

From supernovae to galaxy clusters : observing the chemical enrichment in the hot intra-cluster medium Mernier, F.D.M.

Citation

Mernier, F. D. M. (2017, May 31). *From supernovae to galaxy clusters : observing the chemical enrichment in the hot intra-cluster medium*. Retrieved from https://hdl.handle.net/1887/49237

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/49237

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/49237</u> holds various files of this Leiden University dissertation

Author: Mernier, François Title: From supernovae to galaxy clusters : observing the chemical enrichment in the hot intra-cluster medium Issue Date: 2017-05-31

From supernovae to galaxy clusters

Observing the chemical enrichment in the hot intra-cluster medium

François Mernier

ISBN: 978-94-6233-622-3

© 2017 François Mernier

From supernovae to galaxy clusters, Observing the chemical enrichment in the hot intra-cluster medium, Thesis, Universiteit Leiden

This work was supported by Leiden Observatory and SRON Netherlands Institute for Space Research.

Cover: Composite image of the Phoenix cluster (Credit: NASA/CXC/MIT/STScI). The X-ray emission (blue) shows the hot intra-cluster medium, while the cluster galaxies and star-forming filaments can be seen in optical (yellow and red). The front image shows an artist impression of the *XMM-Newton* satellite (Credit: ESA), together with metal lines derived from EPIC X-ray spectra (see Chapter 3 and summary).

From supernovae to galaxy clusters

Observing the chemical enrichment in the hot intra-cluster medium

Proefschrift

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 31 mei 2017 klokke 13.45 uur

door

François Denis Marin Mernier

geboren te Ukkel (Brussel), België in 1989 Promotiecommissie

Promotor: Prof. dr. Jelle S. Kaastra Co-promotor: Dr. Jelle de Plaa

Overige leden: Prof. dr. M. Franx Prof. dr. H.J.A. Röttgering Prof. dr. J. Schaye Dr. A. Simionescu (ISAS, JA Dr. J. Vink (Univers

(ISAS, JAXA, Sagamihara, Japan) (Universiteit van Amsterdam)

À mes parents

1	Intr	oductio	n	1
	1.1	The stellar nucleosynthesis: a brief history		2
	1.2	The ro	le of Type Ia and core-collapse supernovae	3
		1.2.1	Core-collapse supernovae (SNcc)	5
		1.2.2	Type Ia supernova (SNIa)	6
	1.3	Metals	s in clusters of galaxies	8
		1.3.1	The legacy of past X-ray missions	10
		1.3.2	The recent generation of X-ray missions	12
		1.3.3	Constraining supernovae models by looking at the	
			intra-cluster medium	13
		1.3.4	Stellar and intra-cluster phases of metals	16
		1.3.5	Where and when was the ICM chemically enriched?	17
	1.4	Spectr	al codes for a collisional ionisation equilibrium plasma	20
	1.5	This th	nesis	21
•	. 1	1	1 1	
2	Abu	indance	e and temperature distributions in the hot intra-cluster	
	gas	of Abel	11 4059	25
	2.1	Introd	uction	26
	2.2	Obser	vations and data reduction	28
		2.2.1	EPIC	28
		2.2.2	RGS	31
	2.3	Spectr	al models	32
		2.3.1	The cie model	32
		2.3.2	The gdem model	33
		2.3.3	Cluster emission and background modelling	33
	2.4	Cluste	er core	34

		2.4.1	EPIC	34
		2.4.2	RGS	40
	2.5	EPIC 1	adial profiles	41
	2.6	Tempe	erature, σ_T , and Fe abundance maps	48
	2.7	Discus	ssion	52
		2.7.1	Abundance uncertainties and SNe yields	52
		2.7.2	Abundance radial profiles	55
		2.7.3	Temperature structures and asymmetries	57
	2.8	Conclu	usions	60
	2.A	Detail	led data reduction	63
		2.A.1	GTI filtering	63
		2.A.2	Resolved point sources excision	63
		2.A.3	RGS spectral broadening correction from MOS 1 image	e 64
	2.B	EPIC b	packground modelling	65
		2.B.1	Hard particle background	65
		2.B.2	Unresolved point sources	67
		2.B.3	Local Hot Bubble and Galactic thermal emission	69
		2.B.4	Residual soft-proton component	69
		2.B.5	Application to our datasets	69
			ipplication to our databets i i i i i i i i i i i i i i i i i i i	0,
	2.C	S/N re	equirement for the maps	72
3	2.C	S/N re	equirement for the maps	72
3	2.C Orig	S/N re gin of co	equirement for the maps	72 75
3	2.C Orig I. Indi 3.1	S/N re gin of c e vidual and Introd	equirement for the maps	72 75 76
3	2.C Orig I. Indi 3.1 3.2	S/N re gin of c vidual and Introd Obser	equirement for the maps	72 75 76 78
3	2.C Orig I. Indi 3.1 3.2	S/N re gin of c vidual and Introd Observ 3.2.1	equirement for the maps	72 75 76 78 78
3	2.C Orig I. Indi 3.1 3.2	S/N re ;in of c vidual and Introd Observ 3.2.1 3.2.2	equirement for the maps	72 75 76 78 78 80
3	2.C Orig I. Indi 3.1 3.2 3.3	S/N re gin of c vidual and Introd Observ 3.2.1 3.2.2 EPIC s	equirement for the maps	72 75 76 78 78 80 81
3	2.C Orig I. Indi 3.1 3.2 3.3	S/N re gin of c vidual and Observ 3.2.1 3.2.2 EPIC s 3.3.1	equirement for the maps	72 75 76 78 78 80 81 83
3	2.C Orig I. Indi 3.1 3.2 3.3	S/N re gin of c vidual and Observ 3.2.1 3.2.2 EPIC s 3.3.1 3.3.2	equirement for the maps	72 75 76 78 78 80 81 83 85
3	2.C Orig I. Indi 3.1 3.2 3.3	S/N re gin of c vidual and Observ 3.2.1 3.2.2 EPIC s 3.3.1 3.3.2 3.3.3	equirement for the maps	72 75 76 78 78 80 81 83 85 85
3	2.C Orig I. Indi 3.1 3.2 3.3	S/N re gin of c vidual and Introd Observ 3.2.1 3.2.2 EPIC s 3.3.1 3.3.2 3.3.3 Result	equirement for the maps	72 75 76 78 78 80 81 83 85 85 85
3	2.C Orig 1. Indi 3.1 3.2 3.3	S/N re gin of c vidual and Observ 3.2.1 3.2.2 EPIC s 3.3.1 3.3.2 3.3.3 Result 3.4.1	equirement for the maps	72 75 76 78 78 80 81 83 85 85 85 86 89
3	2.C Orig I. Indi 3.1 3.2 3.3	S/N re gin of c vidual and Observ 3.2.1 3.2.2 EPIC s 3.3.1 3.3.2 3.3.3 Result 3.4.1 3.4.2	equirement for the maps	72 75 76 78 78 80 81 83 85 85 86 89 90
3	2.C Orig 1. Indi 3.1 3.2 3.3 3.4	S/N re gin of c vidual and Observ 3.2.1 3.2.2 EPIC s 3.3.1 3.3.2 3.3.3 Result 3.4.1 3.4.2 3.4.3	equirement for the maps	72 75 76 78 80 81 83 85 85 86 89 90 92
3	 2.C Orig I. Indi 3.1 3.2 3.3 3.4 3.5 	S/N re gin of c vidual and Diser 3.2.1 3.2.2 EPIC s 3.3.1 3.3.2 3.3.3 Result 3.4.1 3.4.2 3.4.3 Discus	equirement for the maps	72 75 76 78 78 80 81 83 85 85 86 89 90 92 96
3	 2.C Orig I. Indi 3.1 3.2 3.3 3.4 3.5 	S/N re gin of c vidual and Observ 3.2.1 3.2.2 EPIC s 3.3.1 3.3.2 3.3.3 Result 3.4.1 3.4.2 3.4.3 Discus 3.5.1	equirement for the maps	72 75 76 78 78 80 81 83 85 85 85 86 89 90 92 96 100
3	 2.C Orig I. Indi 3.1 3.2 3.3 3.4 3.5 	S/N re gin of c vidual and Observ 3.2.1 3.2.2 EPIC s 3.3.1 3.3.2 3.3.3 Result 3.4.1 3.4.2 3.4.3 Discus 3.5.1 3.5.2	equirement for the maps	72 75 76 78 78 80 81 83 85 85 86 89 90 92 96 100 101

		3.5.3 Current limitations and future prospects	102
	3.6	Conclusions	104
	3.A	EPIC absorption column densities	107
	3.B	Radiative recombination corrections	107
	3.C	Effects of the temperature distribution on the abundance ratios	110
	3.D	Best-fit temperature and abundances	113
4	Orig	gin of central abundances in the hot intra-cluster medium	
	II. Ch	emical enrichment and supernova yield models	119
	4.1	Introduction	120
	4.2	Observations and spectral analysis	123
	4.3	Chemical enrichment in the ICM	124
		4.3.1 Abundance pattern of even-Z elements	126
		4.3.2 Mn/Fe ratio	139
		4.3.3 Fraction of low-mass stars that become SNIa	144
		4.3.4 Clues on the metal budget conundrum in clusters	146
	4.4	Enrichment in the solar neighbourhood	149
	4.5	Summary and conclusions	153
		4.5.1 Future directions	155
	4.A	The effect of electron capture rates on the SNIa nucleosyn-	
		thesis yields	158
	4.B	List of SN yield models used in this work	159
5	Orig	zin of central abundances in the hot intra-cluster medium	
0	III. Th	ne impact of spectral model improvements on the abundance ratios	163
	5.1	Introduction	164
	5.2	The sample and the reanalysis of our data	166
		5.2.1 The sample	166
		5.2.2 From SPEXACT v2 to SPEXACT v3	167
	5.3	Results	170
		5.3.1 The Fe bias in cool plasmas	171
		5.3.2 The Ni bias	176
		5.3.3 Updated average abundance ratios	177
	5.4	Discussion	179
		5.4.1 Implications for the iron content in groups and clusters	179
		5.4.2 Implications for supernovae yield models	182
	5.5	Conclusions	188

6	5 Radial metal abundance profiles in the intra-cluster medium			
	cool	I-core galaxy clusters, groups, and ellipticals	93	
	6.1	Observations and data manufactors	.94	
	6.2	Observations and data preparation	.98	
	6.3		.99	
		6.3.1 Inermal emission modelling	.99	
		6.3.2 Background modelling	201	
	<i>.</i>	6.3.3 Local fits	202	
	6.4	Building average radial profiles	203	
		6.4.1 Exclusion of fitting artefacts	203	
		6.4.2 Stacking method	203	
		6.4.3 MOS-pn uncertainties	205	
	6.5	Results	206	
		6.5.1 Fe abundance profile	206	
		6.5.2 Abundance profiles of other elements 2	208	
	6.6	Systematic uncertainties	214	
		6.6.1 Projection effects	218	
		6.6.2 Thermal modelling	218	
		6.6.3 Background uncertainties	220	
		6.6.4 Weight of individual observations	223	
		6.6.5 Atomic code uncertainties	225	
		6.6.6 Instrumental limitations for O and Mg abundances . 2	227	
	6.7	Discussion	228	
		6.7.1 Enrichment in clusters and groups 2	228	
		6.7.2 The central metallicity drop	230	
		6.7.3 The overall Fe profile	236	
		6.7.4 Radial contribution of SNIa and SNcc products 2	242	
	6.8	Conclusions	250	
	6.A	Cluster properties and individual Fe profiles		
	6.B	Average abundance profiles of O, Mg, Si, S, Ar, Ca, and Ni . 2	255	
7	Futu	ure prospects for intra-cluster medium enrichment studies 2	265	
	7.1	Current limitations of abundance measurements 2	265	
	7.2	The future of XMM-Newton in intra-cluster enrichment studies2	267	
		7.2.1 Nearby clusters and supernova models 2	267	
		7.2.2 High redshift clusters	269	
	7.3	Future work on atomic data and spectral modelling 2	269	
	7.4	X-ray micro-calorimeters	270	

7.5	The upcoming generation of X-ray missions	273
	7.5.1 Hitomi	273
	7.5.2 XARM	275
	7.5.3 Athena	277
7.6	Concluding remarks	279
Biblio	graphy	281
Nederlandse samenvatting		
English summary		
Résumé en français		
Curriculum Vitae		
List of	f publications	319
Ackno	owledgements	321

Quand on me demande: «À quoi sert l'astronomie?» il m'arrive de répondre: «N'aurait-elle servi qu'à révéler tant de beauté, elle aurait déjà amplement justifié son existence.»

> When people ask me: "What is the use of astronomy?" I sometimes answer: "If its use was only to reveal such beauty, astronomy would have already amply justified its existence."

> > - Hubert Reeves, Patience dans l'azur