

High-contrast imaging of protoplanetary disks Boer, J. de

Citation

Boer, J. de. (2018, January 10). *High-contrast imaging of protoplanetary disks*. Retrieved from https://hdl.handle.net/1887/57806

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/57806

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/57806</u> holds various files of this Leiden University dissertation

Author: Boer, Jozua de Title: High-contrast imaging of protoplanetary disks Date: 2018-01-10

High-contrast imaging of protoplanetary disks

Cover image:

Protoplanetary disk and companion candidates of RX J1615.3-3255. The image is a composite of Figures 4.1 b, 4.2 b & 4.4 b of this thesis.

High-contrast imaging of protoplanetary disks

Proefschrift

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C. J. J. M. Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 10 januari 2018 klokke 13.45 uur

door

Jozua de Boer

geboren te Weststellingwerf in 1981 Promotiecommissie

Promotor: Co-promotor:	Prof. dr. C. U. Keller Dr. J. H. Girard	
Overige leden:	Prof. dr. H. J. A. Röttgering Prof. dr. I. A. G. Snellen Prof. dr. M. R. Hogerheijde Prof. dr. C. Dominik Prof. dr. F. Ménard Dr. D. M. Stam	(Universiteit van Amsterdam) (Université Grenoble Alpes) (Technische Universiteit Delft)

"Ein a priori wahres Bild gibt es nicht" – Ludwig Wittgenstein Logisch -philosophische Abhandlung Satze 2.225

To Naomi, my love and my muse.

Contents

1	Intr	oductio	on		1
	1.1	How	do planet	ary systems form?	1
		1.1.1	From m	olecular clouds via globules to disks	3
		1.1.2	From pr	rotoplanetary disks to planetary systems	5
			1.1.2.1	From dust to planets	6
			1.1.2.2	Transitional and debris disks	7
		1.1.3	Herbig	Be/Ae Stars	9
		1.1.4	Primore	lial versus transition disks	10
	1.2 Current understanding of disk evolution		standing of disk evolution	12	
		1.2.1	Open q	uestions	13
		1.2.2	Finding	answers to the open questions	13
	1.3 High-contrast imaging of disks in the visible and ne		imaging of disks in the visible and near in-		
		frared	l		15
		1.3.1	The cha	llenge posed by high-contrast	15
		1.3.2	High-co	ontrast imaging techniques	16
			1.3.2.1	PSF subtraction or differential imaging tech-	
				niques	18
		1.3.3	Polarim	etric imaging	21
			1.3.3.1	Polarization	21
			1.3.3.2	Polarimetric differential imaging	22
			1.3.3.3	Polarimetry as a characterization method	24
	1.4	Outlin	ne of this	thesis	24
	1.5	Futur	e directio	ns	26
2	BPI	Piscium	1: its flari	ing disk imaged with SPHERE/ZIMPOL	29
	2.1	Introc	luction .		30

	2.2	Observations and data reduction	31
		2.2.1 Observations with VLT/SPHERE/ZIMPOL	31
		2.2.2 Polarimetric Differential Imaging (PDI)	32
		2221 Correcting instrumental polarization	33
		2.2.3 Reference Star Differential Imaging (RDI)	33
		2.2.6 Deconvolution of the total intensity image	34
	2.3	Results	35
	2.4	Discussion	36
	2.1	2.4.1 Modeling the disk	36
		242 Disk morphology	40
	2.5	Conclusion	40
			10
3	Vari	ability and dust filtration in the transition disk J160421.7-	
	2130	028 observed in optical scattered light	43
	3.1	Introduction	44
	3.2	Observations and data reduction	46
	3.3	Results	47
		3.3.1 Radial profile	47
		3.3.2 Asymmetric structures	48
	3.4	Discussion	49
	3.A	Comparison with HiCIAO data	51
	3.B	Ring shape at different azimuthal cuts	52
4	Mul	tiple rings in the transition disk and companion candidates	
	arou	ind RX J1615.3-3255.	
	Hig	h contrast imaging with VLT/SPHERE.	55
	4.1	Introduction	56
	4.2	Observations	58
		4.2.1 VLT/SPHERE IRDIS, IFS and ZIMPOL	58
		4.2.2 VLT/NACO and Keck/NIRC2 SAM	59
	4.3	Data reduction	60
		4.3.1 Reduction of the ZIMPOL P2 R' band data	60
		4.3.2 Reduction of the IRDIS/DPI <i>J</i> band data	61
		4.3.3 Reduction of the IRDIS (<i>H</i> 2 <i>H</i> 3) and IFS (<i>YJ</i>) pupil	
		tracking data	64
		4.3.4 Reduction of the NACO K_s jitter imaging data	65
		4.3.5 Reduction of the Keck NIRC2 SAM <i>K</i> ' data	65

	4.4	Results	66
		4.4.1 Disk	66
		4.4.2 Point sources	71
	4.5	Discussion	74
		4.5.1 Disk geometry 74	74
		4.5.1.1 Nature of the ring structures	74
		4.5.1.2 A1: additional ring or bottom of R1 7	76
		4.5.2 Possible disk sculpting companion	78
		4.5.3 Wavelength-dependent surface brightness of R2 8	81
	4.6	Conclusion	82
	4.A	Stellar properties	83
		1 1 1	
5	Cha	acterizing instrumental effects on polarization at a Nasmyth	
	focu	s using NACO 8	87
	5.1	Introduction	88
	5.2	Calibration principles	91
		5.2.1 Default instrumental setup	91
		5.2.2 Deriving UT4 instrumental polarization: Q_{UT4} 9	92
		5.2.3 From measurements to matrix components 9	93
	5.3	Observations and data reduction	94
		5.3.1 IP and crosstalk calibration observations 9	95
		5.3.2 HWP angle offset calibration observations 9	95
		$5.3.3$ Data reduction \ldots $9.5.3.3$	95
	5.4	Results	98
		5.4.1 NACO HWP offset	98
		5.4.2 Matrix components	99
		5.4.2.1 UT4 Mueller matrix components 10	.00
		5.4.2.2 NACO Mueller matrix components 10	.00
	5.5	Discussion and outlook	.02
	5.A	Appendix: Rotational (a)symmetry of Mueller matrix com-	00
	= D	ponents	.03
	5.B	Appendix: Observation tables	.03
6	Cha	acterizing the polarimetric imaging mode of SPHERE/IRDIS10	109
U	61	Introduction 11	10
	6.2	Design of the polarimetric mode IRDIS/DPI 11	12
	0.4	6.2.1 Unit telescope 3 and SPHERE common path 11	12
		ernt telecope e and er ribben continion paul If	

8	7.3 Eng 8.1 8.2 8.3 Cur	Tot slo lish su The fo This th Final p	mmary ormation of solar systems hesis: High-contrast imaging of protoplanetary disks notes n vitae	 147 151 153 153 155 158 159
8	 7.3 Eng 8.1 8.2 8.3 	Tot slo lish sur The fo This th Final r	mmary ormation of solar systems hesis: High-contrast imaging of protoplanetary disks notes	 147 151 153 153 155 158
8	7.3 Eng 8.1 8.2	Tot slo lish su The fo This tl	mmary prmation of solar systems	147 151 153 153 155
8	7.3 Eng 8.1	Tot slo I ish su The fo	mmary prmation of solar systems	147151153153
8	7.3 Eng	Tot slo lish su	mmary	147 151 153
	7.3	Tot slo	ot	147 151
		faire s	Chillyon	1 4 7
	7.2	Dit pr	oetschrift: Hoog contrast atbeelden van protoplane-	
	7.1	Het or	ntstaan van zonnestelsels	145
7	Ned	lerland	se samenvatting	145
Bil	bliog	raphy		135
	6.6	Conci		155
	((6.5.4	Correcting observations with the instrument model	131
			6.5.3.1 Explaining the TW Hydrae data	129
		6.5.3	Final model	128
		6.5.2	M4 and UT3	127
		6.5.1	The derotator and HWP2	125
	6.5	Calibr	rating the instrumental effects	123
	6.4	Descri	iption of instrumental effects	121
		6.3.3	Temporal variations in efficiency and θ_{na}	121
		6.3.2	Refining the reduction by minimizing U_{\pm}	120
	0.5	631	Data reduction	115
	63	C_{250}	study: TW Hydrae	115
		n / /	SPHEKE/IKLUS	114