
Utilization-Based Scheduling of Flexible Mixed-Criticality Real-Time
Tasks
Chen, G.; Guan, N.; Liu, D.; He, Q.; Huang, K.; Stefanov, T.P.; Yi, W.

Citation
Chen, G., Guan, N., Liu, D., He, Q., Huang, K., Stefanov, T. P., & Yi, W. (2018). Utilization-
Based Scheduling of Flexible Mixed-Criticality Real-Time Tasks. Ieee Transactions On
Computers, 67(4), 543-558. doi:10.1109/TC.2017.2763133

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/57431

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/57431

ar
X

iv
:1

71
1.

00
10

0v
1

 [
cs

.D
C

]
 2

9
Se

p
20

17
1

Utilization-Based Scheduling of Flexible
Mixed-Criticality Real-Time Tasks

Gang Chen, Nan Guan, Di Liu, Qingqiang He, Kai Huang, Todor Stefanov, Wang Yi

Abstract—Mixed-criticality models are an emerging paradigm for the design of real-time systems because of their significantly improved

resource efficiency. However, formal mixed-criticality models have traditionally been characterized by two impractical assumptions: once

any high-criticality task overruns, all low-criticality tasks are suspended and all other high-criticality tasks are assumed to exhibit high-

criticality behaviors at the same time. In this paper, we propose a more realistic mixed-criticality model, called the flexible mixed-criticality

(FMC) model, in which these two issues are addressed in a combined manner. In this new model, only the overrun task itself is assumed

to exhibit high-criticality behavior, while other high-criticality tasks remain in the same mode as before. The guaranteed service levels of

low-criticality tasks are gracefully degraded with the overruns of high-criticality tasks. We derive a utilization-based technique to analyze

the schedulability of this new mixed-criticality model under EDF-VD scheduling. During run time, the proposed test condition serves

an important criterion for dynamic service level tuning, by means of which the maximum available execution budget for low-criticality

tasks can be directly determined with minimal overhead while guaranteeing mixed-criticality schedulability. Experiments demonstrate

the effectiveness of the FMC scheme compared with state-of-the-art techniques.

Index Terms—EDF-VD Scheduling, Flexible Mixed-Criticality System, Utilization-Based Analysis

✦

1 INTRODUCTION

A mixed-criticality (MC) system is a system in which tasks
with different criticality levels share a computing platform.
In MC systems, different degrees of assurance must be pro-
vided for tasks with different criticality levels. To improve
resource efficiency, MC systems [26] often specify different
WCETs for each task at all existing criticality levels, with
those at higher criticality levels being more pessimistic.
Normally, tasks are scheduled with less pessimistic WCETs
for resource efficiency. Only when the less pessimistic WCET
is violated, the system switches to the high-criticality mode
and only tasks with higher criticality levels are guaranteed
to be scheduled with pessimistic WCETs thereafter.

There is a large body of research work on specify-
ing and scheduling mixed-criticality systems (see [8] for a
comprehensive review). However, to ensure the safety of
high-criticality tasks, the classic MC model [4], [5], [1], [3],
[2] applies conservative restrictions to the mode-switching
scheme. In the classic MC model, whenever any high-
criticality task overruns, all low-criticality tasks are imme-
diately abandoned and all other high-criticality tasks are
assumed to exhibit high-criticality behaviors. This mode-
switching scheme is not realistic in the following two im-
portant respects.

• First, it is pessimistic to immediately abandon all
low-criticality tasks, because low-criticality tasks re-
quire a certain timing performance as well [17], [25].

• Second, it is pessimistic to bind the mode switches
of all high-criticality tasks together for the scenarios
where the mode switches of high-criticality tasks are
naturally independent [12], [22].

This paper has been submitted to IEEE Transaction on Computers (TC)
on Sept-09th-2016, and revised for two times on Jan-19th-2017 and Aug-
28th-2017. The submission number on TC is TC-2016-09-0607. This
paper is still under review by TC with minor revision. The screen-
shot of submission history is also attached in appendix D. Email: chen-
gang@cse.neu.edu.cn;csguannan@comp.polyu.edu.hk;yi@it.uu.se

Although there has been some research on solving the first
problem, i.e., statically reserving a certain degraded level of
service for low-criticality execution [7], [25], [24], [16], to our
knowledge, little work has been done to date to address the
second problem.

In this paper, we propose a flexible MC model (denoted
as FMC) on a uni-processor platform, in which the two
aforementioned issues are addressed in a combined manner.
In FMC, the mode switches of all high-criticality tasks are
independent. A single high-criticality task that violates its
low-criticality WCET triggers only itself into high-criticality
mode, rather than triggering all high-criticality tasks. All
other high-criticality tasks remain at their previous criti-
cality levels and thus do not require to book additional
resources at mode-switching points. In this manner, sig-
nificant resources can be saved compared with the classic
MC model [1], [2], [3]. On the other hand, these saved
resources can be used by low-criticality tasks to improve
their service quality. More importantly, the proposed FMC
model adaptively tunes the service level for low-criticality
tasks to compensate for the overrun of high-criticality tasks,
thereby allowing the system workload to be balanced with
minimal service degradation for low-criticality tasks. At
each independent mode-switching point, the service level
for low-criticality tasks is dynamically updated based on the
overruns of high-criticality tasks. By doing so, the quality of
service (QoS) for low-criticality tasks can be significantly
improved.

Since the service level for low-criticality tasks is dy-
namically determined during run time, the decision-making
procedure should be light-weighted. For this purpose,
utilization-based scheduling is more desirable for run-time
decision-making because of its simplicity. However, using
utilization-based scheduling for our FMC model brings new
challenges due to the intrinsic dynamics of this model, such
as the service level tuning strategy. In particular, utilization-
based schedulability analysis relies on whether the cumula-

http://arxiv.org/abs/1711.00100v1

2

tive execution time of low-criticality tasks can be effectively
upper bounded. In FMC, the service levels for low-criticality
tasks are dynamically tuned at each mode switching point.
Therefore, the cumulative execution time of low-criticality
tasks strongly depends on when mode switches occur. In
general, such information is difficult to explicitly represent
prior to real execution, because the independence of the
mode switches in FMC results in a large analysis space. It
is computationally infeasible to analyze all possibilities. To
resolve this challenge, we propose a novel approach based
on mathematical induction, which allows the cumulative
execution time of low-criticality tasks to be effectively upper
bounded.

In this work, we study the schedulability of the proposed
FMC model under EDF-VD scheduling. A utilization-based
schedulability test condition is derived by integrating the
independent triggering scheme and the adaptive service
level tuning scheme. A formal proof of the correctness of this
new schedulability test condition is presented. Based on this
test condition, an EDF-VD-based MC scheduling algorithm,
called FMC-EDF-VD, is proposed for the scheduling of an
FMC task system. During run time, the optimal service level
for low-criticality tasks can be directly determined via this
condition with minimum overhead, and mixed-criticality
schedulability can be simultaneously guaranteed. In addi-
tion, we explore the feasible region of the virtual deadline
factor for FMC model. Simulation results show that FMC-
EDF-VD provides benefits in supporting low-criticality exe-
cution compared with state-of-the-art algorithms.

2 RELATED WORK

Mixed-criticality scheduling is a research field that has
received considerable attention in recent years. As stated
in [7], much existing research work [1], [2], [3] on MC
scheduling makes the pessimistic assumption that all low-
criticality tasks are immediately abandoned once the system
enters high-criticality mode. Instead of abandoning all low-
criticality tasks, some efforts [7], [25], [24], [16], [19] have
been made to provide solutions for offering low-criticality
tasks a certain degraded service quality when the system
is in high-criticality mode. Nevertheless, these studies still
use a pessimistic mode-switch triggering scheme in which,
whenever one high-criticality task overruns, all other high-
criticality tasks are triggered to exhibit high-criticality be-
havior and book unnecessary resources.

Recent work presented in [12], [22], [15] offers solutions
for improving performance for low-criticality tasks by using
different mode-switch triggering strategies. Huang et al. [15]
proposed an interference constraint graph to specify the
execution dependencies between high-criticality and low-
criticality tasks. However, this approach still uses high-
confidence WCET estimates for all high-criticality tasks
when determining system schedulability, and therefore does
not address the second problem discussed above. Gu et al.
[12] presented a component-based strategy in which the
component boundaries offer the isolation necessary to sup-
port the execution of low-criticality tasks. Minor overruns
can be handled with an internal mode switch by drop-
ping off all low-criticality jobs within a component. More
extensive overruns will result in a system-wide external

mode switch and the dropping off of all low-criticality
jobs. Therefore, the mode switches at the internal and ex-
ternal levels still use pessimistic strategy in which all low-
criticality tasks are abandoned once a mode switch occurs
at the corresponding level. The two problems mentioned
above still exist at both levels. In addition, the system
schedulability is tested using a demand bound function
(DBF) based approach. The complexity of the schedulability
test is exponential in the size of the input [12], resulting in
costly computations.

Ren and Phan [22] proposed a partitioned scheduling al-
gorithm based on group-based Pfair-like scheduling [14] for
mixed-criticality systems. Within a task group, a single high-
criticality task is encapsulated with several low-criticality
tasks. The tasks are scheduled via Pfair-like scheduling [14]
by breaking them into quantum-length sub-tasks. Sub-tasks
that belong to different groups are scheduled on an earliest-
pseudo-deadline-first (EPDF) basis. Pfair scheduling is a
well-known optimal scheduling method for scheduling pe-
riodic real-time tasks on a multiple-resource system. How-
ever, Pfair scheduling poses many practical problems [14].
First, the Pfair algorithm incurs very high scheduling over-
head because of frequent preemptions caused by the small
quantum lengths. Second, the task groups are explicitly
required to be well synchronized and to make progress
at a steady rate [27]. Therefore, the work presented in
[22] strongly relies on the periodic task models. In addi-
tion, the system schedulability in [22] is determined by
solving a MINLP problem, which in general has NP-hard
complexity[11]. Because of this complexity, the scalability
problem needs to be carefully considered.

Compared with the existing work [12], [22], the pro-
posed FMC model and its scheduling techniques offer both
simplicity and flexibility. In particular, our work differs
from these approaches in the following respects. Compared
with the Pfair-based scheduling method [22] which relies on
periodic task models, our paper derives an EDF-VD-based
scheduling scheme for sporadic mixed-criticality task sys-
tems, that incorporates an independent mode-switch trig-
gering scheme and an adaptive service level tuning scheme.
EDF-VD has shown strong competence in both theoretical
and empirical evaluations [4]. Compared with the work
presented in [12], our approach uses a more flexible strategy
that allows a component/system to abandon low-criticality
tasks in accordance with run-time demands. Therefore, both
of the problems stated above are addressed in our approach.
In contrast to the work of [12], [22], our approach is based
on a utilization-based schedulability analysis. The system
schedulability can be effectively determined. From the
designer’s perspective, our utilization-based approach re-
quires simpler specifications and reasoning compared with
the work of [22], [12]. In terms of flexibility, our approach
can efficiently allocate execution budgets for low-criticality
tasks during runtime in accordance with demands, whereas
the approaches presented in [12], [22] require that low-
criticality tasks should be executed in accordance with the
dependencies between low-criticality and high-criticality
tasks that have been determined in off-line.

3

3 SYSTEM MODELS AND BACKGROUND

3.1 FMC implicit-deadline sporadic task model

Task model: We consider an MC system with two different
criticality levels, HI and LO. The task set γ contains n MC
implicit-deadline sporadic tasks which are scheduled on
a uni-processor platform. Each task τi in γ generates an
infinite sequence of jobs and can be specified by a tuple
{Ti, Li, Ci}. Here, Ti denotes the minimum job-arrival inter-
vals. Li ∈ {LO,HI} denotes the criticality level of a task.
Each task is either a low-criticality task or high-criticality
task. γLO and γHI (where γ = γLO ∪ γHI) denote low-
criticality task set and high-criticality task set, respectively.
Ci ∈ {CLO

i , CHI
i } is the list of WCETs, where CLO

i and
CHI

i denote the low-criticality and high-criticality WCETs,
respectively.

For high-criticality tasks, the WCETs satisfy CLO
i <

CHI
i . For low-criticality tasks, their execution budget is

dynamically determined in FMC based on the overruns of
high-criticality tasks. To characterize the execution behavior
of low-criticality tasks in high-criticality mode, we now
introduce the concept of the service level on each mode-
switching point, which specifies the guaranteed service
quality after the mode switch.
Service level: Instead of completely discarding all low-
criticality tasks, Burns and Baruah in [7] proposed a more
practical MC task model in which low-criticality tasks are
allowed to statically reserve resources for their execution
at a degraded service level in high-criticality mode (i.e.,
a reduced execution budget). By contrast, in FMC, the
execution budget is dynamically determined based on the
run-time overruns rather than statically reserved as in [7].
To model this dynamic behavior, the service level concept
defined in [7] should be extended to apply to independent
mode switches. Therefore, we define the service level zki
when the system has undergone k mode switches.

Definition 1. (Service level zki when k mode switches have
occurred). If low-criticality task τi is executed at ser-
vice level zki when the system has undergone k mode
switches, up to zki · CLO

i time units can be used for the
execution of τi in one period Ti. When τi runs in low-
criticality mode, we say τi is executed at service level z0i ,
where z0i = 1.

The service level definition given above is compliant with
the concept of the imprecise computation model developed
by Lin et al.[18] to deal with time-constrained iterative
calculations. Imprecise computation model is partly motivated
by the observation that many real-time computations are
iterative in nature, solving a numeric problem by successive
approximations. Terminating an iteration early can return
useful imprecise results. With this motivation in mind, the
imprecise computation model can be used in a natural way
to enhance graceful degradation [20]. The practicality of
imprecise computation model has been deeply investigated and
verified in [9]. Imprecise computation model provides an
approximate but timely result, which may be acceptable in
many application areas. Examples of such applications are
optimal control [6], multimedia applications [21], image and
speech processing [10], and fault-tolerant scheduling prob-
lems [13]. In FMC, when an overrun occurs, low-criticality

tasks will be terminated before completion and sacrifice
the quality of the produced results to ensure their timing
correctness.
Assumptions: For the remainder of the manuscript, we
make the following assumptions: (1) Regarding the com-
pensation for the kth overrun of a high-criticality task, we
assume that zki ≤ zk−1

i . After the kth mode-switching point,
the allowed execution time budget in one period should
thus be reduced from zk−1

i · cLO
i to zki · cLO

i . (2) According
to [4], if uLO

LO + uHI
HI ≤ 1, then all tasks can be perfectly

scheduled by regular EDF under the worst-case reservation
strategy. Therefore, we here consider meaningful cases in
which uLO

LO + uHI
HI > 1.

Utilization: Low and high utilization for a task τi are

defined as uLO
i =

cLO
i

Ti
and uHI

i =
cHI
i

Ti
, respectively.

The system-level utilization for task set γ are defined as
uLO
LO =

∑
τi∈γLO

uLO
i , uLO

HI =
∑

τi∈γHI
uLO
i , and uHI

HI =
∑

τi∈γHI
uHI
i . The system utilization of low-criticality tasks

after kth mode-switching point can be defined as ukLO =∑
τi∈γLO

zki ·u
LO
i . To guarantee the execution of the manda-

tory portions of low-criticality tasks, the mandatory utiliza-
tion can be defined as uman

LO =
∑

τi∈γLO
zman
i · uLO

i , where
zman
i is the mandatory service level for task τi as specified

by the users.

3.2 Execution semantics of the FMC model

The main differences between our FMC execution model
and the classic MC execution model lie in the independent
mode-switch triggering scheme for high-criticality tasks and
the dynamic service tuning of low-criticality tasks. In con-
trast to the classic MC model, the FMC model allows an
independent triggering scheme in which the overrun of one
high-criticality task triggers only itself into high-criticality
mode. Consequently, the high-criticality mode of the system
in FMC depends on the number of high-criticality tasks
that have overrun. Therefore, we introduce the following
definition:

Definition 2. (k-level high-criticality mode). At a given
instant of time, if k high-criticality tasks have entered
high-criticality mode, then the system is in k-level high-
criticality mode. For low-criticality mode, we say that
the system is in 0-level high-criticality mode.

Based on Def. 2, the execution semantics of the FMC model
is illustrated in Fig. 1. Initially, the system is in low-
criticality mode (i.e., 0-level high-criticality mode). Then,
the overruns of high-criticality tasks trigger the system to
proceed through the high-criticality modes one by one until
the condition for transitioning back is satisfied. According
to Fig. 1, the execution semantics can be summarized as
follows:

• Low-criticality mode: All tasks in γ start in 0-level
high-criticality mode (i.e., low-criticality mode). As
long as no high-criticality task violates its CLO

i , the
system remains in 0-level high-criticality mode. In
this mode, all tasks are scheduled with CLO

i .
• Transition: When one job of a high-criticality task

that is being executed in low-criticality mode overruns its
CLO

i , this high-criticality task immediately switches
into high-criticality mode. However, the overrun

4

Low Mode

k=0

High Mode

k-level

overrun overrun

Idle Interval

k=k+1K=k+1

transition&update transition&update

return

Figure 1. Execution semantics of the FMC model.

of this task does not trigger other high-criticality
tasks to enter high-criticality mode. All other high-
criticality tasks still remain in the same mode as
before. Correspondingly, the system transitions to a
higher-level high-criticality mode1.

• Updates: At the kth transition point (corresponding
to time instant t̂k in Fig. 1), a new service level zki
is determined and updated to provide degraded ser-
vice for low-criticality tasks τi to balance the resource
demand caused by the overrun of the high-criticality
task. At this time, if any low-criticality jobs have
completed more than zki · c

LO
i time units of execution

(i.e., have used up the updated execution budget
for the current period), those jobs will be suspended
immediately and wait for the budget to be renewed
in the next period. Otherwise, low-criticality jobs can
continue to use the remaining time budget for their
execution.

• Return to low-criticality mode: When the system
detects an idle interval [7], [23], the system will
transition back into low-criticality mode.

3.3 EDF-VD scheduling

EDF-VD [4], [5] is a scheduling algorithm for implementing
classic preemptive EDF scheduling in MC systems. The
main concept of EDF-VD is to artificially reduce the (virtual)
deadlines of high-criticality tasks when the system is in
low-criticality mode. These virtual deadlines can be used
to cause high-criticality tasks to finish earlier to ensure that
the system can reserve a sufficient execution budget for the
high-criticality tasks to meet their actual deadlines after the
system switches into high-criticality mode. In this paper, we
study the schedulability under EDF-VD scheduling for the
proposed FMC model.

4 FMC-EDF-VD SCHEDULING ALGORITHM

In this section, we provide an overview of the proposed
EDF-VD-based scheduling algorithm for our FMC model,
called FMC-EDF-VD. The proposed scheduling algorithm
consists of an off-line step and a run-time step. We imple-
ment the off-line step prior to run time to select a feasible
virtual deadline factor x for tightening the deadlines of
high-criticality tasks. During run time, the service levels
zki for low-criticality tasks are dynamically tuned based on
the overrun of high-criticality tasks. Here, we present the
operation flow of FMC-EDF-VD.

1. Without loss of generality, we assume that the system is in k-level
high-criticality mode.

Off-line step: In accordance with Thm. 1, we first determine

x as
uLO
HI

1−uLO
LO

. Then, to guarantee the schedulability of FMC-

EDF-VD, the determined x value should be validated by
testing condition Eqn. (24) in Thm. 5. Note that if condition
Eqn. (24) is not satisfied, then it is reported that the specified
task set cannot be scheduled using FMC-EDF-VD.
Run-time step: The run-time behavior follows the execution
semantics presented in Section 3.2. In low-criticality mode,
all high-criticality tasks are scheduled with their virtual
deadlines. At each mode-switching point, the following two
procedures are triggered:

• Reset the deadline of overrun high-criticality task
from its virtual deadline to the actual deadline. The
deadline settings of other high-criticality tasks re-
main the same as before.

• Update the service levels for low-criticality tasks in
accordance with Thm. 2.

Note that various run-time tuning strategies can be
specified by the user as long as the condition in Thm. 2
is satisfied. For the purpose of demonstration, a uniform
tuning strategy and a dropping-off strategy are discussed
in this paper. Complete descriptions of these strategies are
provided in Section 6.

Table 1
Example task set

Li Ti CLOi CHIi
τ1, τ2, τ3, τ4 HI 40 3 8

τ5 LO 200 30
τ6 LO 300 75

4.1 Motivational example

In this section, we present a motivation example to show
how the global triggering scheme in FMC-EDF-VD can effi-
ciently support low-criticality task execution. The uniform
tuning strategy (see Thm. 6), in which all low-criticality
tasks share the same service level setting zk during run time
(i.e., ∀τi ∈ γLO, zki = zk), is adopted for this demonstration.

Example 1. For clarity of presentation, we consider a task
set that contains four identical high-criticality tasks and
two low-criticality tasks, as listed in Tab. 1. We specify
uman
LO = 0 for demonstration. From Tab. 1, one can derive
uLO
LO = 2

5 , uLO
HI = 3

10 , and uHI
HI = 4

5 .

According to Thm. 6, we can compute the uniform
service levels zk for all possible mode-switching scenarios.
The results are listed in Tab. 2.

Table 2
Low-criticality service levels

Number of Overrun k 1 2 3 4

Utilization uk
LO

0.3 0.2 0.1 0
Service Level zk 0.75 0.5 0.25 0

Execution Budget of τ5 22.5 15 7.5 0
Execution Budget of τ6 56.25 37.5 18.75 0

As shown in Tab. 2, FMC-EDF-VD can efficiently support
low-criticality task execution by dynamically tuning the
low-criticality execution budget based on overrun demand.
When only one high-criticality task overruns, low-criticality

5

task τ5 and τ6 can use up to 22.5 and 56.25 time units
per period for execution. In this case, low-criticality tasks
can maintain 75% execution. Only when all high-criticality
tasks overrun their CL

i , low-criticality tasks are all dropped.
For comparison, the global triggering strategy used in [7],
[19] are always required to drop all low-criticality tasks
regardless of how many overruns occur during run time
because of the overapproximation of the overrun workload.
From a probabilistic perspective, the likelihood that all high-
criticality tasks will exhibit high-criticality behavior is very
low in practice. Therefore, in a typical case, only a few high-
criticality tasks will overrun theirCL

i during a busy interval.
In most cases, FMC-EDF-VD will only need to schedule
resources for a portion of high-criticality tasks based on their
overrun demands and can maintain the service level for
low-criticality task execution to the greatest possible extent.
In this sense, FMC-EDF-VD can provide better and more
graceful service degradation.

5 SCHEDULABILITY TEST CONDITION

In this section, we present a utilization-based schedulability
test condition for the FMC-EDF-VD scheduling algorithm.
We start by ensuring the schedulability of the system when
it is operating in low-criticality mode (Thm. 1). Then, we
discuss how to derive a sufficient condition to ensure
the schedulability of the algorithm after k mode switches
(Thm. 2). Based on several sophisticated new techniques,
the correctness of this new schedulability test condition can
be proven and the formal proof is provided in Section 5.3.
Finally, we derive the region of x that can guarantee the
feasibility of the proposed scheduling algorithm.

5.1 Low-criticality mode

In low-criticality mode, the system behaviors in FMC are
exactly the same as in EDF-VD [4]. Therefore, we can
use the following theorem presented in [4] to ensure the
schedulability of tasks in low-criticality mode.

Theorem 1. The following condition is sufficient to ensure
that EDF-VD can successfully schedule all tasks in low-
criticality mode:

u
LO
LO +

uLOHI
x

≤ 1 (1)

5.2 High-criticality mode after k mode switches

In this section, we analyze the schedulability of the FMC-
EDF-VD algorithm during the transition phase. With this
analysis, we provide the answer to the question of how
much execution budget can be reserved for low-criticality
tasks while ensuring a schedulable system for mode tran-
sitions. Without loss of generality, we consider a general
transition case in which the system transitions from (k− 1)-
level high-criticality mode to k-level high-criticality mode.
Here, we first introduce the derived schedulability test con-
dition in Thm. 2. Then, the formal proof of the correctness of
this schedulability test condition is provided in Section 5.3.
Recall that ukLO denotes the utilization of low-criticality
tasks for the kth mode-switching point and is defined as
ukLO =

∑
τi∈γLO

zki · uLO
i .

Theorem 2. The system is in (k − 1)-level high-criticality
mode. For the kth mode-switching point t̂k, when high-
criticality task τt̂k overruns, the system is schedulable at
t̂k if the following conditions are satisfied:

ukLO ≤ uk−1
LO

+

uLO

t̂k

uLO
HI

(1− uLO
LO

)− uHI
t̂k

(1− x)
(2)

zki ≤ zk−1
i (∀τi ∈ γLO) (3)

where uLO
t̂k

and uHI
t̂k

denote low and high utilization, re-
spectively, for the high-criticality task τt̂k that undergoes
a mode switch at t̂k.

In Thm. 2, we present a general utilization-based schedu-
lability test condition for the FMC model. Now, let us take a
closer look at the conditions specified in Thm. 2. We observe
the following interesting properties of FMC-EDF-VD:

• In Thm. 2, the desired utilization balance between
low-criticality and high-criticality tasks is achieved.
As constrained by Eqn. (3), the utilization of low-
criticality tasks should be further reduced when a
new overrun occurs. As shown in Eqn. (2), the
utilization reduction ukLO − uk−1

LO is bounded by
uLO

t̂k

uLO
HI

(1−uLO
LO)−uHI

t̂k

(1−x) for utilization balance.
• Another important observation is that the bound

on the utilization reduction is determined only by
the overrun of high-criticality task τt̂k (as shown in
Eqn. (2)). This means that the effects of the overruns
on utilization reduction are independent. Moreover,
the occurrence sequence of high-criticality task over-
runs has no impact on the utilization reduction.

• Thm. 2 also provides us with a generic metric for
managing the resources of low-criticality tasks when
each independent mode switch occurs. In general,
various run-time tuning strategies can be applied
during the transition phase, as long as the conditions
in Thm. 2 are satisfied.

5.3 The proof of correctness

We now prove the correctness of the schedulability test
condition presented in Thm. 2. We start with the proof by
introducing some important concepts. Then, we propose
a key technique to obtain the bound of the cumulative
execution time for low-criticality and high-criticality tasks
(Lem. 1, Lem. 2, and Lem. 3). Based on these derived
bounds, the utilization-based test condition can be derived.

5.3.1 Challenges

Incorporating the FMC model into a utilization-based EDF-
VD scheduling analysis introduces several new challenges.
The independent triggering scheme and the adaptive service
level tuning scheme in the FMC model allow flexible system
behaviors. However, this flexibility also makes the system
behavior more complex and more difficult to analyze. In
particular, it is difficult to effectively determine an upper
bound on the cumulative execution time for low-criticality
tasks. In the FMC model, the service levels for low-criticality
tasks are dynamically tuned at each mode-switching point.
Therefore, the cumulative execution time of low-criticality
tasks strongly depends on when each mode switch occurs.

6

0 t̂k−jak
i t̂k dk

i
tf

ηk
i (ak

i , t̂k)

t

Figure 2. The execution scenario for a k-carry-over job.

However, this information is difficult to explicitly repre-
sent prior to real execution because the independence of
the mode switches in the FMC model results in a large
analysis space. This makes it computationally infeasible to
analyze all possibilities. Moreover, apart from the timing
information of multiple mode switches, the derivation of
the cumulative execution time also depends on the service
tuning decisions made at previous mode switches. Deter-
mining how to extract static information (i.e., utilization) to
formulate a feasible sufficient condition from these variables
is another challenging task.

5.3.2 Concepts and notation

Before diving into the detailed proofs, we introduce some
commonly used concepts and notation that will be used
throughout the proofs. To derive a sufficient test, suppose
that there is a time interval [0, tf] such that the system
undergoes the kth mode switch and the first deadline miss
occurs at tf . Let J be the minimal set of jobs released from
the MC task set γ for which a deadline is missed. This
minimality means that if any job is removed from J , the
remainder of J will be schedulable. Here, we introduce
some notation for later use. t̂k denotes the time instant of
the kth mode switch caused by high-criticality task τt̂k . The
absolute release time and deadline of the job of τt̂k that
overruns at t̂k are denoted by at̂k and dt̂k , respectively.
ηki (t1, t2) denotes the cumulative execution time of task
τi when the system is operating in k-level high-criticality
mode during the interval (t1, t2]. Next, we define a special
type of job for low-criticality tasks, called a carry-over job,
and introduce several important propositions that will be
useful for our later proofs.

Definition 3. A job of low-criticality task τi is called a k-
carry-over job if the kth mode switch occurs in the interval
[aki , d

k
i], where aki and dki are the absolute release time

and deadline of this job, respectively.

Fig. 2 shows how a k-carry-over job is executed during the
interval [aki , d

k
i]. The black box represents the cumulative

execution time ηki (a
k
i , t̂

k) of the k-carry-over job before the
kth mode-switching point t̂k.

Proposition 1. (From [4], [5]) All jobs executed in [t̂k, tf]
have a deadline ≤ tf .

Proposition 2. The kth mode-switching point t̂k satisfies
t̂k ≤ at̂k + x · (tf − at̂k).

Proof. Since a high-criticality job of τt̂k triggers the kth mode
switch at t̂k, its virtual deadline at̂k + x · (dt̂k − at̂k) must
be greater than t̂k. Otherwise, the high-criticality job would
have completed its execution before the time instant of the
switch.

�

Proposition 3. For a k-carry-over job of low-criticality task τi,
if ηki (a

k
i , t̂

k) 6= 0, then the following holds: dki ≤ at̂k +x ·
(tf − at̂k).

Proof. There are two cases to consider: aki ≥ at̂k and aki <
at̂k .

Case 1 (aki ≥ at̂k): In this case, for the k-carry-over job to be
executed after at̂k , the k-carry-over job should have a dead-
line no later than the virtual deadline at̂k+x(dt̂k−at̂k) of the
high-criticality job that triggered the kth mode switch. As a
result, because dt̂k ≤ tf , we have dki ≤ (at̂k +x · (tf − at̂k)).

Case 2 (aki < at̂k): We prove the correctness of this case
by contradiction. Suppose that the k-carry-over job of low-
criticality task τi, with its deadline of dki > (at̂k + x ·
(tf − at̂k)), were to be executed before at̂k . Let t∗ denote
the latest time instant at which this k-carry-over job is ex-
ecuted before at̂k . At time instant t̂k, all previous (k − 1)
mode switches are known to the system2. At t∗, we know
that there should be no pending job with a deadline of
≤ (at̂k + x · (tf − at̂k)). This means that jobs that are
released at or after t∗ will also suffer a deadline miss
at tf , which contradicts the minimality of J . Therefore,
dki ≤ (at̂k + x · (tf − at̂k)).

�

Using the propositions and notation presented above, we
now derive an upper bound on the cumulative execution
time ηki (0, tf) for low-criticality tasks (Lem. 1) and high-
criticality tasks (Lem. 2 and Lem. 3).

5.3.3 Bound for low-criticality tasks

As discussed above, it is difficult to derive an upper bound
on the cumulative execution time of low-criticality tasks
during the interval [0, tf] because of the large analysis space.
In this section, we propose a novel derivation strategy to
resolve this challenge. The overall derivation strategy is
based on the specified derivation protocol (Rule 1-Rule 4)
and mathematical induction. The purpose of the derivation
protocol is to specify unified intermediate upper bounds for
different execution scenarios. The advantage of introducing
these intermediate upper bounds is that we can virtually
hide the influence of the previous k − 1 mode switches.
For instance, in Rule 1 (see Eqn. (4)), the influence of
the previous k − 1 mode switches is hidden in the term
sup{ηki (0, d

l
i)}. In this way, the kth mode switch and the

previous k − 1 mode switches are decorrelated.

Throughout the remainder of this section, we will use
sup {ηki (t1, t2)} to denote the intermediate upper bounds
on ηki (t1, t2) for different execution scenarios, which repre-
sent the upper bounds under specific conditions. Let t̂k−j

(j > 0) denote the last mode-switching point before aki (as

shown in Fig. 2). zk−j
i denotes the updated service level

at t̂k−j . dli denotes the absolute deadline for the last job3

of τi during [0, tf]. Now, we present the rules for deriv-
ing sup{ηki (0, tf)} and sup{ηki (a

k
i , d

k
i)}, as summarized in

Eqn. (4) and Eqn. (5).

2. At t̂k , all previous k − 1 mode switches have already occurred.
3. Here, the last job means the last job with a deadline of ≤ tf .

7

sup{ηki (0, tf)}

=

{

sup{ηki (0, d
l
i)}+ (tf − t̂k) · zki · uLOi dli < t̂k (Rule 1)

sup{ηki (0, d
k
i)}+ (tf − dki) · z

k
i · uLOi Otherwise (Rule 2)

(4)

sup{ηki (a
k
i , d

k
i)}

=

{

(dki − aki) · z
k−j
i · uLOi ηki (a

k
i , t̂

k) 6= 0 (Rule 3)

(dki − aki) · z
k
i · uLOi Otherwise (Rule 4)

(5)

The detailed description and proof are presented in
Appendix A. In Rule 1-Rule 4, one may notice that there
are several different execution scenarios in which only one
mode switch is considered. When n mode switches are
allowed, the combination space for all execution scenarios
will increase exponentially with n. In general, it is very
difficult to derive a bound on the cumulative execution time
for low-criticality tasks because of this large combination
space. To solve this problem, we analyze the difference
between sup{ηki (0, tf)} and sup{ηk−1

i (0, tf)} and find that
this difference can be uniformly bounded by a difference term
ψk
i (see Lem. 1). This finding is formally proven in Lem. 1

through mathematical induction. Before the proof, we first
present a fact that will be useful for later interpretation.

Fact 1. For the kth mode-switching point t̂k, at time instant
t0 such that t0 ≤ t̂k, ηki (0, t0) = ηk−1

i (0, t0).

Proof. The kth mode switch can only begin to affect low-
criticality task execution after the corresponding mode-
switching point t̂k. Before t̂k, the kth mode switch has no
impact. Thus, we have ηki (0, t0) = ηk−1

i (0, t0).

�

Lemma 1. For all k ≥ 1, the cumulative execution time
ηki (0, tf) can be upper bounded by

tf · u
LO
i +

k∑

j=1

ψ
j
i (6)

where the difference term ψj
i is defined as (tf − at̂j)(1 −

x)(zji − zj−1
i)uLO

i .

Proof. Instead of proving the original statement, we will
prove an alternative statement P (k), which is defined as
follows:

The intermediate upper bounds sup{ηki (0, tf)} under dif-
ferent execution scenarios can be uniformly upper bounded by
Eqn. (6).

Since ηki (0, tf) ≤ sup{ηki (0, tf)}, the original statement
will be proven correct if the statement P (k) is proven to
be correct. Now, we will prove that the statement P (k) is
correct for all possible integers k based on mathematical
induction. Recall that dli is the absolute deadline for the last
job of τi during [0, tf].

Step 1 (base case): We will prove that P (1) is correct for
k = 1.

Proof. We consider two cases, one in which a carry-over
job does not exist at the first mode-switching point t̂1 (i.e.,
dli < t̂1) and one in which such a job does exist (i.e., dli ≥ t̂1).

Case 1 (dl

i
< t̂

1): According to Rule 1 and Prop. 2, we
have the following:
sup{η1i (0, tf)}

= sup{η1i (0, d
l
i)}+ (tf − t̂

1) · z1i · u
LO
i

= d
l
i · u

LO
i + (tf − t̂

1) · z1i · u
LO
i

since d
l
i < t̂

1 ≤ at̂1 + x · (tf − at̂1)

< tf · z
1
i · u

LO
i + t̂

1 · uLOi · (1− z
1
i) (replace d

l
i with t̂

1)

≤ tf · u
LO
i + (tf − at̂1)(1− x)(z1i − 1)uLOi

︸ ︷︷ ︸

difference term ψ1
i

(replace t̂
1)

Case 2 (dl

i
≥ t̂

1): In this case, we consider the two
following execution scenarios.
S1 (η1

i
(a1

i
, t̂1) 6= 0): According to Rule 2, Rule 3, and

Prop. 3, we have the following:
sup{η1i (0, tf)}

=sup{η1i (0, a
1
i)}+ sup{η1i (a

1
i , d

1
i)}+ (tf − d

1
i)z

1
i u

LO
i

=a1iu
LO
i + (d1i − a

1
i)u

LO
i + (tf − d

1
i)z

1
i u
LO
i

=tf · uLOi + (tf − d
1
i)(z

1
i − 1)uLOi

since d
1
i ≤ at̂1 + x · (tf − at̂1)

≤ tf · uLOi + (tf − at̂1)(1− x)(z1i − 1)uLOi
︸ ︷︷ ︸

difference term ψ1
i

(replace d
1
i)

S2 (η1
i
(a1

i
, t̂1) = 0): According to Rule 2, Rule 4, and Prop. 2,

we have the following:
sup{η1i (0, tf)}

=sup{η1i (0, a
1
i)}+ sup{η1i (a

1
i , d

1
i)}+ (tf − d

1
i)z

1
i u
LO
i

=a1iu
LO
i + (d1i − a

1
i)z

1
i u
LO
i + (tf − d

1
i)z

1
i u

LO
i

=tf · uLOi + (tf − a
1
i)(z

1
i − 1)uLOi

since a
1
i < t̂

1 ≤ at̂1 + x · (tf − at̂1)

≤ tf · uLOi + (tf − at̂1)(1− x)(z1i − 1)uLOi
︸ ︷︷ ︸

difference term ψ1
i

(replace a
1
i)

Therefore, P (1) is correct for k = 1.

�

Step 2 (induction hypothesis): Assume that P (k0 − 1) is
correct for some possible integers k0 − 1.
Step 3 (induction): We now prove that P (k0) is correct by
the induction hypothesis.
Proof. Since t̂k0−1 ≤ t̂k0 , we need to consider the following
three cases.

Case 1 (dl

i
< t̂

k0−1 ≤ t̂
k0): In this case, neither a (k0 −

1)-carry-over job nor a k0-carry-over job exists. According to
Rule 1 and Fact 1, we have the following:

sup{ηk0−1
i (0, tf)} = sup{ηk0−1

i (0, dli)}+ (tf − t̂
k0−1)zk0−1

i u
LO
i

sup{ηk0i (0, tf)} = sup{ηk0i (0, dli)}+ (tf − t̂
k0)zk0i u

LO
i

sup{ηk0−1
i (0, dli)} = sup{ηk0i (0, dli)}

Since t̂k0 ≥ t̂k0−1 and zk0
i ≤ zk0−1

i , we have

sup{ηk0i (0, tf)} ≤ sup{ηk0−1
i (0, tf)}+ (tf − t̂

k0)(zk0i − z
k0−1
i)uLOi

(7)

According to Prop. 2, we can replace t̂k0 with at̂k0 +
x(tf − at̂k0) in Eqn. (7). Then, sup{ηk0

i (0, tf)} can be
bounded by

sup{ηk0−1
i (0, tf)}+ (tf − at̂k0) · (1− x) · (zk0i − z

k0−1
i) · uLOi

︸ ︷︷ ︸

difference term ψ
k0
i

Case 2 (̂tk0−1 ≤ t̂
k0 ≤ d

l

i
): In this case, both a (k0 − 1)-

carry-over job and a k0-carry-over job exist. Recall that dk0−1
i

is the absolute deadline for the (k0 − 1)-carry-over job. Two
sub-cases, one with t̂k0 ≤ dk0−1

i and one with t̂k0 > dk0−1
i ,

as shown in Fig. 3(a) and Fig. 3(b), need to be considered.

8

0 a
k0−1

it̂k0−j t̂k0−1

z
k0
i

t̂k0 d
k0−1

i
tf

t

(a) kth
0 mode switch with t̂k0 ≤ d

k0−1
i

0 a
k0−1

it̂k0−j t̂k0−1

z
k0
i

d
k0−1

i a
k0
i t̂k0 d

k0
i

tf

t

(b) kth
0 mode switch with t̂k0 > d

k0−1
i

Figure 3. Mode switch from t̂k0−1 to t̂k0 .

According to Fact 1, we have the following:

η
k0
i (0, ak0i) = η

k0−1
i (0, ak0i) (8)

•Case 2-A (t̂k0 ≤ dk0−1
i): This execution scenario is illus-

trated in Fig. 3(a). In this case, the (k0− 1)-carry-over job and
the k0-carry-over job are the same job. Therefore, we have
ak0
i = ak0−1

i and dk0
i = dk0−1

i . In the following, we use
ak0−1
i and dk0−1

i in place of ak0

i and dk0

i , respectively. In
Case 2-A, the following two scenarios are considered:

S1 (ηk0

i
(ak0−1

i
, t̂k0) 6= 0): According to Rule 3 and Rule 4,

we have the following4:

sup{ηk0i (ak0−1
i , d

k0−1
i)} = sup{ηk0−1

i (ak0−1
i , d

k0−1
i)}

=

{

(dk0−1
i − a

k0−1
i) · zk0−ji · uLOi ηki (a

k0−1
i , t̂k0−1) 6= 0

(dk0−1
i − a

k0−1
i) · zk0−1

i · uLOi otherwise
(9)

According to Rule 2, Eqn. (8) and Eqn. (9), we have the
following:

sup{ηk0i (0, tf)}

=sup{ηk0i (0, ak0−1
i)}+ sup{ηk0i (ak0−1

i , d
k0−1
i)}

+ (tf − d
k0−1
i)zk0i u

LO
i

=sup{ηk0−1
i (0, ak0−1

i)}+ sup{ηk0−1
i (ak0−1

i , d
k0−1
i)}

+(tf − d
k0−1
i)zk0−1

i u
LO
i + (tf − d

k0−1
i)(zk0i − z

k0−1
i)uLOi

=sup{ηk0−1
i (0, tf)}+ (tf − d

k0−1
i)(zk0i − z

k0−1
i)uLOi

According to Prop. 3, by replacing dk0−1
i with at̂k0 + x ·

(tf − at̂k0), sup{η
k0
i (0, tf)} can be bounded by

sup{ηk0−1
i (0, tf)}+ (tf − at̂k0) · (1− x) · (zk0i − z

k0−1
i) · uLOi

︸ ︷︷ ︸

difference term ψ
k0
i

(10)

S2 (ηk0

i
(ak0−1

i
, t̂k0) = 0): According to Rule 2, Rule 4, and

Eqn. (8), we have the following:

sup{ηk0i (0, tf)}

=sup{ηk0i (0, ak0−1
i)}+ sup{ηk0i (ak0−1

i , d
k0−1
i)}

+ (tf − d
k0−1
i)zk0i u

LO
i

=sup{ηk0−1
i (0, ak0−1

i)}+ sup{ηk0−1
i (ak0−1

i , d
k0−1
i)}

+(tf − d
k0−1
i)zk0−1

i u
LO
i + (tf − a

k0−1
i)(zk0i − z

k0−1
i)uLOi

=sup{ηk0−1
i (0, tf)}+ (tf − a

k0−1
i)(zk0i − z

k0−1
i)uLOi

According to Prop. 2 and ak0−1
i < t̂k0 , sup{ηk0

i (0, tf)}
can be bounded by

sup{ηk0−1
i (0, tf)}+ (tf − at̂k0)(1− x)(zk0i − z

k0−1
i)uLOi

︸ ︷︷ ︸

difference term ψ
k0
i

(11)

4. According to the proof of Rule 3 (see Appendix A), we have a

similar result: sup{ηk0i (ak0−1
i , d

k0−1
i)} = (dk0−1

i −a
k0−1
i)·zk0−1

i ·uLOi
because ηki (a

k0−1
i

, t̂k0−1) = 0.

•Case 2-B: (dk0−1
i < t̂k0): This execution scenario is illus-

trated in Fig. 3(b). In this case, the (k0−1)-carry-over job and
the k0-carry-over job are different jobs. For this case, we will
consider the following two scenarios:

S1 (ηk0

i
(ak0

i
, t̂k0) 6= 0): According to Rule 2, Rule 3, and

Eqn. (8), we have the following:
sup{ηk0i (0, tf)}

=sup{ηk0i (0, ak0i)}+ sup{ηk0i (ak0i , d
k0
i)} + (tf − d

k0
i)zk0i uLOi

=sup{ηk0−1
i

(0, ak0
i

)} + (tf − a
k0
i

)zk0−1
i

uLOi

+ (tf − d
k0
i)(zk0i − z

k0−1
i)uLOi

=sup{ηk0−1
i (0, tf)}+ (tf − d

k0
i)(zk0i − z

k0−1
i)uLOi

Again, by replacing dk0
i in accordance with Prop. 3, we

obtain the following bound:

sup{ηk0−1
i (0, tf)}+ (tf − at̂k0)(1− x)(zk0i − z

k0−1
i)uLOi

︸ ︷︷ ︸

difference term ψ
k0
i

(12)

S2 (ηk0

i
(ak0

i
, t̂k0) = 0): According to Rule 2, Rule 4, and

Eqn. (8), we have the following:
sup{ηk0i (0, tf)}

=sup{ηk0i (0, ak0i)}+ sup{ηk0i (ak0i , d
k0
i)} + (tf − d

k0
i)zk0i uLOi

=sup{ηk0−1
i (0, ak0i)} + (tf − a

k0
i)zk0−1

i uLOi

+ (tf − a
k0
i)(zk0i − z

k0−1
i)uLOi

=sup{ηk0−1
i (0, tf)}+ (tf − a

k0
i)(zk0i − z

k0−1
i)uLOi

Again, according to Propo. 2 and ak0

i < t̂k0 ,
sup{ηki (0, tf)} can be upper bounded by

sup{ηk0−1
i (0, tf)}+ (tf − at̂k0)(1− x)(zk0i − z

k0−1
i)uLOi

︸ ︷︷ ︸

difference term ψ
k0
i

(13)

For case 2, we can conclude that sup{ηki (0, tf)} can be

upper bounded by sup{ηk0−1
i (0, tf)} + ψk0

i according to
Eqns. (10)-(13).

Case 3 (t̂k0−1 ≤ dli < t̂k0): In this case, a (k0 − 1)-carry-
over job exists but a k0-carry-over job does not. According to
Rule 1, we have the following:

sup{ηk0i (0, tf)} = sup{ηk0i (0, dli)}+ (tf − t̂
k0) · zk0i · uLOi

Since dli < t̂k0 < tf , we can derive

sup{ηk0−1
i (0, tf)} = sup{ηk0−1

i (0, dli)}+ (tf − d
l
i) · z

k0−1
i · uLOi

According to Fact 1 and dli < t̂k0 , we have

sup{ηk0i (0, tf)} ≤ sup{ηk0−1
i (0, tf)}+ (tf − t̂

k0)(zk0i − z
k0−1
i)uLOi

Again, according to Propo. 2, sup{ηki (0, tf)} can be
upper bounded by

sup{ηk0−1
i (0, tf)}+ (tf − at̂k0)(1− x)(zk0i − z

k0−1
i)uLOi

︸ ︷︷ ︸

difference term ψ
k0
i

For the three cases above, we can conclude
that sup{ηki (0, tf)} can be upper bounded by

sup{ηk0−1
i (0, tf)} + ψk0

i . Thus, P (k0) is correct by the
induction hypothesis.

�

Hence, through mathematical induction, P (k) is proven cor-
rect for all possible k. Under different execution scenarios,
the cumulative execution time ηki (0, tf) can be bounded by
the intermediate upper bound sup{ηki (0, tf)}. Since P (k) is
correct, the original statement is correct.

�

9

5.3.4 Bound for high-criticality tasks

Recall that τt̂k is the high-criticality task that suffers an
overrun at t̂k. Since the mode switches are independent, the
high-criticality tasks can be divided into two sets, namely,
the sets of tasks that have and have not already entered
high-criticality mode at mode-switching point t̂k, which can
be denoted by γHI

HI (t̂
k) and γLO

HI (t̂
k), respectively. Now, we

derive the upper bounds on the cumulative execution time
for both types of high-criticality tasks.

Lemma 2. For high-criticality task τt̂j in task set γHI
HI (t̂

k)
(j ≤ k), the cumulative execution time ηkτ

t̂j
(0, tf) can be

bounded as follows:
sup{ηkτ

t̂j
(0, tf)} = at̂j · uLOt̂j + (tf − at̂j) · u

HI
t̂j (14)

Proof. For the proof, refer to case 2 of fact 3 in [4].

�

Lemma 3. For high-criticality task τi in task set γLO
HI (t̂

k), the
cumulative execution time ηki (0, tf) can be bounded as
follows:

sup{ηki (0, tf)} = (
at̂k

x
+ (tf − at̂k))u

LO
i (15)

Proof. For the proof, refer to the fact 3 in [4].

�

5.3.5 Putting it all together

Now, we are ready to establish the schedulability test con-
dition. To prove Thm. 2, we first introduce two auxiliary
theorems, Thm. 3 and Thm. 4. In Thm. 3, the schedulability
test condition is derived based on Lem. 1, Lem. 2, and
Lem. 3. This test condition should rely on the previous mode
switches. Thm. 4 demonstrates the consistency of the test
condition, by which the dependences among mode switches
can be removed.

Theorem 3. At the k-th mode-switching point t̂k, k (k ≥ 1)
high-criticality tasks τt̂1 , τt̂2 , · · · , τt̂k have switched into
high-criticality mode. The system is schedulable if the

service level zji at t̂j satisfies the following conditions
for all j such that 1 ≤ j ≤ k.

z
j
i ≤ z

j−1
i (16)

uHI
t̂j

+ (1 − x)(uj
LO

− u
j−1
LO

) +
uLO
t̂j

uLO
HI

(uLOLO − 1) ≤ 0 (17)

Proof. The condition zji ≤ zj−1
i is a basic assumption of our

model, which guarantees the satisfaction of Lem. 1, Rule 3,

and Rule 4. Therefore, zji ≤ zj−1
i needs to be satisfied.

Let Nk
γ denote the cumulative execution time of task

set γ during the interval [0, tf] when the kth mode switch
occurs. To calculate Nk

γ , let us sum the the cumulative
execution time of all tasks over [0, tf].

For the low-criticality task set γLO, we can bound Nk
γLO

according to Lem. 1.

N
k
γLO

≤
∑

τi∈γLO

(tfu
LO
i +

k∑

j=1

ψ
j
i) (18)

For the high-criticality task set γHI
HI (t̂

k), which contains
k high-criticality tasks (i.e., ‖γHI

HI (t̂
k)‖ = k), we can derive

the cumulative execution time according to Lem. 2.

N
k

γHI
HI

(t̂k) ≤
k∑

j=1

(at̂j · uLOt̂j + (tf − at̂j) · u
HI
t̂j) (19)

For the high-criticality tasks in γLO
HI (t̂

k), which have
not entered high-criticality mode at t̂k, we can derive the
cumulative execution time according to Lem. 3.

N
k

γLO
HI

(t̂k) ≤
∑

τi∈γ
LO
HI

(t̂k)

(
at̂k

x
+ (tf − at̂k))u

LO
i

(since x < 1 and at̂k ≤ tf)

≤
∑

τi∈γ
LO
HI

(t̂k)

tf

x
u
LO
i (20)

Based on Eqn. (18), Eqn. (19) and Eqn. (20), Nk
γ can be

bounded as shown in Eqn. (21). The complete derivation is
given in Appendix B because of space limitations.

N
k
γ = N

k
γLO

+ N
k

γHI
HI

(t̂k)
+ N

k

γLO
HI

(t̂k)

≤tf +

k∑

j=1

(tf − a
t̂j
)

(

u
HI

t̂j
+ (1 − x)(uj

LO − u
j−1
LO) +

uLO

t̂j

uLO
HI

(uLO
LO − 1)

)

(21)

Since the first deadline miss occurs at time instant tf , the
following holds5:

N
k
γ > tf

Therefore,
k

∑

j=1

(tf − at̂j)

(

uHI
t̂j

+ (1 − x)(uj
LO

− u
j−1
LO

) +
uLO
t̂j

uLO
HI

(uLOLO − 1)

)

> 0

Taking the contrapositive, we obtain
k

∑

j=1

(tf − at̂j)

(

uHI
t̂j

+ (1 − x)(uj
LO

− u
j−1
LO

) +
uLO
t̂j

uLO
HI

(uLOLO − 1)

)

≤ 0

(22)

Since tf−at̂j > 0, to guarantee the system schedulability
of task set γ at the kth mode switch, it is sufficient to ensure
that the term indicated in Eqn. (22) is less than 0 for all j
such that 1 ≤ j ≤ k.

∀j such that 1 ≤ j ≤ k :

uHI
t̂j

+ (1 − x)(uj
LO

− u
j−1
LO

) +
uLO
t̂j

uLO
HI

(uLOLO − 1) ≤ 0 (23)

�

In Thm. 3, at the kth mode-switching point, additional
conditions are imposed on the previous k−1 mode switches.
Therefore, to remove this dependence, we require that these
imposed conditions should be consistent with the decision-
making at the previous mode-switching points t̂j (j < k).
We demonstrate this consistency in Thm. 4.

Theorem 4. The new conditions imposed on
u1LO, u

2
LO, · · · , u

k−1
LO by the kth mode switch are

consistent with the decisions that have been made at the
previous mode-switching points.

Proof. The conditions given in Thm. 3 for decisions that
have been made at the previous k − 1 mode-switching
points t̂j (1 ≤ j ≤ k − 1) are exactly the same as the
new conditions imposed on u1LO, u

2
LO, · · · , u

k−1
LO with the

kth mode switch. Therefore, their consistency is guaranteed.

�

FMC schedulability: Now, we are ready to prove Thm. 2
using Thm. 3 and Thm. 4.

5. Note that there is no idle instant within the interval [0, tf]. Other-
wise, jobs from set J with release times at or after the latest idle instant
could form a smaller job set causing a deadline miss at tf , which would
contradict the minimality of J .

10

Proof. According to Thm. 4, the constraints in Thm. 3
that are imposed on u1LO, u

2
LO, · · · , u

k−1
LO with the kth mode

switch have already been covered by the previous k − 1
mode switches. Therefore, we need to check only two con-
ditions: Eqn. (16) and Eqn. (17) with j = k.

�

5.4 Feasibility of Algorithm

In this section, we investigate the region of x values that
can guarantee the feasibility of the run-time algorithm. The
selection of any x from this region during the off-line phase
can guarantee that a feasible solution as determined by
Thm. 2 can always be found during run time. To derive this
region, we first introduce several definitions and properties
that will be useful for the later proof of feasibility.

According to Eqn. (2) in Thm. 2, when
uLO

t̂k

uLO
HI

(1 − uLO
LO) −

uHI
t̂k

> 0, we do not need to reduce the utilization of low-
criticality tasks. The overrun of the high-criticality task at
this mode-switching point is covered by the system resource

margin. Only when
uLO

t̂k

uLO
HI

(1 − uLO
LO) − uHI

t̂k
≤ 0, ukLO should

be decreased to compensate for the overrun of the high-
criticality task. For simplicity, we define a discriminant
function φ(τi) for each high-criticality task τi to indicate
whether the overrun of τi can be covered by the system
resource margin.

Definition 4. φ(τi) =
uLO
i

uLO
HI

(1− uLO
LO)− uHI

i (τi ∈ γHI)

Definition 5. A high-criticality task τi is called margin high-
criticality task if φ(τi) > 0. Otherwise, τi is called
compensation high-criticality task.

Definition 6. The margin high-criticality task set and the
compensation high-criticality task set are defined as
γ◦HI = {τi ∈ γHI |φ(τi) > 0} and γ∗HI = {τi ∈
γHI |φ(τi) ≤ 0}, respectively. γHI = γ◦HI ∪ γ

∗
HI .

With the definitions given above, we can now perform
the feasibility analysis for x.
Theorem 5. Given the mandatory utilization uman

LO , any x
that satisfies the following condition can guarantee that
a feasible solution as determined by Thm. 2 can always
be found during run time.

(1 − x)(uLOLO − umanLO) +
∑

τi∈γ
∗

HI

φ(τi) ≥ 0 (24)

Proof. Recall that γHI
HI (t̂

k) is the set of high-criticality tasks
that have entered high-criticality mode at t̂k. By iterating
the conditions in Thm. 2, a direct solution for ukLO can be
obtained as follows:

ukLO ≤ uLOLO +

∑

τi∈γ
∗

HI
∩γHI

HI
(t̂k)

φ(τi)

(1 − x)
(25)

To guarantee the execution of the mandatory portions
of low-criticality tasks, the following condition should be
satisfied for all k:

umanLO ≤ ukLO ≤ uLOLO +

∑

τi∈γ
∗

HI
∩γHI

HI
(t̂k)

φ(τi)

(1 − x)
(26)

Since the right-hand side of Eqn. (26) is non-increasing with
respect to the number of overrun high-criticality tasks (i.e.,
k), the worst-case scenario is that all high-criticality tasks in
γHI enter high-criticality mode. If mandatory service can be
guaranteed in this worst-case scenario, then the feasibility

of the proposed algorithm is ensured. Therefore, condition
Eqn. (26) can be rewritten as Eqn. (27).

uLOLO +

∑

τi∈γ
∗

HI

φ(τi)

(1− x)
≥ umanLO

⇒ (1 − x)(uLOLO − umanLO) +
∑

τi∈γ
∗

HI

φ(τi) ≥ 0 (27)

Note that uman
LO is the mandatory utilization defined as

uman
LO =

∑
τi∈γLO

zman
i ·uLO

i , where the item zman
i ·uLO

i can
be considered as a mandatory part which affects the correct-
ness of the result in imprecise computation model [18].

�

Now, we use the following example to illustrate how to test
the feasibility of FMC-EDF-VD.

Example 2. Considering the task system in Example 1,

we can derive x =
uLO
HI

1−uLO
LO

= 1
2 according to Thm. 1.

For high-criticality tasks, one can compute discriminant
functions φ(τ1) = φ(τ2) = φ(τ3) = φ(τ4) = − 1

20 in
accordance with Def. 4. The feasibility of x is validated
by checking condition Eqn. (24) in Thm. 5.

(1− x)(uLOLO − u
man
LO) +

∑

τi∈γ
∗

HI

φ(τi)

=(1−
1

2
)×

2

5
− 4×

1

20
= 0

Thus, we know x = 1
2 that is feasible for scheduling

using FMC-EDF-VD.

6 SERVICE LEVEL TUNING STRATEGY

Thm. 2 provides an important criterion for run-time service
level tuning. By checking the conditions in Thm. 2, one can
determine how much utilization can be reserved for low-
criticality task execution to compensate for the overruns. In
general, various tuning strategies can be specified by the
user as long as the condition in Thm. 2 is satisfied during
run time. In this paper, we present a uniform tuning strategy
and a dropping-off strategy to demonstrate the performance
of FMC.

6.1 Dropping-off strategy

To compensate for overruns, the dropping-off strategy par-
tially drops low-criticality tasks by assigning zki = 0 for
dropped tasks. To maximize the utilization of low-criticality
tasks, the tasks to be dropped can be selected according
to their utilization. At each mode-switching point t̂k, tasks
with less utilization are given higher priority for dropping.
To implement this selection strategy, we can create a task
table TALO during the off-line phase by sorting the low-
criticality tasks in ascending order of their utilization. Dur-
ing run time, the utilization reduction Uk

R that is required to
compensate for the kth mode switch is determined according
to Thm. 2. Based on TALO, the set γkLO of tasks that are
dropped at the kth mode-switching point is determined via
binary search. Note that other selection criteria, such as job
completion percentage, can also be applied to select the low-
criticality tasks to be dropped.

11

6.2 Uniform tuning strategy

In this section, we present a uniform tuning strategy in
which zki = zk holds for all low-criticality tasks. The service
levels zki of all low-criticality tasks τi are uniformly set to zk

at the kth mode-switching point. By applying zki = zk in the
conditions given in Thm. 2, the uniform service level zk can
be directly computed using Eqn. (28) in Thm. 6.

Theorem 6. The system is schedulable at the k − 1th mode-
switching point with a uniform zk−1. At the kth mode-
switching point t̂k, the system is still schedulable if zk is
determined as follows:

0 ≤ zk ≤ zk−1 +min
(

0,

uLO

t̂k

uLO
HI

(1− uLOLO)− uHI
t̂k

(1 − x)uLO
LO

)

(28)

where uLO
t̂k

and uHI
t̂k

denote low and high utilization,
respectively, of the high-criticality task τt̂k that suffers
an overrun at t̂k.

Proof. In the uniform tuning strategy, zki = zk holds for
any low-criticality task τi. Recall that ukLO =

∑
τi∈γLO

zki ·

uLO
i . Thus, we can obtain Eqn. (28) by combining the two

conditions expressed in Eqn. (2) and Eqn. (3) in Thm. 2.

�

6.3 Case study

In this case study, we firstly use the task system in Example
1 to illustrate how uniform tuning strategy and dropping-
off strategy work in FMC. Then, we implement the uniform
tuning strategy in our simulation framework (presented
in Appendix C) to demonstrate the graceful low-criticality
service degradation of FMC.

First of all, we consider the generalized conditions pre-
sented in Thm. 2, which determine how much utilization
can be reserved for low-criticality task execution to compen-
sate for the overruns. By applying the task system presented
in Example 1 to Thm. 2, we can the following utilization
conditions

ukLO − uk−1
LO ≤

uLO

t̂k

uLO
HI

(1− uLO
LO)− uHI

t̂k

(1− x)
= −

1

10
(29)

zki ≤ zk−1
i (∀τi ∈ γLO) (30)

Since the high-criticality tasks are identical, each overrun
will result in identical utilization reduction of 1

10 , as shown
in Eqn. (29). Now, we illustrate how uniform tuning strategy
and dropping-off strategy work based on these generalized
conditions Eqn. (29) and Eqn. (30).

• For dropping-off strategy by assigning zki = 0 for
dropped tasks, the system is required to drop off a
portion of low-criticality tasks to compensate for the
overruns of one high-criticality task. For example,
when one high-criticality task overruns its CL

i , low-
criticality task τ5 may decrease its execution budget
from 30 to 10, while low-criticality task τ6 is exe-
cuted without degradation. By this way, the service
degradation of τ5 results in utilization reduction of
1
10 to accommodate one high-criticality overrun. The
dropping-off process is summarized in Tab. 3.

• For uniform tuning strategy by restricting zki = zk

for all low-criticality tasks, each overrun will result
in an identical reduction of 0.25 in zk, such that the

0

0.2

0.4

0.6

0.8

1

Se
rv

ic
e

le
ve

l

The number of mode switches
0 1 2 3 4

FMC-LB
FMC-UP
IMC

Figure 4. Service level of low-criticality tasks under the different number
of mode switches.

condition Eqn. (29) is satisfied. Therefore, the service
level zk for operation in k-level high-criticality mode
can be expressed as zk = 1− 0.25 · k.

• By contrast, if one were to apply IMC [19] to this
task set, the guaranteed service level would be 0. This
means that any overrun would result in the dropping
off of all low-criticality tasks.

Table 3
Low-criticality service levels

Number of Overrun k 1 2 3 4

Utilization uk
LO

0.3 0.2 0.1 0
Execution Budget of τ5 10 0 0 0
Execution Budget of τ6 75 60 30 0

Next, we evaluate the implementation of the FMC-
EDF-VD run-time system in our simulation framework to
demonstrate the graceful low-criticality service degradation
of FMC. In this case study, the uniform tuning strategy is
applied for demonstration. We ran the simulation for 2×106

time units, which contains 5 × 104 high-criticality jobs. We
set the high-criticality job behavior probability to 0.1. The
simulation process is detailed in Appendix C.

Fig. 4 shows the run-time service levels for both FMC
and IMC [19]. The lower bounds on the service levels with
different numbers of mode switches, as discussed above, for
FMC and IMC are represented by red and black lines, re-
spectively, in Fig. 4. The dashed green line represents service
level zk−1 for operation in (k−1)-level high-criticality mode
for FMC. The collected run-time service levels as scheduled
by FMC are represented in the form of box-whisker plots
with blue dots.

As shown in Fig. 4, FMC can gracefully degrade the
low-criticality service level as the number of mode switches
increases. By contrast, IMC fails to respond to the variability
in the workload. As long as not all high-criticality tasks
overrun during run time, the execution budget determined
by FMC always outperforms that of IMC.

Another interesting observation is that the collected run-
time service levels are bounded by the red and green lines.
This observation matches the FMC execution semantics
presented in Section 3.2. In the kth transition phase, the
execution budget for low-criticality jobs will be reduced
from zk−1 ·CLO

i to zk ·CLO
i . According to the FMC execution

semantics, two cases can be considered:

• Case 1: Low-criticality jobs that have already ex-
hausted their execution budget of zk · CLO

i at the

12

transition point. Such jobs will be suspended im-
mediately. In addition, these suspended jobs should
have an execution time of less than zk−1 · CLO

i by
the k-th transition point. Otherwise, these jobs would
have already been suspended when the system en-
tered (k− 1)− level high-criticality mode. Therefore,
the execution time of these jobs will be bounded in
[zk · CLO

i , zk−1 · CLO
i).

• Case 2: Low-criticality jobs that have not yet ex-
hausted their execution budget zk · CLO

i . Such jobs
will continue to run until their remaining time bud-
get is used up. Therefore, these jobs will execute up
to zk · CLO

i .

From the above two cases, we can conclude that the exe-
cution time of these jobs in k-level high-criticality mode is
bounded in [zkCLO

i , zk−1CLO
i), as clearly shown in Fig. 4.

6.4 Run-time complexity

According to [4], for a task set containing n tasks, the classic
EDF-VD algorithm has a run-time complexity of O(log n)
per event for job arrival, job completion, and mode switch-
ing. Compared with EDF-VD [4], FMC-EDF-VD needs to
implement only one additional operation during mode
switching, that is, tuning the service levels for low-criticality
tasks according to the specified strategy. For the uniform
tuning strategy, the uniform service level zk can be directly
computed with a complexity of O(1) according to Thm. 6.
For the dropping-off strategy, the dropping-off task can be
determined via binary search with a complexity of O(log n).
Therefore, FMC-EDF-VD still has a run-time complexity of
O(log n) per event.

7 EVALUATION

In this section, simulation experiments are presented to eval-
uate the performance of FMC. Our experiments are based on
randomly generated MC tasks. We randomly generate task
sets using the same approach as in [4], [12]. The various
parameters are set as follows:

• The period Ti of each task is an integer drawn
uniformly at random from [20, 150].

• For each task τi, low-criticality utilization uLO
i is a

real number drawn at random from [0.05, 0.15].
• Ri denotes the ratio of uHI

i /uLO
i , which is a real

number drawn uniformly at random from [2, 3].
• pCri denotes the probability that a task τi is a high-

criticality task, and we set this probability to 0.5.
If τi is a low-criticality task, then we set CLO

i =
⌊uLO

i · Ti⌋. Otherwise, we set CLO
i = ⌊uLO

i · Ti⌋ and
CHI

i = ⌊uLO
i ·Ri · Ti⌋.

Given the utilization bound uB , we generate one task at
a time until the following conditions are both satisfied: (1)
uB − 0.05 ≤ max{uLO

LO + uLO
HI , u

HI
HI} ≤ uB. (2) At least 3

high-criticality tasks have been generated.
The generated task set is evaluated for both off-line

schedulability and on-line performance in terms of sup-
port for low-criticality task execution under six differ-
ent schemes. These schemes include FMC with dropping
off strategy proposed in this paper(’FMC’), Pfair-based

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 R

at
io

0.75 0.8 0.85 0.90
Utilization bound u

B

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

PF
J

FMC IMC SA EDF-VD FMC IMC,SA,EDF-VD

Figure 5. Comparison between FMC and schemes based on the global
triggering.

scheme with using task grouping [22](’PF’), component-
based scheme [12](’COM’), advanced EDF-VD scheduling
of IMC systems [19](’IMC’), service adaption strategy that
decreases the dispatch frequency of low-criticality tasks
based on EDF-VD scheduling [16](’SA’), classic EDF-VD
scheduling [4](’EDF-VD’).

The on-line low-criticality performance is measured as
the percentage of finished LC jobs (denoted by PFJ), which is
the same quantitative parameter used in [12]. PFJ is defined
as the percentage of low-criticality jobs that are successfully
finished by their deadlines. Each simulation is run for 106

time units. The execution distribution presented in [23] is
used to compute the probability that a high-criticality task
τi will be executed beyond its low-criticality WCET. Due
to schedulability performance differences among the com-
pared schemes, the PFJ is obtained only when the taskset
is schedulable for all compared schemes. The simulation
process is detailed in Appendix C.

7.1 Comparison with schemes based on the global trig-

gering strategy

First, we demonstrate the effectiveness of FMC compared
with the IMC, SA, and classic EDF-VD schemes, which
use the global triggering strategy. In these three schemes,
any overrun will trigger low-criticality tasks to statically
reserve a constant degraded service level. For IMC and
FMC, we consider the mandatory utilization Uman

LO = 0 for
the schedulability test. The schedulability test for the SA
scheme [16] is a utilization-based test. Therefore, the IMC,
SA, and classic EDF-VD schemes have the same schedu-
lability. However, for some schedulable task sets, the SA
scheme [16] cannot derive a suitable factor y to increase the
period of low-criticality tasks. For this case, we consider y
to be infinity, which means that all low-criticality jobs will
be dropped when an overrun occurs.

For various utilization bounds uB ∈
{0.75, 0.8, 0.85, 0.9}, the average PFJ and system
schedulability are compared. The results are shown in
Fig. 5. The left axis shows the PFJ values achieved for low-
criticality tasks, represented by the bar graphs, and the right
axis shows the acceptance ratios, represented by the line
graphs. From Fig. 5, we can observe the following trends:
(1) FMC consistently outperforms the three other schemes
in terms of support for low-criticality task execution. This
is expected because schemes that use the global triggering
strategy always consider the worst-case overrun workload,
resulting in waste of unnecessary resources. By contrast,
FMC can allocate resources based on the true overrun

13

0 0.2 0.4 0.6 0.8 1
TL

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

PF
J

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 R

at
io

PFJ-COM PFJ-FMC AR-COM AR-FMC

(a) uB = 0.75

0 0.2 0.4 0.6 0.8 1
TL

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

PF
J

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 R

at
io

PFJ-COM PFJ-FMC AR-COM AR-FMC

(b) uB = 0.85

Figure 6. Comparison between component-based scheme and FMC.

demands. (2) Compared with these three schemes based
on the global triggering strategy, FMC achieves almost the
same acceptance ratio. This means that FMC can achieve
higher on-line low-criticality performance with negligibly
reduced schedulability performance.

7.2 Comparison with the Pfair- and component-based

schemes

Next, we will experimentally compare our approach
to Pfair- and component-based schemes: PF [22] and
COM [12]. For the component-based scheme COM [12],
we use the same experiment setting as [12] and consider
a two-component system with a high-criticality compo-
nent CH and a low-criticality component CL. All the high-
criticality tasks are allocated to CH. Each low-criticality
task can be allocated to either CH or CL

6. Since the per-
formance of the scheme presented in [12] depends on a
tolerance limit TL, we generate the result of component-
based scheme [12] for various values of the tolerance limit
TL = {0, ⌊0.25|H |⌋, ⌊0.5|H |⌋, ⌊0.75|H |⌋, |H |}, where |H |
denotes the number of high-criticality tasks. For the Pfair-
based scheme [22], a two-phased scheduling strategy7 is
implemented for comparison.
Comparison with component-based scheme COM [12]:
The performance results of COM and FMC are presented in
Fig. 6(a) and Fig. 6(b) with different settings on uB . In these
figures, x-axis denotes the varying value of TL, whereas the
left and right y-axis present the average PFJ and acceptance
ratio, respectively. As shown in Fig. 6, FMC consistently
outperforms COM in terms of support for low-criticality
execution. This performance gain is achieved by the fact that
COM adopts pessimistic dropping-off strategies in internal

6. Since the work presented in [12] does not specify the settings for
low-criticality tasks, we specify one probability to determine if a low-
criticality task is allocated to CH. Here, we chosen a relatively low value
for probability and set it as 0.25.

7. the version used for evaluation in [22].

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 R

at
io

0.75 0.8 0.85 0.90
Utilization bound u

B

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

PF
J

FMC PF FMC PF

Figure 7. Comparison between Pfair-based scheme and FMC.

0.75 0.8 0.85 0.9
Utilization bound u

B

20

25

30

35

40

45

50

55

N
or

m
er

liz
ed

 n
um

be
r o

f c
on

te
xt

 s
w

itc
he

s

Figure 8. Context switches for FMC and Pfair-based scheme.

and external mode-switch levels. In COM, all low-criticality
tasks in CH will be abandoned once any overrun occurs and
thus results in resource under-utilization. As a comparison,
FMC drops off low-criticality tasks as the demand and there-
fore can achieve better execution support for low-criticality
tasks. Besides, we can observe that there is a performance
trade-off between PFJ and acceptance ratio in COM. The
reason for this trend is that a higher TL in COM requires
additional resources to support low-criticality executions
but generally implies lower schedulability, and the converse
also holds. When we consider the TL configuration on
which the same scheduability performance can be achieved
by FMC and COM, FMC can support more than 25% and
15% low-criticality tasks to finish the deadline compared to
COM under different uB settings, respectively.
Comparison with Pfair-based scheme PF [22]: Fig. 7 shows
the compared results for FMC and PF. Compared with
PF, FMC can achieve a better execution support for low-
criticality tasks but with inferior schedulability, as shown
in Fig. 7. The reason for the gain in low-criticality task
execution support is that the Pfair scheduling tends to
evenly distribute the quanta of tasks over time, resulting
in more unfinished jobs at mode-switching points.

Regarding schedulability inferiority, we mainly attribute
this expected inferiority to the theoretical optimality of
Pfair scheduling in terms of schedulability performance [14].
In fact, this optimality is achieved at the cost of a high
scheduling overhead by quantum-length sub-tasks parti-
tioning and the enforcement of proportional progress. In
fact, this schedulability deficit of FMC can be compensated
by significantly reduced context-switching overheads com-
pared with PF. Here, we present simulation results to show
the compared context-switch numbers. Fig. 8 presents the
number of context switches for the Pfair-based scheme,
which is normalized with respect to the number for FMC.
The results confirm the significant reduction of context
switches by FMC. The Pfair-based scheme requires 38.0 to
41.3 times the number of context switches required in FMC
for different utilization settings.

14

Figure 9. Service degradation in generic simulation.

7.3 Graceful service level degradation

In the case study presented above, we have demonstrated
the gradual service level degradation property of FMC, that
is, the degradation in the service levels for low-criticality
tasks as the number of mode switch increases. Now, we
validate this trend in a generic simulation. The uniform
tuning strategy is applied to randomly generated task sets.
We use the task generator introduced above to generate 100
task sets in which uB is randomly selected from [0.75, 0.9].
A generated task set is accepted for simulation when the
following two additional conditions are satisfied: (1) the
task set can be scheduled by FMC, and (2) the task set
contains 5 high-criticality tasks. The degraded low-criticality
jobs under various task sets are classified according to the
number of mode switches.

The simulation results are shown in Fig. 9. The left
and right y-axis present the service level and the normal-
ized number of service-degraded low-criticality jobs, respec-
tively. To reveal the distribution of service levels for service-
degraded low-criticality jobs, the service levels are repre-
sented in the form of box-whisker plots. The results shown
in Fig. 9 confirm the observations made in Section 6.3. For
almost all low-criticality task jobs, the graceful degradation
property is clearly demonstrated except for a few corner
cases. Furthermore, the results in terms of the percentages
of service-degraded low-criticality jobs also confirm that
the likelihood of all high-criticality tasks exhibiting the
high-criticality behavior is very low. Only 0.35% of service-
degraded low-criticality jobs are affected by this worst-case
overrun scenario. By contrast, 96.9% of service-degraded
low-criticality jobs are impacted by mode-switch scenarios
with mode switches≤ 3. For this vast majority of cases, FMC
needs to allocate additional resources to only a subset of the
high-criticality tasks based on their demands and therefore
can provide better and more graceful service degradation.

8 CONCLUSION AND FUTURE WORK

Most previous theoretical work on scheduling in mixed-
criticality systems has adopted impractical assumptions:
once any high-criticality task overruns, all low-criticality
tasks are suspended and all other high-criticality tasks are
required to exhibit high-criticality behaviors. In this paper,
we propose a more flexible MC model (FMC) with EDF-
VD scheduling, in which the above issues are addressed.
In this model, the transitions of all high-criticality tasks
are independent and the service levels of low-criticality
tasks can be adaptively tuned in accordance with the true
overruns of the high-criticality tasks. A utilization-based

schedulability test condition is successfully derived for the
FMC systems. Numerical results are presented to illustrate
the improved service levels for low-criticality tasks during
run time.

For the next step, we are interested in implementing the
proposed approach on real-time operating system and eval-
uating its performance. Furthermore, another interesting fu-
ture work includes investigations on: (1) integrating of FMC
and fault tolerance techniques to develop optimal resource
allocation strategies for assurances against different types
of faults; (2) integrating the slack reclamation schemes into
FMC for further performance improvement.

REFERENCES

[1] S. Baruah et al. Towards the design of certifiable mixed-criticality
systems. In 2010 16th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2010.

[2] S. Baruah et al. Mixed-criticality scheduling of sporadic task
systems. In the 19th European Conference on Algorithms, 2011.

[3] S. Baruah et al. Response-time analysis for mixed criticality
systems. In 2011 IEEE 32nd Real-Time Systems Symposium, 2011.

[4] S. Baruah et al. The preemptive uniprocessor scheduling of mixed-
criticality implicit-deadline sporadic task systems. In 2012 24th
Euromicro Conference on Real-Time Systems, 2012.

[5] S. Baruah et al. Preemptive uniprocessor scheduling of mixed-
criticality sporadic task systems. Journal of the ACM, 62(2), 2015.

[6] P. Binns. Incremental rate monotonic scheduling for improved
control system performance. In 3rd IEEE Real-Time Technology and
Applications Symposium, 1997.

[7] A. Burns et al. Towards a more practical model for mixed
criticality systems. In 1st International Workshop on Mixed Criticality
Systems, pages 1–6, 2013.

[8] A. Burns et al. Mixed criticality systems-a review. University of
York, Technical Report, 2015.

[9] H. Chishiro et al. Practical imprecise computation model: The-
ory and practice. In 2014 IEEE 17th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing,
2014.

[10] W. Feng et al. An extended imprecise computation model for time-
constrained speech processing and generation. In IEEE Workshop
on Real-Time Applications, 1993.

[11] C. A. Floudas. Deterministic Global Optimization: Theory, Methods
and Applications. Springer, 2005.

[12] X. Gu et al. Resource efficient isolation mechanisms in mixed-
criticality scheduling. In 2015 27th Euromicro Conference on Real-
Time Systems, 2015.

[13] C. C. Han et al. A fault-tolerant scheduling algorithm for real-time
periodic tasks with possible software faults. IEEE Transactions on
Computers, 2003.

[14] P. Holman et al. Group-based pfair scheduling. Real-Time Systems,
2006.

[15] P. Huang et al. Interference constraint graph: A new specification
for mixed-criticality systems. In 2013 IEEE 18th Conference on
Emerging Technologies Factory Automation, pages 1–8, 2013.

[16] P. Huang et al. Service adaptions for mixed-criticality systems. In
2014 19th Asia and South Pacific Design Automation Conference, 2014.

[17] ISO 26262:Road vehicles. http://www.iso.org/iso/.
[18] K.-J. Lin et al. Imprecise results: Utilizing partial comptuations in

real-time systems. In Real-Time Systems Symposium, 1987.
[19] D. Liu et al. Edf-vd scheduling of mixed-criticality system with

degraded quality guarantees. In 2016 IEEE 32nd Real-Time Systems
Symposium, 2016.

[20] J. W. S. Liu et al. Imprecise computations. 1994.
[21] R. Rajkumar et al. A resource allocation model for qos manage-

ment. In 1997 IEEE Real-Time Systems Symposium, 1997.
[22] J. Ren et al. Mixed-criticality scheduling on multiprocessors using

task grouping. In 2015 27th Euromicro Conference on Real-Time
Systems, pages 25–34, 2015.

[23] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing mixed-
criticality scheduling strictness for task sets scheduled with fp. In
2012 24th Euromicro Conference on Real-Time Systems, 2012.

15

[24] H. Su et al. An elastic mixed-criticality task model and its schedul-
ing algorithm. In Design, Automation Test in Europe Conference
Exhibition, 2013.

[25] H. Su et al. Service guarantee exploration for mixed-criticality
systems. In 2014 IEEE 20th International Conference on Embedded
and Real-Time Computing Systems and Applications, 2014.

[26] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In 2007 28th IEEE
International Real-Time Systems Symposium, 2007.

[27] D. Zhu et al. Multiple-resource periodic scheduling problem:
how much fairness is necessary? In 24th IEEE Real-Time Systems
Symposium, 2003.

APPENDIX A

DERIVATION PROTOCOL

This section presents the detailed proofs for the derivation
protocol presented in Eqn. (4) and Eqn. (5). The rules for
deriving intermediate upper bounds for different execution
scenarios are specified as follows:

Rule 1. If no k-carry-over job of low-criticality task τi exists at
the kth mode-switching point t̂k, then the intermediate
upper bound sup{ηki (0, tf)} is computed as

sup{ηki (0, tf)} = sup{ηki (0, d
l
i)}+ (tf − t̂k) · zki · uLO

i

(31)

where dli denotes the absolute deadline of the last job of
τi during [0, tf].

Proof. Since no k-carry-over job of τi exists at t̂k, we know
that dli < t̂k. Therefore, sup{ηki (0, d

l
i)} is sufficient to bound

ηki (0, tf). Since (tf − t̂k) · zki · uLO
i > 0, we know that

sup{ηki (0, d
l
i)}+ (tf − t̂k) · zki · uLO

i is also an upper bound.

�

Rule 2. If a k-carry-over job of low-criticality task τi exists at
the kth mode-switching point t̂k, then the intermediate
upper bound sup{ηki (0, tf)} is computed as

sup{ηki (0, tf)} = sup{ηki (0, d
k
i)}+ (tf − dki) · z

k
i · uLO

i

(32)

Proof. sup{ηki (0, tf)} can be calculated as sup{ηki (0, d
k
i)}+

sup{ηki (d
k
i , tf)}. Since (tf − dki) · zki · uLO

i is sufficient
to bound ηki (d

k
i , tf) according to Prop. 1, we know that

sup{ηki (0, d
k
i)}+(tf −d

k
i) ·z

k
i ·u

LO
i can be used as an upper

bound.

�

Rule 3. For a k-carry-over job of low-criticality task τi, if
ηki (a

k
i , t̂

k) 6= 0, then the intermediate upper bound
sup{ηki (a

k
i , d

k
i)} will be computed as follows:

sup{ηki (a
k
i , d

k
i)} = (dki − aki) · z

k−j
i · uLO

i (33)

where zk−j
i is the service level after the last mode switch

occurring before aki .

Proof. According to Fig. 2, j mode switches may occur dur-
ing the interval (aki , t̂

k). Recall the assumption zki ≤ zk−1
i

(∀k) made in Section 3; based on this assumption, we have

zk−j
i ≥ z

k−(j−1)
i ≥ · · · ≥ zki . When the system switches

modes at t̂k0 (k − (j − 1) ≤ k0 ≤ k), the execution budget
will be reduced from zk0−1

i · cLO
i to zk0

i · cLO
i . Therefore, the

maximum cumulative execution is achieved when the k-
carry-over job has completed its zk−j

i · CLO
i execution before

time instant t̂k−(j−1), which is the time of the first mode
switch occurring after aki . Therefore, in this case, the k-carry-

over job can be bounded by (dki − aki) · z
k−j
i · uLO

i .

�

Rule 4. For a k-carry-over job of low-criticality task τi,
if ηki (a

k
i , t̂

k) = 0, the intermediate upper bound
sup{ηki (a

k
i , d

k
i)} will be computed as follows:

sup{ηki (a
k
i , d

k
i)} = (dki − aki) · z

k
i · uLO

i (34)

Proof. Since the k-carry-over job has not been executed be-
fore t̂k (ηki (a

k
i , t̂

k) = 0), it must exhaust its execution budget
zki ·C

LO
i after the mode-switching time instant t̂k. Therefore,

16

the maximum cumulative execution at the current time can
be found to be (dki − aki) · z

k
i · uLO

i .

�

APPENDIX B

THE DERIVATION OF Nk
γ IN EQN. (21)

The following is the detailed derivation of the upper bound
on the total cumulative execution time Nk

γ .
N

k
γ = N

k
γLO

+ N
k

γHI
HI

(t̂k)
+ N

k

γLO
HI

(t̂k)

≤
∑

τi∈γLO

(

tfu
LO
i +

k∑

j=1

((tf − a
t̂j

)(1 − x)(zj
i − z

j−1
i)uLO

i)

)

︸ ︷︷ ︸

Nk
γLO

+

k∑

j=1

(a
t̂j

· u
LO

t̂j
+ (tf − a

t̂j
) · uHI

t̂j
)

︸ ︷︷ ︸

Nk

γHI
HI

(t̂k)

+
∑

τi∈γLO
HI

tf

x
· u

LO
i

︸ ︷︷ ︸

Nk

γLO
HI

(t̂k)

=tfu
LO
LO +

k∑

j=1

(tf − a
t̂j

)(1 − x)(u
j

LO − u
j−1
LO)

+

k∑

j=1

(a
t̂j

· u
LO

t̂j
+ (tf − a

t̂j
) · uHI

t̂j
) +

∑

τi∈γLO
HI

tf

x
· u

LO
i

= (Consider a0 =

∑k
j=1 a

t̂j
uLO

t̂j
∑

k
j=1 uLO

t̂j

)

(tf − a0)u
LO
LO + a0u

LO
LO +

k∑

j=1

(tf − a
t̂j

)(1 − x)(u
j

LO − u
j−1
LO)

+

k∑

j=1

(a
t̂j

· u
LO

t̂j
+ (tf − a

t̂j
) · uHI

t̂j
) +

∑

τi∈γLO
HI

tf

x
· u

LO
i

≤ (Since u
LO
LO +

uLO
HI

x
≤ 1 and x < 1)

(tf − a0)u
LO
LO + a0(1 −

uLO
HI

x
) +

k∑

j=1

(tf − a
t̂j

)(1 − x)(uj

LO − u
j−1
LO)

+

k∑

j=1

(
a
t̂j

x
u
LO

t̂j
+ (tf − a

t̂j
)uHI

t̂j
) +

∑

τi∈γLO
HI

tf

x
u
LO
i

= (Since u
LO
HI =

k∑

j=1

u
LO

t̂j
+

∑

τi∈γLO
HI

u
LO
i)

tf + (tf − a0)(u
LO
LO − 1) +

k∑

j=1

(tf − a
t̂j
)(1 − x)(u

j

LO − u
j−1
LO)

+

k∑

j=1

a
t̂j

uLO

t̂j
− a0u

LO

t̂j

x
+

k∑

j=1

(tf − a
t̂j

)uHI

t̂j
+

∑

τi∈γLO
HI

tf − a0

x
u
LO
i

= (Since

k∑

j=1

(a
t̂j
u
LO

t̂j
− a0u

LO

t̂j
) = 0)

tf + (tf − a0)(u
LO
LO − 1) +

k∑

j=1

(tf − a
t̂j
)(1 − x)(uj

LO − u
j−1
LO)

+

k∑

j=1

(tf − a
t̂j
)uHI

t̂j
+

∑

τi∈γLO
HI

tf − a0

x
u
LO
i

= (Since tf − a0 =

∑k
j=1(tf − a

t̂j
)uLO

t̂j
∑

k
j0=1 uLO

t̂j0

)

tf +

k∑

j=1

(tf − a
t̂j

)

(
uLO

t̂j
∑

k
j0=1 uLO

t̂j0

(u
LO
LO − 1) + (1 − x)(u

j

LO − u
j−1
LO)

+ u
HI

t̂j
+

uLO

t̂j
∑

k
j0=1 uLO

t̂j0

∑

τi∈γLO
HI

uLO
i

x

)

= (Since u
LO
HI =

k∑

j=1

u
LO

t̂j
+

∑

τi∈γLO
HI

u
LO
i)

tf +

k∑

j=1

(tf − a
t̂j

)

(

u
HI

t̂j
−

uLO

t̂j

x
+ (1 − x)(u

j

LO − u
j−1
LO)

+
uLO

t̂j
∑

k
j0=1 uLO

t̂j0

(u
LO
LO − 1 +

uLO
HI

x
)

)

≤ (Since u
LO
LO − 1 +

uLO
HI

x
≤ 0 and

k∑

j0=1

u
LO

t̂j0
≤ u

LO
HI)

tf +

k∑

j=1

(tf − a
t̂j

)

(

u
HI

t̂j
−

uLO

t̂j

x
+ (1 − x)(uj

LO − u
j−1
LO)

+
uLO

t̂j

uLO
HI

(uLO
LO − 1 +

uLO
HI

x
)

)

=tf +

k∑

j=1

(tf − a
t̂j

)

(

u
HI

t̂j
+ (1 − x)(uj

LO − u
j−1
LO) +

uLO

t̂j

uLO
HI

(uLO
LO − 1)

)

APPENDIX C

SIMULATION FRAMEWORK

In this section, we will present the simulation framework
which faithfully emulate real time execution behaviors of
mixed criticality tasks. This simulation framework enables
us to evaluate various advanced mixed criticality scheduling
algorithms and to obtain performance statistics for algo-
rithms evaluation. In the simulation, the workload trace of
jobs are firstly generated. All the compared approaches are
tested by the same workload trace in the simulation, such
that the fairness can be guaranteed. During the simulation,
the statistics entity will collect data from the simulation to
calculate different metrics for the compared algorithms. In
our simulation, as long as low-criticality job do not finish
its CLO

i , this low-criticality job will be considered as the
job without completion. The main aspects of the simulation
process will be described as follows.
Workload Trace Generation: For the sake of fairness, we
generate the workload trace of jobs according to task spec-
ification and use this workload trace to uniformly test the
compared approaches. In this process, the arrival time,
execution time, and overruns of jobs are generated before
the simulation. To validate the runtime scheduability in the
worst-case scenario, all jobs are released with minimum
job-arrival interval and are executed with the worst-case
execution time for stress testing. The overruns of each
high-criticality jobs are randomly generated according to
the overrun probability, which is computed according to
execution distribution presented in [23].
Run-time Simulation: The system tick is the time unit that
causes the scheduler to run and process events. In our
simulation, we emulate real time execution behaviors of
mixed criticality tasks based on system tick. The possible
events are processed according to the following rules:

• Newly-arrived job: If the system is in low-criticality
mode, the newly-arrived job will be inserted into
the queue Q with modified deadline and unmod-
ified execution budgets. Otherwise, high-criticality
jobs with be inserted with unmodified deadline and
execution budgets CH

i , while low-criticality jobs will
be inserted with degraded execution budgets zki ·C

L
i .

• Job completion: If the job reaches its execution bud-
get, delete the job from the queue Q. Record the
performance data of the jobs.

• Preemption and consume time: Find the job with
minimum deadline in Q to execute and consume the
current time slot. If the current job is different with
the one executed in last time unit, the preemption is
identified.

17

Figure 10. Submission Information on TC.

• Overrun and mode switches: If high-criticality tasks
overrun its execution budgets CLO

i , transit system to
high-criticality mode and update the service level zki
for each low-criticality task.

• Switch back: If Q is empty, the idle interval is
detected. The system will be transit back to low-
criticality mode by resetting zki = 1 for each low-
criticality task.

Similarly, this simulation framework can be easily extended
for other compared approaches by replacing the degrada-
tion strategy in the simulation.

APPENDIX D

THE SCREEN-SHOT OF SUBMISSION

The submission history is shown in Fig. 10.

	1 Introduction
	2 Related Work
	3 System Models and Background
	3.1 FMC implicit-deadline sporadic task model
	3.2 Execution semantics of the FMC model
	3.3 EDF-VD scheduling

	4 FMC-EDF-VD scheduling algorithm
	4.1 Motivational example

	5 Schedulability Test Condition
	5.1 Low-criticality mode
	5.2 High-criticality mode after k mode switches
	5.3 The proof of correctness
	5.3.1 Challenges
	5.3.2 Concepts and notation
	5.3.3 Bound for low-criticality tasks
	5.3.4 Bound for high-criticality tasks
	5.3.5 Putting it all together

	5.4 Feasibility of Algorithm

	6 Service level tuning strategy
	6.1 Dropping-off strategy
	6.2 Uniform tuning strategy
	6.3 Case study
	6.4 Run-time complexity

	7 Evaluation
	7.1 Comparison with schemes based on the global triggering strategy
	7.2 Comparison with the Pfair- and component-based schemes
	7.3 Graceful service level degradation

	8 Conclusion and future work
	References
	Appendix A: Derivation protocol
	Appendix B: The derivation of Nk in Eqn. (??)
	Appendix C: Simulation Framework
	Appendix D: The screen-shot of submission

