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1 Introduction

1.1 Preface
Band theory is one of the most powerful quantum mechanical tools available
to understand the electronic properties of crystalline solids. It has been
extremely successful in grouping a wide variety of materials into just two
categories: metals and insulators. In a metal, the Fermi energy lies within
a band, called the conduction band. A metal is characterized by its finite
conductivity at zero temperature. In an insulator, the Fermi energy lies
in a gap between a fully occupied valence band and an empty conduction
band. At zero temperature, the conductivity of an insulator is zero.
The finite band gap at the Fermi energy of insulators allows us to

adiabatically transform different Hamiltonians with the same symmetries
into one another while remaining in the ground state. However, this is
not always possible. There are Hamiltonians of insulators that cannot be
transformed into each other without closing the bulk gap, despite them
having the same symmetries. Such insulators are topologically distinct [1].

In mathematics topology is a way to distinguish objects that cannot be
transformed into each other without tearing or cutting them. For example,
consider two-dimensional surfaces. If the number of holes (’genus’) in
two such surfaces is not the same, they can not be transformed into one
another continuously. The surface of a sphere is topologically equivalent
to the surface of a vase, but not to the surface of a pipe, which is in turn
equivalent to the surface of a coffee mug.
In the context of topological insulators one can identify so-called topo-

logical invariants, which are integer numbers, very much like the genus
of a surface. While the genus is related to the numbers of holes in the
surface, the topological invariants are related to the number of topologi-
cally protected edge states at the interface of two topologically distinct
insulators. These edge states are robust to weak disorder [2–4] and cannot
be gapped, as long as the perturbations do not break the symmetries of
the system or close the insulating bulk gap.
During the last decade, topological insulators have been in the center

of attention of condensed matter research [5–9]. This thesis is concerned
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1 Introduction

with a new class of topological materials, that has emerged very recently:
Topological semimetals [10–18].

Semimetals are in-between metals and insulators. In semimetals, the
bottom of the conduction band overlaps with the top of the valence
band. Therefore, they have a gapless spectrum, which forbids adiabatic
transformations. At first sight, it is therefore counterintuitive that a
semimetal can have topological properties. If translation symmetry is
preserved, however, we can look at the semimetal in reciprocal space. A
key distinction to a normal metal is that the Fermi surface is very small.
In a topological semimetal the Fermi surface shrinks all the way to a point.

Although the topological semimetal is not fully gapped, it is possible to
construct planes in the Brillouin zone in which the spectrum is gapped.
These planes are characterized by topological invariants [8, 19], much like
the topological insulators. The bulk-boundary correspondence then implies
that there exist topologically protected surface states [10]. In contrast
to topological insulators, in a topological semimetal these states are only
defined in parts of the Brillouin zone — they merge with the bulk bands
near the gapless regions.

The focus in this thesis is on a particular topological semimetal called a
Weyl semimetal [18, 20–22]. At first sight, a Weyl semimetal is just a three-
dimensional version of graphene. However, the third spatial dimension
plays a subtle, but powerful role, that distinguishes Weyl semimetals from
graphene. Unlike in graphene, the existence and stability of the gapless
points in the spectrum (so-called Weyl points) is not guaranteed by a
symmetry, but by the third spatial dimension itself. The Weyl points are
protected by a topological invariant (the so-called chirality or Berry flux)
and cannot be removed by local perturbations. The only way to open a
gap is to merge two Weyl points of opposite chirality. The chirality of
the Weyl points leads to remarkable electronic properties, such as chiral
Landau levels and the chiral magnetic effect. These, and other properties
that distinguish Weyl semimetals from graphene, are the core subjects of
this thesis.

1.2 Weyl semimetals

1.2.1 Band structure
Just like in graphene, the low-energy spectrum of a Weyl semimetal has a
linear energy-momentum relation. The low-energy excitations are massless
and move with an energy-independent velocity (analogous to the speed

2



1.2 Weyl semimetals

Figure 1.1: Schematic drawing of the energy-momentum relation of a Weyl
semimetal slab. The bulk Weyl cones (blue) are separated in momentum space
by a time-reversal-symmetry breaking magnetization β. If inversion symmetry
is broken (λ 6= 0), the Weyl points are displaced with respect to each other in
energy. On the surface the projection of the Weyl cones are connected by chiral
edge states (red).

of light for photons). Many of the remarkable electronic properties of
graphene, such as Klein tunneling [23–25], are therefore also present in
Weyl semimetals. If we consider a slab geometry, which is finite in one
direction and translationally invariant in the other two directions, the
surface states look just like the dispersionless surface states of graphene
with a zigzag edge. A schematic drawing of the band structure is shown
in Fig. 1.1. In our numerical simulations, we use a tight-binding model

H(k) = τz(t′σx sin kx + t′σy sin ky + t′zσz sin kz)
+m(k)τxσ0 + βτ0σz + λτzσ0

m(k) = m0 + t(2− cos kx − cos ky) + tz(1− cos kz), (1.1)

which is equivalent to the model introduced in [26], up to a unitary
transformation. The Pauli matrices σ and τ represent spin and orbital
degrees of freedom. (For brevity, we will set ~ ≡ 1, and often also the
lattice constant a ≡ 1.) The first two terms in Eq. 1.1 describe a Weyl
semimetal with eight Weyl cones located at k = ({0, π}, {0, π},±β) for
small β. The third term, the “mass term” µ(k), gaps the Weyl points at
kx = π and ky = π so that only two Weyl points remain at k = (0, 0,±β).
The inversion breaking term b0 shifts the Weyl cones in energy in opposite
directions.
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1 Introduction

1.2.2 Topological properties
To understand the topological properties of a Weyl semimetal, we first
focus on a single, non-degenerate Weyl cone. Such a Weyl-cone consists of
a conduction band and a valence band, that accidentally touch at single
point, the Weyl point. The Hamiltonian of a single isotropic Weyl cone
reads

H = χvF (kxσx + kyσy + kzσz), (1.2)

where χ = ± is the chirality, vF is the Fermi velocity, ki a momentum
component, and σi a spin Pauli matrix. In this context, chirality means
that the momentum and the spin of electrons in a given Weyl cone are
(anti-)parallel.

The Weyl Hamiltonian in Eq. 1.2 looks almost like the Hamiltonian
for a single Dirac cone in graphene, with the key difference that all three
Pauli matrices are coupled to the momentum. Therefore, adding any
additional terms to the Hamiltonian, e.g. mσz, only shifts the Weyl point
in momentum space or energy, but does not open a gap. This is what we
mean when we say that the Weyl points are topologically protected.
To understand the existence of topologically protected surface states,

we need to consider a pair of Weyl points with opposite chirality. Let us
assume that those Weyl points are located at kχ = (0, 0, χk0). Because the
band structure of a Weyl semimetal is gapless, topological invariants [1]
are not well defined. However, as mentioned in the preface, if translation
symmetry is conserved, we can define the three-dimensional Brillouin zone
as a stack of two dimensional planes Skz , labeled by the third component of
the momentum kz. (This is called dimensional reduction [19, 27, 28].) The
spectra of all planes, except for those that contain Weyl points, are gapped.
We can therefore calculate their topological invariants, the so-called Chern
numbers,

Ckz
= 1

2π

∫
Skz

dk ·B(k) (1.3)

by integrating the Berry flux

B(k) = ∇k × i
filled∑
n

〈un(k)|∇k|un(k)〉 (1.4)

over all filled bands [1], where un(k) are Bloch wave functions.
By calculating the Berry flux through a sphere that encloses one of the

Weyl points, we see that Weyl points are sources and sinks of Berry flux
[29], depending on their chirality. The Berry flux flows from the Weyl cone
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1.2 Weyl semimetals

with positive chirality to the Weyl cone with negative chirality via the
time-reversal invariant points. Therefore, all planes in-between∗ the Weyl
points have a non-trivial Chern number and are topological insulators
with topologically protected surface states [10]. The Chern number of the
planes outside of the Weyl points is zero, and hence they do not have
topological surface states. The property that Weyl points are sources and
sinks of Berry flux is another way to see that they must be topologically
protected: The only way to annihilate a pair of Weyl points is to merge a
source with a sink.

1.2.3 Landau levels
The Landau levels of massive electrons are quantized as En ∼

√
n+ 1/2.

For the massless electrons in graphene the 1/2 offset is absent, and the n = 0
Landau level is magnetic-field independent [30]. In a three-dimensional
Weyl semimetal the Landau levels also posses a dispersion along the
direction of the magnetic field. The zeroth Landau level is chiral and
disperses only in one direction [31].
To derive the Landau levels of a Weyl semimetal, we consider a single

isotropic Weyl cone with chirality χ and include the vector potential A of
the magnetic field via

H = χvF (k − qA) · σ, (1.5)

where we will assume q > 0. We take the magnetic field in the z-direction
and choose the symmetric gauge

A = (−By/2, Bx/2, 0). (1.6)

An instructive way [32–34] to calculate the spectrum of such a Hamilto-
nian is to introduce the canonical momenta

Πx ≡ kx + qBy/2 Πy ≡ kx − qBx/2, (1.7)

whose commutation relation is given by

[Πx,Πy] = iqB. (1.8)
∗“In-between” the Weyl points is defined is as follows: In a Dirac semimetal, the

Dirac cones are doubly degenerate. By breaking inversion or time-reversal symmetry,
these cones become separated from each other in the Brillouin zone. “In-between” the
Weyl points is then defined as a line in the Brillouin zone that connects the Weyl points
via the Dirac point from which they emerged.
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1 Introduction

Figure 1.2: Landau levels of a single Weyl cone with positive chirality χ = +.

In the z-direction, the motion is not affected by the magnetic field. In the
usual way, we introduce raising and lowering operators

a =
√

1
2qB (Πx + iΠy), a† =

√
1

2qB (Πx − iΠy), (1.9)

which act on the Landau level index n. In this notation, the Hamiltonian
reads∗

H = χ
√

2qBvF (aσ− + a†σ+) + χvF kzσz, (1.10)

where σ± = (σx ± iσy)/2. The zeroth Landau level (n = 0) is special [31],
the only eigenstate is

H|n = 0, kz, ↑〉 = χvF kz|n = 0, kz, ↑〉. (1.11)

The higher Landau levels can be found by squaring the Hamiltonian

H2 = qBv2
F (2a†a+ 1− σz) + v2

F k
2
z . (1.12)

From this, we can read off the n ≥ 1 Landau levels

En,↑ = ±vF
√
k2
z + 2qBn and En,↓ = ±vF

√
k2
z + 2qB(n+ 1), (1.13)

which are illustrated in Fig. 1.2.
∗We used the convention q > 0.
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1.2 Weyl semimetals

1.2.4 Chiral anomaly

The chiral anomaly is the condensed matter analogue of the Adler-Bell-
Jackiw anomaly from particle physics [35, 36]. In high-energy physics,
massless fermions in odd spatial dimensions have chiral symmetry. This
means that the number of fermions with a given chirality, and therefore
the total chiral charge, is conserved. In a Weyl semimetal, the low-energy
physics is described by the same relativistic equation. However, chiral
symmetry can be broken by applying a magnetic and an electric field in
parallel. The electric field pumps electrons from one Weyl cone to the
other, therefore changing the total chiral charge. This so-called chiral
anomaly has been studied in the condensed matter context for some time
[31, 37, 38].

Many of the most fascinating transport phenomena of Weyl semimetals
are direct consequences of the chiral anomaly, most famously the huge
magnetoconductance [31, 39–41] and the chiral magnetic effect [42–46].

1.2.5 Surface states

The surface band of a Weyl semimetal is one of its most remarkable
features and a key experimental signature. The Fermi surfaces, that are
formed by the intersection of the surface bands with the Fermi energy, are
called Fermi arcs. They are open lines which run from one projection of a
Weyl cone to another [10]. This is illustrated in Fig. 1.3 a. Usually, Fermi
surfaces are closed contours, separating filled from empty states. So how
can an open Fermi surface exist? They answer is that the Fermi arcs on
both surfaces complement each other. Together, they form a closed Fermi
surfaces [47]. If we were to make the Weyl semimetal thinner and thinner,
the Fermi arcs would eventually merge into a closed Fermi surfaces.
The real-space properties of the surface states are also unusual and

interesting. They are chiral, in the sense that they disperse only in one
direction, circling around the direction of the internal magnetization. If
inversion symmetry is broken, their velocity also has a component along
the magnetization. In a cylinder geometry, where the Weyl cones are
separated along the translationally invariant axis, the surface states have
the shape of a solenoid and spiral along the cylinder surface as shown in
Fig. 1.3 b.
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1 Introduction

Figure 1.3: Left: Schematic illustration of the density of states of a Weyl
semimetal in a slab geometry at an energy slightly away from the band touching
point. The slab is finite in the x-direction with widthW and translation invariant
in the y- and z-directions. Due to finite size quantization, the density of states
of the Weyl cones consists of several discrete circles (blue). The surface arcs
(red) at the left (x = 0) and right (x = W ) surface connect near the Weyl cones.
Together, they form a closed contour. Right: For a cylindrical Weyl semimetal
wire, the chiral surface states have the shape of a solenoid.

1.2.6 Experimental realizations

The interest in Weyl semimetals exploded with their experimental discovery
in 2015. The first experimental realization was in tantalum arsenide
(TaAs) [48–51]. Soon after, Weyl semimetals were reported in niobium
arsenide (NbAs) [52] and tantalum phosphide (TaP) [53]. It turns out all
of those materials have a very similar screw-like crystal structure. They
are symmetric under a combination of rotation and translation [52, 53], a
so-called non-symmorphic C4 symmetry.
All of these pioneering experiments used a combination of low- and

high-energy angle-resolved photoemission spectroscopy (ARPES). The low-
energy (ultraviolet) ARPES probes the surface dispersion and shows the
Fermi arcs. The high-energy (soft X-ray) ARPES probes the underlying
bulk dispersion and shows the Weyl cones. One of the most impressive
proofs that TaAs is indeed a Weyl semimetal is shown in Fig. 1.4. In
the top part (green), a low-energy ARPES map shows the Fermi arcs on
the surface. In the bottom part, the low-energy ARPES map is overlaid
with a high energy ARPES map, which shows the projections of the Weyl

8



1.2 Weyl semimetals

Figure 1.4: High-resolution ARPES maps of TaAs. Green region: Surface state
Fermi surface map (darker color means higher ARPES signal). Brown region:
Surface state Fermi surface map overlaid with bulk Fermi surface map. The
surface Fermi arcs indeed terminate at the projections of the bulk Weyl points
on the surface Brillouin zone. Figure from Ref. [48]. Reprinted with permission
from AAAS.

points onto the surface Brillouin zone. We see that the Fermi arcs indeed
terminate at projections of the Weyl points.

So far, all experimental realizations are Weyl semimetals with preserved
time-reversal symmetry. However, several proposals have been put forward
on how to realize Weyl semimetals with broken time-reversal symmetry
[10, 54, 55]. In this thesis, we focus on the time-reversally broken situation,
because it provides the minimal number of two Weyl points — when
time-reversal symmetry is preserved one must have at least four Weyl
points.

9



1 Introduction

Figure 1.5: Illustration of the chiral chemical potentials µχ induced by an
inversion breaking perturbation. The energy difference between the two Weyl
points ∆E is the difference of the chiral chemical potentials.

1.3 Chiral magnetic effect

The Chiral Magnetic Effect (CME) is a “topological” current response,
that is directly related to the chiral anomaly. Its universal value

j = (e/h)2∆EB (1.14)

does not depend on the details of the material or model. The only terms
that enter are the energy displacement of the Weyl points ∆E and the
amplitude of the external magnetic field B. Initially, it was believed that
the chiral magnetic effect might be a static current response. However,
it is now understood that a slow periodic modulation of either ∆E or B
is needed to overcome relaxation. The reason is that in any real system,
there will always be a relaxation channel that scatters between the Weyl
cones, even though this scattering is suppressed by the separation of the
Weyl cones in the Brillouin zone. In this thesis, we therefore study the
CME as a response to an oscillating parameter. The CME is one of the
unique features of a Weyl semimetals that sets it apart from graphene.

10



1.3 Chiral magnetic effect

Figure 1.6: Left: In a wire geometry with diameter W , the chiral surface state
encircles the entire magnetic flux. Right: Low-energy dispersion of a Weyl
semimetal in a strong magnetic field. The surface states merge near the Weyl
points and form the zeroth Landau levels (cf. Fig. 3.1, Chapter 3).

1.3.1 Chiral magnetic effect with Landau levels

In the first studies of the chiral magnetic effect [42–45], a Weyl semimetal
was placed into a static magnetic field, strong enough for Landau levels to
develop. Then, by means of an inversion symmetry breaking perturbation,
the Weyl cones were periodically shifted up and down in energy in opposite
directions. This so-called chiral chemical potential µχ ≈ χλ creates a
non-equilibrium distribution at each Weyl cone, as illustrated in Fig. 1.5.
The chiral Landau levels carry electron and hole currents in opposite
directions. Together, they create a universal current density (Eq. 1.14).

We can derive the universal coefficient (e/h)2 by very simple arguments,
using an approach similar to the well-known Landauer formula, which
we introduce in chapter 3. In contrast to the original Landauer formula,
here the reservoirs are separated in momentum space rather than in real
space. The contribution of the Weyl cone with positive chirality to the
current is the product of the conductance per mode, the number of modes,
and the chiral voltage µ+/e. The conductance per mode is e2/h and the
degeneracy of the zeroth Landau level BA/Φ0, where A is the cross section
of the wire and Φ0 = h/e is the magnetic flux quantum.

11
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Altogether, the current response is given by

I+ = e2

h
eAB
h

µ+
e . (1.15)

The zeroth Landau level of the Weyl cone with negative chirality disperses
in the opposite direction. At the same time, the chiral chemical potential
of the other Weyl cone is the negative equal µ− = −µ+. Therefore, both
Weyl cones contribute equally to the current, resulting in the current
density 1.14.

1.3.2 Chiral magnetic effect without Landau levels
In chapter 3 we introduce a variant of the chiral magnetic effect in a weak
oscillating magnetic field, that does not rely on the presence of Landau
levels. For this, we consider a Weyl semimetal with both, broken time- and
broken inversion symmetry. We have found that in this case the topological
response is carried by the surface states. This is unexpected, because one
would expect a surface current to scale with the circumference, rather than
the cross section. The reason for the unusual scaling of the response is
that the chiral surface states encircle the entire flux (see Fig. 1.6 a), and
therefore have a magnetic moment that scales with the diameter W .
In fact, there is a deep connection between the two manifestations of

the chiral magnetic effect: If one slowly turns on a strong magnetic field,
the surface bands are shifted in energy and merge near the Weyl points
into the zeroth Landau level (Fig. 1.6 b). Therefore, the states that carry
the chiral magnetic effect in the conventional CME and our variant are
directly related.

1.4 Interfaces with superconductors

1.4.1 Andreev scattering
In a superconductor, excitations consist of unpaired electrons (filled states
above the Fermi level) or holes (empty states below the Fermi level). These
excitations can be described in a mean-field approximation as moving in a
background pair potential, which is formed by the condensate of Cooper
pairs. Electrons can be scattered into holes by the pair potential, a process
known as Andreev scattering [56, 57]. When an electron is converted into
a hole, a Cooper pair is formed, which accounts for the missing 2e charge
(see Fig. 1.7).

12



1.4 Interfaces with superconductors

Figure 1.7: Schematic drawing of Andreev-Bragg scattering in a metal-
superconductor junction. Bottom: Sketch of the Andreev scattering process.
An electron enters the superconductor, where it forms a Cooper pair together
with another electron. As a result, a hole is scattered back into the metal. Top
left: Schematic drawing of the Brillouin zone of the metal. If the wave vector of
the PDW connects two points of the Fermi surface, Andreev-Bragg scattering is
allowed. Right: Drawing of the spatial dependence of the order parameter as a
function of position.

Andreev scattering has a series of surprising features, that are discussed
in more detail for example in [58, 59]. Most remarkably, it explains
why there is a finite conductance from a metal into a superconductor
at the Fermi energy, despite the excitation gap in the superconductor:
An incoming electron is not simply transmitted into the superconductor,
but gets Andreev reflected into a hole, transferring a charge of 2e from
the metal into the superconductor. Therefore, the conductance from a
normal metal into a superconductor (assuming an ideal interface) is twice
the normal-state conductance. If the interface is not ideal, described for
example by a finite transmission probability T , the conductance drops
quadratically ∝ T 2. This quadratic dependence derives from the two
particle nature of Andreev scattering.
The conversion of an electron into a hole by Andreev scattering at
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a metal-superconductor interface introduces a phase coherence between
electrons and holes in the metal. This coherence extends the properties of
the superconductor into the metal. Most notably, the local density of states
near the interface is suppressed around the Fermi energy. One speaks of
proximity effect and induced superconductivity. The relationship between
Andreev scattering and the proximity effect has been reviewed in detail in
[60]. In a ballistic system, the length scale on which superconductivity is
induced into the metal is the electron-hole coherence length in the metal.
It is often much longer than the coherence length in the superconductor,
which characterizes the “size” of Cooper pairs. This coherence is, however,
rapidly destroyed if the metal breaks time-reversal symmetry. There also
exists an inverse proximity effect: The pair-breaking scattering in the metal
reduces the pairing amplitude in the superconductor near the interface
[61].

1.4.2 Andreev-Bragg scattering
In a conventional superconductor, Cooper pairs carry zero net momentum.
Therefore, momentum conservation dictates that an Andreev-reflected hole
carries the same momentum as the incoming electron. Since the mass of
a hole is the negative equal of the electron, in an ideal and time-reversal
symmetric setting, the hole is reflected into the direction where the electron
came from: vh = ke/(−me) = −ve. Its reflection angle is the opposite of
that of a billiard ball bouncing from a hard wall (so-called retroreflection).
There exist also unconventional superconductors [62–65], where the

Cooper pairs may carry a finite net momentum. From a theoretical
perspective, the FFLO phase [66, 67] has received a lot of attention. The
order parameter of such a superconductor varies periodically in space
∆2K(x) ∼ cos(2K · x).

The interest in these so-called pair density waves has recently been
revived, when it was suggested that they might play a role in the pseudogap
phase of cuprate superconductors [68]. If an electron Andreev scatters
from a pair density wave, the momentum of the outgoing hole is shifted:
kh = ke − 2K. If we take multiple Andreev scattering processes into
account, we see that electrons, that are reflected as electrons, are shifted
by even multiples of the Cooper pair momentum k′e = ke − 2n · 2K. If
on the other hand an electron is scattered into a hole, the momentum
is shifted by an odd multiple kh = ke − (2n + 1) · 2K. In a sense, the
Cooper pairs act very much like a crystal lattice, absorbing and emitting
quantized momenta.
Following this analogy, we call this type of scattering Andreev-Bragg
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1.5 This thesis

scattering. In general, the scattering angle in position space is determined
by which points of the Fermi surface of the non-interacting system are
connected by multiples of the Cooper pair momentum. In extreme cases,
the scattering angle can be the opposite of conventional Andreev reflection.

1.4.3 Proximity effect in Weyl semimetals
In Weyl semimetals, the proximity effect is fundamentally different for
those with and those without time-reversal symmetry. In the time-reversal
symmetric case, the proximity to a spin singlet s-wave superconductor will
gap the Weyl cones [69]. In Weyl semimetals with broken time-reversal
symmetry, on the other hand, the proximity effect is suppressed and only
affects the states that are localized at the interface between the Weyl
semimetal and the superconductor. The reason is that a conventional
superconductor pairs electrons from +k with electrons from −k, hence
from different Weyl cones. In a time-reversal symmetric Weyl semimetal,
these Weyl cones have the same chirality due to Kramers degeneracy. In a
Weyl semimetal with broken time-reversal symmetry, however, the cones
have opposite chirality. In order for a superconductor to induce a gap,
it would have to flip the chirality, which conventional spin singlet s-wave
superconductors do not do.
At the interface, the situation is different. The interface states live

both in the Weyl semimetal and in the superconductor. In the Weyl
semimetal, they are localized by the time-reversal breaking magnetization,
in the superconductor by the coherence length. Their orbital structure is
therefore a hybrid of the orbital structure in the Weyl semimetal and the
orbital structure in the superconductor. An interesting feature of these
interface states is that the pairing is between electrons from the same band.
This band splits into two, nearly charge neutral bands, which are called
Majorana bands [69–71].

1.5 This thesis
In this section, we give a brief outline of the topics discussed in the chapters
of this thesis.

Chapter 2
Topological insulators are classified based on their symmetries. The cele-
brated “ten-fold way” [28] considers time-reversal, particle-hole, and chiral
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symmetry. (There also exist topological insulators that do not fall into
these categories.) In this chapter, we study a layered system with anti-
ferromagnetic order, a so-called anti-ferromagnetic topological insulator
[72]. In this system, time-reversal symmetry is broken locally, but restored
in conjunction with a translation by half a unit cell. Unlike true time-
reversal symmetry, this effective time-reversal symmetry is destroyed by
weak disorder. However, in our studies, we find a remarkable robustness of
the topological phase against electrostatic disorder. The reason is that the
symmetry still holds on average, placing the antiferromagnetic topological
insulator in the class of statistical topological insulators [73, 74].

Weyl semimetals make their first appearance in this chapter, but not yet
as a stable phase — they require fine tuning of parameters. Nevertheless,
we are be able to calculate the conductance and the Fano factor (ratio of
shot noise power and average current) at the Weyl point. Our key finding
is that the Fano factor is distinct from the 1/3 value in graphene.

Chapter 3
The chiral magnetic effect (CME) is a unique experimental signature of
a Weyl semimetal that does not exist in graphene. It has been studied
extensively as a response of a Weyl semimetal in a strong magnetic field
to a slowly oscillating inversion breaking perturbation. However, such a
perturbation is difficult to achieve experimentally. In this chapter, we study
the complementary response of a Weyl semimetal with broken inversion
symmetry to a small oscillating magnetic field. We find that, in this case,
the CME has a surface contribution from the Fermi arc that scales with
sample size in the same way as the bulk contribution. While the bulk
contribution is not universal, and susceptible to disorder, we argue that the
surface contribution is robust and universal, demonstrating its topological
origin.

The CME from the surface Fermi arcs persists in the limit of an infinitesi-
mally small magnetic field, when no Landau levels are formed. This “chiral
magnetic effect without Landau levels” is reminiscent of the “quantum
Hall effect without Landau levels”.

Chapter 4
The surface states of a Weyl semimetal with broken time-reversal and
inversion symmetry form a chiral solenoid in real space (see Fig. 1.3). In
the previous chapter 3 we showed that this solenoid carries the topological
response to an oscillating magnetic field. In this chapter, we investigate
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what happens if we coat the solenoid with a superconductor. We find
that the proximity effect is short-ranged, affecting only the states localized
at the Weyl semimetal – superconductor interface. There, the proximity
effect splits the surface mode into a pair of Majorana modes. We derive
an effective surface Hamiltonian and show how such a system can be used
to trap Majorana fermions.

Chapter 5
In the final chapter, we depart from Weyl semimetals to study another
type of system that has Fermi arcs. Spectroscopy of the pseudo-gap phase
in high Tc-cuprates has revealed such disconnected pieces of Fermi surface.
Even though these materials have been studied for several decades, there
is no consensus about the microscopic mechanism behind the pseudo-gap
phase. Recently, Patrick Lee proposed that an extreme form of finite-
momentum Cooper pairing, a so-called pair density wave, might be the
solution to this ongoing puzzle [68]. The pairing is called Amperian,
because it is similar to the attractive force from Ampère’s law that appears
between two parallel currents.
We show that Amperian pairing would lead to specular Andreev re-

flection (rather than the usual retroreflection) and we propose a simple
three-terminal setup to detect it.
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2 Quantum phase transitions
of a disordered
antiferromagnetic
topological insulator

2.1 Introduction
Topological insulators (TI) have an insulating bulk and a conducting
surface, protected by time-reversal symmetry [75, 76]. In three-dimensional
(3D) lattices the concept can be extended to include magnetic order [72, 77–
80]: Antiferromagnetic topological insulators (AFTI) break time-reversal
symmetry locally, but recover it in combination with a lattice translation.
Layered structures with a staggered magnetization provide the simplest
example of an AFTI [72]: The quantum anomalous Hall effect in a single
layer produces edge states with a chirality that changes from one layer to
the next. Interlayer coupling gives these counterpropagating edge states an
anisotropic dispersion, similar to the unpaired Dirac cone on the surface
of a time-reversally invariant TI — but now appearing only on surfaces
perpendicular to the layers.
While the first AFTI awaits experimental discovery, it is clear that

disorder will play a essential role in any realistic material. Electrostatic
disorder breaks translational symmetry, and therefore indirectly breaks the
effective time-reversal symmetry of the AFTI. The topological protection
of the conducting surface is expected to persist, at least for a range of
disorder strengths, because the symmetry is restored on long length scales.
A disordered AFTI belongs to the class of statistical topological insulators,
protected by a symmetry that holds on average [73, 74].

The contents of this chapter have been published in P. Baireuther, J.M. Edge,
I. C. Fulga, C.W. J. Beenakker, and J. Tworzydło. Phys. Rev. B 89, 035410 (2014).
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Here we explore these unusual disorder effects both analytically and
numerically, for a simple model of a layered AFTI. We find that, while
sufficiently strong disorder suppresses both bulk and surface conduction,
intermediate disorder strengths may actually favor conductivity. Over
a broad range of magnetizations the electrostatic disorder drives the
insulating bulk into a metallic phase, via an Anderson metal-insulator
transition. Disorder may also produce a topological phase transition,
enabling surface conduction while keeping the bulk insulating — as a
magnetic analogue of the “topological Anderson insulator” [81–84]. Each
of these quantum phase transitions is identified via the scaling of the
conductance with system size.

The outline of the chapter is as follows. In the next section we construct
a simple model of an antiferromagnetically ordered stack, starting from the
Qi-Wu-Zhang Hamiltonian [85] for the quantum anomalous Hall effect in a
single layer, and alternating the sign of the magnetization from one layer to
the next. We identify the effective time-reversal symmetry of Mong, Essin,
and Moore [72], locate the 2D Dirac cones of surface states and the 3D
Weyl cones of bulk states, and calculate their contributions to the electrical
conductance. All of this is for a clean system. Disorder is added in Secs.
2.3 and 2.4, where we study the quantum phase transitions between the
AFTI phase and the metallic or topologically trivial insulating phases.
The phase boundaries are calculated analytically using the self-consistent
Born approximation, following the approach of Ref. [82], and numerically
from the scaling of the conductance with system size in a tight-binding
discretization of the AFTI Hamiltonian. We conclude in Sec. 2.5.

2.2 Clean limit
2.2.1 Model Hamiltonian
There exists a broad class of 3D magnetic textures that produce an
AFTI [72, 78, 79]. Here we consider a particularly simple example of
antiferromagnetically ordered layers, see Fig. 2.1, but we expect the generic
features of the phase diagram to be representative of the entire class of
AFTI.

For a single layer we take the Qi-Wu-Zhang Hamiltonian of the quantum
anomalous Hall effect [85],

H±(kx, ky) = ± σz(µ− cos kx − cos ky)
+ σx sin kx + σy sin ky. (2.1)
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2.2 Clean limit

Figure 2.1: Stack of antiferromagnetically ordered layers. Each layer is insu-
lating in the interior but supports a chiral edge state (arrows) because of the
quantum anomalous Hall effect. Interlayer hopping (in the z-direction) produces
an anisotropic Dirac cone of surface states on surfaces perpendicular to the layers.
The unpaired Dirac cone is robust against disorder, as in a (strong) topological
insulator, although time-reversal symmetry is broken locally.

This is a tight-binding Hamiltonian on a square lattice in the x-y plane,
with two spin bands (Pauli matrices σ, unit matrix σ0) coupled to the
wave vector k. The lattice constant and the nearest-neighbor hopping
energies are set equal to unity, so that both the wave vector k and the
magnetic moment µ are dimensionless. Time-reversal symmetry maps H+
onto H−,

σyH
∗
±(−k)σy = H∓(k). (2.2)

The topological quantum number (Chern number) C± of the quantum
anomalous Hall Hamiltonian H± is [85]

C± =
{
± signµ if |µ| < 2,
0 if |µ| > 2.

(2.3)

A change in C± is accompanied by a closing of the excitation gap at
µ = −2, 0, 2.
The quantum anomalous Hall layers can be stacked in the z-direction

with ferromagnetic order (same Chern number in each layer, see Ref. [17])
or with antiferromagnetic order (opposite Chern number in adjacent layers).
Ferromagnetic order breaks time-reversal symmetry globally, producing a
3D analogue of the quantum Hall effect with chiral surface states [86, 87].
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2 Quantum phase transitions of a disordered AFTI

To obtain an effective time-reversal symmetry and produce a surface Dirac
cone we take an antiferromagnetic magnetization.
The Hamiltonian is constructed as follows. Because of the staggered

magnetization, the unit cell extends over two adjacent layers, distinguished
by a pseudospin degree of freedom τ . The corresponding Brillouin zone
is |kx| < π, |ky| < π, |kz| < π/2, half as small in the z-direction because
of the doubled unit cell. Interlayer coupling by nearest-neigbor hopping
(with strength tz) is described by the Hamiltonian

Hz(kz) = tz

(
0 ρ†e2ikz + ρ

ρe−2ikz + ρ† 0

)
, (2.4)

with a 2 × 2 matrix ρ acting on the spin degree of freedom. The term
ρ†e2ikz moves up one layer in the next unit cell, while the term ρ moves
down one layer in the same unit cell. We require that the interlayer
Hamiltonian preserves time-reversal symmetry,

σyH
∗
z (−kz)σy = Hz(kz)⇒ σyρ

∗σy = ρ. (2.5)

This still leaves some freedom in the choice of ρ, we take ρ = iσz.
The staggered magnetization is described by combining H+ in one layer

with H− in the next layer, so by replacing σz with τz ⊗ σz in Eq. (2.1).
[The Pauli matrices τ (unit matrix τ0) act on the layer degree of freedom.]
The full Hamiltonian of the stack takes the form

HAFTI(k) = Hz(kz) + (τz ⊗ σz)(µ− cos kx − cos ky)
+ τ0 ⊗ (σx sin kx + σy sin ky), (2.6)

Hz(kz) = tz(τy ⊗ σz)(cos 2kz − 1) + tz(τx ⊗ σz) sin 2kz. (2.7)

2.2.2 Effective time-reversal symmetry
Following Mong, Essin, and Moore [72], we construct an effective time-
reversal symmetry operator,

S(kz) = ΘT (kz) = T (kz)Θ, (2.8)

by combining the fundamental time-reversal operation Θ with a translation
T (kz) over half a unit cell in the z-direction. The translation operator is
represented by a 2× 2 matrix acting on the layer degree of freedom,

T (kz) =
(

0 e2ikz

1 0

)
= eikz (τx cos kz − τy sin kz). (2.9)
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Both off-diagonal matrix elements switch the layers, either remaining in
the same unit cell or moving to the next unit cell. One verifies that the
square T 2(kz) = e2ikzτ0 represents the Bloch phase acquired by a shift
over the full unit cell (two layers).
The interlayer Hamiltonian (2.4) commutes with the translation over

half a unit cell,
T (kz)Hz(kz) = Hz(kz)T (kz). (2.10)

Since we have also assumed that Hz preserves time-reversal symmetry,
ΘHz(kz) = Hz(kz)Θ, it commutes with the combined operation,

S(kz)Hz(kz) = Hz(kz)S(kz). (2.11)

The full Hamiltonian,

HAFTI(k) = Hz(kz) +
(
H+(kx, ky) 0

0 H−(kx, ky)

)
, (2.12)

then also commutes with S(kz), because

ΘH+(kx, ky) = H−(kx, ky)Θ. (2.13)

For the quantum anomalous Hall layers the fundamental time-reversal
operation is

Θ = iσyK, (2.14)

where K takes the complex conjugate and inverts the momenta, Kf(k) =
f∗(−k). [One verifies that the identity (2.13) is equivalent to Eq. (2.2).]
The effective time-reversal symmetry operation is then given explicitly by

S(kz) = iσy ⊗ (τx cos kz − τy sin kz)K, (2.15)

up to an irrelevant phase factor eikz .
The fundamental time-reversal operation (2.14) squares to −1, as it

should do for a spin- 1
2 degree of freedom. As noted by Liu [79], one can

equally well start from a spinless time-reversal symmetry that squares to
+1, for example, taking Θ = K. Since S2(kz) = e2ikz Θ2, the choice of
Θ2 = ±1 amounts to shift of kz by π/2. Gapless surface states appear at
the kz-value for which S squares to −1, so at the center of the surface
Brillouin zone (kz = 0) for Θ2 = −1 and at the edge (kz = π/2) for
Θ2 = 1.
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2 Quantum phase transitions of a disordered AFTI

Figure 2.2: Energy spectrum of the AFTI Hamiltonian (2.6), with tz = 0.4,
for a stack of 16 layers in the z-direction with periodic boundary conditions.
The layers are infinitely wide in the x-direction and truncated at 16 lattice
sites in the y-direction. At µ = ±1 the system is in the AFTI phase, with a
nondegenerate Dirac cone of surface states centered at the edge of the Brillouin
zone (−2 < µ < 0) or at the center of the Brillouin zone (0 < µ < 2). At µ = 0
the bulk gap closes at a pair of twofold degenerate Weyl cones, one at the center
and one at the edge of the Brillouin zone. In this plot a finite gap remains for
µ = 0, because of the confinement in the y-direction.

2.2.3 Bulk and surface states

The bulk spectrum E(k) of the Hamiltonian (2.6) can be easily calculated
by noting that H2

AFTI(k) reduces to a unit matrix in σ, τ space, hence

E2(k) = (µ− cos kx − cos ky)2 + sin2 kx + sin2 ky

+ (2tz sin kz)2. (2.16)

The gap closes with a 3D conical dispersion (Weyl cone) at (kx, ky, kz) =
(0, 0, 0) for µ = 2, at (π, π, 0) for µ = −2, and at the two points (0, π, 0),
(π, 0, 0) for µ = 0. Each cone is twofold degenerate and has the anisotropic
dispersion

E2
Weyl(δk) = (δkx)2 + (δky)2 + 4t2z(δkz)2, (2.17)

with δk the wave vector measured from the conical point (Weyl point).
Unlike in the case of ferromagnetic order [11, 17], the bulk spectrum is
only gapless at specific values of µ ∈ {0,±2}— there is no Weyl semimetal
phase in this model.
The surface spectrum of the antiferromagnetically ordered stack is

gapless in the interval 0 < |µ| < 2, if finite-size effects are avoided by
taking periodic boundary conditions in the z-direction. The surface states
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have an anisotropic 2D conical dispersion (Dirac cone),

E2
Dirac(q, kz) = (q − q0)2 + 4t2zk2

z ,

q0 =
{

0 if 0 < µ < 2,
π if − 2 < µ < 0,

(2.18)

with q = kx on the x-z plane and q = ky on the y-z plane.
These AFTI surface states emerge from the counterpropagating chiral

edge states at kz = 0 and are protected by the effective time-reversal
symmetry (2.15). They are reminiscent of the surface states in a weak
topological insulator, formed by stacking quantum spin Hall layers with
helical edge states. The essential difference is that in a weak TI there is a
second Dirac cone at kz = π, while the AFTI has only a single Dirac cone.
(The “fermion doubling” is avoided by the restriction of the Brillouin zone
to |kz| < π/2.)
Notice that the closing of the gap at µ = 0 is not accompanied by a

change in the number of surface Dirac cones. Instead, the single Dirac
cone switches from the center to the edge of the surface Brillouin zone
when µ crosses zero. (See Fig. 2.2.) This is a quantum phase transition in
the sense of Ref. [88], between band insulators with the same topological
quantum number but distinguished by the location of the surface Dirac
cone.

2.2.4 Surface conductance from the Dirac cone

To study the transport properties of the AFTI, we take layers in the x-y
plane of width W ×W , stacked in the z-direction over a length L. The top
and bottom layers are connected to electron reservoirs at voltage difference
V , and the current I in the z-direction then determines the conductance
G = limV→0 I/V perpendicular to the layers. We fix the Fermi level
EF = 0 at the middle of the bulk gap, where the conductance is minimal.
In the AFTI phase, for 0 < |µ| < 2, the conductance is dominated by

the surface states. Analogously to graphene [89, 90], each 2D Dirac cone
contributes a conductance (e2/πh)(W/Leff), at the Dirac point (EF = 0)
and for W � Leff ≡ L/2tz. There are four Dirac cones (one on each
surface perpendicular to the layers), totaling

GDirac = 8e2

πh

tzW

L
. (2.19)
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2 Quantum phase transitions of a disordered AFTI

Figure 2.3: Conductance at the Weyl point for periodic boundary conditions,
according to Eq. (2.20) (solid curve) and the asymptotic form for large aspect
ratio (2.22) (dashed). The data points are calculated from the AFTI Hamiltonian
(2.6), at µ = 2, tz = 0.4, for a lattice of 8 layers in the z-direction, with periodic
boundary conditions in the x and y-directions (red dots) and for hard-wall
boundary conditions (black crosses).

2.2.5 Bulk conductance from the Weyl cone
When the bulk gap closes, at µ = 0,±2, the 3D Weyl cones contribute an
amount of order (W/Leff)2 to the conductance, which dominates over the
surface conductance when W � Leff . A similar calculation as in Ref. [91]
gives the minimal conductance at the Weyl point (EF = 0),

GWeyl = d
e2

h

∞∑
n,m=−∞

Tnm, (2.20)

Tnm = cosh−2
[
2π(Leff/W )

√
n2 +m2

]
, (2.21)

for periodic boundary conditions in the x and y-directions. Four Weyl
cones contribute at µ = 0 (degeneracy factor d = 4) and two Weyl cones
contribute at µ = ±2 (degeneracy factor d = 2).
The dependence of GWeyl on the aspect ratio W/Leff is plotted in Fig.

2.3. For W � Leff one has the asymptotic result

GWeyl = d
e2

h

2 ln 2
π

(
tzW

L

)2
. (2.22)
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Figure 2.4: Same as Fig. 2.3, but for the Fano factor at the Weyl point.

The conduction at the Weyl point is not “pseudo-diffusive”, as it is at the
Dirac point of graphene, because the conductivity σWeyl = GWeylL/W

2 is
not scale invariant. The Fano factor FWeyl (ratio of shot noise power and
average current) at the Weyl point is scale invariant, but it differs from
the value F = 1/3 characteristic of pseudo-diffusive conduction [91]. We
find

FWeyl =
∑∞
n,m=−∞ Tnm(1− Tnm)∑∞

n,m=−∞ Tnm

= 1
3 + (6 ln 2)−1 ≈ 0.574 for W � Leff . (2.23)

The aspect ratio dependence of FWeyl is plotted in Fig. 2.4.

2.3 Phase diagram of the disordered system
We add disorder to the AFTI Hamiltonian (2.6) in the form of a spin-
independent random potential chosen independently on each lattice site
from a Gaussian distribution of zero mean and variance δU2. In σ, τ
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representation the disorder Hamiltonian is given by

Hdisorder =
∑
i

[
(τ0 ⊗ σ0)U (1)

i + (τz ⊗ σ0)U (2)
i

]
, (2.24)

〈U (n)
i 〉 = 0, 〈U (n)

i U
(n′)
i′ 〉 = 1

2δU
2δii′δnn′ . (2.25)

The sum over i runs over bilayer unit cells and 〈· · · 〉 denotes the disorder
average.
Different layers see a different random potential, so the effective time-

reversal symmetry of Sec. 2.2.2 is broken locally by the disorder — but
restored on long length scales. We expect the effect of a random potential
on the AFTI to be equivalent to the effect of a random magnetic field
on a strong TI [74, 92]: The surface remains conducting while the bulk
remains insulating, separated from the trivial insulator by a topological
phase transition.
In this section we explore the phase diagram of the disordered AFTI,

first analytically using the self-consistent Born approximation (SCBA) and
then numerically by calculating the conductance.

We calculate the disorder-averaged density of states from the self-energy
Σ, defined by

1
EF + i0+ −HAFTI − Σ

=
〈

1
EF + i0+ −HAFTI −Hdisorder

〉
. (2.26)

We set the Fermi level at EF = 0, in the middle of the gap of the clean
system. The SCBA self-energy, for a disorder potential of the form (2.24),
is given by the equation

Σ = 1
2δU

2
∑

k

(
[i0+ −HAFTI(k)− Σ]−1

+ τz[i0+ −HAFTI(k)− Σ]−1τz

)
. (2.27)

The sum over k ranges over the first Brillouin zone, in the continuum limit∑
k

7→ 1
4π3

∫ π

−π
dkx

∫ π

−π
dky

∫ π/2

−π/2
dkz. (2.28)

The SCBA self-energy is a k-independent 4× 4 matrix in the spin and
layer degrees of freedom,

Σ = (τz ⊗ σz)δµ− (τ0 ⊗ σ0)iγ. (2.29)
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The term δµ renormalizes the magnetic moment µ and thus accounts for a
disorder-induced shift of the phase boundary of the topologically nontrivial
band insulator. The term γ produces a density of states π−1Im (HAFTI +
Σ)−1, induced by the disorder within the gap of the clean system. A
nonzero γ may indicate a metallic phase or a topologically trivial Anderson
insulator (the density of states cannot distinguish between the two).
Substitution of Eq. (2.29) into Eq. (2.27), and use of the identity

HAFTI(kx, ky, kz) + τzHAFTI(−kx,−ky, kz)τz
= 2(τz ⊗ σz)(µ− cos kx − cos ky), (2.30)

produces two coupled equations for γ and δµ:

γ = δU2
∑

k

γ + 0+

γ2 + E2
µ+δµ(k) , (2.31a)

δµ = −δU2
∑

k

Mµ+δµ(k)
γ2 + E2

µ+δµ(k) , (2.31b)

with the definitions

E2
µ(k) = M2

µ(k) + sin2 kx + sin2 ky + 4t2z sin2 kz, (2.32a)
Mµ(k) = µ− cos kx − cos ky. (2.32b)

The phase boundary at µ = 0 remains unaffected by disorder, because∑
k

M0(k)
E2

0(k) = 0, (2.33)

so γ = 0 = δµ solves the SCBA equations for µ = 0. The phase boundaries
at µ = ±2 do shift when we switch on the disorder. If we seek a solution
of Eq. (2.31) with γ = 0, δµ = ±2−µ± we obtain the phase boundaries at

µ± = ±2 + δU2
∑

k

M±2(k)
E2
±2(k) . (2.34)

These phase boundaries between band insulators are plotted in Fig. 2.5
(dashed curves), at the value tz = 0.4 for which µ± = ±2± 0.345 δU2.

The outward curvature of the phase boundaries implies that the addition
of disorder to a topologically trivial insulator can convert it into a nontrivial
insulator, or in other words, that disorder can produce metallic conduction
on surfaces perpendicular to the layers — analogous to a topological
Anderson insulator [81–84].
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Figure 2.5: Color-scale plot of the conductance of a disordered AFTI, calculated
numerically from the Hamiltonian (2.6) for current flowing perpendicular to a
stack of 20 layers. Each layer has dimensions 20× 20 with periodic boundary
conditions, the interlayer coupling is tz = 0.4. The topological insulator phase
(AFTI), the trivial insulator phase (I), and the metallic phase (M) are indicated
in the plot. The white curves are the phase boundaries resulting from the
self-consistent Born approximation (SCBA). The Anderson transition between a
metal and a trivial insulator is not captured by the SCBA.

For sufficiently large δU > δUc, the SCBA equations may support a
solution with nonzero γ. The dependence of δUc on µ follows from the
solution of Eq. (2.31) for infinitesimal γ 6= 0,

δU2
c =

[∑
k

1
E2
x(k)

]−1

, µ = x+ δU2
c

∑
k

Mx(k)
E2
x(k) . (2.35)

By varying x ≡ µ+ δµ we obtain the phase boundary δUc(µ) plotted in
Fig. 2.5 (solid curve), separating the band insulator from a metallic phase
(or possibly an Anderson insulator with a finite density of states in the
band gap).
At x = ±2 we reach a tricritical point, where the metal meets two

topologically distinct insulating phases. For tz = 0.4 these tricritical
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2.4 Finite-size scaling

points occur at µ = ±2.940, δUc = 1.654.

We have tested the SCBA by calculating the conductance from the
AFTI Hamiltonian (2.6), discretized on a cubic lattice of dimensions
W ×W ×L = 20× 20× 20. (These numerical calculations were performed
using the Kwant code [93].) We impose periodic boundary conditions in
the x and y-directions and connect the layers at z = 0 and z = L to W 2

one-dimensional chains, as a model of a heavily doped electron reservoir.
The interlayer coupling is fixed at tz = 0.4. The conductance, averaged
over a few hundred disorder realizations, is shown as a color-scale plot in
Fig. 2.5.

As expected, the SCBA cannot describe the phase boundary between
the trivial insulator and the metal, since it cannot distinguish between
insulating and extended states in the bulk gap. For the other phase bound-
aries, between the topologically trivial and nontrivial insulators (dashed)
as well as between the nontrivial insulator and the metal (solid), the SCBA
is found to be in good agreement with the conductance calculations.

2.4 Finite-size scaling

The conductance in the phase diagram of Fig. 2.5 is given for a single size
of the conductor. To establish the metallic or insulating character of a
phase it is necessary to compare different system sizes. A phase transition
is then identified by a scale invariant “critical” conductance.

Such finite-size scaling plots are shown in Fig. 2.6. Panel a shows the
transition from a metal to an insulator with increasing disorder, while
panel b shows the reverse transition. Panel c shows the transition between
a topologically trivial and nontrivial insulator. The critical point of each
transition is indicated by an arrow.

The finite-size scaling on the line µ = 0 is shown in Fig. 2.7. For weak
disorder the conductance tends to saturate with increasing system size at
the clean limit (2.20), which for d = 4, tz = 0.4, and W = L is close to
GWeyl = 4e2/h. For strong disorder the conductance shows the metallic
scaling ∝ W 2/L = L, but only after an intermediate regime where the
conductance decreases with increasing system size — suggestive of an
insulating regime. We will discuss the implications in the next section.
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2 Quantum phase transitions of a disordered AFTI

Figure 2.6: Disorder averaged conductance for three system sizes. Panels a and
b show the transition between a metal (M) and an insulator which is topologically
trivial (I) or nontrivial (AFTI). Panel c show the trivial-to-nontrivial insulator
transition. The scale-independent conductance at the critical point of the phase
transition is indicated by an arrow. The curves are guides to the eye. Data
points from panels a and b are averages over 20000 disorder configurations, data
points from panel c are averages over 200 configurations.

2.5 Discussion

We have investigated how disorder affects the phase diagram of a simple
model in the class of antiferromagnetic topological insulators [72]. De-
pending on the disorder strength, topologically trivial (I) or nontrivial
(AFTI) phases appear, as well as a metallic phase (M). The I-AFTI and
M-AFTI phase boundaries are well described by the self-consistent Born
approximation (dashed and solid curves in Fig. 2.5), including the location
of the tri-critical point at which all three phases meet.
Without disorder, there is also an AFTI-AFTI transition at magnetic

moment µ = 0. When the sign of µ changes, the surface Dirac cone switches
from the center to the edge of the Brillouin zone (Fig. 2.2). Precisely
at the transition, the bulk gap closes and a Weyl cone appears with a
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2.5 Discussion

Figure 2.7: Disorder averaged conductance on the line µ = 0, within the
AFTI phase for weak disorder and metallic for strong disorder. The ballistic
conductance at the Weyl point is indicated.

scale-invariant conductance GWeyl (Fig. 2.3) and Fano factor FWeyl (Fig.
2.4). Since the AFTI has a Z2 topological quantum number, there cannot
be two topologically distinct nontrivial phases. We would expect disorder
to open up a pathway of localized states in the phase diagram, that would
connect the AFTI phases at positive and negative magnetic moment.

The numerical calculations in Fig. 2.7 show an indication of this localized
regime on the line µ = 0, for disorder strengths around δU ≈ 0.8, before
the transition into a metallic phase at stronger disorder. The limited
range of system sizes does not allow for a conclusive identification, but
the numerics is consistent with our expectation of one single topologically
nontrivial phase.
In conclusion, we have demonstrated that the notion of an antiferro-

magnetic topological insulator [72], protected by the effective k-dependent
time-reversal symmetry (2.8), extends to disordered systems where mo-
mentum k is no longer a good quantum number. The system then belongs
to the class of statistical topological insulators [73, 74], protected by an
ensemble-averaged symmetry.
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3 Scattering theory of the
chiral magnetic effect in a
Weyl semimetal: Interplay
of bulk Weyl cones and
surface Fermi arcs

3.1 Introduction
The conduction electrons in a Weyl semimetal have an unusual velocity
distribution in the Brillouin zone [94]. The conical band structure (Weyl
cone) has a chirality that generates a net current at the Fermi level in the
presence of a magnetic field [31]. The Weyl cones come in pairs of opposite
chirality, so that the total current vanishes in equilibrium [26, 95, 96], but
a nonzero current I parallel to the field B remains if the cones are offset by
an energy µ — slowly oscillating to prevent equilibration [44, 45, 97–100].
This is the chiral magnetic effect (CME) from particle physics [101–104],
see Refs. [105–107] for recent reviews in the condensed matter setting. In
an infinite system the current density has the universal form [13, 42]

j0 = −(e/h)2µB, (3.1)

independent of material parameters. This amounts to a conductance of
e2/h in the lowest (zeroth) Landau level, multiplied by the degeneracy
equal to the enclosed flux in units of the flux quantum. The minus sign in
Eq. (3.1) follows from the usual convention of associating a positive µ to
a positive energy offset of the Weyl cone with left-movers in the zeroth
Landau level (the left Weyl cone in Fig. 3.1d).

The contents of this chapter have been published in P. Baireuther, J. A. Hutasoit,
J. Tworzydło, and C.W. J. Beenakker. New J. Phys. 18, 045009 (2016).
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3 Scattering theory of the chiral magnetic effect in a Weyl semimetal

The recent condensed-matter realizations of Weyl semimetals [48–53,
108] have boosted the search for the chiral magnetic effect [109–117]. Future
experimental developments may well include nanostructured materials, to
minimize effects of disorder. In a finite system, the zeroth Landau level in
the bulk hybridizes with the Fermi arcs connecting the two Weyl cones
along the surface [10, 118]. Previous studies [119, 120] have pointed to the
importance of boundaries for the chiral magnetic effect — a sign reversal
of the current density as one moves from the bulk towards a boundary
ensures that zero current flows in response to a static perturbation. Here
we wish to study how this interplay of surface and bulk states impacts
on the chiral magnetic effect in response to a low-frequency dynamical
perturbation. For that purpose we seek a linear response theory that does
not assume translational invariance in an infinite system. A scattering
formulation à la Landauer seems most appropriate for such a mesoscopic
system.
The Landauer approach to electrical conduction considers the current

driven between two spatially separated electron reservoirs by a chemical
potential difference, and expresses this in linear response by a sum over
transmission probabilities at the Fermi level [121–123]. The chiral magnetic
effect is driven by a nonequilibrium population of the Weyl cones, so in
reciprocal space (Brillouin zone) rather than in real space — we will show
how to modify the Landauer formula accordingly.
We first apply our scattering formula to a current driven by a slowly

oscillating offset µ of the Weyl cones (a so-called “chiral” or “axial” chemical
potential [104]), and recover Eq. (3.1) in the infinite-system limit. We
then turn to the more practical scenario of a current driven by a slowly
oscillating magnetic field B. We find that the surface Fermi arcs give
a contribution to the total induced current equal to minus twice the
bulk contribution in the infinite-system limit. That the surface Fermi arc
contribution does not vanish relative to the bulk contribution is unexpected
and not captured by previous calculations of the chiral magnetic effect.

The outline of the chapter is as follows. In the next section 3.2 we derive
the scattering formula for the chiral magnetic effect, in a general setting.
In Sec. 3.4 we apply it to the model Hamiltonian of a Weyl semimetal
from Ref. [26], summarized in Sec. 3.3. We evaluate the induced current in
response to variations in µ and B, both numerically for a finite system and
analytically in the limit of an infinite system size. Finite-size corrections
are considered in some detail in Sec. 3.5. We conclude in Sec. 3.6 with a
summary and a discussion of the robustness of the results against disorder
scattering.
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3.2 Scattering formula

3.2 Scattering formula
For a scattering theory of the chiral magnetic effect we consider a disordered
mesoscopic system attached to ideal leads. Such an “electron wave guide”
has propagating modes with band structure En(k), labeled by a mode
index n = 1, 2, . . . and dependent on the wave vector k along the lead. At
a given energy ε (measured relative to the equilibrium Fermi level EF),
each incident mode has wave vector kn(ε) and carries the same current
e/h per unit energy interval∗.

The scattering matrix S(ε) relates amplitudes of incident and outgoing
modes. We take a two-terminal geometry (the multi-terminal generalization
is straightforward), with N modes each in the left and right lead — so S
is a 2N × 2N unitary matrix. The current I through the system can be
calculated in the left lead, by current conservation it must be the same
through each cross section.
The projection matrix onto the left lead is P =

(1 0
0 0
)
, where each

sub-block is an N × N matrix. The current is driven by a set of non-
equilibrium occupation numbers δfn(ε), with n = 1, 2, . . . N for the left
lead and n = N + 1, N + 2, . . . 2N for the right lead. We collect these
numbers in a 2N × 2N diagonal matrix δF(ε). The net current in the left
lead is then given by the difference of incoming and outgoing currents,

I = e

h

∫
dεTr

[
PδF(ε)− PS(ε)δF(ε)S†(ε)

]
. (3.2)

We consider the linear response to a slowly varying parameter X that
adiabatically perturbs the system away from its equilibrium state at
X = X0. We assume that the wave vector k along the lead (say, in the
z-direction) is not changed by the perturbation. This requires that the
perturbation should neither break the translational invariance along z, nor
involve a time-dependent vector potential component Az.

The band structure evolves from En(k|X0) to En(k|X0 + δX). To first
order in the perturbation δX the energy shift at constant k is

En(k|X0 + δX)− En(k|X0) = δX lim
X→X0

∂

∂X
En(k|X). (3.3)

The corresponding deviation of the occupation number from the equilibrium

∗To avoid a confusion of minus signs, we assign charge +e to the carriers. The final
result for the induced current contains e2, so this sign convention does not affect it.
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3 Scattering theory of the chiral magnetic effect in a Weyl semimetal

Fermi function feq(ε) = (1 + eε/kBT )−1 is

δfn(ε) = feq
(
En(kn(ε)|X0)

)
− feq(ε)

= −δXf ′eq(ε) lim
X→X0

∂

∂X
En(kn(ε)|X), (3.4)

where we have used that En(kn(ε)|X0 + δX) ≡ ε.
At zero temperature the derivative f ′eq(ε) → −δ(ε), so the expression

(3.2) for the current contains only Fermi level scattering amplitudes. We
may write it in a more explicit form in terms of the transmission probabil-
ities

Tn =
{∑2N

m=N+1 |Smn|2 for 1 ≤ n ≤ N,∑N
m=1 |Smn|2 for N + 1 ≤ n ≤ 2N,

(3.5)

evaluated at ε = 0. (The two cases correspond to transmission from left to
right or from right to left.) Since

∑2N
m=1 |Smn|2 = 1 because of unitarity,

we have

I = e

h
δX

2N∑
n=1

χnTn,

χn = lim
k→kn

lim
X→X0

∂En(k|X)
∂X

× sign ∂En(k|X)
∂k

.

(3.6)

The sign of the derivative ∂En/∂k distinguishes the right-moving modes
n = 1, 2, . . . N from the left-moving modes n = N + 1, N + 2, . . . 2N .
The Landauer conductance formula [121–123]

G = I/V = (e2/h)
∑N
n=1Tn (3.7)

is obtained from Eq. (3.6) if we identify δX = V with the voltage difference
between the left and right lead, and then set χn = 1 for n = 1, 2, . . . N
and χn = 0 for n = N + 1, N + 2, . . . 2N . The chiral magnetic effect is
driven by a non-equilibrium population in momentum space, rather than
in real space, so modes from both leads contribute — hence the need to
sum over 2N rather than N modes.
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3.3 Model Hamiltonian of a Weyl semimetal

A simple model of a Weyl semimetal is given by the four-band Hamiltonian
[26]

H(k) = t′τz(σx sin kx + σy sin ky) + t′zτy sin kz
+M(k)τx + 1

2γτyσz + 1
2βσz, (3.8)

M(k) = M0 + t(2− cos kx − cos ky) + tz(1− cos kz).

The Pauli matrices σj and τj (j = x, y, z) act, respectively, on the spin and
orbital degree of freedom. The momentum k varies over the Brillouin zone
−π < kj < π of a simple cubic lattice (lattice constant a ≡ 1). The material
is layered in the x-y plane, with nearest-neighbor hopping energies t (within
the layer) and tz (along the z-axis). The primed terms t′, t′z indicate hop-
ping with spin-orbit coupling. Inversion symmetry, τxH(−k)τx = H(k), is
broken by strain ∝ γ, while time-reversal symmetry, σyH∗(−k)σy = H(k),
is intrinsically broken by a magnetization ∝ β. Additionally, we may apply
a magnetic field in the +z-direction, by substituting ky 7→ ky − eBx/~.
The field strength is characterized by the magnetic length lB =

√
~/eB.

We confine the layers to a Wx ×Wy lattice in the x-y plane, infinite in
the z-direction so kz remains a good quantum number. The tight-binding
Hamiltonian in this wire geometry is diagonalized with the help of the
kwant toolbox [93], see Fig. 3.1. In zero magnetic field (panels a,c)
there are two Weyl cones, gapped by the finite system size. The conical
points (Weyl points) are separated along kz by approximately β/t′z and
they are separated in energy by approximately γ. The precise energy
separation µ that governs the chiral magnetic effect was determined from
the bandstructure in an infinite system, for our parameter values it differs
from γ by a few percent.
As long as µ,M0 � β the Weyl cones remain distinct in an energy

interval around E = 0. The Fermi velocity of the massless Weyl fermions
is vF = t′/~ in the plane of the layers and vF,z = t′z/~ perpendicular to
the layers. Surface states connect the Weyl cones across the Brillouin zone,
forming the so-called Fermi arc. The arc states are chiral, spiraling along
the wire with a velocity varc,z = (µ/β)vF,z, as illustrated in Fig. 3.2. In a
magnetic field (panels b,d in Fig. 3.1) Landau levels develop. The Weyl
cones are pushed away from E = 0, but the zeroth Landau level closes the
gap. Just like the Fermi arc, the zeroth Landau level propagates along the
wire, in opposite direction for the two Weyl cones.
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3 Scattering theory of the chiral magnetic effect in a Weyl semimetal

Figure 3.1: Band structure of the Hamiltonian (3.8) in a wire geometry along
the z-axis. The panels show the Weyl cones in zero magnetic field (panels a,c),
the Landau levels in a strong magnetic field along z (panels b,d for lB = 25),
each for ±kz symmetry (panels a,b) and when this inversion symmetry is broken
(panels c,d for γ = 0.2 t ⇒ µ = 0.196 t). The other model parameters are
tz = t′z = t, t′ = 2t, β = 1.2 t, M0 = −0.3 t, Wx = Wy = 255 in units of the
lattice constant a. The intersections of the subbands En(kz) with the Fermi
level EF = 0 determine the momenta kn appearing in the scattering formula
(3.6). These are indicated by dots in panel d, colored purple or red depending on
whether the mode propagates in the +z or in the −z direction (as determined
by the sign of dEn/dkz).
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3.4 Induced current in linear response

Figure 3.2: Weyl solenoid. Illustration of a chiral surface Fermi arc spiraling
along the wire (cross-sectional area A and perimeter P). Its flux sensitivity is set
by the orbital magnetic moment evFA/P, while the number of surface modes at
the Fermi level scales ∝ P, so their total contribution to the magnetic response
is ∝ A — of the same order as the bulk contribution.

3.4 Induced current in linear response
3.4.1 Numerical results from the scattering formula
We have calculated the current density δj flowing along the wire in response
to a slowly varying µ or B. In the former case we fix B at lB = 25 and
increase µ ≡ X from X0 ≡ 0 to δX ≡ δµ, in the latter case we fix
µ = 0.196 t and increase B ≡ X from X0 ≡ 0 to δX ≡ δB. We obtain the
CME coefficients in linear response,

Jµ ≡ B−1δj/δµ, JB = µ−1δj/δB, (3.9)

from the scattering formula (3.6), with Tn ≡ 1 (no disorder, so unit
transmission for all modes). The Fermi level is set at EF = 0. Results are
shown in Fig. 3.3. We see that the numerical data points∗ lie close to the
dashed lines given by

Jµ = −(e/h)2, JB = 1
2 × (e/h)2. (3.10)

∗The derivative ∂En/∂X needed in the scattering formula (3.6) can be calculated
most easily from the Hellmann-Feynman equation ∂En/∂X = 〈ψn|∂H/∂X|ψn〉, with
ψn the eigenfunction of mode n. In this way a numerical differentiation of the energy
spectrum can be avoided.
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3 Scattering theory of the chiral magnetic effect in a Weyl semimetal

Figure 3.3: Results for JB = µ−1δj/δB and Jµ = B−1δj/δµ following from
the scattering formula (3.6), for the Weyl semimetal Hamiltonian (3.8) with
parameters as in Fig. 3.1. The data is shown at three different values of Wx,
for two geometries: Wy = Wx (circular symbols, hard-wall boundary conditions
in both x and y directions) and Wy = 5000�Wx (square symbols, hard-wall
boundary conditions along x, periodic boundary conditions along y).

The CME coefficient Jµ agrees with the expected value from Eq. (3.1),
while the CME coefficient JB has the opposite sign and is smaller by
a factor of two. Inspection of the contributions from individual modes,
plotted in Fig. 3.4, indicates that surface states are behind the different
response, as we now explain in some detail.

3.4.2 Why surface Fermi arcs contribute to the
magnetic response in the infinite-system limit

Consider the propagating modes through a wire of diameter W . The
number of surface modes scales ∝ W , while the number of bulk modes
scales ∝W 2, so one might surmise that surface contributions to the current
density I/W 2 can be neglected in the limit W →∞. This is correct for
Jµ — but not for JB , because each surface mode individually contributes
an amount ∝W , so the total surface contribution scales ∝W 2, just like
the bulk contribution.
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Figure 3.4: Contributions to Jµ (panel a) and JB (panel b) from each individual
mode, corresponding to the band structures shown in Figs. 3.1b and 3.1c. The
sum of these contributions produces the total CME coefficient of Fig. 3.3, at
Wy = Wx = 255. The dotted line in panel b is the contribution (3.12) expected
from the Fermi arc Hamiltonian (3.11) for a surface enclosing an area A = (255)2

with perimeter P = 4×255. The color of the data points distinguishes left-movers
from right-movers, sn ≡ sign (∂En/∂k) = +1 (purple) or −1 (red).

To make this argument more precise, we consider the effective Hamilto-
nian of the surface Fermi arcs,

Harc = vF(ps − eΦ/P)− varc,zpz, (3.11)

with ps the component of the momentum along the perimeter of the wire
in the x-y plane, of length P enclosing a flux Φ = BA in an area A. The
energy spacing of the surface states at given momentum pz along the
wire is δE = hvF/P, so an energy separation µ of the Weyl cones pushes
Narc = µ/δE = µP/hvF surface modes through the Fermi level. Each
contributes

χn = sign(∂En/∂pz)× ∂En/∂B = evFA/P (3.12)
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3 Scattering theory of the chiral magnetic effect in a Weyl semimetal

Figure 3.5: Same as Fig. 3.3, but for a larger range of widths Wx at fixed
Wy = 5000 (periodic boundary conditions in the y-direction). The data for
JB = µ−1δj(B)/δB is shown at γ = 0.1 t ⇒ µ = 0.098 t in the limit B → 0
and at a large magnetic field in the Landau level regime (lB = 50). The data
for Jµ = B−1δj(µ)/δµ is shown at lB = 50 in the limit µ→ 0 and for a large
µ = 0.098 t.

to the induced current, which is just its orbital magnetic moment. The
total surface contribution takes on the universal value

JB,arc = (e/h)Narcχn/µA = (e/h)2. (3.13)

The red dotted line in Fig. 3.4b confirms this reasoning.

3.4.3 Bulk Weyl cone contribution to the magnetic
response

The numerical data in Fig. 3.3 indicates that the bulk Weyl cones contribute

JB,bulk = − 1
2 (e/h)2 (3.14)

to the CME coefficient induced by a magnetic field, for a total JB,bulk +
JB,arc = 1

2 (e/h)2. We have not found a simple intuitive argument for Eq.
(3.14), but we do have an explicit analytical calculation, see App. 3.A.
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3.4 Induced current in linear response

Figure 3.6: Same as Fig. 3.4b, but now at a large magnetic field corresponding
to the bandstructure in Fig. 3.1d. The contribution from the surface Fermi arcs,
close to A/P, goes to zero when they hybridize with the zeroth Landau level
(for which ∂En/∂B = 0).

The difference between Jµ and JB goes against the original expectation
[44] that the low-frequency response to small variations in µ at fixed B
should be the same as to small variations in B at fixed µ. That there is
no such reciprocity was found recently in two studies [99, 100] of currents
induced by an oscillating magnetic field in an infinite isotropic system.
Their bulk response has a different numerical coefficient than our Eq. (3.14)
(1/3 instead of 1/2), possibly because of the intrinsic anisotropy of a wire
geometry.

3.4.4 Interplay of surface Fermi arcs with bulk
Landau levels

So far we have considered the magnetic response in the zero-magnetic field
limit, when the bulk contribution arises from Weyl cones. We can also ask
for the current density δj in response to a slow variation δX ≡ δB around
some nonzero X0 ≡ B0, all at fixed µ. As shown in Fig. 3.5, the magnetic
response is the same whether we vary B around zero or nonzero B0. This
is remarkable, because the bulk states are entirely different — Weyl cones
versus Landau levels, compare the band structures in Figs. 3.1c and 3.1d.
The individual modes also contribute very differently to JB , compare Figs.
3.4b and 3.6, and yet the net contribution is still close to 1

2 × (e/h)2. We

45



3 Scattering theory of the chiral magnetic effect in a Weyl semimetal

Figure 3.7: Fermi-energy dependence of the CME coefficients Jµ = B−1δj/δµ
(in the limit µ → 0 at lB = 25) and JB = µ−1δj/δB (in the limit B → 0 at
µ = 0.196 t), for different widths Wx at fixed Wy = 5000 (other parameters as
in Fig. 3.1, periodic boundary conditions in the y-direction). The horizontal
dotted lines are the expected values (3.10) in the limit of an infinite system, the
dashed lines have a slope given by Eq. (3.15).

have not succeeded in an analytical derivation of this numerical result.

3.5 Finite-size effects
We have seen that the surface Fermi arcs modify the magnetic response
δj/δB even in the limit that the size of the system tends to infinity. The
response δj/δµ to an energy displacement µ of the Weyl cones is unaffected
by the surface states in the infinite-system limit, given by Eq. (3.1) in
that limit. There are however finite-size effects from the surface state
contributions, which we consider in this section.

As shown in Fig. 3.7, finite-size effects on Jµ = B−1δj/δµ are sensitive
to whether or not the Fermi level EF is symmetrically arranged between
the Weyl points (EF = 0 in Fig. 3.1). The earlier plots (Figs. 3.3 and
3.5) were for EF = 0, when finite-size effects are small. A variation
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of EF away from the symmetry point has little effect on the magnetic
response JB = µ−1δj/δB, provided |EF| . |µ|. In contrast, the Fermi
level displacement introduces a substantial size-dependence in Jµ.

Inspection of the band structure in Fig. 3.1b shows that the degeneracy
of the zeroth Landau level increases with increasing EF, because surface
modes are converted into bulk modes, at a rate given by the inverse of the
level spacing δE = hvF/P (cf. Sec. 3.4.2). Each bulk mode contributes
−(e/h)δµ/A to the induced current density δj, so we expect a finite-size
correction to Jµ = B−1δj/δµ equal to −(e/h)(BA)−1(EF/δE), hence

Jµ = −(e/h)2
(

1 + P
A

EF

eBvF

)
. (3.15)

As seen in Fig. 3.7, the slope of the EF dependence of Jµ is accurately
described by Eq. (3.15).

3.6 Conclusion and discussion of disorder
effects

Fig. 3.5 summarizes our main finding: It is known [44, 45, 97–100] that
the chiral magnetic effect in a Weyl semimetal can be driven either by
a slowly varying inversion-symmetry breaking µ or by a slowly varying
magnetic field B. Contrary to the expectation from an infinite system,
we find for a finite system that the induced current in the two cases has
opposite sign. The difference is due to the surface Fermi arcs, but it is not
a finite-size effect: The surface modes and the bulk modes give comparable
contribution to the magnetic response no matter how large the system
is, because the smaller number of surface modes is compensated by their
stronger B-sensitivity.

This finding results from a scattering formulation of the chiral magnetic
effect, that we have developed as an alternative to the established Kubo
formulation [124, 125]. Similarly to the Landauer formula for electrical
conduction, the scattering formula (3.6) is ideally suited to describe finite
and disordered systems, without translational invariance. Here we focused
on the surface effects in a finite system, but in closing we briefly consider
the disorder effects.
A qualitative prediction can be made without any calculation. In Eq.

(3.6) disorder reduces the contribution from each mode n by its transmission
probability Tn. Assume that the disorder potential is smooth on the scale
of the lattice constant a, so that it predominantly couples nearby modes
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in the Brillouin zone (with kn’s differing by much less than 1/a). This
coupling can only lead to backscattering, reducing Tn below unity, if it
involves both left-moving and right-moving modes. Inspection of Fig. 3.4b
shows that the surface modes are insensitive to backscattering, because
they all move in the same direction along the wire, in contrast to the bulk
Weyl cones. Disorder will therefore reduce the Weyl cone contribution
JB,bulk = − 1

2 (e/h)2 to the magnetic response, without affecting the arc
state contribution JB,arc = (e/h)2. Since these contributions have opposite
sign, we predict that disorder will increase the magnetically induced
current.

For sufficiently strong disorder the bulk contribution to JB may be fully
suppressed, leaving a B-induced current density equal to j = (e/h)2µB,
carried entirely by the surface Fermi arc. This has the same topological
origin as the zeroth Landau level that carries the µ-induced current (3.1)
— both the Fermi arc and the zeroth Landau level connect Weyl cones of
opposite chirality [10, 118]. It has been argued [99, 100] that the chiral
magnetic effect produced by an oscillating B is fundamentally different
from that produced by an oscillating µ, because the former lacks the
topological protection that is the hallmark of the latter. By including
surface conduction we can now offer an alternative perspective: Both the
µ-response and the B-response are similarly protected by chirality, the
difference is that one is a bulk current and the other a surface current.
From an experimental point of view, the inversion-symmetry breaking

that sets µ is hardly adjustable, preventing a direct measurement of δj/δµ,
while the magnetic field induced current δj/δB seems readily accessible.
We note that Landau levels are not required for the B-response, so one can
work with a nanowire of width small compared to the magnetic length. In
such a quasi-one-dimensional system long-range impurity scattering may
localize the bulk states, without significantly affecting the chiral surface
states. One would be searching for an oscillating current I(ω) cosωt along
the wire in response to an oscillating parallel magnetic field. The frequency
ω should be below µ and above the inelastic relaxation rate of the surface
modes. The magnetic response is quasi-dc, showing a plateau in this
ω-range that would distinguish it from any electrically induced ac current
I(ω) ∝ ω.
A final word on nomenclature. The non-topological bulk contribution

to the B-induced current has been termed the “gyrotropic magnetic effect”
[100]. Because the B-induced current in the surface Fermi arc originates
from the same chiral anomaly as the µ-induced current in the zeroth
Landau level, we use the name “chiral magnetic effect” for both.
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3.A Analytical calculation of the bulk contribution

3.A Analytical calculation of the bulk
contribution to the magnetic response

We wish to derive the result (3.14) for the contribution

µ−1δjbulk/δB = − 1
2 (e/h)2 (3.16)

from the bulk Weyl cones to the magnetic response. We assume that the
two Weyl cones are non-overlapping at the Fermi energy (as they are in
Fig. 3.1c), so we can consider them separately.
A single Weyl cone has Hamiltonian

HWeyl = vxkxσx + vykyσy + vzkzσz. (3.17)

(We have set ~ ≡ 1 for ease of notation, but we will reinstate it at the
end.) For generality, we allow for an anisotropic velocity (vx, vy, vz). The
modes propagating along the cylindrical wire have energy En(kz). We
seek the magnetic moment ∂En(kz)/∂B for an infinitesimal magnetic field
B in the z-direction (along the axis of the cylinder).

For sufficiently large transverse dimensions Wx,Wy the boundary condi-
tions should be irrelevant for the bulk response, and we use this freedom
to simplify the calculation. To isolate the bulk contribution we prefer a
boundary condition that does not bind a surface state.

In the y-direction we impose periodicity, so that ky is a good quantum
number. The system is then represented by a hollow cylinder of circumfer-
ence Wy, with an inner and an outer surface at x = 0 and x = Wx. We
can use periodic or antiperiodic boundary conditions,

ky = 2πn/Wy or ky = 2π(n+ 1
2 )/Wy,

n = 0,±1,±2, . . . ,
(3.18)

in the large-Wy limit it makes no difference.
In the x-direction we choose a zero-current boundary condition. A

simple choice is to take the spinor ψ(x, y) as an eigenfunction of σy at the
two surfaces x = 0 and x = Wx,

lim
x→0

ψ(x, y) = f(y)
(

1
i

)
, lim
x→Wx

ψ(x, y) = g(y)
(

1
i

)
, (3.19)

for arbitrary complex functions f(y), g(y). This boundary condition
corresponds to confinement by a mass term ∝ σz of infinite magnitude and
opposite sign at the two surfaces. No surface state is produced by mass
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3 Scattering theory of the chiral magnetic effect in a Weyl semimetal

confinement. For kz = 0 the sign change of the mass term does produce a
spurious chiral state ψ = eikyy

(1
i

)
, E = vyky, which carries no current in

the z-direction and can therefore be ignored.
The solution of the eigenvalue equation HWeylψ = Eψ that satisfies the

boundary condition (3.19) is given by

ψ(x, y) = 1
Z
eikyy

[
(E − ivxkx − vyky + vzkz)

(
E + vzkz

vxkx + ivyky

)
eikxx

− (E + ivxkx − vyky + vzkz)
(

E + vzkz
−vxkx + ivyky

)
e−ikxx

]
,

(3.20)

kx = πm/Wx, m = 1, 2, 3, . . . . (3.21)

The band structure Enm(kz) is determined by the dispersion relation

E2 = (πmvx/Wx)2 + (2πnvy/Wy)2 + (vzkz)2. (3.22)

Normalization 〈ψ|ψ〉 = 1 gives

Z2 = 8WxWyE(E − vyky)(E + vzkz)2. (3.23)

The magnetic response is induced by the vector potentialAy = B(x+X0),
with an offset X0 that accounts for the flux BWyX0 enclosed by the inner
surface of the cylinder. The magnetic moment results from

∂E

∂B
= 〈ψ|∂H/∂B|ψ〉 = −evy〈ψ|(x+X0)σy|ψ〉

= − evxvyvzkz
2E(E − vyky) −

ev2
yky

E
(X0 +W/2). (3.24)

The second term is the magnetic moment of a charge e circulating along
the inner surface of the cylinder with velocity ∂E/∂ky = v2

yky/E. It drops
out when we sum the contributions from +ky and −ky, producing the
magnetic moment∑

±ky

∂E

∂B
= − evxvyvzkz

E2 − v2
yk

2
y

= − evxvyvzkz
v2
xk

2
x + v2

zk
2
z

(3.25)

plotted in Fig. 3.8.
We fix the energy Enm = E, adjusting kz accordingly for each n and

m. Both +kz and −kz satisfy the dispersion relation (3.22). We consider
separately the sum over the magnetic moment of the modes with kz > 0
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3.A Analytical calculation of the bulk contribution

Figure 3.8: Magnetic moment (3.25) of a single Weyl cone (isotropic, vx =
vy = vz ≡ vF), summed over +ky and −ky, as a function of kz for the seven
lowest quantized values of kx = mπ/Wx. The quantization of ky can be ignored
for Wy �Wx, so the discrete modes merge into a continuous curve.

and kz < 0, so that we can distinguish left-movers from right-movers in
the scattering formula (3.6). In the large-W limit the sum over kx and
ky, quantized by Eqs. (3.18) and (3.21), can be replaced by an integration
over the kx-ky plane,∑

nm

′ 7→ WxWy

2π2

∫ ∞
0

dkx

∫ ∞
−∞

dky θ(E2 − v2
xk

2
x − v2

yk
2
y), (3.26)

with θ(s) the unit step function. The prime in the summation indicates
that we include only half of the modes, with a given sign of kz. The
integral over Eq. (3.24) is readily evaluated in polar coordinates,∑

nm

′ ∂Enm
∂B

∣∣∣∣
Enm=E

= −(sign kz)
eWxWy

4π2E

×
∫ π/2

−π/2
dφ

∫ |E|
0

rdr

√
E2 − r2

E − r sinφ

= −(sign kz)
eWxWy|E|

8π . (3.27)

The quantity χnm that determines the magnetically induced current
δI/δB according to Eq. (3.6) is the magnetic moment ∂Enm/∂B times
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3 Scattering theory of the chiral magnetic effect in a Weyl semimetal

the sign of the velocity ∂Enm/∂kz in the z-direction. The sign of the
velocity in a single Weyl cone (with Weyl point at k = 0, E = 0) equals
the product of the sign of kz and the sign of Enm, hence∑

nm

χnm =
∑
nm

(
sign ∂Enm

∂kz

)
∂Enm
∂B

∣∣∣∣
Enm=E

= −eWxWyE

4π~
. (3.28)

In the last equation we have reinstated the ~ that we had previously set
to unity. There is no prime in the summation because now both signs of
kz are included.

We conclude that the contribution to the induced current density δj =
δI/WxWy from a single Weyl cone at energy E = µ/2 is

δj = e

h

δB

WxWy

∑
nm

χnm = − 1
4 (e/h)2µδB. (3.29)

The other Weyl cone contributes the same amount, for a total CME
coefficient given by Eq. (3.16).
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4 Weyl-Majorana solenoid

4.1 Introduction
A three-dimensional Weyl semimetal has topological features that are lack-
ing in its two-dimensional counterpart, graphene [20, 31, 94]. One striking
feature is the appearance of surface states, in Fermi arcs connecting Weyl
cones of opposite topological charge (Chern number or Berry curvature)
[10]. Unlike the surface states of a topological insulator, which are the
only source of metallic conduction, the Fermi arcs at the surface compete
with the Weyl cones in the bulk when it comes to transport properties.
Quantum oscillations in the magnetoresistance are one example of an effect
where the Fermi arcs play a prominent role [126, 127], the chiral magnetic
effect without Landau levels is another example [46].
An interesting way to differentiate surface from bulk is to bring the

Weyl semimetal into contact with a superconductor. While the Weyl
cones in the bulk remain largely unaffected, the surface states acquire the
mixed electron-hole character of a charge-neutral Bogoliubov quasiparticle
— a Majorana fermion [69, 70, 117, 128–130]. Here we investigate this
proximity effect in the nanowire geometry of Fig. 4.1, in which an axial
magnetization causes the surface modes to spiral along the wire, essentially
forming a solenoid on the nanoscale [46]. We study the dispersion relation
of the Majorana modes and identify a mechanism to trap the quasiparticles
at a specified location along the wire.

The contents of this chapter have been published in P. Baireuther, J. Tworzydło,
M. Breitkreiz, İ. Adagideli, and C.W. J. Beenakker. New J. Phys. 19, 025006 (2017).
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4 Weyl-Majorana solenoid

Figure 4.1: Panel a) Weyl-Majorana solenoid, formed by a Weyl semimetal wire
with an axial magnetization, coupled via a tunnel barrier to a superconductor.
Charge-neutral Majorana modes propagate along the wire, confined to the
normal-superconductor (NS) interface. A gap inversion in a segment of length L,
induced by a variation in coupling strength, traps a pair of quasiparticles at the
two ends of the segment. Panel b) SNS slab geometry to study the Majorana
modes at the NS interface.

In the next section we identify the pair of Z2 quantum numbers ν, κ that
label the four surface modes in a given orbital subband. The electron-hole
index ν is generic for any surface state where electrons and holes are coupled
by Andreev reflection [131–133]. The connectivity index κ is specific for
the Fermi arcs, it distinguishes whether the surface state reconnects in
the bulk with the Weyl cone at positive or negative energy. In Sec. 4.3
we construct the 4× 4 matrix Hamiltonian in the ν, κ basis, constrained
by particle-hole symmetry, as an effective low-energy description of the
two-dimensional surface modes.
We then proceed in Sec. 4.4 with a numerical calculation of the three-

dimensional band structure of a microscopic model Hamiltonian. The
unexpected feature revealed by this simulation is a gap inversion, visible in
the band structure as a level crossing between two surface modes with the
same connectivity index. The gap inversion can be controlled by variation
of the tunnel coupling between the semimetal and the superconductor. At
the domain wall where the gap changes sign, a charge-neutral quasiparticle
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4.2 Connectivity index of surface Fermi arcs

is trapped — as we demonstrate numerically and explain within the context
of the effective surface Hamiltonian in Sec. 4.5. In Sec. 4.6 we study the
same gap inversion analytically, via a mode-matching calculation. In the
concluding Sec. 4.7 we comment on the relation of the gap inversion to
the flow of Berry curvature in the Brillouin zone.

4.2 Connectivity index of surface Fermi arcs
The geometry under consideration is shown in Fig. 4.1. A Weyl semimetal
wire oriented along the z-axis is covered by a superconductor. We include a
thin insulating layer between the superconductor and the Weyl semimetal,
forming a tunnel barrier. A magnetization in the z-direction breaks time-
reversal symmetry and separates the Weyl cones along the pz momentum
direction in the Brillouin zone. (Induced superconductivity in the presence
of time-reversal symmetry, with minimally four Weyl points, has a different
phenomenology [69].) The surface states connecting the Weyl cones are
chiral, circulating with velocity vφ in a direction set by the magnetization.
If inversion symmetry is broken the surface states also spiral with velocity
vz along the wire [46].
As shown in Fig. 4.2, resulting from a model calculation described in

Sec. 4.4, at the interface with a superconductor the surface spectrum is
drastically modified. We seek an effective Hamiltonian that describes this
proximity effect on the Fermi arcs.

The first question we have to address is which pairs of states are coupled
by the superconducting pair potential ∆. In the bulk spectrum the answer
is well known [70, 117]: Superconductivity couples electrons in a Weyl
cone of positive Berry curvature to holes in a Weyl cone of negative Berry
curvature, and vice versa. To decide this question for the surface states,
we assign to each Fermi arc a “connectivity index” κ = ±1, depending on
whether it reconnects in the bulk with the Weyl cone at positive or negative
energy. Inspection of Fig. 4.2 shows that ∆ predominantly couples Fermi
arcs with same κ, pushing them apart, without removing the crossing
between states of opposite κ.
More explicitly, in a slab geometry we can identify κ = sign ky and in

a cylindrical wire geometry we would have κ = sign pφ. The coupling of
states with different κ is then forbidden by (translational or rotational)
symmetry. More generally, in the absence of any symmetry, the sign of
κ = ±1 says whether the Fermi arc connects with the Weyl cone at ±E,
and thus identifies which pairs of Fermi arcs are predominantly coupled
by ∆.
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4 Weyl-Majorana solenoid

Figure 4.2: Band structure of a Weyl semimetal in the slab geometry of Fig.
4.1b, calculated from the tight-binding model described in the text∗. In panel
a) there is only the Weyl semimetal, in panel b) the superconducting contacts
have been added. Inversion symmetry has not been broken, so the spectrum has
±pz symmetry, in addition to the particle-hole symmetry E(pz) = −E(−pz). In
the slab geometry the transverse wave vector ky is a good quantum number,
and to make the figure less crowded only subbands at a single value of ky are
shown. (The Fermi arcs in panel a) are approximately at ±vφ sin ky.) The
superconductor breaks up the two Dirac fermion surface modes in panel a) into
four Majorana fermion modes in panel b), labeled by a pair of indices κ, ν = ±1.
The Majorana modes are nearly charge-neutral, as indicated by the color scale
(with electron charge +e).

4.3 Effective surface Hamiltonian
The superconducting proximity effect is governed by the Bogoliubov-De
Gennes (BdG) Hamiltonian, describing the coupling of electrons and holes
by the pair potential. In the numerical simulations we will work with the
BdG Hamiltonian in a 3D microscopic model. For analytical insight we
aim for an effective 2D description involving only surface modes.

∗The microscopic model parameters in the slab geometry of Fig. 4.2 are (energies
in units of t0, lengths in units of a0): t = 2, tz = 1, m0 = −0.3, λ = 0, β = 0.6, t̃ = 7,
t̃z = 3.5, µW = 10−4, µS = 3.5, Ubarrier = 0.1, ∆0 = 0.2, dbarrier = 2, W = 120,
ky = π/120.
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4.4 Numerical simulation of a microscopic model

Each orbital subband n is associated with four Majorana modes, labeled
by a pair of Z2 indices κ, ν. (See Fig. 4.2.) The connectivity index κ = ±
identifies the connectivity of the surface mode (with the Weyl cone at
positive or negative energy), the electron-hole index ν = ± identifies the
pair of Majorana fermions that form a Dirac fermion. The corresponding
BdG Hamiltonian Hn is a 4× 4 matrix with pz-dependent elements. In
what follows we omit the subband index n for ease of notation.

The fundamental symmetry of the BdG Hamiltonian is particle-hole
symmetry,

H(pz) = −κyνyH∗(−pz)κyνy, (4.1)
with Pauli matrices κα and να acting, respectively on the connectivity and
electron-hole degree of freedom (α = 1, 2, 3 7→ x, y, z and α = 0 for the
unit matrix). The operation of particle-hole conjugation squares to +1,
which places the system in symmetry class D [28] — this is the appropriate
symmetry class in the absence of time-reversal and spin-rotation symmetry.
If we neglect the mixing by disorder of surface states with opposite

connectivity index κ = ±, the 4× 4 matrix H decouples into two blocks
H± related by particle-hole symmetry,

H =
(
H+ 0
0 H−

)
, H−(pz) = −νyH∗+(−pz)νy. (4.2)

The 2× 2 matrices H± can be decomposed into Pauli matrices,

H±(pz) = ±D0(±pz)ν0 +
∑3
α=1Dα(±pz)να, (4.3)

with real pz-dependent coefficients Dα.
Diagonalization of the Hamiltonian (4.2) gives the dispersion relation

Eκ,ν(pz) of the four Majorana modes in the n-th subband,

Eκ,ν(pz) = κD0(κpz) + ν

√∑3
α=1D

2
α(κpz). (4.4)

Particle-hole symmetry is expressed by Eκ,ν(pz) = −E−κ,−ν(−pz). Inver-
sion symmetry, Eκ,ν(pz) = Eκ,ν(−pz), is satisfied if D0 is an even function
of pz while each of the functions D1, D2, D3 has a definite parity (even or
odd).

4.4 Numerical simulation of a microscopic
model

We now turn to a microscopic model of a Weyl semimetal in contact with
a superconductor, which we solve numerically. The Weyl semimetal has
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4 Weyl-Majorana solenoid

Figure 4.3: Spatial profile of the chemical potential µ(x).

BdG Hamiltonian

HW(k) = νzτz(tσx sin kx + tσy sin ky + tzσz sin kz)
+m(k)νzτxσ0 + λνzτzσ0 + βν0τ0σz − µνzτ0σ0,

m(k) = m0 + t(2− cos kx − cos ky) + tz(1− cos kz), (4.5)

with chemical potential µ and charge operator

Q = −e∂HW

∂µ
= eνzτ0σ0. (4.6)

The Pauli matrices σα and τα refer to spin and orbital degrees of freedom,
respectively, while να acts on the electron-hole index. The momentum k
varies over the Brillouin zone |kα| < π of a simple cubic lattice (lattice
constant a0 ≡ 1). This is a model of a layered material in the Bi2Se3
family [26], with weak coupling tz < t in the z-direction, perpendicular to
the layers in the x–y plane.
The particle-hole symmetry relation is

HW(k) = −σyνyH∗W(−k)σyνy. (4.7)

The magnetization term ∝ β breaks time-reversal symmetry, HW(k) =
σyH

∗
W(−k)σy. Inversion symmetry, HW(k) = τxHW(−k)τx, is broken by

the strain term ∝ λ.
The Weyl semimetal is in contact with a spin-singlet s-wave supercon-

ductor, with Hamiltonian

HS = [t̃(2− cos kx − cos ky) + t̃z(1− cos kz)]νzτ0σ0

− µνzτ0σ0 + ∆0νxτ0σ0. (4.8)
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4.4 Numerical simulation of a microscopic model

Figure 4.4: Data points: Band structure in the slab geometry (colored according
to the charge expectation value), showing the level crossing at pz = 0 between
a pair of Majorana modes with κ = +1, ν = ±1. The parameters are those of
Fig. 4.2b, except for the tunnel barrier height Ubarrier, which is varied to tune
through the gap inversion. The dashed curves are fits∗ to the dispersion (4.9)
from the effective surface Hamiltonian.

There are different chemical potentials in the Weyl semimetal, µ = µW,
and in the superconductor, µ = µS. At the NS interface we include
an electrostatic potential barrier of width dbarrier, raising µ to a value
µB ≡ Ubarrier. The resulting spatial profile µ(x) is shown in Fig. 4.3.

We consider the two geometries shown in Fig. 4.1, a wire geometry and
a computationally more efficient slab geometry†. In each case there is
translational invariance along the z-direction. In the slab geometry there
is in addition translational invariance in the y-direction, so the modes are
labeled by a continuous quantum number ky‡.
The dispersion relation in the slab geometry is shown in Fig. 4.2. The

mode crossings at nonzero pz appear because modes with different connec-
tivity index κ are uncoupled in the absence of disorder. In Fig. 4.4 we show
a different type of crossing, near pz = 0 between modes with the same κ,
induced by variation of the tunnel barrier height. This crossing appears
∗The fit parameters used in Fig. 4.4 are D0(pz) = 0.016 + 0.035 p2

z + 0.24 p4
z ,

c = 0.085, c′′ = 0.056.
†To discretize the model Hamiltonian we used the Kwant toolbox [93].
‡The slab geometry has a ±ky degeneracy in the spectrum, corresponding to surface

states at the opposite NS interfaces x = {0,W}. We therefore only need to show a
single sign of ky to obtain the full spectrum, as in Fig. 4.2.
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4 Weyl-Majorana solenoid

Figure 4.5: Band structure in the slab geometry, showing the level crossing
near pz = 0 between modes with the same connectivity index. In the lower
panels we show the crossing as a function of pz at fixed tunnel barrier height
Ubarrier, in the upper panels we show the crossing at fixed pz as a function of
Ubarrier. The parameters and color scale are those of Fig. 4.2b, but we took
a nonzero µW = 0.05 t0 (notice the displacement of electron and hole bands
in the bulk Weyl cones) in order to demonstrate that the level crossing does
not require a vanishing chemical potential. The level crossing also persists if
inversion symmetry is broken by a nonzero λ = 0.05 t0, but the crossing point is
displaced away from pz = 0 (compare black and red curves in panel b, at pz = 0
and pz = −6 · 10−4 ~/a0).
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4.5 Quasiparticle trapping by gap inversion

generically when we vary interface parameters, in Fig. 4.5 we show that
it persists at nonzero chemical potential µ = µW in the Weyl semimetal∗.
Inversion symmetry breaking by a nonzero λ moves the crossing point
away from pz = 0, but does not destroy it. The wire geometry gives similar
results, see Fig. 4.6.

To model this effect in the framework of the surface Hamiltonian (4.3), we
take a momentum-independent complex off-diagonal potential D1− iD2 ≡
∆ with amplitude ∆0 = c(Ubarrier − Uc) that crosses zero at some critical
barrier height Uc. Inversion symmetry imposes a definite parity on the
real diagonal potential D3 ≡ µ(pz), such that even a small admixture
of an odd-parity component enforces µ(0) = 0 when λ = 0. If we take
µ(pz) = c′λ+ c′′pz the dispersion relation (4.4) in the pair of modes with
κ = +1 has the form

Eν(pz) = D0(pz) + ν
√
c2(Ubarrier − Uc)2 + (c′λ+ c′′pz)2. (4.9)

The dashed curves in Fig. 4.4 are fits to this functional form, with λ = 0
and a quartic D0(pz). The qualitative behavior agrees reasonably well.

4.5 Quasiparticle trapping by gap inversion
The gap inversion of Fig. 4.4 can be used to trap a quasiparticle by
varying the tunnel barrier height Ubarrier(z) (by means of a variation in the
thickness of the insulating layer), from a value above the critical strength
Uc to a value below Uc. A demonstration of this effect in the slab geometry
is shown in Fig. 4.7, where we plot the local density of states and charge
polarization 〈ψ|νz|ψ〉〈ψ|ψ〉−1 ∈ (−1,+1) at each site of the lattice.
In terms of the surface Hamiltonian, the quasiparticle trapping is de-

scribed by the Schrödinger equation H±ψ(z) = Eψ(z) with

H± =
(
±D0(±pz) + µ(±pz) ∆(z)

∆∗(z) ±D0(±pz)− µ(±pz)

)
. (4.10)

We take a real ∆(z) = c(Ubarrier(z) − Uc) and, respectively, an even
and odd pz-dependence of D0 and µ = c′′pz — consistent with inversion
symmetry. If we neglect quadratic terms inD0 we have a matrix differential
equation of first order,

∓ i~c′′νz
dψ

dz
=
[(
E ∓D0(0)

)
ν0 −∆(z)νx

]
ψ(z). (4.11)

∗In figures 4.2, 4.4, and 4.7 we also added a small offset of 10−4 t0 to µW to break
the electron-hole degeneracy.
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4 Weyl-Majorana solenoid

Figure 4.6: Band structure in a wire geometry (square cross section∗), showing
all modes in the energy range −0.2 < E/t0 < 0.2. (The previous plots in the
slab geometry showed only the modes with a single ky value, but in the wire ky
is not a good quantum number.) The gap between pairs of modes in the same
subband and with the same connectivity index closes at pz = 0 upon variation
of the tunnel barrier height.

Let ∆(z)/c′′ vary from a positive value for z < 0 and z > L to a negative
value in the interval 0 < z < L. For sufficiently large L we can consider
the domain wall at z = 0 separately from the one at z = L. At energy
E = ±D0(0) there is a bound state at z = 0 with wave function

ψ±(z) = exp
(
± 1

~c′′

∫ z

0
dz′∆(z′)νy

)
ψ±(0). (4.12)

This should be a decaying function of |z|, so ψ±(0) = (1,±i) is an eigenstate
of νy with eigenvalue ±1.
Fig. 4.7 shows that the bound state is a charge-neutral quasiparticle.

There is one state at energy +D0(0) and a second state at −D0(0), but
because the BdG equation doubles the spectrum only a single Majorana
∗The microscopic model parameters in the wire geometry of Fig. 4.6 are (energies

in units of t0, lengths in units of a0): t = 2, tz = 1, m0 = −0.3, λ = 0, β = 0.6, t̃ = 7,
t̃z = 3.5, µW = 0.05, µS = 3.5, ∆0 = 0.4, dbarrier = 1, W = 79.
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4.6 Analytical mode-matching calculation

Figure 4.7: Density of states (dot size) and local charge polarization (color)
at E = 0.016 t0 in an NS junction in the slab geometry∗ with a z-dependent
tunnel barrier height. The vertical dashed lines indicate the tunnel barrier at
the NS interface. The horizontal lines indicate the regions where the tunnel
barrier height Ubarrier is varied from 0.3 t0 to 0.5 t0 and back, passing through
the critical value Uc = 0.411 t0 near z = 0 and z = 50 ≡ L. At these domain
walls the gap between a pair of surface modes (at given |ky| = π/120) closes and
reopens, trapping a charge-neutral quasiparticle. The parameters are the same
as in Fig. 4.4, with periodic boundary conditions in the z-direction.

fermion is trapped at z = 0. A second Majorana fermion is trapped at
z = L. All of this is for a single orbital mode n. We have found numerically
that the critical barrier height Uc is weakly n-dependent, so a domain wall
traps one Majorana fermion per orbital subband.

4.6 Analytical mode-matching calculation
4.6.1 Hamiltonian with spatially dependent

coefficients
To analytically substantiate our numerical findings we have performed a
mode-matching calculation in the slab geometry of Fig. 4.1b, matching
∗Fig. 4.7 is for an NS junction with a single interface at positive and negative

ky = ±π/120. Figs. 4.2, 4.4, and 4.5 are for an SNS junction with two interfaces at a
single ky = π/120.
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4 Weyl-Majorana solenoid

electron and hole modes in the normal (N) region 0 < x < W to Bogoliubov
quasiparticles in the superconducting (S) regions x < 0, x > W . This
procedure can be greatly simplified if we choose a single BdG Hamiltonian
H with x-dependent coefficients, rather than the different HW and HS of
Sec. 4.4 — the former choice is a less realistic model of an SNS junction
than the latter, but as we will see the results are essentially equivalent.
Our starting point is therefore the Hamiltonian

H = νzτz(tσx sin kx + tσy sin ky + tzσz sin kz)
+mνzτxσ0 + λνzτzσ0 + βν0τ0σz

− µ(x)νzτ0σ0 + ∆(x)νxτ0σ0, (4.13)

with chemical potential µ(x), pair potential ∆(x), and mass term

m(k) = m0 + t(2− cos kx − cos ky) + tz(1− cos kz). (4.14)

We will compare our analytical mode-matching calculation to a numerical
solution of the discretized Hamiltonian (4.13). For this analytics, but not
for the numerics, we make one further simplification, which is to linearize
the Hamiltonian in the transverse momentum component kx, so that the
mode-matching calculation requires the solution of a set of first order
differential equation in x. We thus replace sin kx 7→ kx and replace the
mass term (4.14) by

m̃(ky, kz) = m0 + t(1− cos ky) + tz(1− cos kz). (4.15)

4.6.2 First-order decoupling of the mode-matching
equations

The Schrödinger equation Hψ = Eψ produces 8 coupled differential
equations, and an attempt at direct solution produces unwieldy results. Our
approach is to partially decouple these by suitable unitary transformations
of H. We take the inversion symmetry breaking strength λ and chemical
potential µ as small parameters and seek a decoupling up to corrections of
first or second order in λ, µ.
For a first-order decoupling we rotate the νx and τx spinors by the

unitaries

Uθ = exp
( 1

2 iθνyτzσz
)
, Uφ = exp

( 1
2 iφν0τyσz

)
. (4.16)
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4.6 Analytical mode-matching calculation

The rotation angles θ, φ are x and kz-dependent,

cos θ = −(tz/∆eff) sin kz, sin θ = ∆/∆eff , (4.17a)
cosφ = ∆eff/M, sinφ = m̃/M, (4.17b)

∆eff(x) =
√

∆2(x) + t2z sin2 kz, (4.17c)

M(x) =
√
m̃2 + ∆2(x) + t2z sin2 kz. (4.17d)

Notice that cos θ → −sign kz for ∆→ 0. We can avoid this discontinuity
at kz = 0 by keeping a small nonzero ∆ in the normal region.
The transformed Hamiltonian,

Hφ,θ = U†φU
†
θHUθUφ

= tνzτz(σxkx + σy sin ky)−Mνzτzσz + βν0τ0σz + Vb(x)
− µ cos θ νzτ0σ0 − µ sin θ cosφ νxτzσz − µ sin θ sinφ νxτxσ0

+ λ sin θ νxτ0σz + λ cos θ cosφ νzτzσ0 + λ cos θ sinφ νzτxσz,
(4.18)

is diagonal in the ν and τ degrees of freedom up to corrections of first
order in λ, µ, and up to a boundary potential Vb(x) resulting from the
commutator of kx = −i∂/∂x and the x-dependent superconducting gap
∆(x) at the NS interface. In this section we discard the boundary potential,
to simplify the calculations — we will fully include it in the Appendix.
The term ∝ µνxτxσ0 in the Hamiltonian (4.18) can be made diagonal

in ν and τ with the unitary transformation

Hψ,φ,θ = U†ψP
†
3Hφ,θP3Uψ, (4.19a)

Uψ = exp( 1
2 iψν0τyσ0), (4.19b)

P3 = 1
2

(
(τ0 + τz)σ0 (τx − iτy)σ0
(τ0 − τz)σ0 (τx + iτy)σ0

)
, (4.19c)

cosψ = (1− sin2 θ cos2 φ)−1/2 cos θ, (4.19d)
sinψ = −(1− sin2 θ cos2 φ)−1/2 sinφ sin θ. (4.19e)

The four blocks in the shift matrix P3 [with (P3)3 = 1] refer to the ν
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4 Weyl-Majorana solenoid

degree of freedom. The transformed Hamiltonian is

Hψ,φ,θ = Hdiag + δHdiag + δHoffdiag, (4.20a)
Hdiag = tνzτ0(σxkx + σy sin ky)−Mνzτ0σz + βν0τ0σz, (4.20b)
δHdiag = − µ(1−∆2/M2)1/2ν0τzσ0 − λ(tz/M)νzτ0σ0 sin kz, (4.20c)

δHoffdiag = µ(∆/M)νyτyσz + λ(M2 −∆2)−1/2

× [m̃νxτzσz − (∆/M)tzνxτxσz sin kz] . (4.20d)

The symbol δ keeps track of the order in λ, µ of the diagonal (“diag”) and
off-diagonal (“offdiag”) blocks.

4.6.3 Second-order decoupling via Schrieffer-Wolff
transformation

The Schrieffer-Wolff transformation

HSW = eiδSHψ,φ,θe
−iδS , (4.21)

δS =
(

0 δs
δs† 0

)
≡ 1

2 (νx + iνy)δs+ 1
2 (νx − iνy)δs†,

with Hermitian off-diagonal matrix δS given by

[δS,Hdiag] = iδHoffdiag, (4.22)

removes the off-diagonal blocks up to corrections of second order in δ:

HSW = Hdiag + δHdiag +O(δ2). (4.23)

The solution of Eq. (4.22) is∗

δs = 1
2βM

[
λ

(M2 −∆2)1/2

(
m̃τz −

∆tz sin kz
M

τx

)
−µ∆
M

iτy

] (
iβσ0 + σytkx − σxt sin ky

)
. (4.24)

The Schrieffer-Wolff matrix δS contributes terms of order δ2 to the energy
spectrum, which is given by the eigenvalues of Hdiag +δHdiag +δHSW with

δHSW = 1
2 i[δS, δHoffdiag] + i[δS, δHdiag] +O(δ3). (4.25)

∗To solve Eq. (4.22) for δs we substitute the block-decomposition

Hdiag =
(
h+ 0
0 h−

)
, δHoffdiag =

(
0 δh
δh† 0

)
of the 8×8 matrices Hdiag and δHoffdiag

in the ν degree of freedom. We thus arrive at the equation δsh−−h+δs = iδh involving
4× 4 matrices. This Sylvester equation has a unique solution (unless h+ and h− have
a common eigenvalue, which they do not).
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4.6 Analytical mode-matching calculation

4.6.4 Dispersion relation of the surface modes
The mode-matching calculation at energy E with the Hamiltonian Hdiag +
δHdiag (not yet including the Schrieffer-Wolff correction) now involves
four uncoupled differential equations, labeled by ν, τ ∈ {−1,+1}, for a
two-component spinor ψ(x):

tν
dψ

dx
=
[
i(E + U)σx + tνσz sin ky + (Mν − β)σy]ψ

U = µτ(1−∆2/M2)1/2 + λ(tz/M)ν sin kz.
(4.26)

We solve this for piecewise constant coefficients. For the normal (N) region
at 0 < x < W we choose

∆ = ∆N, µ = µN, (4.27a)

and for the superconducting (S) region at x < 0 and x > W we choose

∆ = ∆S, µ = µS, (4.27b)

demanding continuity of ψ(x) at x = 0,W . We keep a finite pair potential
∆N in the normal region to avoid the discontinuity at pz = 0 noted in Sec.
4.6.2.

To obtain the dispersion relation at a single NS interface we may take
W →∞ and match decaying wave functions at both sides of the interface
at x = 0. Such a bound surface state is possible ifMν−β has the opposite
sign in N and S, which requires ν = +1 (since β and M are both positive).
We denote M ≡MN in N and M ≡MS in S, and similarly denote

± µ(1−∆2/M2)1/2 + λ(tz/M) sin kz ≡
{
U±N in N,
U±S in S.

(4.28)

The sign ± accounts for the quantum number τ in Eq. (4.26).
For a surface state we need MN − β < −|U±N |, MS − β > |U±S | in some

interval of E, ky, kz around zero. Solution of Eq. (4.26) gives the wave
function profile

ψ(x) = CNe
−xκ±N/t

(
iκ±N − it sin ky

E + U±N +MN − β

)
, for x > 0, (4.29)

ψ(x) = CSe
xκ±S /t

(
−iκ±S − it sin ky
E + U±S +MS − β

)
, for x < 0, (4.30)
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4 Weyl-Majorana solenoid

with inverse decay lengths

κ±N,S =
√
t2 sin2 ky + (MN,S − β)2 − (E + U±N,S)2 (4.31)

on the normal and superconducting sides of the NS interface.
The amplitudes CN and CS are to be adjusted so that ψ(x) is continuous

at x = 0. By requiring that the matrix of coefficients of the mode-matching
equations has vanishing determinant, we arrive at the dispersion relation
of the surface modes,

E±(ky, kz) = t sin ky + (MN − β)U±S − (MS − β)U±N
MS −MN

+O(δ2), (4.32)

discarding terms of second order in µ, λ. The level crossing at kz = 0, for
a given ky, happens for m0 = t(cos ky − 1). The corresponding charge
expectation value Q = −e∂E/∂µ is

Q± =∓ e(MS −MN)−1
[
(MN − β)

√
1−∆2

S/M
2
S

− (MS − β)
√

1−∆2
N/M

2
N

]
+O(δ), (4.33)

one order in µ, λ less accurate than the energy.
In Fig. 4.8 we compare the numerical diagonalization of the Hamiltonian

(4.13) with the analytical mode matching calculation. Unlike the compari-
son in Fig. 4.4, here there is not a single fit parameter. The agreement is
excellent for the energy, somewhat less for the average charge.

4.6.5 Effective surface Hamiltonian
In Sec. 4.3 we constructed an effective surface Hamiltonian by relying only
on particle-hole symmetry. As an alternative route, we present here a
derivation starting from the model Hamiltonian (4.20).
The motion perpendicular to the NS interface at x = 0 is governed by

the reduced Hamiltonian

H⊥ = tνzτ0σxkx −Mνzτ0σz + βν0τ0σz, (4.34)

with neglect of the terms ∝ µ, λ as well as the ky and kz-dependent terms
for motion parallel to the interface. The wave function profile ψ(x) at
E = 0,

H⊥ψ = 0⇒ ψ(x) = (4.35)

exp
[
t−1

∫ x

0
dx′
(
M(x′)ν0τ0σy − βνzτ0σy

)]
ψ(0),
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4.6 Analytical mode-matching calculation

Figure 4.8: Colored data points: Energy spectrum (color scale as in Fig. 4.2)
and average charge obtained from a numerical diagonalization of the discretized
Hamiltonian (4.13). The top row is for m0 = 0.05, the bottom row for m0 = 0,
other parameters: t = 2, tz = 1, λ = 0, β = 0.6, µN = ∆N = 10−2, µS = 0.2,
∆S = 0.8, W = 120, ky = 0.01. The black dashed curves result directly from
the analytical mode-matching calculation, Eqs. (4.32) and (4.33), without any
adjustable parameters.

decays for x → −∞ (inside the superconducting region) because of the
term ∝M(−∞) > β and for x→ +∞ (inside the Weyl semimetal region)
because of the term ∝ β > M(∞). This two-sided decay is ensured if
ψ(0) is an eigenstate with eigenvalue +1 of both ν0τ0σy and νzτ0σy. The
resulting eigenspace has rank two.
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4 Weyl-Majorana solenoid

The 2× 2 effective surface Hamiltonian Heff for motion parallel to the
surface is obtained by projecting H onto this two-dimensional eigenspace,
resulting in

Heff = τ0t sin ky − λ(tz/M)τ0 sin kz
− µ(1−∆2/M2)1/2τz. (4.36)

The corresponding charge operator is momentum dependent,

Qeff = −e ∂Heff/∂µ = e(1−∆2/M2)1/2τz. (4.37)

In this effective surface description the energy scales ∆ and µ should be
regarded as weighted averages of the x-dependent parameters from Eq.
(4.27).

The two surface modes have opposite charge Q± = ±e (1−∆2/M2)1/2

and dispersion relation

E±(kz) = t sin ky − (∆2 + m̃2(ky, kz) + t2z sin2 kz)−1/2

×
[
λtz sin kz ± µ

√
m̃2(ky, kz) + t2z sin2 kz

]
, (4.38)

representing the spiraling surface Fermi arc illustrated in Fig. 4.1. The ±
index corresponds to the ν index of Sec. 4.3, the κ index is taken care of
by the sign of sin ky. The gap δE = E+(0)− E−(0) at kz = 0 equals

δE = 2µmeff√
m2

eff + ∆2
, meff = |m0 + t(1− cos ky)|. (4.39)

We interpret meff as the effective coupling strength of the surface state to
the superconductor, and as the parameter that in the microscopic model
of Sec. 4.4 is varied by varying Ubarrier. The level crossing then happens
when meff = 0. At the level crossing the excitations are charge neutral.

We may include the Schrieffer-Wolff correction, by projecting δHSW
from Eq. (4.25) onto the surface eigenspace. The result is a correction of
order δ2 to the effective surface Hamiltonian,

δHeff =− t sin ky
2βM3

(
2µλ∆2τztz sin kz + ∆Mm̃τx√

M2 −∆2

+ (λ2m̃2 + λ2∆2 + µ2∆2)τ0
)
. (4.40)

The dominant effect of this correction is to shift the level crossing away
from kz = 0 to kz = −(λ/β)(t/tz) sin ky.
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4.7 Conclusion
In summary, we have investigated the superconducting proximity effect
on the dispersion relation of surface modes in a Weyl-Majorana solenoid
— a Weyl semimetal nanowire with an axial magnetization covered by a
superconductor. The surface Fermi arc connecting bulk Weyl cones is
broken up into nearly charge-neutral Majorana modes. We have identified
a “connectivity index” that determines between which pair of modes a gap
is opened by the superconductor.
We have discovered that the sign of the induced gap can be inverted

by variation of the tunnel coupling strength between the semimetal and
the superconductor. A domain wall separating segments of the nanowire
with opposite sign of the gap traps a charge-neutral quasiparticle. This
bound Majorana fermion is not at zero energy, so it should not be confused
with the Majorana zero-modes in semiconductor nanowires [134–136]. The
gap inversion is studied for a 3D model Hamiltonian, both numerically
in a tight-binding formulation, and analytically via mode matching at
the normal-superconductor interface. Further insight is obtained by an
effective 2D surface Hamiltonian.
In closing we remark on a global aspect of the gap inversion in terms

of the flow of Berry curvature (topological charge) in the Brillouin zone
[137]. The minimal number of two Weyl cones in a Weyl semimetal with
broken time-reversal symmetry is doubled if we include the electron-hole
degree of freedom. The sign of the Berry curvature at a given point in
the Brillouin zone is not changed by the doubling [70], so the Fermi arc
connecting Weyl cones of opposite Berry curvature must still run across
the Brillouin zone — but now it has a choice: it may connect cones of
the same or opposite electrical charge. If we inspect Fig. 4.4 we see that
the Fermi arcs always connect Weyl cones of the same electrical charge
(coded blue or red), except at the gap inversion point. At the critical
tunnel barrier height Ubarrier = Uc the Majorana surface modes connect
bulk states of opposite electrical charge (from blue to red).

In Fig. 4.4 the anomalous connection by Fermi arcs of Weyl cones of op-
posite electrical charge and opposite topological charge happens only at an
isolated point in parameter space, because the superconductivity is induced
only at the surface of the Weyl semimetal. By inducing superconductivity
throughout the bulk (for example, using the heterostructure approach of
Ref. [70]) one should be able to stabilize the anomalous connection in an
entire region of parameter space. We expect an anomalous Josephson effect
to develop in the Weyl-Majorana solenoid as a result of this topologically
nontrivial connection.
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4.A Effect of the boundary potential on the
mode-matching calculation

The unitary transformations in Sec. 4.6 introduce a boundary potential in
the Hamiltonian (4.20), given by

Vb(x) = − itU†ψ(x)P †3U
†
φ(x)U†θ (x)νzτzσx

[
∂

∂x
, Uθ(x)Uφ(x)P3Uψ(x)

]
= 1

2 t(θ
′ sinφ+ ψ′)νzτyσx − 1

2 t(φ
′ sinψ + θ′ cosψ cosφ)νxτxσy

− 1
2 t(φ

′ cosψ − θ′ sinψ cosφ)νxτzσy

= −
1
2 tmz

∆2(x) +m2
z

d∆(x)
dx

νxτxσy, (4.41)

where we abbreviated

mz = (m̃2 + t2z sin2 kz)1/2. (4.42)

For simplicity we omitted Vb(x) from the mode-matching calculations
and the derivation of the effective surface Hamiltonian in Sec. 4.6. In
the following we include it in the calculation, resulting in an improved
agreement of the analytics with the numerics but without simple closed-
form expressions as Eqs. (4.32) and (4.33).

The step-function variation of the pair potential ∆(x) at the NS interfaces
x = 0,W produces a delta-function boundary potential. Let us focus on the
interface at x = 0, with ∆ = ∆N for x > 0 and ∆ = ∆S for x < 0. Because
of the boundary potential, the wave function does not vary continuously
across the NS interface. Instead, the wave functions at the two sides of
the interface x = 0 are related by the transfer matrix,

ψ(0+) = eiMNSψ(0−),

MNS = −1
t

∫ 0+

0−
dx νzτ0σxVb(x) = − 1

2ανyτxσz,
(4.43)

where the angle α is given by the integral

α =
∫ ∆N

∆S

d∆ mz

∆2 +m2
z

= arctan ∆N

mz
− arctan ∆S

mz
. (4.44)

Note that at the level crossing point we have mz = 0 hence α = 0, so the
level crossing itself is not affected by the boundary potential.
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As explained in Sec. 4.6.5, to obtain the effective surface Hamiltonian
we impose a two-sided decay of the wave function, by demanding that ψ is
an eigenstate with eigenvalue +1 of ν0τ0σy in S and of νzτ0σy in N. The
former condition can be rewritten as a boundary condition in N,

ψ(0+) = Ubψ(0+), Ub = eiMNSν0τ0σye
−iMNS . (4.45)

Note that Ub and νzτ0σy commute, so they can be diagonalized simul-
taneously. The rank two eigenspace of eigenvalue +1 is spanned by the
vectors

v1 = (0, 0, sinα, i sinα, 1− cosα,−i+ i cosα, 0, 0) ,
v2 = (sinα, i sinα, 0, 0, 0, 0, 1− cosα,−i+ i cosα) .

The Hamiltonian projected onto this eigenspace is

Heff = τ0t sin ky − (γ/M̄)(λτ0tz sin kz − µτzmz),
γ = cosα+ (∆̄/mz) sinα,

(4.46)

where the x-dependent gap ∆(x) in the full Hamiltonian has been replaced
by a spatial average ∆̄, and M̄ = (m2

z + ∆̄2)1/2.
Comparison with Eq. (4.36) shows that the effect of the boundary

potential is to renormalize the parameters λ and µ by a factor γ. For
∆S � mz we have

γ = (∆2
N +m2

z)−1/2(∆N − ∆̄). (4.47)

The full mode-matching calculation of Sec. 4.6.4 is also modified by the
new boundary condition. Since Eq. (4.43) mixes the ν and τ indices, we
can no longer use the block-diagonalization of the Hamiltonian to simplify
the mode matching, and we could not find a closed-form solution analogous
to Eqs. (4.32) and (4.33). Including both the diagonal and off-diagonal
terms in the Hamiltonian (4.20) we find the energy and charge expectation
value shown in Fig. 4.9 (dashed curves). The solid curves are the numerical
solution of the tight-binding model. Comparison with Fig. 4.8, where we
did not include the boundary potential and discarded off-diagonal ν, τ
terms in the Hamiltonian, shows little difference in the energy but an
improved agreement in the charge.

73



4 Weyl-Majorana solenoid

Figure 4.9: Colored data points: Energy spectrum (color scale as in Fig. 4.2)
and average charge obtained from a numerical diagonalization of the discretized
Hamiltonian (4.13). The parameters are the same as in Fig. 4.8. The black
dashed curves result from the mode-matching calculations including the boundary
potential and the full Hamiltonian (with the off-diagonal terms).
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5 Andreev-Bragg reflection
from an Amperian
superconductor

5.1 Introduction
Doped Mott insulators exhibit new symmetry-broken states of matter
with coexisting magnetic, charge, and superconducting order [138–140].
Notable examples of such “intertwined order” are superconductors with a
pair-density wave (PDW), such that the Cooper pairs acquire a nonzero
center-of-mass momentum [140–145]. In the first proposals by Fulde,
Ferrell, Larkin, and Ovchinnikov (FFLO) the PDW order was induced
by an external magnetic field [67, 146], but it can appear with preserved
time-reversal symmetry in doped Mott insulators (and possibly also in a
broader context [147]).

In a remarkable recent paper [68], Patrick Lee has carried this develop-
ment to its logical endpoint, by proposing PDW order with the maximal
2kF Cooper pair momentum. The pairing mechanism comes from the
gauge field formulation of the resonating valence bond theory of high-Tc
superconductivity [138, 148–151], where electrons moving in the same
direction feel an attractive force analogous to Ampère’s force between
current-carrying wires [152]. Lee has proposed this Amperian pairing to ex-
plain the diversity of anomalous properties that characterize the pseudogap
phase in underdoped cuprate superconductors, including the appearance
of Fermi arcs in the quasiparticle spectrum [153], charge order with a
doping-dependent wave vector [154–163], and indications of short-range
superconducting order [164–167].

The contents of this chapter have been published in P. Baireuther, T. Hyart, B.
Tarasinski, and C.W. J. Beenakker. Phys. Rev. Lett. 115, 097001 (2015).
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Phase-sensitive experimental tests for Amperian pairing are hindered
by phase fluctuations and the nucleation of vortex anti-vortex pairs that
are believed to suppress long-range phase coherence [68]. Here we propose
to use Andreev reflection as a phase-insensitive probe, which being a
local process would not require long-range superconducting order. Earlier
studies of the FFLO state have indicated that conductance spectroscopy
shows signatures of the nonzero momentum of Cooper pairs [168–172], but
these are typically small effects. We find that the extreme 2kF momen-
tum transfer upon Andreev reflection from an Amperian superconductor
changes the sign of the current in a three-terminal configuration, allowing
for an well-defined experimental test.

5.2 Model
We study the mean-field Hamiltonian

H =
∑
k,σ

ξ(k)c†kσckσ +
∑
i,k

[
∆Qi(k)c†k↓c

†
Qi−k,↑ + H.c.

]
(5.1)

with square-lattice dispersion

ξ(k) = −2t(cos kx + cos ky)− 4t′ cos kx cos ky
−2t′′(cos 2kx + cos 2ky)− µ (5.2)

(nearest neighbor hopping energy t, chemical potential µ, lattice constant
a ≡ 1). To make contact with the cuprate superconductor Bi2+xSr2−yCuO6+δ
(Bi2201), we have also included further-neighbor hopping energies t′ =
−0.2 t and t′′ = 0.05 t [161].
The PDW order parameter ∆Qi

(k) describes pairing with total mo-
mentum Qi = 2Ki (up to a reciprocal lattice vector) near the points
Ki ∈ {±Kx, ±Ky} where the free-fermion Fermi surface crosses the
boundary of the first Brillouin zone (see Fig. 5.1b). This pairing of
electrons on the same side of the Fermi surface defines the Amperian
superconductor [68].

Following Lee [68], we take a phenomenological Gaussian profile (width
k0) for the k-dependence of the order parameter near the momentaKi and
their images upon translation by a reciprocal lattice vector 2πj = 2π(n,m),
n,m ∈ Z:

∆Qi
(k) = ∆0

C

∑
j

exp
(
−|k −Ki − 2πj|2

2k2
0

)
. (5.3)
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Figure 5.1: a) Density of states ρ(E,k) as a function of energy E and momentum
ky integrated over kx ∈ (−π, π). Only the electron contribution is shown (in units
of 1/t), the full density of states also includes the hole contribution ρ(−E,−k)
to ensure particle-hole symmetry. b) Density of states as a function of kx and
ky, integrated over a narrow energy interval around the Fermi level E = 0.
The Amperian pairing takes place near the momenta ±Kx and ±Ky where the
free-electron Fermi surface crosses the boundary of the first Brillouin zone (black
arc and arrows). The PDW with wave vector ±Qx or ±Qy has a periodicity of
8 unit cells. This folds the Brillouin zone, but for clarity the figure shows the
bands unfolded (extended zone scheme). Inset: Magnified region of the Brillouin
zone near ky = −3π/8, showing a minigap.
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By choosing the coefficient C such that ∆Qi
(Ki) = ∆0, the usual BCS

order parameter follows in the limit k0 →∞ at Ki = 0. In what follows
we set ∆0 = 0.4 t and k0 = 1.2 .

We take chemical potential µ = −0.75 t corresponding to hole doping
fraction p ≈ 0.14 deep inside the pseudogap phase [138]. The wave vectors
Qi for this doping are ±Q0êx and ±Q0êy with Q0 = π/4, corresponding
to a PDW periodicity of 8 square-lattice unit cells.

5.3 Density of states

To prepare for the calculation of the Andreev reflection probability at
a normal-superconductor interface, we have first computed the electron
density of states in the unbounded superconductor. We use the kwant
toolbox for all our tight-binding calculations [93]. The result in Fig. 5.1
shows the characteristic features of an Amperian superconductor identified
by Lee [68]: Fermi arcs and gaps both above and below the Fermi level, in
good agreement with experimental data from angle-resolved photoemission
spectroscopy (ARPES) [153, 161] and scanning tunneling microscopy
[157]. Close inspection reveals that the Fermi arcs are interrupted by
a multitude of minigaps (cf. inset of Fig. 5.1b), originating from higher
order Bragg reflection processes with a momentum shift

∑
i niQi (ni ∈ Z).

Lifetime broadening would presumably hide these minigaps from ARPES
measurements.

5.4 Andreev-Bragg reflection

We now introduce an interface with a normal metal along the line x = 0,
extended in the y-direction over 256 lattice sites with periodic boundary
conditions. The Amperian superconductor is at x > 0, with Hamiltonian
(5.1), while for the normal metal at x < 0 we take a nearest-neighbor
tight-binding Hamiltonian (same a and t, µ = −0.5 t, ∆0 = 0, t′ = t′′ = 0).
We adopt the so-called maximum contact boundary conditions of Ref. [170],
whereby the periodic modulation of the order parameter in the x-direction
has a maximum at the x = 0 interface.

We inject an electron with energy E and transverse momentum kin
y from

the normal metal towards the superconductor and calculate the probability
R(E, kin

y , k
out
y ) for Andreev reflection as a hole with transverse momentum
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Figure 5.2: a) Total Andreev reflection probability (5.4) as a function of
energy E and incoming transverse momentum kin

y , integrated over the outgoing
transverse momenta kout

y . The regions of non-zero Rtot correspond to the
gapped regions in Fig. 5.1. b) Andreev reflection probability at E = 0 as a
function of incoming and outgoing transverse momenta. The diagonal black
lines correspond to momentum shifts kout

y = kin
y + nQ0, n ∈ Z. Region I

around E = 0 and kin
y = 0 exhibits Andreev-Bragg reflection with transverse

momentum shift Q0 between the incoming electron and the outgoing hole.
Region II shows transverse momentum shifts of 3Q0. (The resonance lines
labeled II in panel a are interrupted by the finite ky resolution.) Region III
supports Andreev retroreflection (without transverse momentum shift), because
the periodic modulation of the order parameter is perpendicular to the normal-
superconductor interface. Region IV (white) has no incoming electron modes
from the normal metal.

kout
y . Fig. 5.2a shows the total Andreev reflection probability

Rtot(E, kin
y ) =

∫ π

−π
dkout
y R(E, kin

y , k
out
y ), (5.4)

while Fig. 5.2b shows how the probability at the Fermi-level R(0, kin
y , k

out
y )

varies as a function of incoming and outgoing transverse momenta.
As can be seen in Fig. 5.2a, there are distinct regions I, II, III of nonzero

Rtot, each with a gapped density of states (cf. Fig. 5.1a). The corresponding
Andreev reflection processes can be understood by recalling that the
Amperian superconductor is described by a bi-directional (checkerboard)
modulation of the order parameter with periodicity 2π/Q0 along both the
x- and y-directions. Since the interface is parallel to the y-direction the
modulation along x gives rise to usual Andreev retroreflection without a
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Figure 5.3: Right panel: Same as Fig. 5.2b, but now as a function of angles θ of
velocities (measured in degrees) rather than transverse momentum ky. The left
panel indicates the geometry of the normal-superconductor (NS) interface, with
retroreflection corresponding to θout = −θin and specular reflection to θout = θin.

momentum shift (region III). In contrast, the modulation along y produces
Andreev-Bragg reflection with transverse momentum shift nQ0 (n ∈ 2Z+1).
The order n = ±1 and n = ±3 processes are visible in Fig. 5.2b, in regions
I and II, respectively. Momentum shifts at even multiples of Q0 do not
appear, because these produce only normal reflection (without electron-to-
hole conversion).

The angular dependence in real space of the Andreev reflection processes
of type I, II, and III is shown in Fig. 5.3. The directionality of Andreev-
Bragg reflection is centered around specular reflection (θin = θout), with
a broad spread of angles for the first-order Bragg shift (type I) and a
narrow collimation for higher orders (type II). The conventional Andreev
retroreflection (type III, θin = −θout) appears only near grazing incidence.

5.5 Method of detection
Electrical detection of momentum transfer upon Andreev reflection has
been proposed in the context of FFLO superconductors, notably using
a magnetic-flux controlled interferometer [172]. (A similar Aharonov-
Bohm interferometer has been proposed [173] to detect specular Andreev
reflection in graphene [174].) Here we investigate an alternative electrical
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5.5 Method of detection

Figure 5.4: Computer simulation of the differential cross-conductance for the
Y-junction geometry shown in the inset. The sign of the cross-conductance
dI1/dV2 ∝ T12 − A12 distinguishes Amperian pairing (A12 > T12) from BCS
pairing (T12 > A12).

method of detection of Andreev-Bragg reflection that relies on ballistic
transport, but does not require long-range phase coherence and might
therefore be more easily realized.

We consider the three-terminal Y-junction of Fig. 5.4 (inset), similar to
geometries considered for the detection of “Cooper pair splitting” [175].
One difference with those experiments is that here the size of the junction
is much larger than the superconducting coherence length (which is on the
order of a few lattice constants). The current I1 flowing into the grounded
normal-metal contact 1 is measured while the other normal-metal contact
2 is biased at voltage V2. (The superconductor is also grounded∗.) The
differential cross-conductance dI1/dV2 is expressed by a three-terminal

∗The geometry of Fig. 5.4 describes a three-terminal differential conductance mea-
surement, so no ±V2 symmetry is enforced. Asymmetry in the electron band structure
around the Fermi level shows up in the T12 contribution of Eq. (5.5), but has no effect
on the A12 contribution. This explains why the differential conductance in Fig. 5.4 has
a stronger ±V2 asymmetry for BCS pairing than for Amperian pairing. We also note
in this connection that the two grounded terminals in Fig. 5.4 may alternatively be
biased at some nonzero potential —- the differential conductance dI1/dV2 remains the
same because the contributions from different terminals are additive if we remain close
to equilibrium (when electron heating effects can be neglected).
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Figure 5.5: Effect of disorder on the cross-conductance of Fig. 5.4, for Amperian
pairing at V2 = 0. The data is averaged over four disorder realizations (error
bars show standard error of the mean). Data collapse for different system widths
W is achieved by rescaling the conductance by a factor W0/W , with W0 = 256.
The negative cross-conductance persists for W/`mf . 2.

variation of the Blonder-Tinkham-Klapwijk formula [176],

dI1
dV2

= 2e2

h

∫ ∞
−∞

dE
[
T12(E)−A12(E)

]df(E − eV2)
−dE

, (5.5)

in terms of the probabilities (summed over all transverse modes) for an
electron to be transmitted from contact 2 into contact 1, either as an
electron (normal transmission probability T12) or as a hole (crossed Andreev
reflection probability A12). The probabilities are integrated over energy E,
weighted by the derivative of the Fermi distribution f(E) = (eβE + 1)−1.

We have performed computer simulations to determine whether such
a device has sufficient angular resolution to distinguish Andreev-Bragg
reflection from the usual retroreflection. We took a 60◦ angle between
the two normal-metal leads, each 146 lattice constants wide, with open
boundary conditions. The conductance was calculated from Eq. (5.5) at a
temperature of 0.01 ∆0. We compared Amperian pairing with BCS pairing,
keeping all other parameters of the tight-binding Hamiltonian the same.
The results plotted in Fig. 5.4 demonstrate that for a large range of

voltages the differential cross-conductance is negative in the Amperian case
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Figure 5.6: Effect of an interface barrier (height EB, length δL = 3, width
W = 256) on the cross-conductance of Fig. 5.4, for Amperian pairing at V2 = 0.
The sign changes occur when the average normal-state transmission probabilities
of the barrier are TB = 0.68 (EB = −0.63 t) and TB = 0.50 (EB = 1.5 t). The
TB’s are calculated by averaging over all the incoming modes at different energies,
weighted with the Fermi distribution.

(A12 > T12, because Andreev-Bragg reflection dominates) and positive in
the BCS case (T12 > A12, because retroreflection dominates). Notice that
an entirely normal system would have A12 ≡ 0, hence dI1/dV2 > 0 — so
the negative cross-conductance can only originate from Andreev reflection.

5.6 Effects of disorder and interface barrier
Because the negative cross-conductance is a ballistic effect, strong impurity
scattering will obscure it, but the sign change should persist if the mean
free path `mf is not much smaller than the width W of the junction.
To confirm this, we model electrostatic disorder by a random on-site
energy with a Gaussian distribution with variance σ2, resulting in `mf =
~vF(2πN0σ

2)−1 ≈ 0.9(t/σ)2. (We have used that the metallic part of the
Y-junction has a nearly circular Fermi surface, with density of states per
spin N0.) Results shown in Fig. 5.5 confirm our expectation.
Another detrimental effect is the presence of a barrier at the interface

with the superconductor, since this would suppress Andreev reflection in
favor of normal reflection. The computer simulation of Fig. 5.6 shows that
the effect of a tunnel barrier has a significant electron-hole asymmetry,
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but eventually for barrier heights |EB| & t the negative cross-conductance
disappears. A high quality interface is therefore needed.

5.7 Conclusion
We have shown that Andreev reflection from an Amperian superconductor
involves a transverse momentum transfer of odd multiples of Q0 = 2kF ,
because of Bragg scattering from the pair-density wave. Computer sim-
ulations show that this Andreev-Bragg reflection can be detected in a
Y-junction, through a sign change of the differential cross-conductance.
Long-range phase coherence is likely to be absent in the Amperian super-
conductor [68], but since Andreev reflection is a local process we expect
the predicted experimental signature of the 2kF pairing to be robust and
accessible.
The experimental signature of Andreev-Bragg reflection proposed here

may for example be observed in Bi2Sr2CaCu2O8+x, where recent exper-
iments have shown evidence for the excistence of a pair density wave
using scanned Josephson tunnelling microscopy [177]. Beyond that, the
signature may be of use in other contexts as well. The pair-density waves
predicted in Mott insulators [140] have crystal momentum on the order of
the inverse lattice constant, and might therefore be detected via a negative
cross-conductance in the geometry of Fig. 5.4. Ultracold fermionic atoms in
a two-dimensional optical lattice provide an altogether different realization
of the Hubbard model [178]. Thus, these systems may also support PDW
states, which can potentially be detected via Andreev-Bragg reflections.
An energy-resolved scattering experiment is challenging in that context,
but in the light of the recent observation of conductance quantization in
a cold atom setup [179], the analogue of negative cross-conductance may
become observable as well.
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Samenvatting
Topologische halfmetalen zijn een nieuwe klasse van materialen, waarin de
geleidingsband en de valentieband elkaar toevalligerwijs raken in afzonder-
lijke punten van de Brillouin-zone. In de nabijheid van deze raakpunten, is
de dispersierelatie lineair en bewegen de massaloze excitaties zich met een
energie-onafhankelijke snelheid (net zoals de lichtsnelheid voor fotonen).
Dit veroorzaakt fascinerende transporteigenschappen die waargenomen
zijn in het tweedimensionale halfmetaal grafeen.
In drie dimensies wordt het verhaal nog een stuk interessanter. De

toevallige raakpunten zijn dan beschermd door de topologie van de derde
ruimtelijke dimensie. Nabij de Fermi-energie bestaat het spectrum uit een
even aantal conussen, die elk beschreven worden door de Weyl-vergelijking
uit de relativistische quantummechanica. De Weyl-conussen hebben een
linkshandige of rechtshandige draaiing die “chiraliteit” of “Berry-kromming”
wordt genoemd. Deze unieke eigenschappen veroorzaken opmerkelijke elek-
tromagnetische eigenschappen, zoals een zeer grote negatieve magnetoweer-
stand, chirale Landau-niveaus, en het chirale magneto-elektrische effect.
Aan het oppervlak van een Weyl halfmetaal bestaat het Fermi-oppervlak
uit open contours, de zogenaamde Fermi-bogen. Fermi-bogen beginnen
en eindigen bij de projectie van de Weyl-conussen in het binnenste op
de Brillouin-zone aan het oppervlak. Deze topologisch beschermde toe-
standen en hun transporteigenschappen vormen het hoofdonderwerp van
dit proefschrift.

We beginnen in hoofdstuk twee met de studie van de hieraan verwante
antiferromagnetische topologische isolatoren. In deze systemen is tijdom-
keersymmetrie lokaal gebroken maar globaal hersteld door de combinatie
met translatie over een halve eenheidscel. Anders dan de afzonderlijke
tijdomkeersymmetrie, wordt deze gecombineerde symmetrie verstoord door
wanorde. In onze studie vinden we echter dat de symmetrie gemiddelder-
wijs behouden blijft. (Dit is een voorbeeld van een statistische topologische
isolator.) Bij de faseovergang tussen een gewone isolator en een antiferro-
magnetische topologische iolator sluit de energie-gap zich op afzonderlijke
punten in de Brillouin-zone. Daar ontstaat een lineair spectrum van Weyl
conussen.

In een Weyl halfmetaal wordt de antiferromagnetische koppeling vervan-
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gen door een ferromagnetische koppeling. Dit breekt de tijdomkeersym-
metrie en stabiliseert de halfmetallische fase. In hoofdstuk drie van dit
proefschrift bestuderen wij één van de meest kenmerkende transporteigen-
schappen van een Weyl halfmetaal, het zogenaamde chirale magnetische
effect. Dit is één van de eigenschappen die een Weyl halfmetaal onder-
scheiden van grafeen. Voor dit effect is een sterk magnetisch veld met
Landauniveaus nodig. Wat we ontdekt hebben, is dat er een variant van
hetzelfde chirale magnetische effect mogelijk is in een zwak magnetisch
veld, zonder Landauniveaus. Deze variant is vermoedelijk eenvoudiger
waar te nemen in een experiment.

In het vierde hoofdstuk vervolgen we de studie van de oppervlakte Fermi-
bogen. Terwijl deze duidelijk waargenomen zijn in optische experimenten,
kunnen sommige van hun unieke eigenschappen alleen onderzocht worden
in transportexperimenten. De grote moeilijkheid bij het uitvoeren van
zo’n transportexperiment is dat een Weyl halfmetaal, in tegenstelling tot
een topologische isolator, zowel een geleidend oppervlak als een geleidende
binnenkant heeft. Het is daardoor moeilijk om oppervlakte en binnenkant
van elkaar te onderscheiden. Wij benaderen dit probleem door het Weyl
halfmetaal in contact te brengen met een supergeleider. De supergeleider
heeft geen invloed op de binnenkant van het Weyl halfmetaal, maar het
splitst de Fermi-bogen in bijna ladingsneutrale Majorana banden. We
laten zien hoe we door middel van een tunnelbarrière Majorana deeltjes
kunnen opsluiten.
In het vijfde hoofdstuk verlaten wij het terrein van de halfmetalen om

Fermi-bogen te bestuderen in supergeleiders. In koperhoudende supergelei-
ders bij hoge temperatuur zijn Fermi-bogen waargenomen en geïnterpre-
teerd als tekenen van een nieuw soort paarvorming van de elektronen,
genaamd Ampère-paarvorming omdat de aantrekkende kracht lijkt op
de Ampèrekracht tussen gelijkgerichte evenwijdige stroomdraden. We
onderzoeken hoe de Andreev-verstrooiing van elektronen in gaten door
de Ampère-paarvorming beïnvloed wordt. We sluiten af met een voorstel
voor een geleidingsexperiment in een Y-vormige junctie, dat gebruikt zou
kunnen worden om de Ampère-paarvorming te detecteren.
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Summary
Topological semimetals are a new class of materials, in which the conduc-
tance and the valence band touch accidentally at discrete points of the
Brillouin zone. Near these touching points, the dispersion relation is linear
and the massless excitations move with an energy-independent velocity
(much like the speed of light for photons). This leads to fascinating trans-
port properties, that have been observed in the two-dimensional semimetal
graphene.
In three dimensions, the story becomes even more interesting. The

accidental touching points are topologically protected by the third spatial
dimension. Near the Fermi energy, the spectrum consists of an even number
of cones, each of which is described by the Weyl equation of relativistic
quantum mechanics. The Weyl cones come in two different chiralities,
they are sources and sinks of Berry curvature. These unique features
lead to remarkable electromagnetic properties such as a huge negative
magnetoresistance, chiral Landau levels, and the chiral magnetic effect.
At the surface of a Weyl semimetal, the Fermi surface consists of open
contours, called Fermi arcs. Fermi arcs start and end at projections of
the bulk Weyl cones onto the surface Brillouin zone. These topologically
protected states and their transport properties are the main focus of this
thesis.
We begin in chapter two by studying the related antiferromagnetic

topological insulators. In these systems time-reversal symmetry is broken
locally but restored in conjunction with a translation by half a unit cell.
Unlike true time-reversal symmetry, this effective time-reversal symmetry
is destroyed by disorder. In our studies however, we find a remarkable ro-
bustness of the topological phase against electrostatic disorder. The reason
is that the symmetry still holds on average, placing the antiferromagnetic
topological insulator in the class of statistical topological insulators. At
the phase transition between a normal insulator and an antiferromagnetic
topological insulator the bulk gap closes at discrete points in the Brillouin
zone, forming a linear low energy spectrum: Weyl cones.
In a Weyl semimetal, the antiferromagnetic coupling is replaced by a

ferromagnetic coupling. This breaks time-reversal symmetry and stabilizes
the Weyl semimetal phase. In chapter three of this thesis, we study one
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of the key transport signatures of a Weyl semimetal, the chiral magnetic
effect. It is one of the features that distinguishes a Weyl semimetal from
graphene. For this effect, a magnetic field strong enough to form Landau
levels is needed. We find that there also exists a variant of the chiral
magnetic effect in a weak magnetic field without Landau levels. This
variant is likely to be more easily accessible in an experimental setting.

In the fourth chapter, we continue to study the surface Fermi arcs. While
they have been clearly observed in optical experiments, some of their unique
properties can only be probed by transport experiments. A key difficulty
in devising such a transport experiment is that, in contrast to a topological
insulator, both the bulk and the surface of a Weyl semimetal are conducting.
Therefore, it is difficult to distinguish the surface from the bulk response.
We address this problem by bringing the Weyl semimetal with broken
time-reversal symmetry in contact with a conventional superconductor.
The superconductor does not affect the bulk of the Weyl semimetal, but
splits the Fermi arcs into nearly charge neutral Majorana modes. We show
how we can trap Majorana fermions using a tunnel barrier.

In the fifth chapter, we venture beyond the horizon of Weyl semimetals
and study Fermi arcs in the pseudo-gap phase of high temperature cuprate
superconductors. These have been interpreted as signatures of a novel
pairing mechanism called “Amperian pairing”, because the attraction
resembles the Amperian force of parallel electrical currents. We examine
how the Andreev scattering of electrons into holes is affected by the
Amperian pairing. We conclude by showing how a transport experiment
in a tri-junction can be used to detect the Amperian pairing.
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