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figure 6.4 Changes in response to LPS plus aluminium hydroxide challenge 
(daytime sampling). 

Blood cultures were prepared with LPS plus aluminium hydroxide at approximately 
10:00h and 16:00h on the same day from 25 healthy elderly subjects. Cultures were 
incubated for 3 hours and then supernatants collected. Inflammatory cytokines were 
measured by multiplex Meso Scale Discovery panel as described in Figure 6.3.
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INTRODUCTION

An increasing number of drug candidates are being tested for their ability to 
modify disease or alleviate symptoms of brain disorders (Van der Schyf and 
Geldenhuys, 2011); however, to test these new pharmacological interventions 
and improve monitoring of the therapeutic response, informative and robust 
endpoints are urgently needed (Frank and Hargreaves, 2003; Golde, 2016; 
Oertel and Schulz, 2016). Clinical trials in central nervous system (cns) 
drug development focus on behavioral and cognitive performance outcome 
measures of drug efficacy; however, quantitative electroencephalography 
(EEG) is gaining recognition in the field as a source of surrogate endpoints in 
early-phase studies (van Straaten et al, 2014). EEG offers insight into the mode 
of action of the pharmacological intervention, because of the high temporal 
resolution of electrophysiological measures (Leiser et al, 2011; Lopes da Silva, 
2013). Still, it remains an important challenge to advance EEG biomarker 
analysis for enhanced prediction of therapeutic effects in clinical trials.

Scopolamine is the most extensively used pharmacological model of cog-
nitive impairment (Klinkenberg and Blokland, 2010). As a selective competi-
tive muscarinic receptor (mAChR) antagonist, it induces temporary deficits 
in cognitive functions that depend on the cholinergic system (Ebert et al, 
1998). Scopolamine has a high affinity for all five muscarinic receptor sub-
types (M₁–M₅) and a negligible affinity for histaminergic and dopaminergic 
receptors (Ali-Melkkilä et al, 1993). Muscarinic receptors are widely present 
in brain areas involved in attention and memory, and intravenous adminis-
tration of scopolamine indeed causes impairments to these brain functions 
(Broks et al, 1988; Liem-Moolenaar et al, 2011). The scopolamine challenge 
test has been used in drug development to demonstrate the pharmacological 
activity of putatively cognition-enhancing compounds by reversal of scopol-
amine-induced cognitive deficits in healthy volunteers (Cho et al, 2011; Jones 
et al, 1991; Liem-Moolenaar et al, 2010a, 2010b; Preda et al, 1993; Prohovnik et 
al, 1997; Siegfried, 1993; Snyder et al, 2005). 

EEG biomarkers have the potential to objectively determine whether 
reversal of scopolamine effects by a cholinergic compound is successful. 
In humans, scopolamine administration increases the power of delta and 

ABSTRACT
Monitoring effects of disease or therapeutic intervention on brain function is 
increasingly important for clinical trials, albeit hampered by inter-individual 
variability and subtle effects. Here, we apply complementary biomarker 
algorithms to electroencephalography (EEG) recordings to capture the 
brain’s multi-faceted signature of disease or pharmacological intervention 
and use machine learning to improve classification performance. Using data 
from healthy subjects receiving scopolamine we developed an index of the 
muscarinic acetylcholine receptor antagonist (mAChR) consisting of 14 EEG 
biomarkers. This mAChR index yielded higher classification performance 
than any individual EEG biomarker with cross-validated accuracy, sensitivity, 
specificity and precision ranging from 88–92%. The mAChR index also 
discriminated healthy elderly from patients with Alzheimer’s disease (AD); 
however, an index optimized for AD pathophysiology provided a better 
classification. We conclude that integrating multiple EEG biomarkers can 
enhance the accuracy of identifying disease or drug interventions, which is 
essential for clinical trials.
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analysis. Study periods were separated by a washout period of at least 1 week. 
The sampling and measurement schedules for the scopolamine challenges 
were identical for both studies. The measurements were performed during 
36 hours treatments periods with 11 measurement time-points from baseline 
(pre-dose) to 8.5 hrs after scopolamine (or placebo) administration. 

Trial 3 evaluated the effect of a novel α7 nicotinic acetylcholine receptor 
agonist (α7 nAChR) during a scopolamine challenge test. The study recruited  
35 subjects between 65 and 85 years. All subjects received 0.3 mg scopolamine 
(IV) in 15 minutes. Neurophysiological tests were measured with 8 measure-
ment times from twice at baseline (-1 day) to 6 h after scopolamine adminis-
tration (open-label). A detailed description of the neurophysiologic tests can 
be found elsewhere (Alvarez-Jimenez et al, 2016; Liem-Moolenaar et al, 2011). 

Trial 4 consisted of 40 mild to moderate AD patients who were recently 
diagnosed with ‘probable AD’ (according to NINCDS-ADRDA), mild to 
moderate severity of dementia (according to Clinical Dementia Rating 
Score, CDR of 0.5-2) and a Mini-Mental State Exam score of 18–26. Here, 
we used eyes-closed rest EEG recordings obtained in the baseline before the 
administration of an investigational drug.

EEG r ecordings and pr e-processing

EEG recordings were made using silver chloride electrodes fixed at Fz, Cz, 
Pz and Oz positions, with the same common reference electrode as for the 
eye movement registration (according to the international 10/20 system). 
Electrode resistances were kept below 5 kΩ. EEG signals were obtained from 
leads Fz-Cz and Pz-Oz and a separate channel to record eye movements (for 
artefacts). The signals were amplified by use of a Grass telefector (F-15EB/B1) 
and a 15LT series Amplifier Systems (Grass-Telefactor) with a time constant 
of 0.3 s and a low-pass filter at 100 Hz. The duration of the recordings was 
64 s (Zuurman et al, 2008). Sampling frequency was 64768 Hz, afterwards 
down-sampled to 1012 Hz for the analysis. The ongoing EEG was visually 
inspected in windows of 10 s and sharp transient artefacts were cut out, as 
well as eye movement and muscle artefacts. Noisy channels were excluded 
from the subsequent analysis.

theta activity, while alpha- and beta-frequency activity is reduced (Alvarez-
Jimenez et al, 2016; Ebert et al, 1998; Liem-Moolenaar et al, 2011). It has been 
hypothesized that deficits of cholinergic signaling contribute to the EEG 
slowing in Alzheimer’s disease (Agnoli et al, 1983; Blennow et al, 2006), which 
is also supported by the reversal of EEG slowing by cholinergic drugs (Citron, 
2010; Jeong, 2004). Unfortunately, current biomarkers lack the desired 
accuracy for monitoring disease status or therapeutic response, because of 
large inter-individual variability compared to the often subtle drug-related 
changes. Most commonly, the functional state of the brain is assessed merely 
using one type of biomarker (Babiloni et al, 2004; Osipova et al, 2005; Sankari 
et al, 2012; Stam et al, 2003); however, pathophysiology is often expressed 
as changes to multiple properties of neuronal oscillations. Consequently, 
different biomarker algorithms may quantify distinct aspects of the brain’s 
functional state. Combining these may increase accuracy of disease diagnosis 
and assessment of drug interventions (Dauwels et al, 2010b; Khodayari-
Rostamabad et al, 2010; Lehmann et al, 2007; Montez et al, 2009; Poil et 
al, 2013). Here, we use machine learning to show that the complementary 
information of different EEG biomarkers can indeed be combined into an 
accurate index for better decision-making in clinical trials.

Methods
Subjects

Data were obtained from four separate trials conducted at the Centre of 
Human Drug Research (Leiden, the Netherlands) and approved by a 
medical ethics committee. All subjects signed a written informed consent 
prior to participation in the study and were medically screened. 

Trial 1 and 2 evaluated the effect of investigational glycinergic compounds 
during a cognitive impairment scopolamine challenge test. A detailed 
description of the neurophysiologic tests has been reported previously 
(Liem-Moolenaar et al, 2010a, 2010b). In the two trials, a total of 83 male 
healthy subjects aged 18–55 years were recruited. Scopolamine (0.5 mg) or 
placebo was administered as a 15-minute intravenous infusion. Only the data 
where subjects received placebo or scopolamine (alone) was used in the 
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minimize temporal correlations introduced by the FIR filter, DFA was fitted 
in the interval from 4 to 20 seconds for δ and θ band, from 2 to 20 seconds 
for α and 1 to 20 seconds for the β band. The oscillation burst lifetime was 
used to quantify differences in amplitude dynamics of oscillations on short 
to intermediate time scales (< 1 s)(Montez et al, 2009; Poil et al, 2011). We 
used a threshold at the median of the amplitude envelope and defined the 
beginning and the end of an oscillation burst as the time points of crossing 
this threshold. The duration of oscillation bursts was calculated by taking the 
95th percentile of all durations measured within each channel, which we 
refer to as the ‘oscillation burst lifetime’ biomarker. In total, 20 biomarkers 
were extracted from each EEG signal. Each of the biomarkers was computed 
over two bipolar channels (Fz-Cz and Pz-Oz) resulting in a total of 40 
features for classification analysis.

Statistical analysis

Machine learning techniques were used to find the biomarkers that best 
distinguished the peak effect of scopolamine from the baseline recording 
or that best distinguished AD patients from healthy controls. From time-
dependent curves of EEG biomarkers (Figure 7.2), we evaluated 1.5 h after 
administration of scopolamine as the peak for most EEG biomarkers – in 
agreement with the peak drug effect (Tmax) time point according to the 
cognitive measurements (Alvarez-Jimenez et al, 2016; Liem-Moolenaar 
et al, 2011); therefore, we performed classification on the EEG recorded at 
baseline and 1.5 h after administration of scopolamine for the development 
of the mAChR index. For the AD index, we used pre-intervention baseline 
recordings of AD patients and healthy controls.

A feature matrix was built from the EEG biomarkers – in the form #features 
× #samples – with the aim of identifying sets of biomarkers that were more 
discriminative between the two groups than each individual biomarker. 
Feature selection and classification were performed via the classical machine 
learning procedure steps: training and testing. In the training phase, the index 
was developed by applying the feature-selection algorithm to training data 
and in the test phase, the index was applied to predict the class membership 

EEG analysis

For the EEG analysis, the Neurophysiological Biomarker Toolbox (NBT) 
(http://www.nbtwiki.net/) (Hardstone et al, 2012) was used to calculate the 
biomarkers and custom made scripts were integrated with the NBT analysis 
pipeline for advanced statistics, employing data mining algorithms to 
combine the information from multiple biomarkers. We employed biomarker 
algorithms in order to extract both temporal and spectral information from 
the EEG signals in the classical frequency bands: δ (1–4 Hz), θ (4–8 Hz), 
α (8–13 Hz), and β (13–30 Hz). The power in these frequency bands was 
computed using the Welch method with a 4096-point Hamming window 
and a frequency resolution of 0.25 Hz. The relative power was calculated 
by dividing the absolute power in each frequency band with the integrated 
power in the range 1–45 Hz. The central frequency, fc, and bandwidth, fσ 
(Vural and Yildiz, 2010), were computed according to the formulas:

where fL and fH represent the lowest and highest frequency that defines a 
given frequency band, and P( f) denotes the power at frequency f. Thus, the 
central frequency biomarker provides information about where the power 
is concentrated in a given frequency band, whereas the bandwidth provides 
information about how much the power is spread out around the central 
frequency.

The amplitude envelope was extracted using the Hilbert transform and 
analyzed for long-range temporal correlations of the power-law form using 
detrended fluctuation analysis (DFA) (Hardstone et al, 2012; Linkenkaer-
Hansen et al, 2001; Peng et al, 1995). If a sequence of events has a non-random 
temporal structure with slowly decaying autocorrelations, DFA can quantify 
how slowly these correlations decay as indexed by the DFA power-law 
exponent. Signals were filtered using a FIR filter with a Hamming window 
with a length corresponding to two f1 Hz cycles for frequency band [f1, f2]. To 
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where X is the feature matrix, y is the response vector (the labels) β the weights, 
and λ1 and λ2 coefficients determining the influence of the L1 and L2 norm 
penalties, respectively. The first term is similar to logistic regression while the 
second and third terms form the elastic net penalty function. If we denote: 
α=λ2λ1+λ2, then the elastic net penalty can be rewritten as (1−α)β1+αβ22, 
where α acts as the balancing term between the L1 and L2 norm penalties. We 
optimized α in random-splitting cross-validation procedure and found the 
best classification performance with α = 0.5 (results not shown).

By minimizing the L-function, we obtain the set of n selected features 
corresponding to the ones with highest β values. If p is the probability that 
an EEG recording belongs to the peak scopolamine condition, then the odds 
ratio is p(1−p), which is the ratio of the probability of peak scopolamine to 
the probability of baseline recording. Logistic regression models the log odds 
ratio as a linear combination of the independent variables, via this equation: 

where f1 are the features and β1 the associated weights. The log odds can be 
transformed back to probabilities as:

p(t) =         
1

                                 t = β 0 +   β 1  f 1 + ... + β n  f n                    1 + exp(–t)

The size of the final set of selected features is estimated as the one that gives 
the maximum classification performance on the training set, while keeping 
the feature set as small as possible. To obtain this set, we compared the 
accuracy of classifiers using the k best β-s, with k ranging from 1 to the number 
of features n and selected the smallest feature set with optimal performance.

Classification outcome evaluation

Elastic net logistic regression algorithm was used for developing two 
integrated indices: 1) The mAChR index, which is classifying whether 
an EEG was recorded during the baseline or when scopolamine has been 
administrated; 2) The AD index, which is classifying whether an EEG was 
recorded from a healthy elderly or an AD patient. To evaluate the classification 

on the test data. The features used for machine learning were z-scored EEG 
biomarker values. To avoid introducing future information into the classifier, 
we normalized both the training and the test data by subtracting the mean 
and dividing by the standard deviation of biomarker values from the training 
data only.

Indices were identified by applying the classification algorithm to the 
whole dataset (Trials 1 and 2 for mAChR; Trials 3 and 4 for the AD index); 
however, cross-validation was used to evaluate the stability of the result, 
i.e., classification with 100 different splits of the data into training and test 
sets were performed to obtain the mean and standard deviation of the 
classification performance, which provides an estimate of the classification 
performance on an ‘unknown’ sample (Witten et al, 2011). To this end, we 
used the cross-validation with 70/30% random splitting, i.e., from a random 
permutation of the subjects, 70% were used for training and 30% for testing. 
The training set consisted of 115 EEG recordings, tested on 48 recordings for 
the mAChR index (Trial 1 and 2). The total number of recordings is twice 
the number of subjects: per subject, the baseline EEG recording was used as 
the first sample and the peak drug effect recording as the second sample. For 
the AD index, the training and test set consisted of 53 and 22 recordings (and 
subjects), respectively (Trial 3 and 4). 

Elastic net logistic r egr ession

Because of the correlation between some of the features, we performed 
feature selection and classification using the elastic net (Zou and Hastie, 
2005), with sparsity and grouping of correlated features as properties. Elastic 
net is a feature selection and classification method based on regularized 
logistic regression that bridges the gap between lasso (Tibshirani, 2011) and 
ridge regression (Hoerl and Kennard, 1970) by combining their penalties and 
optimizing the number of features included in the integrated index through 
minimizing the function:

L(λ1 , λ2 ,β) =  y – Xβ 2 + λ1  β 1 + λ 2 β 22
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relative power, central frequency, bandwidth, oscillation-burst lifetime, and 
DFA in the columns and the frequency bands in the rows. A significant effect 
of scopolamine compared to placebo was observed for several biomarkers 
(Wilcoxon rank sum test at 1.5 h after administration, Bonferroni corrected). 
Despite all of these robust effects, if biomarkers carry complementary 
information about scopolamine-induced EEG changes, then it may be 
possible to combine this information into a more sensitive measure of the 
anticholinergic effect compared to using any of the individual biomarkers.

Integr ating biomarkers enhances classification

We used machine-learning techniques to find the biomarkers that best 
distinguish the baseline from the peak scopolamine condition. In order to 
do this, we performed classification on the baseline recording and the EEG 
recorded 1.5 h after administration of scopolamine (Figure 7.2). The baseline 
was used as opposed to the placebo condition to eliminate variation between 
days.

An initial integrated index was developed using elastic net on the data 
from healthy subjects (n = 83 males, Trial 1 and 2, see Methods) that received 
scopolamine, while allowing a fraction – determined by the algorithm – of 
the 40 available biomarkers to be included. Subsequently, to simplify the 
composition of the index, biomarkers with non-zero weights were sorted 
by decreasing absolute weight and added incrementally in that order (i.e., 
starting from an empty set, we added the biomarker with the largest absolute 
weight etc.) to evaluate the gain of including each subsequent biomarker 
to the classifier. Accuracy and AUC increased with the number of features 
included in the index up until a maximum performance was reached (Figure 
7.3). We defined the optimal index to be the one with the smallest number of 
features for which the average of all performance measures had saturated. We 
estimated this number to be 14 (Figure 7.3) according to the ‘elbow’ method 
(Ketchen and Shook, 1996); together, this set of 14 biomarkers and their 
associated weights make up the integrated mAChR index (Figure 7.3).

The mAChR index had excellent performance when training and testing 
on the same data (accuracy 95%, sensitivity 96%, specificity 93%, precision 

performance of the indices we used four different measures. In the case of the 
mAChR index, they are defined as:
•	 Accuracy (ACC): (number of correctly classified peak scopolamine  

and baseline recordings)/(total number of recordings).
•	 Sensitivity (SE): (number of correctly classified scopolamine 

recordings)/(number of scopolamine recordings).
•	 Specificity (SP): (number of correctly classified baseline recordings)/

(number of baseline recordings).
•	 Precision (PPV): (number of correctly classified scopolamine 

recordings)/(number of recordings classified as scopolamine). 
•	 Area Under Curve (AUC): area under the Receiver Operating 

Characteristic (ROC) curve, which plots the true positive rate (SE) 
against the true negative rate (1-SP) as the discrimination threshold 
of the classifier is varied. A higher AUC means better classification 
performance.

•	 Analogous definitions apply for the classification performance  
of the AD index.

Results
Scopolamine affects both spectr al and tempor al 

dynamics of the EEG

To gain a comprehensive understanding of the effects of scopolamine 
on the EEG, we employed biomarker algorithms characterizing spectral 
content as well as temporal dynamics of neuronal oscillations. The spectral 
content was estimated using power spectrum analysis of the broadband 
EEG signals (Figure 7.1). The short-time scale temporal structure of narrow-
band oscillations was quantified by extracting the amplitude envelope and 
applying oscillation-bursts lifetime analysis (Figure 7.1), whereas temporal 
dynamics on longer time scales was quantified using DFA (Figure 7.1).

To examine the effects of scopolamine administration compared to 
placebo, we quantified these differences systematically at 11 time points from 
30 minutes before to 8.5 hours after scopolamine and placebo administration. 
In Figure 7.2, we display the results as time-dependent biomarker curves of 
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Scopolamine is a valid model of AD pathophysiology

To test the validity of scopolamine as a model for the cholinergic dysfunction 
that occurs in AD, we next developed an AD index. Using the patients with 
mild to moderate AD (Trial 4) and the age-matched healthy elderly subjects 
(Trial 3), we derived an AD index consisting of 12 biomarkers (Figure 7.5), of 
which 5 are the same as those in the mAChR index. The AD index performed 
with an accuracy of 92%, sensitivity 87%, specificity 97% and precision 97% 
when training and testing on the same data (Figure 7.5). Cross-validated, the 
respective performances were 73 ± 6%, 73 ± 9%, 70 ± 10% and 75 ± 7%. Next, 
we investigated the relation of the AD index to the mAChR index, comparing 
their abilities to discriminate healthy elderly subjects from patients with mild 
to moderate AD, or discriminate baseline from peak scopolamine. Applying 
the mAChR index on healthy elderly and AD patients, we observed that it was 
able to discriminate them, with an accuracy of 62%, sensitivity 35%, specificity 
91% and precision 81% (Figure 7.5). The separation was better when applying 
the AD index on subjects before and after scopolamine intervention, with 
accuracy 72%, sensitivity 89%, specificity 54% and precision 66%. Taken 
together our results show that the mAChR index captures cholinergic 
dysfunction that occurs in AD. This is reflected by several biomarkers shared 
between the mAChR and the AD index, as well as the mutual ability to 
distinguish subjects with AD or subjects given scopolamine, respectively. 
Also, the good performance of the AD index in discriminating healthy 
elderly from AD patients further demonstrates the value of multi-biomarker 
classification schemes.

Discussion

Resting-state EEG signals are complex and information rich (Linkenkaer-
Hansen et al, 2001). A variety of spectral, spatial and temporal biomarker 
algorithms have been used to uncover brain electrophysiological changes 
in disease or with pharmacological intervention (Arns and Olbrich, 
2014; Montez et al, 2009; Mucci et al, 2006); however, they all have too 
low sensitivity and specificity to become standard tools in hospitals and 

93% and area under curve 0.98), and much higher than the single-best 
biomarker, which was relative delta power (Figure 7.3). Accordingly, the 
difference between the baseline predicted group and the peak scopolamine 
predicted group (Figure 7.3) was much more pronounced for the mAChR 
index (p = 2*10-26, Wilcoxon rank sum test) than for relative delta (p = 6*10-
16). To obtain a more accurate estimate of the classification performance, 
we used cross-validation. The difference in performance per cross-validation 
was due to different subsets of subjects used for training and testing in each 
iteration, resulting in slightly different biomarker selections and weights. 
Cross-validation on these two datasets (Figure 7.3) resulted in an accuracy of 
90 ± 2%, sensitivity of 92 ± 4%, specificity of 88 ± 4% and precision of 88 ± 3%, 
which is still very high and significantly higher than using just relative delta: 
accuracy of 79 ± 2%, sensitivity of 79 ± 4%, specificity of 83 ± 4% and precision 
of 81 ± 3% (p = 9*10-29 for accuracy, Wilcoxon rank sum test). Interestingly, 
the difference between the baseline predicted and scopolamine predicted 
groups was also more significant for the mAChR index (p = 9*10-10, Wilcoxon 
rank sum test) than for relative delta (p = 0.02) when tested at washout – 8.5 
h after scopolamine administration (Figure 7.3).

The mAChR index is robust and gener alizable

Test-retest stability is an important quality of a biomarker. We therefore 
compared the mAChR index scores of baseline recordings from two separate 
days in 75 subjects (Trial 1 and 2) and observed a strong correlation of 0.64 
(Spearman correlation, p = 2.5*10-10, Figure 7.3). To further demonstrate 
the generalizability of the mAChR index, we applied it to an independent 
cohort of healthy elderly subjects (Trial 3, see Methods) receiving a similar 
scopolamine intervention. Interestingly, in spite of the difference between 
the age groups in Trials 1–2 and 3, we observed an index performance very 
close to the cross-validation on the adult cohort (Figure 7.4; accuracy 87%, 
sensitivity 83%, specificity 91% and precision 91%). Importantly, the index 
also generalized to the other measurement time points both for Trials 1, 2 
and 3 (Figure 7.4). 
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Machine learning for mor e accur ate measur es of 
pathophysiology

A similar analysis using machine learning for classifying scopolamine 
effects on the EEG has been developed in the past ( Johannsson et al, 2015); 
however, with different features and analysis methods used and without 
reporting the classification performance of the index; therefore, it cannot 
readily be compared with our findings. Our cross-validation (training and 
testing on different data) resulted in a remarkable performance (Figure 7.3). 
Importantly, the test-retest reliability of the mAChR index across two baseline 
recordings was very high (Figure 7.3), and validation on an independent set 
of data confirmed that the index generalizes to new cohorts (Figure 7.4). 
Interestingly, when classifying on the washout period, classification with 
the mAChR index was highly significant, whereas that of the single-best 
biomarker was only marginally significant (Figure 7.3), suggesting that 
clinical situations with many more subtle drug effects will gain substantially 
from the proposed machine learning and data-integration approach. This is 
particularly useful in view of the fact that acute pharmacodynamics effects 
of pro-cognitive, cholinergic compounds are often difficult to measure in 
healthy subjects or patients with AD (Balsters et al, 2011; Beglinger et al, 2004, 
2005; Nathan et al, 2001).

To examine the validity of scopolamine as a model of AD pathophysiology, 
we applied the mAChR index to healthy elderly controls and patients with 
AD. We also derived an AD index to test whether scopolamine-induced EEG 
changes resemble those of AD. Applying the mAChR index to AD patients and 
controls we observed that it indeed showed an effect (Figure 7.5); however, 
it discriminated less accurately than the AD index and with a shift in the 
classification threshold. According to the mAChR index, some AD patients 
were misclassified as healthy elderly, presumably because the EEG is affected 
more strongly by scopolamine than mild (or moderate) AD. Nonetheless, 
because the differences were in the same direction, applying the AD index 
to the subjects on scopolamine resulted in a much better separation (Figure 
7.5). The misclassification here was opposite: a few baseline recordings were 
predicted as scopolamine, because the differences between healthy elderly 
and AD are weaker and, therefore, the separation threshold for the AD index is 

clinical trials (Ommundsen et al, 2011; van Straaten et al, 2014). To address 
this problem, we tested whether extensive characterization of EEG using 
multiple biomarkers and subsequent application of machine learning could 
improve the accuracy of classifying disease state or drug intervention. We 
developed a mAChR index with superior sensitivity and specificity to the 
complex structure of the EEG changes induced by scopolamine intervention 
compared to any single biomarker. The enhanced accuracy could be of great 
value in evaluating the efficacy of drugs that aim to induce effects opposite 
to scopolamine, e.g., for the treatment of AD and schizophrenia-related 
cognitive impairment. We believe our methodological approach could prove 
invaluable in a wide range of challenge tests used in cns drug development.

Scopolamine affects various properties of 
neuronal oscillations

Scopolamine is known to decrease alpha power and increase relative 
delta and theta power, mainly in posterior regions (Kikuchi et al, 1999; 
Liem-Moolenaar et al, 2011; Sannita et al, 1987). These EEG changes are 
hallmarks of cognitive impairment associated with AD (Bennys et al, 
2001; Dauwels et al, 2010a; Jeong, 2004) and also observed in our healthy 
subjects after scopolamine administration (Figure 7.2). Other biomarkers 
affected by scopolamine included the oscillation burst lifetime biomarker, 
which decreased in the alpha band (Figure 7.1) and increased in the theta 
band (Figure 7.2) as observed also in early-stage AD (Montez et al, 2009). 
Scopolamine produced an increase in DFA in all frequency bands, albeit 
this effect was only sufficiently strong in the beta band for inclusion in the 
mAChR index (Figure 7.1and Figure 7.2). The mAChR index also comprised 
the central frequency effects of a decrease in the theta band and an increase 
in the alpha and beta bands (Figure 7.2). Changes in the central frequency 
and bandwidth were correlated, decreasing in the theta band and increasing 
in alpha and beta bands. Larger bandwidth could be associated with less 
frequency stability of alpha and beta oscillations, which has previously been 
linked to a less efficient working memory (Kopell et al, 2011).  

162 163



challenging the cholinergic system: ageing, cognition & infla mmation chapter 7 • Development of a muscarinic electroencephalogr aphic index

detection of pharmacological (scopolamine reversing) effects. This is very 
important for drug development, both in terms of proof-of-pharmacology 
and dose finding. Showing reversal of scopolamine effects by cholinergic 
compounds (even those proven to be effective in the clinic) is difficult, 
but this method holds potential: it improves detection of muscarinic 
anticholinergic EEG effects, so we can expect it to be beneficial at showing 
the reversal of those effects as well. Moreover, this method may also help to 
detect cholinergic effects in healthy subjects (or AD patients) who have not 
been given the scopolamine challenge. 

In conclusion, scopolamine effects on the EEG are clearly present and the 
spectral ones are well known; however, the mAChR index also accommodates 
the temporal dynamics to provide deeper insight into the brain’s cholinergic 
electrophysiology. The index serves as a sensitive biomarker to detect 
the effect of scopolamine in a dose-dependent manner as well as provide 
evidence for drug penetration and, therefore, holds potential for being used 
in experimental pharmacology.

lower. Together, this suggests that scopolamine is a good cognitive impairment 
model for AD, mimicking the changes seen in AD patients; however, with 
a difference in the magnitude of effects. Nicotinic blockade added to the 
muscarinic anticholinergic effects might better resemble changes reflected in 
both indices and might further explain the difference observed between AD 
and scopolamine peak effects (Ellis et al, 2006; Erskine et al, 2004; Gitelman 
and Prohovnik, 1992; Little et al, 1998). 

mAChR index – potential as a clinical EEG tool  
and futur e developments

Integrating information from multiple EEG biomarkers has an advantage 
over the standard power spectrum, because of the often subtle changes 
from baseline and the considerable inter-individual variability at baseline 
for EEG and cognitive tests. This approach also reduces the multiple-
comparisons problem when analyzing several EEG biomarkers in clinical 
trials. A specific mAChR index may help to quantify effects of pro-cognitive 
cholinergic compounds, and muscarinic agonists in particular. Reversal of 
detrimental effects induced by scopolamine on cognitive performance has 
been demonstrated in humans with donepezil (Snyder et al, 2005; Thomas 
et al, 2008) and galantamine (Baraka and Harik, 1977) – two cholinesterase 
inhibitors that increase acetylcholine in the synaptic cleft and prescribed 
for the symptomatic treatment of patients with AD. Further research to 
develop a nicotinic cholinergic index would also be an important tool in 
drug development as nicotinic reversal has also been successfully reported 
(Woodruff-Pak et al, 2003), therefore an index for nicotinic antagonists could 
provide a useful non-invasive method to monitor the effects of an important 
class of drugs. 

Furthermore, while improvement of cognitive functions is difficult to 
quantify in healthy subjects (Beglinger et al, 2004, 2005), administration of 
the agonists may induce changes in the mAChR index that might not be 
quantifiable with other cognitive tests without the use of a pharmacologic 
challenge test (Cohen, 2010). Therefore, a more accurate measure of the EEG 
effects of scopolamine and of cholinergic compounds may result in superior 
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figure 7.1-1 Spectral and temporal correlation biomarkers exhibit sensitivity  
to scopolamine administration. 

a . EEG of a subject in the baseline (blue) and scopolamine (red) condition. b. Grand 
average normalized power spectra indicate large effects of scopolamine, most notably a 
reduction of power in the alpha and beta bands, and an increase of delta and theta power. 
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figure 7.2 Scopolamine affects many characteristics of the EEG. 
Time dependence of different EEG biomarkers (columns) and frequency bands (rows)  
for placebo (black) and scopolamine (red). All biomarkers are shown as averages over 
the 2 channels, except for relative power, for which the Fz-Cz and Pz-Oz channels  
are shown separately, because the effects in the delta and beta bands were opposite  
for the two derivatives. Sixteen biomarkers were significantly affected by scopolamine, 
with the peak effect occurring 1.5 h after administration. 

Significance levels: * denotes p < 0.05, ** p < 10-5, *** p < 10-10 
Bonferroni corrected for multiple comparisons.

figure 7.1-2 Spectral and temporal correlation biomarkers exhibit sensitivity  
to scopolamine administration. 

c. Oscillation dynamics were studied by extracting the amplitude envelope from band-
pass filtered data (e.g., the alpha band, black) using the Hilbert transform (blue, red) 
and a median-amplitude threshold to determine the onset and offset of a burst. d. A 
cumulative probability distribution of all oscillation bursts revealed a tendency towards 
longer alpha bursts in the baseline condition. e. Amplitude envelopes of beta oscillations 
(13–30 Hz) suggest a more complex temporal structure in the peak scopolamine (red) 
than in the baseline (blue) condition on time scales of seconds to tens of seconds. f. 
The long-time scale differences in beta oscillations are reflected in the grand average 
DFA showing larger scaling exponents for peak scopolamine (red) than for the baseline 
recording (blue). All figures were based on the Pz-Oz channel. 
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figure 7.3-2  

c. The mAChR index was more sensitive to the scopolamine (Scp) intervention than 
relative delta power. The plot shows z-scored biomarker values per subject recording. 
Singled-out symbols represent median values per group with standard error bars. The 
dashed line indicates the threshold of the classifier to predict the recordings as a baseline 
(below) or a peak scopolamine (above) recording. d. Same as c. but instead of z-scored 
biomarker values, predictive probabilities obtained from the classifier are shown. e. 
Classification performance of baseline vs scopolamine at the peak drug effect using 100 
cross-validations is significantly higher for the mAChR index (grey boxplots) than the 
relative delta power (white boxplots). f. The superiority of the integrated index was also 
pronounced at washout. Relative delta power in the scopolamine condition was almost 
back to normal at 8.5 h after administration, whereas the mAChR index produced a highly 
significant effect. g. The integrated index has high test-retest reliability across weeks. 

Significance levels legend for this figure: * denotes p < 0.05, ** p < 10-10, *** p < 10-20,  
using Wilcoxon rank sum test.

figure 7.3-1 Enhanced detection of scopolamine-induced eeg changes using 
machine learning.

a . Classification performance increased with the number of features included in the 
integrated index. b. All of the biomarkers selected by elastic net logistic regression for 
inclusion in the integrated mAChR index differed significantly between baseline and peak 
scopolamine. Biomarkers are ordered by their absolute weights, decreasing clockwise 
from the top. Weights (β) are listed next to each biomarker in the legend (PO denotes 
Pz-Oz and FC denotes Fz-Cz). The values plotted on the spider plot are the z-score group 
means and standard error of the mean, normalized to [0, 1] by subtracting the minimum 
across all biomarkers and dividing with the largest range present (i.e., the difference 
between the minimum and maximum value found for the biomarkers with the largest 
difference).  
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challenging the cholinergic system: ageing, cognition & infla mmation chapter 8 • Discussion and final conclusion

figure 7.5-1 The integrated AD index captures scopolamine-induced effects and 
validates scopolamine as a model of AD pathophysiology.

a . Illustration of the twelve biomarkers composing the integrated Alzheimer’s index. 
Several of these biomarkers also compose the scopolamine index, with the same 
directionality of change in both the scopolamine-induced cognitive impairment and 
Alzheimer’s disease. The values plotted are as explained in Figure 7.3b. b. Integrated AD 
index separates healthy elderly from Alzheimer’s disease patients with high precision. c. 
The mAChR index discriminates the healthy elderly and AD patients albeit less accurately 
than the AD index. d. Validating the AD index on the scopolamine data gives much better 
discrimination. 

figure 7.4 The mAChR index generalizes to a new cohort of subjects. 
a . The mAChR index also generalizes to a cohort of healthy elderly subjects receiving 
the same scopolamine intervention (Trial 3), with validation accuracy 87%, sensitivity 
83%, specificity 91% and precision 91%. b. Time dependence curves demonstrate the 
generalizability of the index at all the time points. The mAChR index for placebo (black) 
and scopolamine (red) is shown for Trials 1 and 2 used for developing the index and for 
independent data from Trial 3 (in the latter there was no placebo condition). The values 
plotted are group means and standard errors of the mean computed for the within-subject 
design (Franz and Loftus, 2012). 
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challenging the cholinergic system: ageing, cognition & infla mmation chapter 8 • Discussion and final conclusion

figure 7.5-2
b. Integrated AD index separates healthy elderly from Alzheimer’s disease patients with 
high precision. c. The mAChR index discriminates the healthy elderly and AD patients 
albeit less accurately than the AD index. d. Validating the AD index on the scopolamine 
data gives much better discrimination. 
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