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Abstract
Although many tissues express estrogen receptor (ER)α, most 
studies focus on breast cancer where ERα occupies just a small 
fraction of its total repertoire of potential DNA-binding sites, based 
on sequence. This raises the question: Can ERα occupy these other 
potential binding sites in a different context? Ligands, splice vari-
ants, posttranslational modifications, and acquired mutations of 
ERα affect its conformation, which may alter chromatin interac-
tions. To date, literature describes the DNA-binding sites of ERα 
(the ERα cistrome) in breast, endometrium, liver, and bone, in which 
the receptor mainly binds to enhancers. Chromosomal boundaries 
provide distinct areas for dynamic gene regulation between tissues, 
where the usage of enhancers deviates. Interactions of ERα with 
enhancers and its transcriptional complex depend on the proteome, 
which differs per cell type. This review discusses the biological 
variables that influence ERα cistromics, using reports from human 
specimens, cell lines, and mouse tissues, to assess whether ERα 
genomics in breast cancer can be translated to other tissue types.

Abbreviations 
CTCF, CCCTC-binding factor; CYP450, cytochrome P450; ER, estrogen receptor; ERE, 
estrogen receptor element; ESR1, gene that encodes for estrogen receptor α; ETS, E26 
transformation specific; FOXA1, forkhead box protein A1; GATA, GATA-binding protein; 
PBX1, pre-B-cell leukemia transcription factor 1; SNP, single nucleotide polymorphism; 
SRC, steroid receptor coactivator.
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Introduction
Historically, estrogen receptor (ER)α biology is a major focus of attention 
due to its crucial role in breast cancer development, progression and treat-
ment. More recently, ERα biology in several other tissues gained interest, 
including reproductive tissues such as prostate and endometrium (inner 
epithelial lining of the uterus), but also nonreproductive tissues like the 
liver, bone, and brain (Figure 1)1-4. Current methods that target ERα in 
breast cancer treatment, affect these tissues differently. 

Breast cancer is the most diagnosed cancer in women worldwide, with 
1.67 million new cases and over half a million deaths, each year5. Clinical 
studies report that 75% of breast tumors express ERα, a hormone-depen-
dent transcription factor that is essential for tumor growth6,7. To block 
ERα-dependent tumor growth, breast cancer patients often receive tamox-
ifen. This small molecule inhibitor competes with estrogen to bind ERα. 
Although tamoxifen blocks tumor growth in breast cancer, it acts as an 
agonist for ERα in endometrium and osteoblasts, leading to increased risk 
for endometrial cancer8-10 and increased bone density11,12, respectively. 
Thus, by targeting ERα in breast cancer, many other tissues are affected: 
sometimes this is beneficial, sometimes this is harmful (Table 1). 

Figure 1. Tissues that are reported to provide genomic interplay between ERα and 
(putative) pioneer factors. For references, see text.
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Despite many reports on the molecular mechanism of ERα in breast 
cancer, we lack knowledge on the genomic action of ERα in many other 
tissues. Although over a century of clinical studies illustrate that ERα 
biology is essential throughout the body, molecular studies are compara-
tively new with genome-wide ERα-binding studies that are only technically 
feasible since the last decade (reviewed by Flach et al13). Genomic studies 
are crucial to determine the interplay between ERα and chromatin, which 
at specific locations, regulates genes in a tissue-specific manner. 

Here, we review genomic data of ERα in multiple tissue types to compare 
their cistromic repertoires, and to highlight the effects that endocrine 
treatment of breast cancer has on this. New data provide opportunities 
to compare genomic activity of ERα in different physiological contexts, as 
multiple studies report on the genomic behavior of ERα in breast, endo-
metrium, bone, and liver. We choose to discuss ERα’s cistrome, and 
exclude that of ERb due to limited cistromic data on the latter. We focus 
on five topics: 1) the effects of ligands on ERα; 2) tissue-specific isoforms 
and ligand-independent conformational changes of ERα; 3) the genomic 
distribution of ERα in various tissues; 4) the dynamic chromosomal archi-
tecture that influences ERα; and finally 5) the tissue-specific differences 
in proteome required for ERα’s interaction with the chromatin. A better 
understanding of how drugs that target ERα in breast cancer affect other 
tissues provides a rationale for improving tailored endocrine treatment. 

How Do Different Ligands Affect ERα Throughout the 
Body?
Estrogens affect many different tissues that involve both healthy physio-
logical and pathological processes. A link between ovarian function (the 
main source of estrogens in premenopausal women) and breast cancer 
was first reported in 1882 when the breast tumor of a woman regressed as 
she went into menopause14. This observation eventually led to the concept 
of ovariectomy as a treatment for breast cancer. And although a third of 
breast cancer patients benefited from this15, it associated with a high mor-
tality rate16. 

Currently, endocrine therapies represent the mainstay for hor-
monal intervention of breast cancer treatment. Small molecule ligands, 
such as fulvestrant and tamoxifen, compete with estrogens to bind 
ERα’s ligand-binding domain. Fulvestrant targets the ERα for proteoso-
mal degradation17, whereas tamoxifen alters coregulatory recruitment18. 
Alternatively, aromatase inhibitors are prescribed to block estrogen 
synthesis. 

Aromatases, members of the cytochrome (CY)P450  superfamily, 
convert androgens into estrogens19. Mainly the ovaries in premenopausal 
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women, but also fat cells20-22 and skin cells23, express aromatases. 
Likewise, CYP450 enzymes convert tamoxifen into its active metabolites24. 
Single nucleotide polymorphisms (SNPs) in genes that encode CYP450 
enzymes may increase or decrease enzymatic activity for the conversion of 
androgens into estrogens (or small competitive molecules into their active 
metabolites), and thus alter their concentration25. 

The bloodstream carries estrogens, bound mainly to sex hormone-bind-
ing globulin26 or serum albumin27-29, to various organs. When unbound, 
estrogens diffuse through cell membranes and activate ERα29. This causes 
a string of events as ERα dissociates from chaperones, binds the chroma-
tin, and recruits coregulators30 to regulate gene expression. In this way, 
estrogens drive development of female secondary sexual characteristics 
such as breast maturation31, ovulation32 and endometrial thickening33, 
but also sometimes oncogenesis. Although initially linked to reproduc-
tive organs, estrogens also play many roles in nonreproductive organs, 
including bone density, liver metabolism and cognitive function (Table 1). 
Estrogens affect distinct genes depending on these tissues34,35. 

ERα contains multiple domains including a DNA-binding domain, a 
hinge region and a ligand-binding domain. Within the ligand-binding 
domain lies helix12, which is crucial for the interaction with coregula-
tors. Helix12 adapts its conformation when ligands bind ERα. How this 
structure is altered depends on the ligand: ERα in complex with agonists 
mediates interaction with coregulators, whereas ERα in complex with 
antagonists inhibits these interactions (Figure 2)36,37 and instead recruits 
other interacting partners to the complex18. Although this alternative 
composition of helix12 explains tamoxifen’s antagonistic effects in breast 
cancer, tamoxifen’s agonistic features remain obscure. 

After the success of tamoxifen in the treatment of breast cancer, novel 
small molecule inhibitors followed, such as raloxifene. Like tamoxifen, 
these new drugs compete for the ligand-binding domain of ERα. Both 
tamoxifen and raloxifene require interaction with amino acid D351 of the 
ligand-binding domain of ERα for their estrogenic/antiestrogenic proper-
ties38. Raloxifene has a side chain that shields D351 of the ERα, which 
renders the complex antiestrogenic38,39. This occurs due to a raloxifene-in-
duced relocation of helix12 so that coactivators required for agonistic 
effects no longer bind. Tamoxifen lacks this specific side chain, causing 
D351 to allosterically influence activation of the receptor37. Currently, 
third generation antiestrogens, including lasofoxifene are being investi-
gated for their clinical effects. 

The influence of ERα exceeds breast cancer as illustrated by both phys-
iological and pathological effects of hormones throughout the body. Many 
studies report that endocrine therapies disrupt beneficial effects of estro-
gen in nonreproductive organs (Table 1). Tamoxifen for example, increases 
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risk for endometrial cancer8-10 and associates with cognitive decline in 
a subset of patients40-42, whereas aromatases decrease bone density43. 
To prevent harmful effects of estrogens, while maintaining its benefits, 
requires knowledge on the genomic action of ERα for each different phys-
iological context. But although multiple clinical and molecular studies 
report on estrogens and endocrine therapies to affect several tissues, 
many lack genomic data to describe the impact of endocrine intervention 
on the cistrome of ERα.

How Do Ligand-Independent Conformational Changes of 
ERα Affect Its Cistrome?
Different tissues express different levels of ERα. Estrogens44-46 and other 
hormones45 regulate ERα levels but little is known about the transcription 
factors involved. Epigenetic mechanisms, such as DNA methylation and 
histone acetylation, regulate ERα expression47. ERα expression levels may 
not only influence its cistrome but also affect the detection of ERα binding 
that can be measured by current techniques. Most studies generate data 

Table 1. Examples of Estrogen’s Effects Throughout the Body and the Effects of 
Tamoxifen.

Tissue target Effects of estrogen Effects of tamoxifen

Breast Stimulates  growth6,130 Blocks tumor growth131-134

Endometrium Stimulates growth135 Increases risk for endometrial 
cancer8-10

Prostate Controls sperm concentration136 Increases sperm density137

Bone Protects against 
osteoporosis138: Maintains 
balance between bone-forming 
osteoblasts and bone-resorbing 
osteoclasts139,140

Protects against 
osteoporosis11,12,43,141,142

Liver Protects against diabetes:  
Improves glucose tolerance and 
insulin sensitivity143,144 

Increases risk for fatty 
liver145,146

Brain Protects against cognitive 
decline147-149

Decreases cognitive 
function40-42

Heart and 
vascular system

Protects against heart 
attacks150-152: Decreases 
atherosclerosis153-158 and widens 
blood vessels159-161

Protects against cardiovascular 
disease in postmenopausal 
women162

Lung Promotes lung function by 
regulating alveolar size163; 
possibly increases risk of lung 
cancer164-166

Decreased risk of death  in 
lung cancer patients167

Immune system Protects against allergic 
reactions168,169

Anti-allergic and 
immunosuppressive169-172
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with antibodies that are unable to distinguish variants of the receptor, 
such as splice variants, posttranslational modifications, or mutations. 
ERα variants influence both the activation of ERα and its downstream 
effects on gene regulation. These variants might differ in levels in a tis-
sue-specific fashion and thus add a layer of regulation to the cistromic 
repertoire of ERα. 

Isoforms may be differentially expressed per tissue due to alternative 
splicing and promoter usage (Figure 2). The prevalent splice variants of 
ERα are 66, 46, and 36 kDa. ERα-66 contains six domains, including 
a ligand-binding domain and an activation domain 1. ERα-46 lacks the 
activation domain 1 and ERα-36 lacks both the activation domain 1 as 
well as most of the ligand-binding domain48,49. 

Studies in mice on RNA levels of ERα variants50 show that the female 
reproductive organs mainly produce ERα-66, whereas nonreproduc-
tive tissues also express it, but at lower levels. The heart, both of female 
and male mice, mostly expresses ERα-46, whereas ERα-36 is prevalent 
in kidney and liver of female mice only. Many of these splice variants 

Figure 2. An overview of reported factors that influence the ERα cistrome. Conforma-
tional cues (green zone) alter the conformation of ERα, thereby influencing its poten-
tial to interact with the chromatin and interaction partner(s), whereas environmental 
cues by the chromatin (white zone) affect the capacity of genomic regions to bind ERα. 
Some cues provide opportunities for ERα to bind throughout the body (white part of 
the circle), whereas other cues occur in a tissue-specific manner (purple part of the 
circle). PTM: Posttranslational Modification.
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named above however, have yet to be validated on the protein level in these 
tissues, both in mice and in humans. 

The extracellular environment influences signaling pathways within 
the cell, which differs per tissue and may modify ERα posttranslationally. 
Hence, it can alter ERα’s cistrome and transcriptional capacity (Figure 
2). Examples of such posttranslational modifications include phosphory-
lation, acetylation and S-nitrosylation. Phosphorylation of ERα at serines 
104, 106, and 118 influences its ligand-independent activation51,52, whereas 
phosphorylation at S305 redirects ERα to new transcriptional start sites53 
and allows cofactors to bind in the presence of tamoxifen, leading to 
agonistic effects54,55. Acetylation at lysine 266 and lysine 268 increases 
transcriptional activity of ERα56,57, whereas S-nitrosylation of cysteines in 
the DNA-binding domain inhibits it58. However, it remains undetermined 
whether the latter posttranslational modifications on ERα also give rise to 
an altered cistrome. 

Acquired mutation of the gene that encodes ERα (ESR1), which occurs 
in approximately 20% of metastasized breast cancers, may also influence 
the ERα cistrome. This acquired mutation generally occurs at Y537, D538 
or both, in helix12 of the ligand-binding domain. Due to these mutations, 
helix12 adapts a more estrogen-like conformation that creates a con-
stitutively active ERα (Figure 2)59-61. Whether these mutations alter the 
ERα cistrome as compared with wildtype receptor, and whether other tis-
sue-specific cancers also produce mutations in ESR1 on this type of scale, 
remains unexplored.

How Is ERα Distributed Across the Genome in Various 
Tissues?
The number of ERα-binding sites in MCF-7 cells increases upon estrogen 
or tamoxifen treatment, in comparison with hormone depletion. In case of 
a short treatment, ERα binds the same chromatin sites irrespective of the 
ligand, although signal intensity is typically highest for estrogen treat-
ment62. Upon prolonged tamoxifen treatment (in the order of months)63, 
the ERα cistrome shifts and the MCF-7 cells acquire tamoxifen resistance 
as they regain proliferative potential despite treatment62. These data illus-
trate the dynamic nature of ERα-binding sites. 

ERα sites vary between primary breast tumors, and also between 
breast cancer cell lines64-67. When it comes to breast cancer patients, these 
differences in ERα cistrome enable patient stratification on outcome, high-
lighting the clinical significance of ERα cistromics. 

To date, public genome-wide data to describe ERα patterns in healthy 
mammary tissue exist only for mammary glands from healthy-6-week-old 



19

1

ERa  cistrome  beyond breast cancer

mice. Similar to human breast cancer62,64,66-69, ERα occupies mostly 
enhancers in healthy mouse mammary glands, at DNA motifs for ERα 
(ESR1) but also other transcription factors, such as Transcription Factor 
AP-2 (activating enhancer binding protein 2, TFAP2) and Jun70 (both 
proteins that were previously found to facilitate ERα action in breast 
cancer cell line MCF-771-73). Although genomic studies on human breast 
cancers identified thousands of ERα-binding sites (at DNA regions with 
strong enrichment for forkhead motifs)64,67, genomic data on healthy mice 
mammary glands show only hundreds of ERα-binding sites (lacking strong 
enrichment for forkhead motifs)70. 

It remains unclear how the difference in ERα sites of breast cancer 
compared with healthy tissue affects tumor biology. The higher amount 
of ERα sites in breast cancer potentially relates to TNFα signaling, which 
regulates interactions of forkhead box protein A1 (FOXA1) with the chro-
matin74 and expands the number of ERα-binding sites in breast cancer 
cells67,74. However, the contrasts between mammary glands derived from 
healthy mice and breast cancer patients have yet to be confirmed by other 
studies because technical factors such as antibody specificity between 
different species, available tissue material, and bioinformatic thresholds, 
potentially influence the data. 

Genomic studies in cell lines reported little resemblance in ERα cis-
tromics between breast cancer cell line T47D and endometrial cancer 
cell line Ishikawa. ERα shares only 19% of binding sites between these 
cell lines75-77, with deviating estrogen-responsive gene expression profiles. 
Shared ERα-binding sites contain high-affinity estrogen receptor elements 
(EREs), lack DNA methylation, and gain accessibility upon estrogen treat-
ment75. In contrast, cell type-specific ERα-binding sites lack high-affinity 
EREs and display specific DNA methylation at accessible chromatin. Cell 
type-specific ERα sites also show distinct DNA motifs, such as forkhead 
and GATA-binding protein (GATA)3 motifs at T47D-unique regions, and 
E26 transformation specific (ETS) protein motifs in Ishikawa-unique 
regions. But because ETS factors interact with ERα in MCF-7 cells78, 
differences in motifs between these two cell lines might have little physio-
logical implications, and therefore require biological validation in multiple 
models. 

A translational study identified ERα sites in several endometrial tumors 
from breast cancer patients who received tamoxifen, and compared these 
with breast tumors79. The data show both unique and shared binding sites 
between endometrial tumors and breast cancer. The ERα cistrome in these 
tamoxifen-associated endometrial tumors locate mainly at distal inter-
genic regions and introns, containing acetylation of histone H3 at lysine 
27 (a marker for activity) and RNA polymerase II, suggesting occupancy at 
active enhancers. The ERα cistromes between these 2 reproductive tissues 
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show much resemblance, reinforcing the question how tamoxifen blocks 
cell proliferation in one tissue while stimulating proliferation in the other. 

Healthy mouse uteri are estrogen-responsive, and their ERα cistromes 
contain not only motifs previously found in breast cancer, but also unique 
motifs. ERα-binding sites in the uterus triple in numbers after estrogen 
injection of ovariectomized mice, locating mainly at introns and distal 
intergenic regions that contain RNA polymerase II80. ERα sites with an 
ERE contain motifs of other nuclear receptor family members, whereas 
ERα sites lacking ERE motifs show motifs for HOX homeodomain-protein 
transcription factors and their cofactor pre-B-cell leukemia transcription 
factor 1 (PBX1, previously identified as a putative pioneer factor in breast 
cancer)81. Although the increase of binding sites resemble the genomic 
behavior of ERα in breast cancer cell lines, the motifs are very different, 
suggesting tissue-specificity of ERα interactions with the chromatin. 

Genomic ERα data in liver82 show differences and similarities with 
the tissues described above. Similarly, ERα-binding sites locate at distal 
intergenic and intronic regions that contain EREs as well as motifs for 
forkhead, activator protein 1, and ETS factors. In addition, the expres-
sion of ERα-target genes increases upon estrogen treatment. In contrast 
to what was found in other tissues, liver tissue contains ERα-binding sites 
proximal to genes involved in energy metabolism. 

Thus far, the ERα cistrome has been reported in breast, endometrium, 
bone, and liver (Table 2). More tissues can be tested but some will have 
obstacles such as the brain, where biopsies are either taken postmortem 
(cut off from normal blood supply), or from diseased tissue (thus enrich-
ing for abnormalities). Another obstacle is that some tissues have very 
low levels of ERα as described above, which makes it more difficult to 
measure its cistrome. Cell lines allow for manipulation to identify proteins 
that mediate ERα’s function, but the number of ERα-positive cell lines in 
various tissues is limited. Consequently, many parts of the ERα cistrome 
are uninvestigated and require innovative approaches to overcome these 
obstacles. 

Can Chromosomal Architecture Influence ERα 
Distribution?
The increased number of ERα-binding sites upon estrogen induction 
in MCF-7 cells and mouse uteri illustrates the dynamic nature of ERα 
cistromics80,83. This dynamic nature of ERα is in part facilitated by the 
surrounding chromatin, which needs to be accessible for ERα to bind. 
Chromatin organization is essential for proper gene regulation as shown in 
acute myeloid leukemia84 as well as malformation of limbs85, in which dis-
ruptions of chromosomal boundaries at topologically associated domains 
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cause inappropriate gene expression. These chromosomal boundaries 
confine regions that require coordinated regulation, thereby shielding 
other regions that require a different mode of regulation86. Chromosomal 
boundaries are stable across cell types86 but can be disrupted during 
oncogenesis, which may potentially affect the ERα cistrome and change 
estrogen-mediated gene expression. 

In healthy tissues, chromosome boundaries are stable across cell 
types86, but the regions within each domain are dynamic so that they can 
regulate genes according to their cell type. Within chromosomal bound-
aries, each region can contain multiple genes and regulatory elements 
such as enhancers and promoters. Enhancers control cell type specificity 
of gene expression, and although many enhancers are inactive in certain 
cells, they do function in other cells87,88 or respond to stimulation89. 

Active enhancers are essential for ERα action. A CRISPR-Cas9 dropout 
screen in the breast cancer cell lines MCF-7 and T47D identified ERα 
bound enhancers required for proliferation. These data suggest individual 
ERα sites to have substantial downstream effects on cell proliferation90. 

When regulatory elements of the genome differ per tissue, 
enhancer-binding transcription factors, such as ERα, will follow this 
divergent enhancer-activity (Figure 2). This is exemplified by data that 
show ERα binds near genes involved in osteoblast differentiation in bone91, 
luminal breast cancer-defining genes in breast cancer62,92, and energy 
metabolism in liver82. Thus, the chromosomal architecture defines the 
tissue-specific cistrome of ERα through tissue-specific enhancer-usage88. 
Still, because many tissue types are relatively understudied, ERα could 
be more promoter-centered in yet unexplored tissues or during specific 
stages of tissue development. 

Table 2. Overview of Public Genomic ERα Binding Sites in Different Cell-Types.  

Tissue Model Method Main binding regions

Breast MCF-7 69,71,81,173

T-47D173

Patient tumors64,67

Mouse70

ChIP(-seq) Enhancer + intron

Endometrium Ishikawa75,77

Patient tumors79

Mouse80

ChIP-seq Enhancer + intron

Bone *ERα–U2OS119 ChIP-on-chip Enhancer + intron

Liver Mouse82 ChIP-on-chip Enhancer + intron

*This U2OS cell line expresses ERα exogenously.
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As described above, ERα mainly occupies distal enhancers (in the 
reported tissues breast, endometrium, bone, and liver) and requires chro-
matin looping to interact with proximal promoters of genes to regulate 
expression93-97. Chromosomal looping involves CCCTC-binding factor 
(CTCF), a ubiquitously expressed transcription factor that confines genes 
that require coregulation98,99, and defines ERα action100. Irrespective of 
hormonal treatment, CTCF binds genomic regions that ERα also occu-
pies and that associate with estrogen-regulated genes. CTCF occupies cell 
line-specific ERα sites more often than ERα sites that are shared between 
multiple breast cancer cell lines101, suggesting that through looping, CTCF 
modulates the ERα cistrome in a cell line-specific fashion. 

Genomic architectural studies provide valuable details about the 
“infrastructure” of the chromatin and its dynamic properties within the 
boundaries of topologically associated domains. How differences in chro-
matin state between cell types originate, such as differential enhancer 
usage, remains unknown. Tissue-specific proteomes may play a role in 
this process and thus affect the ERα cistrome.

How Can Other Transcription Factors Facilitate the ERα 
Cistrome?
Transcription factors facilitate the architectural make-up of the chroma-
tin, with deviating expression levels among tissues. However, genomic 
data that indicates their direct involvement in ERα complexes, and cis-
trome, is lacking in many tissues (Figure 2). 

As mentioned above, when ERα binds the chromatin, it recruits cofac-
tors. These cofactors include family members of the p160 family such as 
steroid receptor coactivator 1 (SRC1)102, SRC2103, and SRC3104-107. One study 
investigated the varying responses of tissues to tamoxifen and found that 
levels of SRC1 differ per tissue108. Yet, because coregulators follow ERα 
to the DNA, they are unlikely to define the genomic regions of chromatin 
interactions. 

In luminal epithelial breast cells67,109, ERα requires FOXA1 to facilitate 
estrogen-mediated gene regulation110 and to drive cell proliferation62,69. 
FOXA1, which depends on enhancers that are marked with dimethyla-
tion of histone H3 at lysine 4111, was the first pioneer factor for ERα to be 
identified69. Pioneer factors bind inaccessible chromatin and make it more 
accessible, so that other transcription factors may bind. Clinical studies 
report that FOXA1 associates with a good prognosis in breast cancer 
patients112. SNPs at sites of genomic interplay between ERα and FOXA1 
associate with breast cancer risk (Figure 1)113. These reports imply that 
FOXA1 facilitates ERα-mediated gene expression in breast cancer. 
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Like breast cancer, endometrial tumors express FOXA1, which asso-
ciates with a favorable outcome in endometrial cancer patients114,115. 
Comparative cistromics of ERα between breast cancer and tamoxi-
fen-associated endometrial cancer suggests ERα and FOXA1 facilitate 
tamoxifen-stimulatory effects in endometrial cancer development79. These 
data show that FOXA1 and ERα expression in endometrial tumors, from 
women with a history of breast cancer, associates with the interval time 
between breast cancer and endometrial cancer in tamoxifen-treated 
breast cancer patients only. In addition, tumors of breast and tamoxi-
fen-associated endometrial cancer patients share binding events between 
ERα and FOXA1. These sites are mainly at enhancers and cluster with 
other enhancer-bound transcription factors in the endometrial cancer cell 
line Ishikawa. 

The liver expresses FOXA1 and FOXA2, which facilitate the activity 
of both ERα and the androgen receptor. The liver is greatly influenced by 
the hormonal environment as illustrated by sexual dimorphic features of 
hepatocellular carcinoma, which predominates in men5,116,117. These sexual 
dimorphic features revers in mice that lack FOXA1 and FOXA2, as hepa-
tocellular carcinoma predominate in females instead3. Correspondingly, 
the Serpina6-rs1998056-SNP, which locates at a site of genomic interplay 
between ERα and FOXA1, increases the risk for hepatocellular carcinoma 
in women118. These data suggest FOXA1 and FOXA2 are crucial for hor-
monal regulation in the liver.

In contrast to breast, endometrium, and liver, the human osteoblasts 
cell line U2OS lacks FOXA1 and requires GATA4 instead to facilitate 
genomic ERα function119. This study used U2OS cells that expressed ERα 
exogenously (ERα-U2OS). Upon estrogen treatment, GATA4 binds chro-
matin before ERα, and its knockdown reduces ERα binding, suggesting 
a pioneer-like function for GATA4. Unlike FOXA1, GATA4 creates active 
enhancers by recruiting histone methyltransferases at enhancers, leading 
to H3K4me291. Thus, although GATA4 and FOXA1 both bind the DNA 
before ERα, they operate in different fashions. 

Although ERα binds mainly to enhancers with EREs in MCF-7 and 
ERα-U2OS, only 15% of ERα-binding sites overlap between them119. Less 
than 10% of genes that are estrogen-responsive in MCF-7 cells respond to 
estrogen in ERα-U2OS. Instead, ERα-U2OS expresses many other genes 
upon estrogen stimulation. Different tissues express different pioneer 
factors, which may alter ERα cistromics as exemplified by the osteoblast 
cell line ERα–U2OS and the breast cancer cell line MCF-7. However, these 
findings require further validation by other model systems, because the 
ERα-U2OS model is intrinsically artificial. To justifiably generalize obser-
vations when comparing different organs, supportive data in multiple cell 
lines or primary tissues per tissue type are essential. 
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ERα-binding sites differ between tissues even if they do express the 
same pioneer factor, suggesting one pioneer factor alone is insufficient to 
explain deviations in the ERα cistrome114,115,120. Instead, it is likely that mul-
tiple proteins, which may vary per tissue, are in fact responsible. Several 
molecular studies identified other (putative) pioneer factors, including 
GATA3121, activating protein (AP)2γ71, and PBX181, which facilitate ERα to 
bind the chromatin and drive breast cancer development. These transcrip-
tion factors potentially function alone or together to create synergy for 
gene regulation.

PBX1 has been linked to breast cancer81, ovarian cancer122 and prostate 
cancer123, but was also linked to endometrial development124. Cistromic 
studies measured PBX1-binding sites in breast cancer cell lines and asso-
ciated those with ERα-binding sites. In addition, PBX1 was found in the 
cytoplasm of endometrial cells during development124. Hence, expression 
of transcription factors alone is insufficient to claim a role in ERα cistrome 
regulation and instead require molecular and cistromic confirmations, as 
has thus far mostly been done in breast cancer. 

Jointly, FOXA1 and GATA3 are sufficient to drive ERα-dependent 
transcriptional programs. GATA3 defines ERα-positive luminal breast 
cancer110, in which it is frequently mutated125, and correlates with good 
prognosis109. When introducing GATA3, ERα, and FOXA1 simultane-
ously to ERα-negative cell lines (MDAMB231 and BT-549), cells respond 
to hormonal stimuli as they proliferate and express hormone-responsive 
genes126. 

Activation of other steroid hormone receptors affect ERα genomic 
action through direct interaction. Progesterone Receptor binds ERα upon 
hormone stimulation, and redistributes ERα over the genome in the breast 
cancer cell line MCF-7127. Thus, in addition to the cell’s proteome, the hor-
monal environment (beside estrogen) controls the location of ERα-binding 
sites. 

Some ERα-positive tissues lack certain (putative) pioneer factors 
(Figure 1), suggesting they play a role in tissue-specific gene regulation. 
In addition, ERα binds other hormone receptors that can influence its cis-
trome. Taken together, cell-specific proteomes allow for a cell-specific ERα 
cistrome.
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Concluding Remarks
Estrogens play a crucial role in sexual development and protect against 
osteoporosis, diabetes and cognitive decline. When breast cancer patients 
receive tamoxifen to stop breast tumor growth, they gain bone mineral 
density128, but risk endometrial cancer10 and cognitive decline40-42. These 
observations led to structure-based drug design in search of other 
competitive inhibitors such as raloxifene and lasofoxifene. Aromatase 
inhibitors can be prescribed as well, but these perturb many beneficial 
functions of estrogen, such as protecting against heart attack, cognitive 
decline and osteoporosis (Table 1). Consequently, an ideal endocrine ther-
apeutic approach of blocking ERα would involve a more tissue-tailored 
mode-of-action. 

The structural conformation of ERα determines its ability to interact 
with the chromatin and with interaction partners. As described above, 
this conformation of the receptor depends on ligand-binding, splice vari-
ants, posttranslational modifications and acquired mutations. Beside 
these structural conformations, ERα-binding events depend on enhancer 
activity, SNPs that disturb chromatin interactions, and other transcrip-
tion factors. Taken together, these biological variables determine the ERα 
cistrome (Figure 2), which differs per context. 

Comparative studies of ERα cistromics may identify similarities and 
differences between tissues, enabling selective targeting of the recep-
tor by small-molecule design. An example of this lies in the concept of 
targeting FOXA1 129, which theoretically abrogates ERα action in breast, 
endometrium and liver while leaving ERα unaffected in osteoblasts. In this 
manner, therapy manipulates ERα target tissue only, leaving the receptor 
unaffected in other tissues. This type of treatment may pave the way for 
fully tissue-selective endocrine therapeutics.
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