

Playing a role - but which one? : how public service motivation and professionalism affect decision-making in dilemma situations Schott, C.

Citation

Schott, C. (2015, November 11). Playing a role - but which one? : how public service motivation and professionalism affect decision-making in dilemma situations. Retrieved from https://hdl.handle.net/1887/36113

Version: Corrected Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/36113

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle http://hdl.handle.net/1887/36113 holds various files of this Leiden University dissertation

Author: Schott, Carina

Title: Playing a role – but which one? : how public service motivation and

professionalism affect decision-making in dilemma situations

Issue Date: 2015-11-11

APPENDIX

Table A1a Topics for the 'large' interview panel

Introduction

- Personal introduction of the researcher(s)
- Content and goal of the study
- Confidentiality, anonymity, recording policy

Work motivation

- What do you like about your work?
- What motivates you in your work?
- Why did you study veterinary medicine?

Role identity of veterinary inspector

- What do you think are the most important characteristics of a good veterinary inspector?
- What are the values and interests you represent in this role?

Dilemma situations

- Which situations do you find difficult in your work?
- Can you give us an example of a situation at work that you took to heart?

Behaviour/Decision-making in dilemma situations

- How did you handle these dilemma situations?
- What did you base your decisions on?

Identity negotiation *

Organizational socialization tactics*

Adjustment*

Social network*

Closing off

- Do you want to give us any additional information?
- Do you have any questions for us?

^{*} Not part of this dissertation

Table A1b Topics for the 'newcomers' interview panel (1st round)

Introduction

- Personal introduction of the researcher(s)
- Content and goal of the study
- Confidentiality, anonymity, recording

Work motivation

- Why did you study veterinary medicine
- What are the things you find motivating in your work?
- What do you like about your work?

Work/organizational expectations

- What did you expect from the NVWA as an employer?
- Did you have any prior expectations of the work of a veterinary inspector?

Assessment centre, trainings*

Closing off

- Do you want to give us any additional information?
- Do you have any questions for us?

Table A1c Topics for the 'newcomers' interview panel (2nd round)

Introduction

- Content and goal of the study
- Confidentiality, anonymity, recording

Work motivation

- What are the things you find motivating in your work?
- What do you like about your work?

Working reality

- Is the job any different from what you expected?
- Are there any problems you encountered?

Role identity of veterinarian inspector*

- What do you think are the most important characteristics of a good veterinarian inspector?
- What are the values and interests you represent in this role?

Information sources*

Social network*

Closing off

- Do you want to give us any additional information?
- Do you have any questions for us?

^{*} Not part of this dissertation

^{*} Not part of this dissertation

Table A2a Respondents in the 'large' interview panel

Respondent	Gender	Team*	Years of	Age
Respondent	Gender	Team '	employment	Age
R1	M	T1	11	≥ 60 and < 65
R2	M	T2	12	≥ 55 and < 60
R3	M	T1	16	≥ 50 and < 55
R4	F	T3	11	≥ 40 and < 45
R5	F	T4	24	\geq 45 and $<$ 50
R6	M	T5	16	\geq 45 and $<$ 50
R7	F	T5	13	≥ 55 and < 60
R8	M	T5	12	≥ 40 and < 45
R9	M	T7	12	≥ 60 and < 65
R10	F	Т8	12	≥ 50 and < 55
R11	M	Т9	3	≥ 50 and < 55
R12	F	T13	6	≥ 35 and < 40
R13	M	Т9	6	≥ 35 and < 40
R14	F	T7	4	≥ 30 and < 35
R15	M	T10	4	≥ 30 and < 35
R16	M	T4	4	≥ 30 and < 35
R17	M	T10	3	≥ 35 and < 40
R18	M	T4	2	≥ 30 and < 35
R19	F	T4	3	≥ 35 and < 40
R20	M	T11	3	≥ 45 and < 50
R21	M	T6	3	≥45 and < 50
R22	F	T12	9	≥ 45 and < 50
R23	F	Т3	2	≥ 30 and < 35
R24	M	T10	7	≥ 50 and < 55
R25	F	T12	3	≥ 30 and < 35
R26	F	T7	2	≥ 45 and < 50
R27	F	T14	2	≥ 40 and < 45
R28	M	T2	12	≥ 40 and < 45
R29	M	T13	7	≥ 40 and < 45
R30	F	T14	4	≥ 45 and < 50
R31	F	T10	18	≥ 55 and < 60
R32	F	T5	23	≥ 55 and < 60
R33	M	T4	12	≥ 45 and < 50
R34	M	T7	29	≥ 55 and < 60
R35	F	Т3	8	≥ 40 and < 45
R36	M	T15	15	≥ 45 and < 50
R37	M	T2	15	≥ 55 and < 60
R38	M	T2	12	≥ 40 and < 45

^{*}The abbreviations for the variable 'team' have been changed in order to guarantee anonymity

Table A2b Respondents in the 'newcomers' interview panel

Respondent	Gender	Age	Working experience
R1	F	<35	Private practice
R2	M	≥45 <55	Private practice
R3	F	<35	No
R4	F	≥35 <45	Private practice
R5	F	≥45 <55	Private practice/Industry
R6	F	<35	Industry
R7	F	<35	No
R8	F	≥45 <55	Private practice/Industry
R9	M	≥55 <65	Private practice
R10	F	<35	Government
R11	F	≥35<45	Private practice
R12	M	≥55 <65	Private practice
R13	F	≥55 <65	Private practice
R14	F	≥55 <65	Private practice
R15	F	<35	No

Table 3a Codes and subcodes for the 'large' interview panel

Public service motivation

- Contributing to solving wrongs (APS)
- Contributing to the public interest (CPV)
- Contributing to specific public values (CPV)
- Sympathy for the underprivileged (COM)
- Making sacrifices (SS)

Public sector motivation

- Regular working hours
- Regular income
- Regular periods of vacation

Motivation based on interaction

- With colleagues
- With inspectees
- With animals

Motivation based on task variety

- Different tasks
- Different locations of work

Role of veterinary inspector

- Communication skills
- Knowledge base
 - Knowledge of rules and regulations*
 - Knowledge of veterinary medicine**
- Strict rule enforcement*
- Safeguarding values
 - Consistency, transparency, public health, animal welfare*
 - Economic interests, animal welfare **

Dilemma situations

- Conflicting values: value pluralism
- Contrasting demands
- Public interest as guideline of behaviour
 - Animal welfare
 - Unworkable rules
 - Zero-tolerance policy

Considerations in decision-making

- Inspectee-related considerations
 - Characteristic of the inspectee
 - Maintaining good working relationships
 - Facilitate future rule enforcement
 - Size of company
- Inspection-related considerations
 - Consequences of enforcement
 - Time pressure
 - Prior non-enforcement

Decision-making in dilemma situations

- Biasing
- Avoidance

^{*} Coded as organization-focused professional role identity

^{**} Coded as veterinary medicine-focused professional role identity

Table A3b Codes and subcodes for the 'newcomers' interview panel (1st round)

Public service motivation

- Contributing to solving wrongs (APS)
- Contributing to the public interest (CPV)
- Contributing to specific public values (CPV)
- Sympathy for the underprivileged (COM)
- Making sacrifices (SS)

Public sector motivation

- Regular working hours
- Regular income
- Regular periods of vacation

Motivation based on interaction

- With colleagues
- With inspectees

Motivation based on task variety

- Different tasks
- Different locations of work

Motivation based on responsibility

- Recent promotion
- Management activities

Motivation based on development potentialities

- Trainings
- Learning on the job

Organizational/work expectations

- No expectations
- Rule enforcement
- Safeguarding animal welfare and public health
- Resistance
- Solitary character

Table A3c Codes and subcodes for the 'newcomers' interview panel (2nd round)

Public service motivation

- Contributing to solving wrongs (APS)
- Contributing to the public interest (CPV)
- Contributing to specific public values (CPV)
- Sympathy for the underprivileged (COM)
- Making sacrifices (SS)

Public sector motivation

- Regular working hours
- Regular income
- Regular periods of vacation

Motivation on the basis of interaction

- With colleagues
- With inspectees

Motivation based on task variety

- Different tasks
- Different locations of work

Motivation based on responsibility

- Recent promotion
- Management activities

Motivation based on development potentialities

- Trainings
- Learning on the job

Working reality

- Unwieldy organization
- Lack of uniformity
- Manipulation/Aggression: stressful
- Manipulation/Aggression: acceptance of status quo, coping strategies

Table A4a List of public service motivation items

PSM scale based on Kim et al., 2012

PSM_ATPS1: I admire people who initiate or are involved in activities to aid my community.

PSM_ATPS2: It is important to contribute to activities that tackle social problems.

PSM_ATPS3: Meaningful public service is important to me.

PSM_ATPS4: It is important to me to contribute to the common good. +

PSM_CPV1: It is important that citizens can rely on the continuous provision of public services.

PSM_CPV2: It is fundamental that the interests of future generations are taken into account.

PSM_CPV3: To act ethically is essential for public servants.

PSM_COM1: I feel sympathetic to the plight of the unprivileged.

PSM_COM2: I empathize with other people who face difficulties. +

PSM_COM3: I get very upset when I see other people being treated unfairly.

PSM_COM4: Considering the welfare of others is very important.

PSM_SS1: I am prepared to make sacrifices for the good of society.

PSM_SS2: I am willing to risk personal loss to help society.

PSM_SS3: I would agree to a good plan to make a better life for the poor, even it cost me money.

PSM_SS4: I believe in putting civic duty before self. X

X excluded on the basis of pilot; + Excluded on basis of CFA

The original Dutch items can be obtained from the author on request

Table A4b List of professional role identity items

Professional role identity scale

Commitment to economic interests

Eco1: It is important that veterinary inspectors consider the economic interests of the meat-processing industry.

Eco2: Sometimes I deviate from the rules in order to reduce financial damage to the individual I have to inspect.

Commitment to animal welfare

AW1: I enforce rules more strictly in cases when animal welfare is at risk.

AW2: For me, what motivates me most in my work as veterinary inspector is being able to do something for animals.

AW3: Safeguarding animal welfare is the most important value I defend in my work as veterinary inspector.

Commitment to public health

PH1: For me, what motivates me most in my work as veterinary inspector is being able to safeguard public health.

PH2: If I had to choose, I think safeguarding public health is more important than safeguarding animal welfare.

PH3: Even in cases when there is no specific rule or regulation, if public health is at risk, I act.

Strict rule enforcement

Enforec1: Strict enforcement of rules is the only way to reach your goals

Enforce2: Sometimes it is more important to enforce rules and regulations in the spirit rather than to the letter. (R)

Enforce3: If you want to make a change, it is more important to convince people than to strictly follow the rules. (R)

+ Excluded on the basis of PCA; (R) recoded items

The original Dutch items can be obtained from the author on request

Table A4c List of remaining items

Commitment to the inspectee

ComIn1: I find it difficult to act as a strict enforcer of rules and regulations if I know that the people I am inspecting have done their best to improve things.

ComIn2: I find it difficult to act as a strict enforcer of rules and regulations if I know the person I am inspecting personally.

Proactive personality - based on Parker and Sprigg, 1999

PP1: I am always looking for better ways to do things.

PP2: I excel at identifying opportunities.

PP3: No matter what the odds, if I believe in something I will make it happen.

PP4: I love being championed for my ideas, even against others' opposition.

Professional identification - shortened version of Mael and Asforth, 1992

PI1: I am very interested in what others thing about the profession of veterinary inspector.

PI2: When I talk about veterinary inspectors, I usually say 'we' rather than 'they'. (A)

PI3: If a story in the media criticized veterinary inspectors, I would feel embarrassed'.

Work-related tensions - modified version of Lindquist and Whitehead, 1986

WRT: Please indicate to what degree you experience tensions in your work as veterinary inspector.

(A) Item deleted on the basis of low Cronbach's α

The original Dutch items can be obtained from the author on request

Table A5a Results of binary regression analysis with controls (Dilemma 1)

	В	Exp(B)	Sig.	В	Exp(B)	Sig.
Constant	27.07		.58	28.83		.56
Gender (0 = male)	1.05	2.86	.01	1.10	2.99	.00**
Age	38	.68	.03*	32	.72	.06
Type of employment contract (0 = RVI)	.43	1.53	.32	.56	1.75	.19
Additional employment as veterinarian (0 = yes)	22	.81	.61	26	.77	.54
Years of employment NVWA	02	.99	.54	02	.98	.52
Proactivity	.44	1.55	.11	.43	1.54	.11
Team						
DummyP1	.31	1.37	.37	.43	1.53	.21
DummyP2	.30	1.35	.53	.24	1.27	.61
Position						
DummyT1	.47	1.59	.32	.44	1.55	.35
DummyT2	05	.95	.90	.01	1.01	.97
Economic interest				.57	1.77	.01*
Commitment to the inspectee	.49	1.64	.02*			
	Omi	nibus Test M	ſodel	Omnibus Test Model		
	Coefficients			Coefficients		
	Cł	ni-square 22	.87	Chi-square 26.28		
		Sig .02*			Sig .01*	
	HL test			HL test		
	Chi-square 5.90, Sig .66			Chi-square 9.85, Sig .28		
	Nagelkerke R .13			Nagelkerke R .15		
	No of valid observations			No of valid observations		
	(0	of = 258) = 2	22	(of	N=258) = 2	24

Dummy P1 = Veterinary inspector vs. senior inspector; Dummy P2 = Regular veterinary inspector vs. company inspector; Dummy T1 = Abattoirs vs. living animals; Dummy T2 = Abattoirs vs. import; RVI = 'regular' veterinary inspector

I stop the production process (reference category)

^{*} Significant at < 0.05 (2-tailed); ** Significant at < 0.01 (2-tailed)

 Table A5b Results of multinomial logistic regression analysis with controls (Dilemma 2)

B 16.80	Exp (B)	Sig.	В	Exp (B)	Sig.
16.80					
16.80					
10.00		.84	-15.05		.86
.12	1.13	.84	.36	1.44	.566
.19	1.21	.49	.21	1.23	.47
-1.38	.25	.05	-1.28	.28	.07
-1.15	.32	.10	-1.20	.30	.09
01	.99	.87	.01	1.01	.83
.78	2.17	.08	.69	2.01	.11
68 87	.50 .42	.19 .24	56 -1.14	.57 .33	.27 .12
.02	1.02	.98	.01	1.01	.99
44	.64	.55	32	.72	.66
			.73	2.08	.03*
.77	2.16	.02*			
-84.2		.44	-122.6		.26
.32	1.37	.70	.56	.71	.49
32	.72	.38	34	.10	.35
-2.65	.07	.01*	-2.32	.20	.01*
-1.73	.18	.06	-1.59	1.07	.08
.05	1.05	.41	.06	1.15	.24
.17	1.18	.77	.14	.58	.81
56 .08	.57 1.08	.46 .93	55 .14	1.15 .80	.46 .87
- 40	67	67	- 22	11	.81
					.03*
±,±J1		.03			.07
35	1 42	41	., 0	1.75	,
Likeliho Chi- Nag	ood Ratio square 39 Sig .01* elkerke F	on Test 9.32	Chi- Nage	square 39 Sig .01* elkerke R	9.17 3. 22
	.05 .17 56 .08 40 -2.231 .35 Likeliha Chi- Nag No of va	.05 1.05 .17 1.18 56 .57 .08 1.08 40 .67 -2.231 .11 .35 1.42 Likelihood Ratic Chi-square 3: Sig .01* Nagelkerke F	.05 1.05 .41 .17 1.18 .77 56 .57 .46 .08 1.08 .93 40 .67 .67 -2.231 .11 .03* .35 1.42 .41 Likelihood Ration Test Chi-square 39.32 Sig .01* Nagelkerke R .22	.05 1.05 .41 .06 .17 1.18 .77 .14 56 .57 .4655 .08 1.08 .93 .14 40 .67 .6722 -2.231 .11 .03* -2.22 .76 .35 1.42 .41 Likelihood Ration Test Chi-square 39.32 Sig .01* Nagelkerke R .22 No of valid observations No of va	.05 1.05 .41 .06 1.15 .17 1.18 .77 .14 .58 56 .57 .4655 1.15 .08 1.08 .93 .14 .80 40 .67 .6722 .11 -2.231 .11 .03* -2.22 2.14 .76 1.75 .35 1.42 .41 Likelihood Ration Test Chi-square 39.32 Sig .01* Nagelkerke R .22 No of valid observations No of valid obser

Dummy P1 = Veterinary inspector vs. senior inspector; Dummy P2 = Regular veterinary inspector vs. company inspector; Dummy T1 = Abattoirs vs. living animals; Dummy T2 = Abattoirs vs. import; RVI = 'regular' veterinary inspector. I stop the production process (reference category)

^{*} Significant at < 0.05 (2-tailed)

Table A5c Results of multinomial logistic regression analysis with controls (Dilemma 3)

	В	Exp (B)	Sig.
I order the cow to be shot and slaughtered and try to predate the fracture so			
that I can act if necessary	21.25		
Constant	31.25		.80
Gender (0 = male)	.15	1.16	.87
Age	.21	1.23	.58
Type of employment contract $(0 = RVI)$	1.54	4.68	.12
Additional employment contract (0 = yes)	-1.16	.32	.18
Years of employment	02	.99	.80
Proactivity	.46	1.58	.45
Team			
DummyT1	.56	1.75	.48
DummyT2	3.42	30.42	.00*
Positon	<i>-</i> 1	1.67	<i>(</i> 1
DummyP1 DummyP2	.51 .96	1.67 2.62	.64 .42
Commitment to public health	-1.48	.230	.01*
I order the cow to be shot and slaughtered and defer my decision until I receive			
the additional vaccination information I requested			
Constant	114.13		.33
Gender (0 = male)	03	.97	.97
Age	.24	.95	.34
Type of employment contract (0 = RVI)	1.44	4.21	.13
Additional employment contract (0 = yes)	31	.73	.70
Years of employment	06	.95	.34
Proactivity	.55	1.73	.35
Team			
DummyT1	.78	2.19	.31
DummyT2	1.40	4.06	.14
Positon			
DummyP1	.38	1.46	.72
DummyP2	00	.10	1.00
Commitment to public health	-1.15	.32	.03*
I order the cow to be shot and slaughtered and try to predate the fracture AND make my decision on the basis of the additionally requested vaccination information			
Constant	142.91		.25
Gender (0 = male)	94	.39	.30
Age	.44	1.55	.26
Type of employment contract (0 = RVI)	2.09	8.06	.04*

Table A5c Results of multinomial logistic regression analysis with controls (Dilemma 3) (Continued)

	В	Exp (B)	Sig.
I order the cow to be shot and slaughtered and try to predate the fracture AND make my decision on the basis of the additionally requested vaccination information			
Additional employment contract (0 = yes)	07	.93	.25
Years of employment	1.11	3.04	.08
Proactivity	.48	1.61	.56
Team			
Dummy T1	3.05	21.14	.01*
Dummy T2	.04	1.04	.97
Positon			
DummyP1	.48	1.61	.58
DummyP2	.22	1.25	.86
Commitment to public health	91	.40	.11
	Likelil	hood Ratio	on Test
	Chi-squ	iare 56.84,	Sig .01'
	Nagelkerke R		.25
	No of valid observation		
	(of	N=258) =	215

Dummy P1 = Regular veterinary inspector vs. senior inspector; Dummy P2 = Veterinary inspector vs. company inspector; Dummy T1 = Abattoirs vs. living animals; Dummy T2 = Abattoirs vs. import; RVI = 'regular' veterinary inspector

I order the cow to be shot and disqualify it. (reference category)

Table A6 Results of logistic regression analysis with moderator PSM dimensions 'compassion'

	Omnibus Test of Model Coefficients Chi- square Sig.		Nagelkerke (pseudo)	В	Exp (B)	Sig.	No of valid observations of N=258
			R				
	4.79	.19	.030				222
Public Health_cent.				10	.91	.67	
PSM_COM_cent				.59	1.81	.04*	
Public Health _cent x PSM_COM_cent				15	.86	.71	
Constant				26	.77	.06	
	10.10	.02*	.06				226
Economic interests_cent .				.45	1.570	.01*	
PSM_COM_cent				.62	1.85	.03*	
Economic interests_cent x PSM_COM cent				13	.88	.71	
Constant				30	.74	.03	

^{0 =} I disqualify the cattle (reference category); 1 = I defer the decision until I have talked to my supervisor

^{*} Significant at < 0.05 (2-tailed); ** Significant at < 0.01 (2-tailed)

^{*} Significant at < 0.05 (2-tailed)