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1 Introduction

1.1 Preface
Band theory is one of the most powerful quantum mechanical tools available
to understand the electronic properties of crystalline solids. It has been
extremely successful in grouping a wide variety of materials into just two
categories: metals and insulators. In a metal, the Fermi energy lies within
a band, called the conduction band. A metal is characterized by its finite
conductivity at zero temperature. In an insulator, the Fermi energy lies
in a gap between a fully occupied valence band and an empty conduction
band. At zero temperature, the conductivity of an insulator is zero.
The finite band gap at the Fermi energy of insulators allows us to

adiabatically transform different Hamiltonians with the same symmetries
into one another while remaining in the ground state. However, this is
not always possible. There are Hamiltonians of insulators that cannot be
transformed into each other without closing the bulk gap, despite them
having the same symmetries. Such insulators are topologically distinct [1].

In mathematics topology is a way to distinguish objects that cannot be
transformed into each other without tearing or cutting them. For example,
consider two-dimensional surfaces. If the number of holes (’genus’) in
two such surfaces is not the same, they can not be transformed into one
another continuously. The surface of a sphere is topologically equivalent
to the surface of a vase, but not to the surface of a pipe, which is in turn
equivalent to the surface of a coffee mug.
In the context of topological insulators one can identify so-called topo-

logical invariants, which are integer numbers, very much like the genus
of a surface. While the genus is related to the numbers of holes in the
surface, the topological invariants are related to the number of topologi-
cally protected edge states at the interface of two topologically distinct
insulators. These edge states are robust to weak disorder [2–4] and cannot
be gapped, as long as the perturbations do not break the symmetries of
the system or close the insulating bulk gap.
During the last decade, topological insulators have been in the center

of attention of condensed matter research [5–9]. This thesis is concerned
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1 Introduction

with a new class of topological materials, that has emerged very recently:
Topological semimetals [10–18].

Semimetals are in-between metals and insulators. In semimetals, the
bottom of the conduction band overlaps with the top of the valence
band. Therefore, they have a gapless spectrum, which forbids adiabatic
transformations. At first sight, it is therefore counterintuitive that a
semimetal can have topological properties. If translation symmetry is
preserved, however, we can look at the semimetal in reciprocal space. A
key distinction to a normal metal is that the Fermi surface is very small.
In a topological semimetal the Fermi surface shrinks all the way to a point.

Although the topological semimetal is not fully gapped, it is possible to
construct planes in the Brillouin zone in which the spectrum is gapped.
These planes are characterized by topological invariants [8, 19], much like
the topological insulators. The bulk-boundary correspondence then implies
that there exist topologically protected surface states [10]. In contrast
to topological insulators, in a topological semimetal these states are only
defined in parts of the Brillouin zone — they merge with the bulk bands
near the gapless regions.

The focus in this thesis is on a particular topological semimetal called a
Weyl semimetal [18, 20–22]. At first sight, a Weyl semimetal is just a three-
dimensional version of graphene. However, the third spatial dimension
plays a subtle, but powerful role, that distinguishes Weyl semimetals from
graphene. Unlike in graphene, the existence and stability of the gapless
points in the spectrum (so-called Weyl points) is not guaranteed by a
symmetry, but by the third spatial dimension itself. The Weyl points are
protected by a topological invariant (the so-called chirality or Berry flux)
and cannot be removed by local perturbations. The only way to open a
gap is to merge two Weyl points of opposite chirality. The chirality of
the Weyl points leads to remarkable electronic properties, such as chiral
Landau levels and the chiral magnetic effect. These, and other properties
that distinguish Weyl semimetals from graphene, are the core subjects of
this thesis.

1.2 Weyl semimetals

1.2.1 Band structure
Just like in graphene, the low-energy spectrum of a Weyl semimetal has a
linear energy-momentum relation. The low-energy excitations are massless
and move with an energy-independent velocity (analogous to the speed
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1.2 Weyl semimetals

Figure 1.1: Schematic drawing of the energy-momentum relation of a Weyl
semimetal slab. The bulk Weyl cones (blue) are separated in momentum space
by a time-reversal-symmetry breaking magnetization β. If inversion symmetry
is broken (λ 6= 0), the Weyl points are displaced with respect to each other in
energy. On the surface the projection of the Weyl cones are connected by chiral
edge states (red).

of light for photons). Many of the remarkable electronic properties of
graphene, such as Klein tunneling [23–25], are therefore also present in
Weyl semimetals. If we consider a slab geometry, which is finite in one
direction and translationally invariant in the other two directions, the
surface states look just like the dispersionless surface states of graphene
with a zigzag edge. A schematic drawing of the band structure is shown
in Fig. 1.1. In our numerical simulations, we use a tight-binding model

H(k) = τz(t′σx sin kx + t′σy sin ky + t′zσz sin kz)
+m(k)τxσ0 + βτ0σz + λτzσ0

m(k) = m0 + t(2− cos kx − cos ky) + tz(1− cos kz), (1.1)

which is equivalent to the model introduced in [26], up to a unitary
transformation. The Pauli matrices σ and τ represent spin and orbital
degrees of freedom. (For brevity, we will set ~ ≡ 1, and often also the
lattice constant a ≡ 1.) The first two terms in Eq. 1.1 describe a Weyl
semimetal with eight Weyl cones located at k = ({0, π}, {0, π},±β) for
small β. The third term, the “mass term” µ(k), gaps the Weyl points at
kx = π and ky = π so that only two Weyl points remain at k = (0, 0,±β).
The inversion breaking term b0 shifts the Weyl cones in energy in opposite
directions.
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1 Introduction

1.2.2 Topological properties
To understand the topological properties of a Weyl semimetal, we first
focus on a single, non-degenerate Weyl cone. Such a Weyl-cone consists of
a conduction band and a valence band, that accidentally touch at single
point, the Weyl point. The Hamiltonian of a single isotropic Weyl cone
reads

H = χvF (kxσx + kyσy + kzσz), (1.2)

where χ = ± is the chirality, vF is the Fermi velocity, ki a momentum
component, and σi a spin Pauli matrix. In this context, chirality means
that the momentum and the spin of electrons in a given Weyl cone are
(anti-)parallel.

The Weyl Hamiltonian in Eq. 1.2 looks almost like the Hamiltonian
for a single Dirac cone in graphene, with the key difference that all three
Pauli matrices are coupled to the momentum. Therefore, adding any
additional terms to the Hamiltonian, e.g. mσz, only shifts the Weyl point
in momentum space or energy, but does not open a gap. This is what we
mean when we say that the Weyl points are topologically protected.
To understand the existence of topologically protected surface states,

we need to consider a pair of Weyl points with opposite chirality. Let us
assume that those Weyl points are located at kχ = (0, 0, χk0). Because the
band structure of a Weyl semimetal is gapless, topological invariants [1]
are not well defined. However, as mentioned in the preface, if translation
symmetry is conserved, we can define the three-dimensional Brillouin zone
as a stack of two dimensional planes Skz , labeled by the third component of
the momentum kz. (This is called dimensional reduction [19, 27, 28].) The
spectra of all planes, except for those that contain Weyl points, are gapped.
We can therefore calculate their topological invariants, the so-called Chern
numbers,

Ckz
= 1

2π

∫
Skz

dk ·B(k) (1.3)

by integrating the Berry flux

B(k) = ∇k × i
filled∑
n

〈un(k)|∇k|un(k)〉 (1.4)

over all filled bands [1], where un(k) are Bloch wave functions.
By calculating the Berry flux through a sphere that encloses one of the

Weyl points, we see that Weyl points are sources and sinks of Berry flux
[29], depending on their chirality. The Berry flux flows from the Weyl cone
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1.2 Weyl semimetals

with positive chirality to the Weyl cone with negative chirality via the
time-reversal invariant points. Therefore, all planes in-between∗ the Weyl
points have a non-trivial Chern number and are topological insulators
with topologically protected surface states [10]. The Chern number of the
planes outside of the Weyl points is zero, and hence they do not have
topological surface states. The property that Weyl points are sources and
sinks of Berry flux is another way to see that they must be topologically
protected: The only way to annihilate a pair of Weyl points is to merge a
source with a sink.

1.2.3 Landau levels
The Landau levels of massive electrons are quantized as En ∼

√
n+ 1/2.

For the massless electrons in graphene the 1/2 offset is absent, and the n = 0
Landau level is magnetic-field independent [30]. In a three-dimensional
Weyl semimetal the Landau levels also posses a dispersion along the
direction of the magnetic field. The zeroth Landau level is chiral and
disperses only in one direction [31].
To derive the Landau levels of a Weyl semimetal, we consider a single

isotropic Weyl cone with chirality χ and include the vector potential A of
the magnetic field via

H = χvF (k − qA) · σ, (1.5)

where we will assume q > 0. We take the magnetic field in the z-direction
and choose the symmetric gauge

A = (−By/2, Bx/2, 0). (1.6)

An instructive way [32–34] to calculate the spectrum of such a Hamilto-
nian is to introduce the canonical momenta

Πx ≡ kx + qBy/2 Πy ≡ kx − qBx/2, (1.7)

whose commutation relation is given by

[Πx,Πy] = iqB. (1.8)
∗“In-between” the Weyl points is defined is as follows: In a Dirac semimetal, the

Dirac cones are doubly degenerate. By breaking inversion or time-reversal symmetry,
these cones become separated from each other in the Brillouin zone. “In-between” the
Weyl points is then defined as a line in the Brillouin zone that connects the Weyl points
via the Dirac point from which they emerged.
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Figure 1.2: Landau levels of a single Weyl cone with positive chirality χ = +.

In the z-direction, the motion is not affected by the magnetic field. In the
usual way, we introduce raising and lowering operators

a =
√

1
2qB (Πx + iΠy), a† =

√
1

2qB (Πx − iΠy), (1.9)

which act on the Landau level index n. In this notation, the Hamiltonian
reads∗

H = χ
√

2qBvF (aσ− + a†σ+) + χvF kzσz, (1.10)

where σ± = (σx ± iσy)/2. The zeroth Landau level (n = 0) is special [31],
the only eigenstate is

H|n = 0, kz, ↑〉 = χvF kz|n = 0, kz, ↑〉. (1.11)

The higher Landau levels can be found by squaring the Hamiltonian

H2 = qBv2
F (2a†a+ 1− σz) + v2

F k
2
z . (1.12)

From this, we can read off the n ≥ 1 Landau levels

En,↑ = ±vF
√
k2
z + 2qBn and En,↓ = ±vF

√
k2
z + 2qB(n+ 1), (1.13)

which are illustrated in Fig. 1.2.
∗We used the convention q > 0.
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1.2 Weyl semimetals

1.2.4 Chiral anomaly

The chiral anomaly is the condensed matter analogue of the Adler-Bell-
Jackiw anomaly from particle physics [35, 36]. In high-energy physics,
massless fermions in odd spatial dimensions have chiral symmetry. This
means that the number of fermions with a given chirality, and therefore
the total chiral charge, is conserved. In a Weyl semimetal, the low-energy
physics is described by the same relativistic equation. However, chiral
symmetry can be broken by applying a magnetic and an electric field in
parallel. The electric field pumps electrons from one Weyl cone to the
other, therefore changing the total chiral charge. This so-called chiral
anomaly has been studied in the condensed matter context for some time
[31, 37, 38].

Many of the most fascinating transport phenomena of Weyl semimetals
are direct consequences of the chiral anomaly, most famously the huge
magnetoconductance [31, 39–41] and the chiral magnetic effect [42–46].

1.2.5 Surface states

The surface band of a Weyl semimetal is one of its most remarkable
features and a key experimental signature. The Fermi surfaces, that are
formed by the intersection of the surface bands with the Fermi energy, are
called Fermi arcs. They are open lines which run from one projection of a
Weyl cone to another [10]. This is illustrated in Fig. 1.3 a. Usually, Fermi
surfaces are closed contours, separating filled from empty states. So how
can an open Fermi surface exist? They answer is that the Fermi arcs on
both surfaces complement each other. Together, they form a closed Fermi
surfaces [47]. If we were to make the Weyl semimetal thinner and thinner,
the Fermi arcs would eventually merge into a closed Fermi surfaces.
The real-space properties of the surface states are also unusual and

interesting. They are chiral, in the sense that they disperse only in one
direction, circling around the direction of the internal magnetization. If
inversion symmetry is broken, their velocity also has a component along
the magnetization. In a cylinder geometry, where the Weyl cones are
separated along the translationally invariant axis, the surface states have
the shape of a solenoid and spiral along the cylinder surface as shown in
Fig. 1.3 b.
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Figure 1.3: Left: Schematic illustration of the density of states of a Weyl
semimetal in a slab geometry at an energy slightly away from the band touching
point. The slab is finite in the x-direction with widthW and translation invariant
in the y- and z-directions. Due to finite size quantization, the density of states
of the Weyl cones consists of several discrete circles (blue). The surface arcs
(red) at the left (x = 0) and right (x = W ) surface connect near the Weyl cones.
Together, they form a closed contour. Right: For a cylindrical Weyl semimetal
wire, the chiral surface states have the shape of a solenoid.

1.2.6 Experimental realizations

The interest in Weyl semimetals exploded with their experimental discovery
in 2015. The first experimental realization was in tantalum arsenide
(TaAs) [48–51]. Soon after, Weyl semimetals were reported in niobium
arsenide (NbAs) [52] and tantalum phosphide (TaP) [53]. It turns out all
of those materials have a very similar screw-like crystal structure. They
are symmetric under a combination of rotation and translation [52, 53], a
so-called non-symmorphic C4 symmetry.
All of these pioneering experiments used a combination of low- and

high-energy angle-resolved photoemission spectroscopy (ARPES). The low-
energy (ultraviolet) ARPES probes the surface dispersion and shows the
Fermi arcs. The high-energy (soft X-ray) ARPES probes the underlying
bulk dispersion and shows the Weyl cones. One of the most impressive
proofs that TaAs is indeed a Weyl semimetal is shown in Fig. 1.4. In
the top part (green), a low-energy ARPES map shows the Fermi arcs on
the surface. In the bottom part, the low-energy ARPES map is overlaid
with a high energy ARPES map, which shows the projections of the Weyl

8



1.2 Weyl semimetals

Figure 1.4: High-resolution ARPES maps of TaAs. Green region: Surface state
Fermi surface map (darker color means higher ARPES signal). Brown region:
Surface state Fermi surface map overlaid with bulk Fermi surface map. The
surface Fermi arcs indeed terminate at the projections of the bulk Weyl points
on the surface Brillouin zone. Figure from Ref. [48]. Reprinted with permission
from AAAS.

points onto the surface Brillouin zone. We see that the Fermi arcs indeed
terminate at projections of the Weyl points.

So far, all experimental realizations are Weyl semimetals with preserved
time-reversal symmetry. However, several proposals have been put forward
on how to realize Weyl semimetals with broken time-reversal symmetry
[10, 54, 55]. In this thesis, we focus on the time-reversally broken situation,
because it provides the minimal number of two Weyl points — when
time-reversal symmetry is preserved one must have at least four Weyl
points.
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Figure 1.5: Illustration of the chiral chemical potentials µχ induced by an
inversion breaking perturbation. The energy difference between the two Weyl
points ∆E is the difference of the chiral chemical potentials.

1.3 Chiral magnetic effect

The Chiral Magnetic Effect (CME) is a “topological” current response,
that is directly related to the chiral anomaly. Its universal value

j = (e/h)2∆EB (1.14)

does not depend on the details of the material or model. The only terms
that enter are the energy displacement of the Weyl points ∆E and the
amplitude of the external magnetic field B. Initially, it was believed that
the chiral magnetic effect might be a static current response. However,
it is now understood that a slow periodic modulation of either ∆E or B
is needed to overcome relaxation. The reason is that in any real system,
there will always be a relaxation channel that scatters between the Weyl
cones, even though this scattering is suppressed by the separation of the
Weyl cones in the Brillouin zone. In this thesis, we therefore study the
CME as a response to an oscillating parameter. The CME is one of the
unique features of a Weyl semimetals that sets it apart from graphene.
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1.3 Chiral magnetic effect

Figure 1.6: Left: In a wire geometry with diameter W , the chiral surface state
encircles the entire magnetic flux. Right: Low-energy dispersion of a Weyl
semimetal in a strong magnetic field. The surface states merge near the Weyl
points and form the zeroth Landau levels (cf. Fig. 3.1, Chapter 3).

1.3.1 Chiral magnetic effect with Landau levels

In the first studies of the chiral magnetic effect [42–45], a Weyl semimetal
was placed into a static magnetic field, strong enough for Landau levels to
develop. Then, by means of an inversion symmetry breaking perturbation,
the Weyl cones were periodically shifted up and down in energy in opposite
directions. This so-called chiral chemical potential µχ ≈ χλ creates a
non-equilibrium distribution at each Weyl cone, as illustrated in Fig. 1.5.
The chiral Landau levels carry electron and hole currents in opposite
directions. Together, they create a universal current density (Eq. 1.14).

We can derive the universal coefficient (e/h)2 by very simple arguments,
using an approach similar to the well-known Landauer formula, which
we introduce in chapter 3. In contrast to the original Landauer formula,
here the reservoirs are separated in momentum space rather than in real
space. The contribution of the Weyl cone with positive chirality to the
current is the product of the conductance per mode, the number of modes,
and the chiral voltage µ+/e. The conductance per mode is e2/h and the
degeneracy of the zeroth Landau level BA/Φ0, where A is the cross section
of the wire and Φ0 = h/e is the magnetic flux quantum.
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Altogether, the current response is given by

I+ = e2

h
eAB
h

µ+
e . (1.15)

The zeroth Landau level of the Weyl cone with negative chirality disperses
in the opposite direction. At the same time, the chiral chemical potential
of the other Weyl cone is the negative equal µ− = −µ+. Therefore, both
Weyl cones contribute equally to the current, resulting in the current
density 1.14.

1.3.2 Chiral magnetic effect without Landau levels
In chapter 3 we introduce a variant of the chiral magnetic effect in a weak
oscillating magnetic field, that does not rely on the presence of Landau
levels. For this, we consider a Weyl semimetal with both, broken time- and
broken inversion symmetry. We have found that in this case the topological
response is carried by the surface states. This is unexpected, because one
would expect a surface current to scale with the circumference, rather than
the cross section. The reason for the unusual scaling of the response is
that the chiral surface states encircle the entire flux (see Fig. 1.6 a), and
therefore have a magnetic moment that scales with the diameter W .
In fact, there is a deep connection between the two manifestations of

the chiral magnetic effect: If one slowly turns on a strong magnetic field,
the surface bands are shifted in energy and merge near the Weyl points
into the zeroth Landau level (Fig. 1.6 b). Therefore, the states that carry
the chiral magnetic effect in the conventional CME and our variant are
directly related.

1.4 Interfaces with superconductors

1.4.1 Andreev scattering
In a superconductor, excitations consist of unpaired electrons (filled states
above the Fermi level) or holes (empty states below the Fermi level). These
excitations can be described in a mean-field approximation as moving in a
background pair potential, which is formed by the condensate of Cooper
pairs. Electrons can be scattered into holes by the pair potential, a process
known as Andreev scattering [56, 57]. When an electron is converted into
a hole, a Cooper pair is formed, which accounts for the missing 2e charge
(see Fig. 1.7).
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1.4 Interfaces with superconductors

Figure 1.7: Schematic drawing of Andreev-Bragg scattering in a metal-
superconductor junction. Bottom: Sketch of the Andreev scattering process.
An electron enters the superconductor, where it forms a Cooper pair together
with another electron. As a result, a hole is scattered back into the metal. Top
left: Schematic drawing of the Brillouin zone of the metal. If the wave vector of
the PDW connects two points of the Fermi surface, Andreev-Bragg scattering is
allowed. Right: Drawing of the spatial dependence of the order parameter as a
function of position.

Andreev scattering has a series of surprising features, that are discussed
in more detail for example in [58, 59]. Most remarkably, it explains
why there is a finite conductance from a metal into a superconductor
at the Fermi energy, despite the excitation gap in the superconductor:
An incoming electron is not simply transmitted into the superconductor,
but gets Andreev reflected into a hole, transferring a charge of 2e from
the metal into the superconductor. Therefore, the conductance from a
normal metal into a superconductor (assuming an ideal interface) is twice
the normal-state conductance. If the interface is not ideal, described for
example by a finite transmission probability T , the conductance drops
quadratically ∝ T 2. This quadratic dependence derives from the two
particle nature of Andreev scattering.
The conversion of an electron into a hole by Andreev scattering at
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a metal-superconductor interface introduces a phase coherence between
electrons and holes in the metal. This coherence extends the properties of
the superconductor into the metal. Most notably, the local density of states
near the interface is suppressed around the Fermi energy. One speaks of
proximity effect and induced superconductivity. The relationship between
Andreev scattering and the proximity effect has been reviewed in detail in
[60]. In a ballistic system, the length scale on which superconductivity is
induced into the metal is the electron-hole coherence length in the metal.
It is often much longer than the coherence length in the superconductor,
which characterizes the “size” of Cooper pairs. This coherence is, however,
rapidly destroyed if the metal breaks time-reversal symmetry. There also
exists an inverse proximity effect: The pair-breaking scattering in the metal
reduces the pairing amplitude in the superconductor near the interface
[61].

1.4.2 Andreev-Bragg scattering
In a conventional superconductor, Cooper pairs carry zero net momentum.
Therefore, momentum conservation dictates that an Andreev-reflected hole
carries the same momentum as the incoming electron. Since the mass of
a hole is the negative equal of the electron, in an ideal and time-reversal
symmetric setting, the hole is reflected into the direction where the electron
came from: vh = ke/(−me) = −ve. Its reflection angle is the opposite of
that of a billiard ball bouncing from a hard wall (so-called retroreflection).
There exist also unconventional superconductors [62–65], where the

Cooper pairs may carry a finite net momentum. From a theoretical
perspective, the FFLO phase [66, 67] has received a lot of attention. The
order parameter of such a superconductor varies periodically in space
∆2K(x) ∼ cos(2K · x).

The interest in these so-called pair density waves has recently been
revived, when it was suggested that they might play a role in the pseudogap
phase of cuprate superconductors [68]. If an electron Andreev scatters
from a pair density wave, the momentum of the outgoing hole is shifted:
kh = ke − 2K. If we take multiple Andreev scattering processes into
account, we see that electrons, that are reflected as electrons, are shifted
by even multiples of the Cooper pair momentum k′e = ke − 2n · 2K. If
on the other hand an electron is scattered into a hole, the momentum
is shifted by an odd multiple kh = ke − (2n + 1) · 2K. In a sense, the
Cooper pairs act very much like a crystal lattice, absorbing and emitting
quantized momenta.
Following this analogy, we call this type of scattering Andreev-Bragg
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1.5 This thesis

scattering. In general, the scattering angle in position space is determined
by which points of the Fermi surface of the non-interacting system are
connected by multiples of the Cooper pair momentum. In extreme cases,
the scattering angle can be the opposite of conventional Andreev reflection.

1.4.3 Proximity effect in Weyl semimetals
In Weyl semimetals, the proximity effect is fundamentally different for
those with and those without time-reversal symmetry. In the time-reversal
symmetric case, the proximity to a spin singlet s-wave superconductor will
gap the Weyl cones [69]. In Weyl semimetals with broken time-reversal
symmetry, on the other hand, the proximity effect is suppressed and only
affects the states that are localized at the interface between the Weyl
semimetal and the superconductor. The reason is that a conventional
superconductor pairs electrons from +k with electrons from −k, hence
from different Weyl cones. In a time-reversal symmetric Weyl semimetal,
these Weyl cones have the same chirality due to Kramers degeneracy. In a
Weyl semimetal with broken time-reversal symmetry, however, the cones
have opposite chirality. In order for a superconductor to induce a gap,
it would have to flip the chirality, which conventional spin singlet s-wave
superconductors do not do.
At the interface, the situation is different. The interface states live

both in the Weyl semimetal and in the superconductor. In the Weyl
semimetal, they are localized by the time-reversal breaking magnetization,
in the superconductor by the coherence length. Their orbital structure is
therefore a hybrid of the orbital structure in the Weyl semimetal and the
orbital structure in the superconductor. An interesting feature of these
interface states is that the pairing is between electrons from the same band.
This band splits into two, nearly charge neutral bands, which are called
Majorana bands [69–71].

1.5 This thesis
In this section, we give a brief outline of the topics discussed in the chapters
of this thesis.

Chapter 2
Topological insulators are classified based on their symmetries. The cele-
brated “ten-fold way” [28] considers time-reversal, particle-hole, and chiral
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symmetry. (There also exist topological insulators that do not fall into
these categories.) In this chapter, we study a layered system with anti-
ferromagnetic order, a so-called anti-ferromagnetic topological insulator
[72]. In this system, time-reversal symmetry is broken locally, but restored
in conjunction with a translation by half a unit cell. Unlike true time-
reversal symmetry, this effective time-reversal symmetry is destroyed by
weak disorder. However, in our studies, we find a remarkable robustness of
the topological phase against electrostatic disorder. The reason is that the
symmetry still holds on average, placing the antiferromagnetic topological
insulator in the class of statistical topological insulators [73, 74].

Weyl semimetals make their first appearance in this chapter, but not yet
as a stable phase — they require fine tuning of parameters. Nevertheless,
we are be able to calculate the conductance and the Fano factor (ratio of
shot noise power and average current) at the Weyl point. Our key finding
is that the Fano factor is distinct from the 1/3 value in graphene.

Chapter 3
The chiral magnetic effect (CME) is a unique experimental signature of
a Weyl semimetal that does not exist in graphene. It has been studied
extensively as a response of a Weyl semimetal in a strong magnetic field
to a slowly oscillating inversion breaking perturbation. However, such a
perturbation is difficult to achieve experimentally. In this chapter, we study
the complementary response of a Weyl semimetal with broken inversion
symmetry to a small oscillating magnetic field. We find that, in this case,
the CME has a surface contribution from the Fermi arc that scales with
sample size in the same way as the bulk contribution. While the bulk
contribution is not universal, and susceptible to disorder, we argue that the
surface contribution is robust and universal, demonstrating its topological
origin.

The CME from the surface Fermi arcs persists in the limit of an infinitesi-
mally small magnetic field, when no Landau levels are formed. This “chiral
magnetic effect without Landau levels” is reminiscent of the “quantum
Hall effect without Landau levels”.

Chapter 4
The surface states of a Weyl semimetal with broken time-reversal and
inversion symmetry form a chiral solenoid in real space (see Fig. 1.3). In
the previous chapter 3 we showed that this solenoid carries the topological
response to an oscillating magnetic field. In this chapter, we investigate
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1.5 This thesis

what happens if we coat the solenoid with a superconductor. We find
that the proximity effect is short-ranged, affecting only the states localized
at the Weyl semimetal – superconductor interface. There, the proximity
effect splits the surface mode into a pair of Majorana modes. We derive
an effective surface Hamiltonian and show how such a system can be used
to trap Majorana fermions.

Chapter 5
In the final chapter, we depart from Weyl semimetals to study another
type of system that has Fermi arcs. Spectroscopy of the pseudo-gap phase
in high Tc-cuprates has revealed such disconnected pieces of Fermi surface.
Even though these materials have been studied for several decades, there
is no consensus about the microscopic mechanism behind the pseudo-gap
phase. Recently, Patrick Lee proposed that an extreme form of finite-
momentum Cooper pairing, a so-called pair density wave, might be the
solution to this ongoing puzzle [68]. The pairing is called Amperian,
because it is similar to the attractive force from Ampère’s law that appears
between two parallel currents.
We show that Amperian pairing would lead to specular Andreev re-

flection (rather than the usual retroreflection) and we propose a simple
three-terminal setup to detect it.
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