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ARTICLE

Odd viscosity in chiral active fluids
Debarghya Banerjee1, Anton Souslov 1,2, Alexander G. Abanov3 & Vincenzo Vitelli 1,2

We study the hydrodynamics of fluids composed of self-spinning objects such as chiral grains

or colloidal particles subject to torques. These chiral active fluids break both parity and time-

reversal symmetries in their non-equilibrium steady states. As a result, the constitutive

relations of chiral active media display a dissipationless linear-response coefficient called odd

(or equivalently, Hall) viscosity. This odd viscosity does not lead to energy dissipation, but

gives rise to a flow perpendicular to applied pressure. We show how odd viscosity arises from

non-linear equations of hydrodynamics with rotational degrees of freedom, once linearized

around a non-equilibrium steady state characterized by large spinning speeds. Next, we

explore odd viscosity in compressible fluids and suggest how our findings can be tested in the

context of shock propagation experiments. Finally, we show how odd viscosity in weakly

compressible chiral active fluids can lead to density and pressure excess within vortex cores.
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Chiral active fluids are materials composed of self-spinning
rotors that continuously inject energy and angular
momentum at the microscale. Out-of-equilibrium fluids

with active-rotor constituents have been experimentally realized
using nanoscale biomolecular motors1–7, microscale active
colloids8–10, or macroscale-driven chiral grains11. In order to
unlock the potential of chiral active matter for the design of
materials with novel functionalities, one needs to understand
the excitations and the mechanical response to perturbations
around their far-from-equilibrium steady states. In some cases,
time-reversal-symmetry breaking endows these systems
with geometrical and topological features reminiscent of quantum
Hall fluids and topological insulators12,13. For example,
chiral active media can support topologically protected excita-
tions such as chiral edge modes, which are responsible for the
unidirectional propagation of density waves14. We proceed by
discussing the mechanical response of far-from-equilibrium
steady states.

The mechanical response of any viscoelastic material is
typically encoded in its constitutive relations: a set of equations
that express the stress tensor in terms of the strain and strain
rate15. Conservation of angular momentum dictates that the
stress tensor σij of any medium with vanishing bulk
external torque must be symmetric under the exchange of its two
indices i and j. This conclusion, however, does not apply to chiral
active fluids composed of self-spinning constituents (Fig. 1a) that
are driven by active torques16–21. In addition to the presence of
an antisymmetric stress11,21–25, chiral active media exhibit
anomalies in the symmetric component of σij that encodes the
viscous stress.

In this paper, we ask a deceptively simple question: what is the
viscosity of a chiral active fluid? Viscosity typically measures the
resistance of a fluid to velocity gradients. It is expressed mathe-
matically by a tensor, ηijkl, that acts as a coefficient of pro-
portionality between viscous stress σij and strain rate vkl15. The
Onsager reciprocity relation stipulates that ηijkl, like any such
linear transport coefficient, must be symmetric (or even) under
the exchange of the first and last pairs of indices (i.e., ηijkl= ηklij)
provided that time-reversal symmetry holds15. Here we show how
such chiral active fluids break both parity and time-reversal
symmetries in their steady states, giving rise to a dissipationless
linear-response coefficient called odd (or Hall) viscosity
ηoijklð¼ �ηoklijÞ in their constitutive relations. Avron et al. first
recognized that a two-dimensional electron fluid can display a
Hall viscosity in the presence of an external magnetic field that
breaks time-reversal symmetry (TRS) at equilibrium26–32. In
chiral active fluids, violation of Onsager reciprocity originates
from the breaking of microscopic reversibility out of equilibrium,
a feature inherent to active matter33,34. In this case, an odd
viscosity can emerge as a linear-response coefficient calculated
around the non-equilibrium steady state of a purely classical
system. Despite its universal nature, odd viscosity was neglected
in previous hydrodynamic theories of active rotors11,21–25 that
implicitly consider only rotors with small spinning frequency
near equilibrium—a regime for which the antisymmetric stress
dominates over the odd viscosity. On general grounds28,29, it can
be shown that odd viscosity is proportional to the non-vanishing
net angular momentum density that exists within the active fluid
in steady state.

Results
Hydrodynamics of chiral active rotors. For concreteness, we
construct a hydrodynamic description of “dry” chiral active fluids
based on a constitutive relation that explicitly accounts for an odd
viscosity term. Here the term “active matter” designates those

fluids in which kinetic energy is not conserved. In such materials,
momentum, including angular momentum, does not have to be
conserved. In dry active matter, momentum is dissipated via
friction (e.g., with substrate), although this effect could be small
relative to inter-particle interactions.

In two dimensions, the evolution of the slow variables, i.e.,
density of particles ρ, center-of-mass velocity components vi, and
intrinsic spinning frequency of the rotors Ω(x, t), is governed by
the following equations (see Methods section for detailed
derivations):

Dtρ ¼ �ρ∇ � v; ð1Þ

ρDtvi ¼ ∂jσij � Γvvi: ð2Þ

IDtΩ ¼ τ þ DΩ∇2Ω� ΓΩΩ� ϵijσij; ð3Þ

where Dt(≡∂t + vk∂k) denotes a convective derivative and I is the
moment-of-inertia density. A constant active torque applied to
each rotor and described by the torque density τ injects energy
into the fluid, thus breaking detailed balance.

The hydrodynamic Eqs. (1)–(3) originate from the forces and
torques experienced by particles with internal active rotation.
Equations (1) and (2) are simply the equations of motion for any
fluid with the addition of substrate friction—expressing the
conservation of mass via the continuity Eq. (1) and the evolution
of fluid momentum, Eq. (2). The additional equation peculiar to
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Fig. 1 Chiral active fluids with odd viscosity. a Chiral active fluids in a variety
of contexts: biological1–6, colloidal8–10, and granular11. b–d Schematic of the
collision processes in a chiral active gas. b Head-on collision between self-
spinning gears that initially move with speed vi and rotate with frequency Ω.
Their center of mass is represented as a red crossed circle. c While in
contact, the frictional gears convert intrinsic angular momentum into orbital
angular momentum, which leads to rotation around their center of mass
with frequency ω (shown as a dashed circular arrow). We assume that this
process occurs on a time scale that is fast compared to the time between
collisions. As a result, the spinning frequency is rapidly reset to the initial
Ω0 favored by the balance of internal active torque and dissipation. d After
the collision, the self-spinning gears move away from each other with
velocity vf. However, the particles do not necessarily move with final
velocities that parallel the vector distance between them, i.e., orbital
angular momentum is generated in the collision
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the chiral active fluid is Eq. (3) that governs the evolution of the
intrinsic spinning frequency Ω(x, t). Equations of this form have
been considered in previous hydrodynamic theories of chiral
active fluids in various regimes, see e.g., refs. 11,21–25. Activity
enters the system via the torque τ in Eq. (3). In addition to the
active torque, Eq. (3) includes the dissipation of intrinsic angular
momentum via ΓΩ: this term is responsible for the rapid
equilibration of the system if the active torque were to be turned
off. The rotational dissipation coefficient ΓΩ saturates energy
injection in a way that leads to a non-equilibrium steady state
with non-vanishing single-rotor frequency Ω � τ=ΓΩ � Ω0ð Þ,
whereas DΩ and Γv control diffusion of intrinsic rotations and
linear momentum damping, respectively. The left-hand side of
Eq. (3) includes the convection of intrinsic rotation due to the
center-of-mass motion of the fluid vi, whereas the right-hand side
of Eq. (3) accounts for the coupling between the intrinsic and
orbital angular momentum via the fluid stress σij.

The stress in Eqs. (2) and (3) is given by

σij � ϵij
Γ
2

Ω� ωð Þ � pδij þ ηijklvkl þ
‘

2
∂iv�j þ ∂�i vj

� �
; ð4Þ

where ω � 1
2 ϵij∂ivj is the vorticity, v

�
j � ϵjlvl is the velocity vector

rotated clockwise by π/2, and ‘ � IΩ is the intrinsic angular
momentum density. (Note that ϵij denotes the Levi–Civita
antisymmetric tensor in 2D.) The stress is composed of the
usual fluid stress terms due to the pressure p and the (dissipative)
viscosity tensor ηijkl present in any fluid, and two terms
peculiar to chiral active fluids. One such term is the antisym-
metric stress in Eq. (4) proportional to Γ, which results from
inter-rotor friction and couples the flow v to the intrinsic
rotations Ω11,21–25.

The last component of the stress σij is the novel ingredient that
we add to Eq. (4), which we derive in the Methods section using a
hydrodynamic variational principle. To arrive at such a term, we
must include a coupling between vorticity and intrinsic angular
momentum. To do so, we start with an action that includes both
the (standard) action necessary to arrive at the Navier–Stokes
equations and an additional term

R
ω‘d2xdt, which also appears,

e.g., in the variational hydrodynamics of magnetofluids35.
Notably, the variational approach that we take to arrive at the
last term in Eq. (4) does not account for energy dissipation.
Unlike the dissipative viscosity ηijkl, this extra nonlinear term is
derived based on energy conservation, even in the presence of
other active and dissipative terms. Our derivation of Eq. (4)
proceeds by taking an action with Clebsch parameters and
varying it with respect to all of the dynamical fields36,37. The
Clebsch parameters are auxiliary variables that allow us to write a
Lagrangian density from which we can derive the fluid equations
using Hamilton’s equations of motion. The resulting equations
can be reduced to just the ones in Eqs. (2) and (3) by substituting
in the Clebsch parameters for hydrodynamic variables, and at the
end of this substitution, the term ‘

2 ∂iv�j þ ∂�i vj
� �

emerges as part
of the fluid stress tensor (see Methods). This term is a nonlinear
coupling between the fields v(x, t) and ‘ðx; tÞ [or, equivalently, Ω
(x, t)] that was neglected in previous linear hydrodynamic
theories of active matter11,21–25.

We linearize the equations around a constant ‘ characteristic of
the non-equilibrium steady state, in which parity is broken: in this
state, the nonlinear coupling reduces to an anomalous transport
coefficient ηo ¼ ‘=2 called odd viscosity in the constitutive
relations, Eq. (4). Note that if the equations are linearized around
‘ ¼ 0, as appropriate for the relaxation dynamics of passive,
undriven fluids, the odd viscosity term disappears. On the other
hand, if the active torque dominates over the inter-rotor coupling
Γ, the ensemble of self-spinning rotors behaves as a weakly

interacting chiral active gas with a constant angular momentum
‘ ¼ IΩ0. In such a chiral gas, the active rotation frequency is
near Ω0 for each particle except during and immediately
after each collision, when some intrinsic rotation is converted
into fluid vorticity by the antisymmetric stress (Fig. 1b).
While this conversion is crucial in establishing the chiral steady
state of a gas of rotors, the state itself depends only on odd
viscosity ηo and not on the inter-rotor coupling, if Γ is sufficiently
small.

Constant intrinsic rotation rate. We now determine the con-
ditions for the emergence of odd viscosity. Gradients of intrinsic
angular rotation Ω are negligibly small if the characteristic velo-
city v0 and length scale r0 are such that v0/r0 is much greater than
Γ/I and, simulataneously, much less than τ/Γ. For this to hold, a
necessary condition is that τ be much greater than Γ2/I. In this
regime, Eq. (2) decouples from Eq. (3). Furthermore, whereas the
damping Γv might be significant in many realizations of active-
rotor systems, we neglect it for simplicity in what follows. For the
effects of odd viscosity to dominate over translational friction, the
damping coefficient must satisfy Γv/I is much less than τ= r20Γ

Ω� �
,

consistent with the large-torque regime considered here. Under
these conditions, Eq. (2) reduces to the modified Navier–Stokes
equation:

Dtvi ¼ ν∇2vi þ νo∇2ϵijvj � ∂ip
ρ

; ð5Þ

with a familiar kinematic viscosity ν(≡η/ρ) and an additional odd
viscosity νo(≡ηo/ρ) term. We have derived this equation in the
context of a weakly interacting chiral active gas; it was written
based on symmetry considerations in ref. 27. We emphasize
that the presence of the odd viscosity term results from the
breaking of parity and time-reversal symmetries. Therefore,
the phenomenological consequences of odd viscosity that we
now discuss can apply to a larger class of chiral fluids. We now
proceed to analyze Eq. (5) within this novel context and focus on
those active-fluid phenomena which odd viscosity may influence
and suggest possible experimental tests. The field Ω(x, t) has
been integrated out from Eq. (5): the only vestige of its
presence is the emergent transport coefficient νo. Leading-order
corrections to Eq. (5) in gradients of Ω are captured by the
antisymmetric stress, the first term in Eq. (4). The effective theory
embodied by Eq. (5) ceases to be valid whenever large
spatial gradients of Ω(x, t) are created by interactions between
rotors (e.g., at large densities)—in that case we resort to the full
Eqs. (1) and (2).

Inspection of Eq. (5) reveals that the odd viscosity term is a
transverse linear-response coefficient describing forces fi due
to gradients in the perpendicular flow components ϵijvj.
In addition, νo is odd under either parity P or time-reversal
T symmetries: Pνo= Tνo= − νo and, thus, it is nonzero only if
both P and T are broken. These conclusions are consistent
with the Onsager relation generalized to the case of broken
T-symmetry, which reads Tηijkl= ηklij. For an isotropic fluid, the
parity-odd nature of ηo follows from the explicit form of the
viscosity tensor,

ηoijkl ¼
1
2
ηo ϵikδjl þ ϵilδjk þ ϵjkδil þ ϵjlδik
� �

; ð6Þ

so that TηoijklðηoÞ ¼ ηoklijð�ηoÞ. The symmetry of the viscous
component of the stress tensor (σij) guarantees that ηoijkl is P-even.
This symmetry implies that ηo and νo are P-odd, because every
term in Eq. (6) also contains one P-odd Levi–Civita tensor. The
main result is that the odd viscosity term νo∇2ϵijvj is T-invariant
and thereby reactive: unlike dissipative viscosity ν, odd viscosity
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νo is not associated with energy dissipation27. Significantly, the
derivation presented in the Methods section for the odd viscosity
of a chiral active gas relies only on conservation laws: it does not
require dissipation.

As in ordinary hydrodynamics, two familiar dimensionless
parameters can be used to classify different phenomena described
by Eq. (5): (i) the Reynolds number Re≡ v0r0/ν, where r0 is the
characteristic length scale associated with the initial flow profile
and (ii) the Mach number Ma≡ v0/c, where the speed of sound c
enters via c � ffiffiffiffiffiffiffiffiffiffiffiffi

∂p=∂ρ
p

. In the presence of odd viscosity, we need
an additional dimensionless parameter: either the viscosity ratio
νo/ν or the odd Reynolds number Reo≡ v0r0/νo.

Weak compressibility: vortices. When the flow is incompres-
sible, the odd viscosity can be absorbed by redefining the
pressure: p→ p − 2ηoω27. Note that the reabsorption of odd
viscosity can be done only in the equations of motion and not
necessarily in the boundary conditions31. At low Mach
and Reynolds numbers, we show that odd viscosity can replace
inertia to stabilize a vortex with a density peak at its core.
Vortices in active fluids are a ubiquitous phenomenon, also
analyzed theoretically and experimentally in refs. 2,11,18,20,21,38.
However, much remains to be explored about the unique
dynamics of vortices that results from activity. Studying the
effects of ηo on sustained vortex flow may be a viable route to
measure odd viscosity in table-top experiments in classical driven
or active fluids. In Fig. 2a, b, we plot the Lamb–Oseen vortex flow
profile15 (which does not depend on the value of odd viscosity),
obtained from Eq. (5), and the profile of density variations at the
center of the vortex. In the presence of odd viscosity, density
deviates from the Lamb–Oseen profile (see Methods). The limit
Reo much less than 1 is the extreme case in which odd viscosity
completely dominates over the inertial vortex density dip. In this
limit, the density variations δρ≡ ρ(x, t) − ρ0, measured relative to
its constant value ρ0 away from the vortex core, are controlled by
the odd Reynolds number and are given by:

δρ

ρ0
¼ 2Ma2

π 1þ t=t0ð ÞReo e
� r2

4ν t0þtð Þ; ð7Þ

where t0 � r20=ð4νÞ. We plot the rescaled form of Eq. (7) in
Fig. 2c. The sign of the relative density at the vortex center
depends on the relative sign of fluid vorticity and odd viscosity.
In Fig. 2d, we show that for the case in which the rotational
handedness of the vortex is aligned with the spinning direction of
the rotors (i.e., Reo> 0), the center of the vortex experiences an
increase in pressure and a resulting excess particle density
even when the effects of inertia and a moderately small
antisymmetric stress are non-negligible. (In the Methods, we
show that the corrections due to inertia can be accounted for
analytically, and derive the expression plotted in black solid
lines in Fig. 2d). Contrast this scenario with the Lamb–Oseen
solution (νo→ 0), in which inertia causes a pressure dip and
particle depletion at the vortex center (Fig. 2d). This effect,
familiar from the physics of cyclones, is amplified when Reo< 0.
In Fig. 2d, we also numerically compute vortex dynamics in the
presence of antisymmetric stress (i.e., the full hydrodynamic Eqs.
(2) and (3), for details see Methods), starting from an initial
Lamb–Oseen profile. We find that although the addition of
moderately small antisymmetric stress quantitatively corrects the
flow and density profiles, the relative rotational handedness of the
vortex still determines the characteristic density peak or trough at
the vortex center.

Strong compressibility: shocks. At high Mach number, we
consider strong effects of compressibility and obtain analytical
and numerical solutions for modified Burgers shocks in com-
pressible chiral active fluids. In ordinary fluids, where νo= 0,
Burgers shocks propagate along the direction of compression (x̂
in Fig. 3) and are stabilized by the balance between dis-
sipation and non-linearities in the convective derivative of Eq. (5).
We find that in the presence of odd viscosity, ultrasonic
shocks contain an additional flow transverse to the direction
of shock propagation (Fig. 1c). Using the exact solution of
the one-dimensional Burgers equation, we find an analytical
expression for transverse flow vyðx̂Þ, where x̂ ¼ xv0=2ν in the
regime of low viscosity ratio (see Fig. 3a and Methods for
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Fig. 2 Odd viscosity in weakly compressible active fluids can lead to a build-
up of particles inside a vortex. The Lamb–Oseen vortex flow (a: red arrow,
b: Rescaled azimuthal component ~vθ � vθrsπ=r0, rs � r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t=t0

p
, r0 is a

length scale that we chose via the initial vortex profile, and ~r � r=rs) is
unperturbed by the presence of odd viscosity νo (b: black, solid), but does
change due to antisymmetric stress (b: red, dashed). (b inset: schematic
illustration of the fact that a fluid with odd viscosity couples vorticity and
pressure, i.e., the phenomenon illustrated quantitatively in parts a–d.)
Odd viscosity does change the density profile (grayscale map of a; c, d).
We plot time-rescaled solutions for odd-viscosity vortices of particle
density δ~ρ=ρ0 � ðρ� ρ0Þ π

2ð1þt=t0Þ
ρ0Ma2 , as a function of ~r. c Deep in the limit Reo

much less than 1, the inertial contribution to the density profile inside a
Lamb–Oseen vortex can be neglected and the profile depends on the
odd viscosity only. Plotted is the rescaled form of the density profile,
also written in Eq. (7). The sign of the relative density at the vortex
center depends on the relative sign of fluid vorticity and odd viscosity.
d When the effects of inertia are non-negligible, they modify the
density profile: inertia always favors a smaller density at the vortex core.
Plotted in black are the exact solutions for Reynolds number v0r0

ν
¼ 0:05

and the viscosity ratio νo

ν
¼ f�0:01;0;0:01g (see Methods for details). For

νo

ν
¼ 0:01, excess density builds up at the vortex core and can dominate

over the usual density depletion in a purely inertial vortex (for which
νo

ν
¼ 0). Plotted as red dashed lines are the numerical solutions for the

density profile near the vortex center in the presence of a moderately
small antisymmetric stress. In these solutions, the density profile is
modified, but the conclusion about the possible presence of a density
peak at the vortex center does not change
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derivation):

ν

2νov0
vyðx̂Þ ¼ �x̂ þ tanh x̂ ln 2cosh x̂j jð Þ: ð8Þ

Note that the characteristic width w of the transverse flow profile
scales as ν/v0, i.e., as the dissipative viscosity, whereas the flow
amplitude scales as the viscosity ratio νo/ν. The analytical profile
of transverse flow (dashed blue line) agrees well with numerical
solutions of chiral-active-fluid hydrodynamics (solid blue line).
Note that the transverse flow (in particular, vorticity) is localized
within the shock where ∇ � v is largest. The familiar nonlinear

transport equation for the vorticity ω is modified as (see Meth-
ods):

∂tωþ ∇ � ðωvÞ ¼ ν∇2ωþ νo

2
∇2ð∇ � vÞ; ð9Þ

where the additional source term, proportional to νo, vanishes if
the fluid is incompressible, i.e., away from the shock where
∇ � v ! 0. Note that this mechanism of generation of vorticity is
independent of the inter-rotor friction captured by the antisym-
metric stress that was explicitly neglected in writing Eq. (9). If a
moderately small Γ is introduced, the transverse flow acquires
gradients in Ω (inset of Fig. 3b), but only small quantitative
corrections to the flow profile (Fig. 3b).

The illustration of particle collisions in Fig. 4 gives us an
intuitive way to understand the defining features of the shock
profile, valid in the limit of very thin shocks. First, we distill these
features from Eq. (8) by rewriting vy(x)= νo/wf(x/w), where f is a
dimensionless odd function. Away from the shock center,
vcy � vyðwÞ � νo=w. In the chiral active gas, νo ¼ ‘=ð2ρÞ � a2Ω,
where the equality comes from the derivation of Eq. (5) and the
scaling relation from the expression ‘ � ρa2Ω for intrinsic
angular momentum density, where a is the particle radius. For a
shock so thin that w ~ a, this predicts vcy � Ωa: an expression in
terms of the single-particle rotation rate and radius only. We now
reproduce it from a microscopic model of the chiral active gas
based on Fig. 1b and shown in Fig. 4 in the context of a shock.
The left particle flows with the shock, whereas the right particle is
ahead of the shock front. When the particles collide they roll
without slipping for a brief moment and their intrinsic angular
momentum Ωa2 is converted into orbital angular momentum
vcya. When the particles lose contact, they maintain this orbital
motion, with vcy � Ωa. Note that this microscopic result agrees
well with both the shape and the amplitude of the transverse flow
in the shock derived using the hydrodynamic theory with an odd
viscosity term.

More striking phenomena occur in the fast-spinning regime in
which odd viscosity dominates over dissipation, i.e., νoj j is much
greater than ν. In this case, the shock profile changes qualitatively
(contrast Fig. 3a, c). The odd viscosity introduces strong
dispersive effects that, in addition to dissipation, give rise to
non-linear waves reminiscent of KdV-Burgers shocks39,40.
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Fig. 3 Shocks in chiral active fluids. a Inset: schematic of transverse flow vy
(blue arrows) in a compression shock. Main panel: longitudinal [black, thin]
and transverse [blue: analytic (dashed), numeric (solid, thick)] flow profiles
for small viscosity ratio νo/ν= −0.02 in a stationary shock which results
from symmetric external forcing fðxÞ ¼ �x̂ f0π

4 sinπx=L. The characteristic
velocity scale is v0 � ffiffiffiffiffiffiffiffiffiffiffiffiffi

f0L=ρ0
p

; transverse flow vy scales as v0 νo

ν
. b Even in

the presence of antisymmetric stress, the effects of odd viscosity can
dominate if the variation in Ω is small: Ω� Ω0j j=Ω0≲10% (inset: Ω/Ω0).
The sharper peak (black, solid) includes the combined effect of
antisymmetric stress and odd viscosity. Neglecting odd viscosity, we
find only a small transverse flow due to antisymmetric stress (red, dashed).
c–g The longitudinal (c, d) and transverse (e, g) flow for νo/ν= −10.
Shocks develop oscillations with wavelength λ � νoj j=v0: f numerical
verification of this scaling law. In c, e and f, the antisymmetric stress is
zero, whereas in d and g its value is as in b. See Supplementary Movie 1
for the numerical simulations that show the dynamics of relaxation to this
steady state
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Fig. 4 An intuitive picture for the shock profile. With the shock
propagating at speed vx, the left particle collides into the right one. During
the collision, intrinsic rotation Ω is converted into the orbital rotation ω
within the shock. After the collision, transverse flow has a profile with
amplitude vy � aΩ, where a is the particle size. This picture agrees well
with the hydrodynamic description of the shape of transverse flow and the
scaling of vy
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Consistent with this interpretation, the numerically obtained
profile for the transverse response in Fig. 3c–g can be
characterized in terms of oscillations of wavelength λ � νoj j=v0
that decay over distance Λ � νoj jλ=ν (see Fig. 3f for numerical
results, Fig. 3d, f illustrate the small effect of the antisymmetric
stress.) These scaling laws can be derived by combining the
transverse and longitudinal components of the steady-state
Burgers equation into a single non-linear ordinary differential
equation (see Methods):

1
2
ux u2x � 1
� �þ ðReoÞ�2 þ Re�2

� �
∂2xux ¼ Re�1∂xu2x: ð10Þ

Upon linearizing Eq. (10) in terms of the transverse flow plofile
δu≡ (vx − v0)/v0, we find an equation for a damped harmonic
oscillator:

ðReoÞ�2 þ Re�2
� �

∂2xðδuÞ � 2Re�1∂xδuþ δu ¼ 0: ð11Þ

In Eq. (11), the trajectory of the harmonic oscillator describes the
shape of the shock profile: the velocity oscillations within the
spatial profile of the shock correspond to harmonic motion,
whereas the decaying profile of the envelope around the shock
center corresponds to the oscillator relaxing toward the energy
minimum. Upon comparing the first and last terms in Eq. (11),
we find the characteristic wavelength

λ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðνoÞ2 þ ν2
� �q

v0
ð12Þ

Upon comparing the first and second terms in Eq. (11), we obtain
the damping ratio, which corresponds to the decay length of the
envelope:

Λ � ðνoÞ2 þ ν2
� �

νv0
: ð13Þ

These expressions correctly reproduce the scaling laws for
regimes in which νo/ν is either much greater than or much less
than 1.

Discussion
Two-dimensional incompressible inviscid fluids composed of
many interacting vortices have been previously proposed as
examples of emergent odd viscosity fluids29. However, unlike
particles with active rotations, vortices in real fluids are not stable
steady-state constituents, unless their circulation is quantized or
viscosity is zero (as in superfluids). In this study, we have pro-
vided a derivation of the hydrodynamics of compressible active
fluids with an emphasis on the effects of compressibility and
nonlinearities. To summarize, chiral active fluids differ from
electron fluids because they exhibit an odd viscosity that arises
only out of equilibrium, is always accompanied by an antisym-
metric stress, and is not well defined as particles jam and active
rotations are hindered by interactions. Our results show that a
chiral active fluid carries a crank mechanism within itself—it can
convert between linear and rotational motion. We envision that
this collective mechanical response could be exploited in self-
assembled hydraulic devices and microscopic machines based on
chiral active components.

Methods
Variational principle for hydrodynamics with odd viscosity. To arrive at our
results, we started with Eqs. (1)–(4), which in the main text were introduced
phenomenologically. In this section, we present a derivation, based on a hydro-
dynamic variational principle, of a two-dimensional fluid characterized by the
density of intrinsic angular momentum ‘. We assume that the internal energy
density of the fluid ϵðρ; s; ‘Þ depends on the mass density ρ, entropy density s, and

the density of intrinsic angular momentum ‘. Standard thermodynamic formulae
give the following relations between ϵðρ; s; ‘Þ, pressure p, chemical potential μ,
temperature T, particle mass m, and intrinsic angular velocity Ω:

p ¼ ρϵρ þ sϵs þ ‘ϵ‘ � ϵ; ð14Þ

μ=m ¼ ϵρ; ð15Þ

T ¼ ϵs; ð16Þ

Ω ¼ ϵ‘: ð17Þ

Here, ϵρ � ∂ϵ=∂ρ, ϵs � ∂ϵ=∂s, and ϵ‘ � ∂ϵ=∂‘.
Now, we consider the fluid in local equilibrium characterized by space- and

time-dependent fields ρ(x, t), s(x, t), ‘ðx; tÞ, and fluid velocity vi(x, t) (i= 1, 2).
Based on the thermodynamic equations of state, we construct a hydrodynamic
action for a fluid with intrinsic angular momentum ‘, given by:

S ¼ �
Z

d2xdt ξ0 þ viξi �
ρvivi
2

þ ϵðρ; s; ‘Þ � ω‘
h i

; ð18Þ

where the fluid vorticity ω is defined via ω � 1
2 ϵij∂ivj . Note the unusual

proportionality factor of 1/2 in the definition of vorticity, which we use throughout
the work. The vorticity ω defined in this way is the local angular velocity of the
rotating fluid. In Eq. (18), we used the notation:

ξμ � ρ∂μθ þ s∂μηþ ‘∂μϕþΦα∂μΨα ð19Þ

with μ= 0, 1, 2. The action in Eq. (18) should be considered as a functional of the
independent fields ρ; θ; s; η; ‘;ϕ;Φα;Ψα , and vi. The parameters ρ, θ, s, η, ‘, and ϕ
are called Clebsch parameters36,37. We have added auxiliary pairs of Clebsch
parameters Φα and Ψα with α= 1, 2, … which are useful to describe generic
hydrodynamic flows but will not play any role in the hydrodynamic equations.

The action in Eq. (18) is standard except for the last term. This term explicitly
breaks parity as it depends on ϵik . Below, we show that the last term in Eq. (18)
leads to a non-vanishing odd viscosity. The physical manifestation of this term is
the main subject of this paper.

Varying over fields θ, η, and ϕ we obtain the following conservation laws

∂tρþ ∂iðρviÞ ¼ 0; ð20Þ

∂t sþ ∂iðsviÞ ¼ 0; ð21Þ

∂t‘þ ∂ið‘viÞ ¼ 0: ð22Þ

The velocity field vi in Eq. (18) is not a dynamical field. Varying Eq. (18) with
respect to vi relates vi to Clebsch parameters from Eq. (19):

ρvi ¼ ξi �
1
2
∂�i ‘: ð23Þ

Varying Eq. (18) with respect to all other fields, after some manipulations, one
arrives at the following equation of motion:

∂t ρvið Þ þ ∂j ρvivj þ pδij � σoddij

h i
¼ 0 ð24Þ

with

σoddij ¼ ηo ∂iv�j þ ∂�i vj
� �

; ð25Þ

where

ηo ¼ 1
2
‘ x; tð Þ; ð26Þ

which is the main result of this section. Note that ηo in Eq. (25) is given by the
intrinsic angular momentum field ‘ðx; tÞ via Eq. (26). The quantity ηo reduces to an
anomalous transport coefficient (referred to as odd viscosity) when the angular
momentum density ‘ is fixed (e.g., a constant). In general, interactions may
generate higher-order corrections to the variational functional. However, the result
in Eq. (26) holds exactly in the case of a weakly interacting chiral granular gas with
fast local rotations. Here and in the following we use the notation a�i � ϵikak . From
Eq. (24) we identify the quantity

gi � ρvi ð27Þ

as a momentum density of the fluid and σoddij as a part of a viscous stress tensor of
the fluid.

We note that the three Eqs. (20)–(22) and the two components of Eq. (24) give
us five equations sufficient to determine five independent fields ρ, s, ‘, and the two
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components of vi. We define these equations as a complete system of
hydrodynamic equations. The number of hydrodynamic fields (five) is smaller than
the number of fields in the variational principle Eq. (18). This reduction is known
as symplectic or Hamiltonian reduction.

Another important remark is that the Eqs. (20)–(22) and (24) are necessarily
dissipationless as they are derived from the time-translational-invariant action in
Eq. (18). Indeed, it is easy to derive from these equations the energy conservation
law:

∂t ϵþ ρvkvk
2

h i
þ ∂i ðϵþ pÞvi þ ρvkvk

2
vi � σoddij vj

h i
¼ 0: ð28Þ

Dissipation and gradient corrections. Let us consider the derivation of the energy
conservation in more details. We proceed as follows

∂t ϵþ ρvkvk
2

� �þ ∂i ðϵþ pÞvi þ ρvkvk
2 vi þ σijvj

� �
¼ �σij∂ivj þ ϵρ � u2j

2

� �
∂tρþ ∂iðρviÞ½ �

þϵs ∂t sþ ∂iðsviÞ½ � þ ϵ‘ ∂t‘þ ∂ið‘viÞ½ �
þvi ∂tðρviÞ þ ∂j ρvivj þ δijp� σij

� �� �
:

ð29Þ

So far we did not use any equation of motion. Using Eqs. (20)–(22) and (24) in the
right hand side and the form of odd viscosity tensor Eq. (25), we obtain the energy
conservation Eq. (28). Our goal is to generalize hydrodynamic equations in the
presence of dissipation in such a way that the entropy production is explicitly
positive and the energy is conserved up to the loss due to the work of external
forces.

We assume the following modified equations of motion

∂tρþ ∂i ρvi þ Jρið Þ ¼ 0; ð30Þ

∂t‘þ ∂i ‘vi þ J‘i
� � ¼ τ � ϵijσij � ΓΩΩ; ð31Þ

∂t ρvið Þ þ ∂j ρvivj þ pδij � σij
� � ¼ �Γv

ijvj; ð32Þ

∂t sþ ∂i svi þ Jsi
� � ¼ Q

T
: ð33Þ

Here, τ is the density of external torque acting on intrinsic rotational degrees of
freedom of the fluid, Jρ;s;‘i are gradient corrections to currents, ΓΩ is the intrinsic
angular momentum damping rate, and Q is a heat production rate due to various
friction forces. We consider the term �Γv

ijvj to be a linear-momentum damping
term resulting from friction of the particles with a substrate, and therefore to have
the form Γv

ij ¼ Γvδij . In principle, Γv
ij could also include a Lorentz-like component

proportional to ϵij , for example in a high-Reynolds number flow as a result of a
Magnus force. We do not consider the effects of these Γv

ij components in this work.
The combination of Eqs. (31) and (32) produces the conservation of angular
momentum density

∂t ϵkixkρvi þ ‘ð Þ þ ∂j ϵkixk ρvivj þ pδij � σij
� �þ ‘vj þ J‘j

� �
¼ τ � Γvϵkixkvi � ΓΩΩ;

ð34Þ

where the right-hand side is the density of net torque acting on the system due to
external forces.

We now fix all constitutive relations up to the first order in gradients41, which
guarantees that the heat production rate Q is non-negative. We obtain

Jρi ¼ �Dμ∂i μ� v2k
2

	 

þ Lμ∂�i μ� v2k

2

	 

; ð35Þ

Jsi ¼ �DT∂iT þ LT∂�i T ; ð36Þ

J‘i ¼ �DΩ∂iΩþ LΩ∂�i Ω; ð37Þ

and

σij ¼ σsij þ
1
2
σaϵij; ð38Þ

σa ¼ Γ Ω� 1
2
∂kv�k

	 

; ð39Þ

σsij ¼ 2η ∂ivj þ ∂jvi � δij∂kvk
� �þ δijηb ∂kvkð Þ
þηodd ∂iv�j þ ∂�i vj

� �
;

ð40Þ

and for the total heat production rate

Q¼ Dμ ∂i μ� v2k
2

� �h i2
þ DT ∂iTð Þ2 þ DΩ ∂iΩð Þ2

þΓ Ω� 1
2 ∂kv

�
k

� �2
þη ∂ivj þ ∂jvi � δij∂kvk

� �2 þ ηb ∂kvkð Þ2:
ð41Þ

Using these constitutive relations as well as Eqs. (29)–(33), we derive the modified
energy conservation law

∂t ϵþ ρv2k
2

h i
þ ∂i ðϵþ pÞvi þ ρv2k

2 vi � vjσji þ JEi

h i
¼ Ωτ � Γvv2i � ΓΩΩ2:

ð42Þ

The right-hand side is the energy influx through the work done by an external
torque and the energy loss due to external frictional forces. The correction to
energy current is given by

JEi ¼ ϵρ � v2k
2

	 

Jρi þ TJsi þ ΩJ‘i : ð43Þ

The system of hydrodynamic Eqs. (30)–(33) together with constitutive relations
Eqs. (35)–(41) gives a very general hydrodynamic description of system of active
rotors. This description is characterized by many phenomenological constants and
is too general for our purposes.

In this paper we are looking for the effects related to the transport of angular
momentum in the system of active rotors. Notably, we neglect thermal effects, all
temperature dependences, and omit Eq. (33). We also choose a frame (a definition
of velocity) such that Jρi ¼ 0 and neglect all “odd” coefficients Lμ,T,Ω= 0 except for
Γ. This leaves us with a much simpler hydrodynamic theory, Eqs. (1)–(4).

Hydrodynamics of chiral active fluids with odd viscosity. Here, we start with
Eqs. (1)–(4) of the main text:

∂tρþ ∂i ρvið Þ ¼ 0; ð44Þ

∂t‘þ ∂i ‘við Þ ¼ τ þ DΩ∂2i Ω� ΓΩΩ� ϵijσij; ð45Þ

∂tðρviÞ þ ∂jðρvivjÞ ¼ ∂jσij � Γvvi; ð46Þ

and

σij ¼ �pδij þ η ∂ivj þ ∂jvi � δij∂kvk
� �þ ηodd ∂iv�j þ ∂�i vj

� �
þ 1
2
ϵijΓðΩ� ωÞ:

ð47Þ

We see from (45) that the anti-symmetric part of the stress σaij ¼ ϵijΓ Ω� ωð Þ=2
has a meaning of an internal torque acting between intrinsic rotational degrees of
freedom and the rotational motion of the fluid. In Eq. (46), we have subsumed the
pressure term into the definition of the fluid stress tensor. For the case Γv= 0, Eqs.
(44)–(46) are identical to Eqs. (1)–(3) in the main text.

The complete equations that we simulate numerically, derived in the
appropriate regimes in the next two sections are the Eqs. (44)–(46) with

σij ¼ �pδij þ η ∂ivj þ ∂jvi � δij∂kvk
� �þ ηodd ∂iv�j þ ∂�i vj

� �
þ 1
2
ϵijΓðΩ� ωÞ:

ð48Þ

that capture the effects of both odd viscosity ηodd and antisymmetric stress Γ.
Equations (44)–(46) together with (47) (we will also put bulk viscosity ηb= 0

and identify ηodd ¼ ‘=2 in the following) is our starting point to study the effects of
odd viscosity and anti-symmetric stress σa on the dynamics of active rotors. The
equations above are constructed phenomenologically. For a realistic system of
active rotors one should either derive or at least estimate the values of various
hydrodynamic parameters from the microscopic model.

The angular momentum density is given by ‘ � IΩ with I≡ ιρ as the moment
of inertia density (ι � a2, where a is the linear size of the fluid’s constituents
particles). The active torque density τ is proportional to the density of rotors. It
injects energy into the fluid, thus breaking detailed balance. The friction-coefficient
ΓΩ saturates energy injection so as to allow the fluid to reach a non-equilibrium
steady state, whereas DΩ controls diffusion of local rotations.

The crucial ingredient in Eqs. (44)–(46) is the anti-symmetric part of the stress
σaij ¼ ϵijΓ Ω� ωð Þ=2 that couples the flow and local rotation degrees of freedom.
Here ω ¼ 1

2 ∂kv
�
k is the local angular velocity of the rotation of the fluid. The

coupling between Ω and v through σa terms of (50, 51) respects the corresponding
Onsager relation and, therefore, does not inject additional energy into the system.
These terms act only as frictional inter-rotor couplings that convert angular
momentum between local rotation of the fluid particles and vorticity due to center-
of-mass motion. This part is the same as in ref. 11, but in addition to the terms in
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ref. 11 we also include the odd viscosity part of the stress tensor (47), proportional
to the intrinsic angular momentum: ηodd ¼ ‘=2.

We may also derive Eqs. (44)–(46) by introducing the functional F[v, Ω] as

F½v;Ω� ¼
Z

dx
Γv

2
v2i þ

ΓΩ

2
Ω2 þ DΩ

2
ð∂iΩÞ2

� �
: ð49Þ

Using this non-negative functional, we can rewrite (45,46) as

∂t‘þ ∂i ‘við Þ ¼ τ � σa � δF
δΩ

; ð50Þ

∂t ρvið Þ þ ∂j ρvivj � σsij

� �
¼ 1

2
ϵij∂jσa � δF

δvi
: ð51Þ

Incompressible hydrodynamics of chiral active fluids. In this section, we con-
sider the case in which the fluid is nearly incompressible. We first solve the
equation of motion for the velocity field by using the incompressibility condition
∇ · v= 0 and then substitute this result to find how the pressure p deviates away
from its steady-state value p0. We then find the deviations in density by assuming
small, linear compression, ρ − ρ0= c−2(p − p0). This approximation is valid as long
as c�2 p� p0j j � ρ0.

Numerically, we keep the antisymmetric stress term to compare its effects with
the effects of odd viscosity. Then, we solve the following system of equations for
both v and Ω:

ρ0∂tvi þ ρ0∇ � ðvivÞ ¼ η∇2vi þ I
2
∂j Ω ∂iv�j þ ∂�i vj

� �h i
� ∂ipþ Γ

2
ϵij∂j Ω� ω½ �;

ð52Þ

I∂tΩþ I∇ � ðΩvÞ ¼ DΩ∇2Ω� ΓΩΩþ τ � Γ½Ω� ω�: ð53Þ

We divide Eq. (52) by ρ0 and Eq. (53) by I and obtain

∂t vi þ ∇ � ðvivÞ ¼ ν∇2vi � ρ�1
0 ∂ipþ ι

2
∂j Ω ∂iv�j þ ∂�i vj

� �h i
þ Γ′

2
ϵij∂j Ω� ω½ �;

ð54Þ

∂tΩþ ∇ � ðΩvÞ ¼ DΩ′∇2Ω� ΓΩ0
Ωþ τ′� Γ′ι�1½Ω� ω� ð55Þ

where ν≡ η/ρ0 is the kinematic viscosity, Γ′≡ Γ/ρ, DΩ′≡DΩ/I, ΓΩ′≡ ΓΩ/I, τ′≡ τ/I,
and ι≡ I/ρ0.

Dimensionless parameters: In the following, we will be solving Eqs. (54) and
(55) numerically. To understand better various regimes and to make further
analytic progress it is useful to understand the dimensionless parameters governing
the motion of the fluid.

Let us rescale all physical quantities to obtain a dimensionless problem. From
initial conditions of the form v= v0u(t= 0, rr≡ r/r0), we obtain natural length and
velocity scales. Then, we define dimensionless quantities (denoted by subscript r)
via ω =ωrv0/r0, t ¼ trr20=ν, p= prνv0ρ0/r0, Ω=ΩrΩ0, where Ω0≡ τ/ΓΩ= τ′/ΓΩ′
and find dimensionless equations,

∂tui þ v0r0
ν
∇ � ðui uÞ ¼ ∇2ui � ∂ipr þ ιΩ0

2ν ∂j Ωr ∂iu�j þ ∂�i uj
� �h i

þ Γ′
2ν

Ω0r0
v0

ϵij∂jΩr � Γ′
2ν ϵij∂jωr;

ð56Þ

∂tΩr þ v0r0
ν

∇ � ðΩruÞ ¼ DΩ0

ν
∇2Ωr þ ΓΩ0

r20
ν

1� Ωrð Þ � Γ′
ν

r20
ι
Ωr þ Γ′

ν

r20
ι

v0
Ω0r0

ωr;

ð57Þ

where all derivatives are now dimensionless, v0r0/ν= Re is the (small) Reynolds
number, ιΩ0

ν
¼ 2νo=ν, Γ′

2ν
Ω0r0
v0

determines the coupling of the velocity field to
gradients in the Ω field due to the antisymmetric stress term, Γ′

2ν determines the
corrections to the dissipative viscosity due to the Ω field, D

Ω′

ν
determines the relative

importance of diffusivity for Ω, Γ
Ω′ r20
ν

determines the strength of the friction for Ω,
Γ′
ν

r20
ι changes this friction via the antisymmetric stress, Γ′

ν

r20
ι

v0
Ω0r0

couples the vorticity
to the Ω field.

Integrating out the spinning frequency in the chiral gas regime: Although we
solve Eqs. (54) and (55) directly in our numerical computations, to make analytical
progress, we consider the regime in which Ω≈ const. For this regime, the odd
viscosity term dominates over the antisymmetric stress term.

We assume that the angular velocity of intrinsic rotations is Ω0 � τ=ΓΩ and
that the parameter Γ is sufficiently small so that there is a sufficiently large period
of time over which one can consider particles rotating quickly and with almost
no exchange between their intrinsic rotations and their center of mass motion.
More precisely, we assume that ω � Ω and comparing the odd viscosity term
� ηodd∇2v� and the antisymmetric stress terms � Γ∇�ðΩ� ωÞ we require
ηodd v0

r0
	 ΓΩ where v0 and r0 are typical velocity and length scales of the problem.

Taking ηodd � IΩ we obtain the condition

Γ
I
� v0

r0
: ð58Þ

In addition, for Eq. (58) to be valid for all times, the antisymmetric stress term Γω
in Eq. (55) must be smaller than the active torque τ. Otherwise, the condition in Eq.
(58) would be violated due to the coupling between intrinsic rotation and vorticity,
and large spatial variations in Ω would occur. We require, therefore

τ

Γ
	 v0

r0
: ð59Þ

The necessary condition for the existence of a regime with both Eqs. (58) and (59)
satisfied is the following relation between hydrodynamics parameters:

τI 	 Γ2: ð60Þ

In this regime, we can assume that Ω≈Ω0= const. For this case and for (nearly
incompressible) flows at low Mach number, Eq. (54) reduces to a modified
Navier–Stokes equation with the addition of an odd viscosity term:27

∂tvi þ ðv � ∇Þvi ¼ ν∇2vi þ νo∇2ϵijvj � 1
ρ0

∂ip; ð61Þ

i.e., Eq. (5) of the main text. Note that in the incompressible case, the effects of odd
viscosity can be subsumed by redefining the pressure via peff ≡ p − 2ηoω. We arrive
at this conclusion by noting that ∇ · v= 0 implies ∇2ϵijvj ¼ 2∂iω and substituting
this equation into Eq. (61). One can write

∂tv þ ðv � ∇Þv ¼ ν∇2v � ∇ðpeff=ρ0Þ; ð62Þ

which is identical in form to the conventional Navier–Stokes equation (see, e.g.,
ref. 31). One can find peff from the flow and find the pressure of the fluid from
p = peff + 2ηoω.

Outside of the limit defined by Eqs. (58) and (59), there are contributions due to
antisymmetric stress whose effects we examine numerically. In the regime opposite
to that set by Eqs. (58)–(60), in which the antisymmetric stress dominates, the odd
viscosity term is a small nonlinear correction to the hydrodynamics and can be
neglected for the same reasons as it was neglected in refs. 11,25.

Analytic solution for the Lamb–Oseen vortex with odd viscosity: Let us look for
a radially symmetric vortex solution of Eq. (61). Taking the curl of Eq. (61), we
obtain the equations for vorticity ω ¼ 1

2∇ ´ v:

∂tωþ ðv � ∇Þω ¼ ν∇2ω; ð63Þ

This is a transport equation for vorticity with the diffusion-like term due to
the shear viscosity. We consider an initial Gaussian vorticity profile, so that
the azimuthal component of velocity is a function of the radius and the
radial component is zero. Then, for initial conditions for the vorticity, we consider:

ωðt ¼ 0; rÞ ¼ v0
r0π

e�r2=r20 ; ð64Þ

In this case, the full solution is given by

ωðt; rÞ ¼ v0r0
4πνðt0 þ tÞ e

�r2=4νðt0þtÞ: ð65Þ

where t0 � r20=ð4νÞ. From this expression for ω, we obtain the velocity profile
satisfying the relations 1

2∇ ´ v ¼ ω and ∇ · v= 0 and find

vθðt; rÞ ¼ v0r0
πr

1� e�r2=4νðt0þtÞ
h i

: ð66Þ

This solution is identical to the conventional Lamb–Oseen solution as the odd
viscosity does not enter Eq. (63). However, the resulting pressure is different.

We find the expression for the pressure from the radial equation of motion in
polar coordinates:

ρ�1
0

∂peff

∂r
¼ v2θ

r
: ð67Þ

Using peff≡ p − 2ηoω, we obtain

p� p1 ¼ 2ηoωþ ρ0

Z r

þ1
dr′

v2θðr′Þ
r′

; ð68Þ

where p∞≡ p(r =∞). Introducing rsðtÞ ¼ r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t=t0

p
and ps ¼ ρ0v

2
0

π , we have

p� p1 ¼ ps
1þ t=t0

1
2π

Z r2=r2s

þ1
dq

ð1� e�qÞ2
q2

þ 2
Reo

e�r2=r2s

" #
;

where Reo≡ r0v0/νo is an odd Reynolds number.
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In the regime in which the Mach number Ma � v0=c � 1, we use the relation
ρ − ρ0= c−2(p − p∞) to calculate (small) changes in density as a result of the vortex
flow:

ρ� ρ0 ¼
ρ0Ma2

π2ð1þ t=t0Þ
1
2

Z r2=r2s

þ1
dq

ð1� e�qÞ2
q2

þ 2π
Reo

e�r2=r2s

" #
: ð69Þ

Rescaling the density as

δ~ρ � ðρ� ρ0Þ
π2ð1þ t=t0Þ

Ma2
ð70Þ

and the radius as ~r � r=rs, we find that

δ~ρ

ρ0
¼ 1

2

Z ~r2

þ1
dq

ð1� e�qÞ2
q2

þ 2π
Reo

e�~r
2

" #
: ð71Þ

We plot this solution (a rescaled form valid for all times t) in Fig. 2c of the main
text. In the case Reo � 1, we drop the first term of Eq. (71). Then, we plot
δ~ρ Reoj j=ð2πρ0Þ ¼ signðνoÞe�~r2 in the inset of Fig. 2c. This is also the regime in
which Eq. (6) is valid.

Note that in addition to the condition Ma � 1 that must be valid for these
equations to hold, for small Reo the self-consistency condition ρ�ρ0j j

ρ0
� 1 also

dictates that

Ma2

Reoj j � 1: ð72Þ

Notably, an odd viscosity fluid can be compressible even at low Mach number if the
odd Reynolds number |Reo| is sufficiently small, or equivalently, if the odd viscosity
is sufficiently large.

In Fig. 2b of the main text, we plot the rescaled solution for the azimuthal
velocity, i.e.,

~vθð~rÞ=v0 ¼ vθðrÞπrs=r0 ¼ 1� e�~r
2

� �
=~r: ð73Þ

Compression shocks in chiral active fluids. In this section, we are interested in
the conditions for which Eq. (46) reduces to Burgers’ equation. Under these
conditions, the fluid experiences a compression shock, but the density gradients are
small. Schematically, we assume a lowest-order-nonlinearity and lowest-order-
gradient expansion. From this assumption, we note that terms of the form ∇ρ∇v
are higher order in nonlinearity than the viscosity terms ∇2v and higher order in
gradients than the nonlinear term ∇v2. Thus we may neglect these terms to derive a
Burgers’ equation with the addition of odd viscosity and antisymmetric stress. In
that case, the full equations of motion are:

∂tρþ ∇ � ðρvÞ ¼ 0; ð74Þ

∂tðρviÞ þ ∇ � ðρvivÞ ¼ η∇2vi � ∂ipþ I
2 ∂j Ω ∂iv�j þ ∂�i vj

� �h i
þ Γ

2 ϵij∂j Ω� ω½ � þ fiðrÞ;
ð75Þ

ι∂tðρΩÞ þ ι∇ � ðρΩvÞ ¼ DΩ∇2Ω� ΓΩΩþ τ � Γ½Ω� ω�; ð76Þ

where fi is the external forcing that gives rise to the steady-state shock. We rewrite
the left-hand side of Eqs. (75) and (76) using the product rule and the continuity
Eq. (74),

∂tρþ ∇ � ðρvÞ ¼ 0; ð77Þ

ρ ∂t vi þ ðv � ∇Þvi½ � ¼ η∇2vi � ∂ipþ I
2 ∂j Ω ∂iv�j þ ∂�i vj

� �h i
þ Γ

2 ϵij∂j Ω� ω½ � þ fiðrÞ;
ð78Þ

ιρ ∂tΩþ ðv � ∇ÞΩ½ � ¼ DΩ∇2Ω� ΓΩΩþ τ � Γ½Ω� ω� ð79Þ

We divide both sides of Eq. (78) by ρ and both sides of Eq. (79) by ρι and Taylor-
expand the (dynamic) hydrodynamics coefficients in density, keeping only the
lowest-order (constant) terms to find a set of equations similar to Eqs. (54) and

(55):

∂tρþ ∇ � ðρvÞ ¼ 0; ð80Þ

∂tvi þ ∇ � ðvivÞ ¼ ν∇2vi � ρ�1∂ipþ ι
2 ∂j Ω ∂iv�j þ ∂�i vj

� �h i
þ Γ′

2 ϵij∂j Ω� ω½ � þ f ′i ðrÞ;
ð81Þ

∂tΩþ ∇ � ðΩvÞ ¼ DΩ0
∇2Ω� ΓΩ0

Ωþ τ′� Γ′ι�1½Ω� ω�; ð82Þ

where f ′i ¼ fi=ρ. Equations (80)–(82), along with the equation of state p(ρ),
describe the full hydrodynamics. In the limit of strong compression, we may drop
the pressure term and Eqs. (81) and (82) then form a closed set,

∂t vi þ ∇ � ðvivÞ ¼ ν∇2vi þ ι

2
∂j Ω ∂iv�j þ ∂�i vj

� �h i
þ Γ′

2
ϵij∂j Ω� ω½ � þ f ′i ðrÞ; ð83Þ

∂tΩþ ∇ � ðΩvÞ ¼ DΩ0
∇2Ω� ΓΩ0

Ωþ τ′� Γ′ι�1½Ω� ω�: ð84Þ

After solving Eqs. (83) and (84), the density profile can be found using the con-
tinuity equation Eq. (80). We rescale these equations to find the dimensionless
form. In the steady state, the characteristic length and velocity scales come from the
forcing term f ′i ðrÞ ¼ ðv20=r0Þf ′r ðr=r0Þ. We also rescale t ¼ trr20=ν, Ω=ΩrΩ0 the
same way as for Eqs. (56) and (57). We find a set of equations that describe the
strongly nonlinear regime:

∂tui þ v0r0
ν
∇ � ðuiuÞ ¼ ∇2ui þ v0r0

ν
f ′r ðrrÞ þ ιΩ0

2ν ∂j Ωr ∂iu�j þ ∂�i uj
� �h i

þ Γ′
2ν

Ω0r0
v0

ϵij∂jΩr � Γ′
2ν ϵij∂jωr;

ð85Þ

∂tΩr þ v0r0
ν

∇ � ðΩruÞ ¼ DΩ0

ν
∇2Ωr þ ΓΩ0

r20
ν

1� Ωrð Þ � Γ′
ν

r20
ι
Ωr þ Γ′

ν

r20
ι

v0
Ω0r0

ωr:

ð86Þ

Note that Eq. (86) is identical to Eq. (57), whereas Eq. (85) is Eq. (56), but with the
forcing term instead of the pressure term. The other crucial feature of Eqs. (85) and
(86) is that the incompressibility condition ∇ � u ¼ 0 does not apply, unlike for
Eqs. (56) and (57).

Given a forcing f ′rðrrÞ ¼ f ′rxðrrÞ; 0
� �

, we find a steady state that depends only on
the x-coordinate. This allows us to solve for the density profile using the relation
∂xρ/ρ= −∂xvx/vx (from Eq. (80)), which along with the mean value ρ0 of the
density, allows us to calculate the profile ρ(x) using either the numerical (Fig. 3a) or
analytical (Fig. 3b–f) solutions for vx(x).

Shocks: integrating out the spinning frequency in the chiral gas regime: We now
follow the same logic as was used in the previous section, but without assuming
incompressibility. We use the same conditions on initial scales (58, 59). This
regime is only possible when the condition on the hydrodynamic parameters (60) is
satisfied. In this case, we can assume that Ω≈Ω0= const.

As in Sec. IV A2, outside of the limit defined by Eqs. (58) and (59), there are
contributions due to antisymmetric stress whose effects we examine numerically. In
the regime opposite to that set by Eqs. (58) and (59), in which the antisymmetric
stress dominates, the odd viscosity term is a small nonlinear correction to the
hydrodynamics and can be neglected for the same reasons as it was neglected in
refs. 11,25.

In the case for which odd viscosity dominates, Eq. (83) reduces to a modified
Burgers’ equation with the additional odd viscosity term:

∂t vi þ ðv � ∇Þvi ¼ ν∇2vi þ νo∇2ϵijvj þ f ′i ðrÞ: ð87Þ

Equation (87) may be re-written as an equation for the evolution of vorticity, in
which νo contributes an additional source term as a result of the compressible part
∇ � v of the flow (provided that ∇ ´ f ¼ 0):

∂tωþ ∇ � ðωvÞ ¼ ν∇2ωþ νo

2
∇2ð∇ � vÞ: ð88Þ

As explained in the main text, the odd viscosity generates vorticity preferentially
within the shock where gradients of ∇ · v are largest. The dimensionless version of
Eq. (87) reads (Re ¼ v0r0

ν
)

∂tui þ Reðu � ∇Þui ¼ ∇2ui þ νo

ν
∇2ϵijuj þ Re f ′riðrrÞ: ð89Þ
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In the steady state, the one-dimensional profile for Eq. (89) is determined by

Reux∂xux ¼ ∂2xux þ
νo

ν
∂2xuy þ Re f ′rxðxrÞ; ð90Þ

Reux∂xuy ¼ ∂2xuy �
νo

ν
∂2xux: ð91Þ

Perturbative solution for small odd viscosity: For the case νo=ν � 1, we obtain
a perturbative analytical solution for the steady-state shock profile by first
neglecting the subdominant νo term in Eq. (90), solving this equation both within
and outside the shock using matched assymptotics, and then substituting the
solution inside the shock into Eq. (91). We choose the forcing to be f ′rðrrÞ ¼ð�π sinðxrπÞ=4; 0Þ and solve the equation looking for the periodic solution with the
period xr∈[−1,1]. In this paper, we solve for a stationary shock and not a
propagating front, the later case might lead to a slightly different functional form
but with the same essential structure. We solve

ux∂xux ¼ νr∂2xux �
π

4
sinðxrπÞ; ð92Þ

where νr= ν/(v0r0)= Re−1 is the corresponding inverse Reynolds number. For large
Reynolds number (νr � 1), the steady-state solution has a narrow shock in the
vicinity of xr= 0. Away from this region, the inertial term dominates and the
steady-state velocity profile is obtained by integrating the expression ∂xu2x ¼� π

2 sinðxrπÞ to find the solution ux= −sign(xr) cos(xrπ/2). Here we tuned the
integration constant so that the shock is at xr= 0 and the velocity is zero on
average.

In the region xr=νr � 1, a different solution applies. In that region, Eq. (92) can
be simplified by dropping the forcing term, and then integrated exactly using
matched-asymptotic boundary conditions ux→ 1 for xr=νr � �1, and ux→ −1 for
xr=νr 	 1. The resulting solution is given by ux= −tanh[xr/(2νr)]. For the case
νr � 1 a simple interpolation,

uxðxÞ ¼ �tanh½xr=ð2νrÞ�cosðxrπ=2Þ ð93Þ

between the outer and the inner solution gives a reasonable approximation to the
exact steady state over the entire range of values of xr.

The solution for uy decays rapidly away from the shock, so to find the steady-
state uy profile, it is sufficient to consider the inner solution for ux. We substitute
this solution into νor ¼ νo=ðv0r0Þ ¼ ðReoÞ�1� �

ux∂xuy ¼ νr∂2xuy � νor∂
2
xux ; ð94Þ

and find a linear ODE for uy:

νr∂2xuy þ tanh
xr
2νr

	 

∂xuy ¼ νor

2ν2r
sech2

xr
2νr

	 

tanh

xr
2νr

	 

: ð95Þ

We multiply the above equation by cosh2 xr
2νr

� �
and integrate, which leads to:

duy
dxr

¼ νor
ν2r

sech2
xr
2νr

	 

ln e�c1 cosh

xr
2νr

	 
 ; ð96Þ

where c1 is an arbitrary constant. We then integrate this expression again, to find

uyðxrÞ ¼ � 2νor
νr

xr
2νr

� tanh
xr
2νr

	 

ln e1�c1 cosh

xr
2νr

	 
 	 
� �
þ c2: ð97Þ

The boundary conditions uy→ 0 as x=ð2~νÞ ! ±1 require the choice of
integration constants c1= 1 − ln 2 and c2= 0. Substituting these values and
simplifying, we find:

uyðxrÞ ¼ � 2νor
νr

xr
2νr

� tanh
xr
2νr

	 

ln 2cosh

xr
2νr

	 
 	 
� �
: ð98Þ

We then re-express this solution in terms of the viscosity ratio νo/ν and Reynolds
number Re.

ν

2νo
uyðx̂Þ ¼ �x̂ þ tanh x̂ ln 2cosh x̂j jð Þ; ð99Þ

where x̂ ¼ xrRe=2 (=xv0/2ν). We plot this solution in Fig. 3a alongside the
numerical solution to the full Eq. (87) once the system reaches the steady state.

Scaling for large odd viscosity: For the case νoj j=ν 	 1, we use scaling to obtain
the characteristic features of the profile. The equations that determine the steady-
state profile are:

ux∂xux ¼ νr∂2xux þ νor∂
2
xuy �

π

4
sinðxrπÞ; ð100Þ

ux∂xuy ¼ νr∂2xuy � νor∂
2
xux : ð101Þ

Let us drop the forcing and ν terms. We obtain

ux∂xux ¼ νor∂
2
xuy ; ð102Þ

ux∂xuy ¼ �νor∂
2
xux : ð103Þ

Integrating the first equation gives 2νor∂xuy ¼ u2x � C1, where C1= 1 for the case
we consider. Substituting into the second equation we obtain

uxðu2x � 1Þ ¼ �2ðνor Þ2∂2xux :

This equation describes the motion of a nonlinear pendulum. We now linearize in
δu= ux − 1 to find the harmonic oscillator equation

δu ¼ �ðνor Þ2∂2xðδuÞ: ð104Þ

The solutions to this equations oscillate in space with a period given by λ � νor ,
which is the scaling law that we observe numerically in Fig. 3c.

If we take Eqs. (100) and (101) and drop the forcing term, but not the ν terms,
performing the same operations of integration we obtain the equation

νor∂xuy ¼
1
2
ðu2x � 1Þ � νr∂xux: ð105Þ

Substituting for gradients of uy in Eq. (101), we then obtain

1
2
ux u2x � 1
� �þ νor

� �2 þ ν2r

h i
∂2xux ¼ νr∂xu2x : ð106Þ

Note that this is a nonlinear damped oscillator, with the damping term on the
right-hand side. Linearizing in δu= ux − 1, we find

νor
� �2 þ ν2r

h i
∂2xðδuÞ � 2νr∂xδuþ δu ¼ 0; ð107Þ

which describe the motion of a damped harmonic oscillator. From this, we find the
characteristic wavelength to be (from comparing first and last terms)

λ2 � ðνoÞ2 þ ν2
� �

=v20 ð108Þ

and the decay length of the envelope from the damping ratio (from comparing first
and second terms):

Λ � ðνoÞ2 þ ν2
� �

=νv0: ð109Þ

In the limit νoj j=ν 	 1, the oscillation wavelength is given by λ � νoj j=v0 (same as
above) and the envelope size is Λ � ðνoÞ2=νv0 � νoj jλ=ν. We find that these
scaling laws are consistent with the full numerical solution of Eq. (87), see inset of
Fig. 3c. As expected, the envelope size diverges as viscosity goes to zero. In the
opposite limit, νoj j=ν � 1, also considered in the previous section, we recover the
same scaling laws: λ � Λ � ν=v0. In that limit, the oscillator is critically damped
and no oscillations are observed.

Numerical simulations. In this section, we discuss the numerical method used for
the direct numerical simulations of hydrodynamic equations. The equations are
solved using the pseudo-spectral method. This method involves calculating spatial
derivatives in Fourier space and non-linear terms in real space. The spatial deri-
vatives are non-local in real space and local in Fourier space, while the non-
linearities are local in real space but non-local in Fourier space. Thus, in this
method we restrict ourselves in evaluating local terms in both real and Fourier
space. The time integration is done to the (spatially) Fourier-transformed fields. To
calculate these Fourier transforms we use the open-source library fftw-2.1.5.

In order to understand the implementation of the algorithm let us look at the
various kind of terms that need to be implemented. The Laplacian operator in
Fourier space is given by ∇2 ! �k2. Let us now consider the (advection like) non-
linear terms of the form ∇ � ðρvÞ. The product ρv is a convolution in Fourier space
and highly non-local, but in real space this is a local product. Therefore, the
product is calculated in real space and the divergence of the term evaluates to
ikx cρvx þ iky cρvy .

Now let us consider an equation of the form ∂tρþ ∇ � ðρvÞ ¼ Dρ∇2ρ. In order
to solve this pseudo-spectrally, we take the spatial Fourier transform of the
equation and we are left with ∂t ρ̂þ ikx cρvx þ iky cρvy ¼ �Dρk2ρ̂. It is possible to
further simplify the equation by rearranging the terms and calculating the
integration factor. We are finally left with: ∂t eD

ρk2 t ρ̂ ¼ �eD
ρk2 t ikx cρvx þ iky cρvy� �

.
The solution of the above equation is:

ρ̂ðtÞ ¼ �e�Dρk2 t
Z t

t0

dt′eDρk2 t′ik � bρv: ð110Þ

The time evolution is done using a second-order Runge–Kutta (RK2) method. The
pseudo-spectral method has the additional advantage of having exponentially small
spatial truncation error as opposed to algebraically small error, which would result
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were we to use a finite-difference scheme. The time evolution error in RK2 scheme
is of the order of � OðδtÞ2.

One of the key concerns on calculating the convolutions numerically is the
generation of aliasing errors. In our simulations, we cut off wave numbers greater
than 2K/3 where K≡N/2 corresponds to the smallest lengthscales in our system (N
is the number of grid points).

Incompressible regime: We solve the incompressible Navier–Stokes equations
coupled to the local rotation field. We define a new tensor ϕij ¼ ∂iv�j þ ∂�i vj . The
incompressible Navier–Stokes can be further simplified using the constraint
∇ � v ¼ 0. Taking the curl of Eq. (54). The resulting equations are:

∂tωþ ∂l vlωð Þ ¼ ν∇2ωþ ι

2
εik∂k∂j Ωϕij

� �
þ Γ′

2
∇2½Ω� ω�: ð111Þ

∂tΩþ ∂lðvlΩÞ ¼ DΩ0
∇2Ω� ΓΩ0

Ωþ τ′� Γ′ι�1ðΩ� ωÞ: ð112Þ

The above equations can be written in the form discussed above in the Fourier
space to be integrated over time numerically. The form of the solutions are:

ω̂ðtÞ ¼ �e�νk2 t
Z t

t0

dt′eνk2 t0 ikl cvlω� Γ′
2
k2 Ω̂� ω̂
� �� ι

2
ϵijkkkj dΩϕij

� �
; ð113Þ

Ω̂ðtÞ ¼ �e� DΩ0 k2þΓΩ0ð Þt
Z t

t0

dt′e DΩ0 k2þΓΩ0ð Þt0 ikl cvlΩþ Γ′
ι

Ω̂� ω̂
� �� �

: ð114Þ

Now, pressure can be calculated by taking the divergence of Eq. (54)

ρ�1
0 ∇2peff ¼ �∂i½∇ � ðvviÞ� þ ι

2
∂i∂j Ωϕij

� �
: ð115Þ

The above equations provide us the information presented in the Fig. 2b, d in the
main paper. The dimensionless parameters of the simulations are
v0r0
ν
; νo
ν
; Γ′2ν;

Ω0r0
v0

; D
Ω′

ν
;
ΓΩ′r20
ν
;
r20
ι

� �
¼ ð0:05; ± 0:01; 0:25; 0:004; 1; 0:1; 1Þ on a grid of size

L/r0= 20π and lattice spacing a/r0= 0.2 over a time ~t ¼ 1:0. As initial conditions

we use: ~ω ¼ e�~r
2

π and ~Ω ¼ 0.
Highly compressible regime: The two-dimensional Burgers’ equation (Eqs. (75)

and (76)) that is used to model compressible flow is similarly solved by the pseudo-
spectral algorithm. The data for Fig. 3 are obtained by solving this equation. The
integral form of the solutions in Fourier space is:

v̂iðtÞ ¼ �e�νk2 t
Z t

t0

dt0eνk
2 t0 ik � cvvi þ νok

2ϵij v̂j þ i
ι

2
kj dΩϕij þ i

Γ′
2
ϵijkj Ω̂� ω̂

� �� �
:

ð116Þ

The solutions for Ω is the same as that for the incompressible flow.
We simulate Eqs. (83) and (84) with an applied forcing f ′r ðrÞ ¼ sinðxÞ=2 for x is

in [0,2π] (we rescale all lengths according to x→ (x − π)/π in our results). We use

parameters v0r0=ν; νo=ν; Γ′2ν;
Ω0r0
v0

; D
Ω0

ν
;
ΓΩ0 r20
ν

;
r20
ι

� �
¼ ð44;�0:02; 2:0; 2:2; 2:0; 1800; 9Þ

with lattice spacing a= 0.006. For the simulations with high odd viscosity ratio
(Fig. 3c, d of the main paper), we use νo/ν= −10.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon request.
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