing in the top right corner of
the network. A separate dataset is used for calibration.

The first experiment compares all combinations of regularization methods and
weighting models to determine which pair yields the most accurate reconstructions.
We use the dataset with the two persons, so both must be clearly visible. The
outcomes of this experiment are presented in Fig. 4, in which darker pixels
indicate low attenuation and brighter pixels indicate high attenuation.

(a) SVD, line (b) TSVD, line (c) TV, line (d) ME, line

(e) SVD, ellipse (f) TSVD, ellipse (g) TV, ellipse (h) ME, ellipse

(i) SVD, Gaussian (j) TSVD, Gaussian (k) TV, Gaussian (l) ME, Gaussian

Fig. 4: Reconstructions combining regularization methods and weighting models
(two persons dataset).
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The first observation is that SVD indeed leads to major instabilities because of
the lack of regularization. Noise is amplified to an extent that the images do not
provide any information about the positions of the persons. TSVD, while being
a relatively simple regularization method, provides more stable resulting images
that clearly show the positions of the two persons. The ellipse model and the new
Gaussian model yield similar clear results, whereas using the line model leads
to slightly more noise compared to the former two. Even though TV and ME
use different variation measures, the reconstructions are visually the same and
equally clear.

Besides providing a clear indication of where the persons are located inside
the network, it is important that the reconstructed images are smooth. The
second experiment studies the smoothening effects of the regularization methods
using 3D surface plots of the raw grayscale images, i.e., without any additional
coloring steps applied. The only difference between the experiment runs are the
regularization method, so any other parameters remain the same, such as the
Gaussian weighting model and the precollected dataset with the two persons that
we use as input. The results for this experiment are shown in Fig. 5.

(a) SVD (b) TSVD

(c) TV (d) ME

Fig. 5: 3D surface plots of the reconstructions for each regularization method
(two persons dataset).
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The ideal surface plot consists of a flat surface with two spikes exactly at the
positions of the persons. The surface plot for SVD is highly irregular, which leads
to noticeable noise in the image due to a high variance in pixel values. In contrast,
the surface plot for TSVD is smooth and the two spikes are clearly distinguishable.
However, there are still some small unstable spots. The surface plots for TV and
ME are, again, practically the same and have even fewer instabilities.

With regard to the algorithmically generated missions discussed in Sect. 3,
we perform a parameter optimization by comparing the average objective values
of the resulting individuals in multiple runs of the evolutionary algorithm. The
twelve parameters influence the sensitivity and scale of the optimization algorithm,
as well as the waypoint assignment and collision avoidance algorithms. Certain
features, such as a mutation operator specially designed to optimize link positions,
can be enabled and disabled this way as well. We provide 350 unique combinations
of values to these parameters, and repeat each experiment five times.

We find that some of these variables influence the performance in terms of
stability, convergence speed and finding optimized positions. For example, the
specialized mutation operator finds individuals that have better objective values,
but result in chaotic populations over time. The population size hardly affects
the algorithm’s effectiveness nor speed. Other parameters produce missions which
are applicable only if we change the dimensions of the area of interest.

For the final experiment, we generate a mission for a 20× 20 grid using the
evolutionary multiobjective algorithm, and compare it to a hand-made mission
used previously. The algorithm is tuned to place sensors for at least 320 and up to
400 valid links to be measured during the mission. The results of the parameter
optimization are applied as well. At 7000 iterations, we end the generation run
and pick a knee point solution that optimizes both objectives in the resulting
Pareto front. A manual check using the collision avoidance algorithm determines
that this assignment is safe. In Fig. 6, we show the images resulting from the
tomographic reconstruction of the dataset with one person.

(a) Algorithmically planned
mission, halfway result

(b) Hand-made mission,
halfway result

(c) Hand-made mission,
final result

Fig. 6: Reconstructions for algorithmically planned and hand-made missions (one
person dataset).
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The reconstruction, which is run in real time during the collection of signal
strength measurements, uses TV and the Gaussian model. We can track the time
it takes before a mission provides a smooth and correct result, in terms of quality
and realism. In Fig. 6a, we are around halfway through the planned mission, with
204 out of 382 measurements collected. The reconstructed image clearly shows
the person standing in the top right corner. Fig. 6b shows the reconstructed
image provided by the hand-made mission after 413 out of 800 measurements.
Although this mission’s movements are less erratic (and more measurements per
time unit are made), it is not stable enough to clearly show one person while
it develops. Fig. 6c shows the end result, where the hand-made mission does
provide an acceptable reconstructed image. The planned mission does not diverge
from its initial smooth image and we can stop the mission early.

6 Conclusions and Further Research

We propose a mobile radio tomography toolchain that collects wireless signal
strength measurements using dynamic agents, which are autonomous vehicles
that move around with sensors. We plan missions, which describe the locations
that the agents must visit and in what order. Novel algorithms provide us with
generated missions, guaranteeing that two sensors are at the right locations to
perform a measurement. The algorithms avoid conflicts between the routes and
provide an optimized coverage of the network.

The measurements are passed to the reconstruction algorithms to create a
visualization of the area of interest that corresponds to the patterns in the data
as best as possible. Regularization methods suppress noise in the measurements
and increase the smoothness of the resulting image. We introduce a new Gaussian
weighting model and apply maximum entropy minimization to the problem of
radio tomographic imaging. Preliminary experiments show that the mobile radio
tomography approach is effective, i.e., it is able to provide smooth reconstructed
images in a relatively short time frame using algorithmically planned missions.

There is much potential for further research. One interesting topic is to replace
the agents, that currently operate on the ground using small-scale robotic rover
cars, with drones that fly at different altitudes. This leads to 3D reconstruction,
e.g., by performing a reconstruction at different altitudes and combining the
images, which are slices of the 3D model. The reconstruction algorithms could be
modified to allow performing measurements anywhere in the 3D space, although
this makes the problem more difficult to solve in real time.

Finally, improvements could be made to the algorithms related to planning
and waypoint assignment tasks. This includes altering the objectives of the
evolutionary multiobjective algorithm and using predetermined patterns that we
encode in the variables. It is also not entirely clear yet how the network coverage,
or the lack thereof, influences the quality of the reconstruction. The waypoint
algorithm could be rebalanced to take less greedy steps or to factor in the time
that certain actions take, such as turning around. Altering missions dynamically
helps making adaptive scanning a viable approach.
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